ELECTRUNICS SHOP RM. 48 NOYES

About this reference catalog.

This catalog is presented to you to simplify selection of quality equipment and accessories for solving your measurement, analysis, and computation tasks.

In addition to the pages outlining the capabilities, features, and specifications of HP products, there is applications marerial, rechnical information, and selection charts.

As indicated by the charts to the right Hewlett-Packard provides a wide variety of equipment for many technical phases of Science, Industry, Medicine and Education.

How to use this reference...

Go to the Alphabetical lndex on the following pages to find the product of interest, and turn to the page (s) indicated. Or, if you know the Model Number rurn'ro the index commencing on page 665 .
For assistance, call your Sales and Service Office; see pages 16 through 22 for addresses and relephone numbers.

COMPUTATION

GENERAL PURPOSE

SCIENTIFIC

SYSTEMS

MICROWAVE

COMMUNICATIONS

SOLID STATE CIRCUIT DEVICES

Amplifiers
Ammeters
Attenuators
Bridges
Calíbrators
DC Power Supplies
Distortion Analyzers

ANALYTICAL

AA Pbotometer CHN Analyzer Digital Integrator
Gas Chromatograpbs
MRR Spectrometer
Osmamerers
Quartz Thermometer
Viscometers

COMPUTING CALCULATOR

DIGITAL
 COMPUTERS

CUSTOM-BUILT SVSTEMS

Automatic Test and Calibration
Stimulus/Response Testing

Electronic Counters
Filters
Frequency Standards
Loudness Analyzer
Mixers
Modulators
Multifunction Meters

MEDICAL

Cath Lab Recording Systems
Diagnostic Instrumentation
Patient Monitoring Systerns
Physiological Recording Systerns
Transducers

TIME SHARE COMPUTING SYSTEM

STANDARD

 SYSTEMSData Acquisition and Manipulation Frequency Measuring

Impedance Meters

Microwave Link Tester
Mixets
Network Analyzers
Noise Figure Meters
Noise Sources

Network Analyzers	Spectrum Analyzers
Ohmmeters	Sweepers
Oscilloscopes	Time Standards
Pseudorandom Noise Generator	Transducers
Q-Meters	Ultrasonic Detectors
Recorders	Volmeters
Signal Sources	Wave Analyzers

NUCLEAR

Alpha, Beta, and Gamma Counters
GammarRay Spectrum Analyzer
Multichannel Pulse Height
Analyzer
Nuclear Instrument Modules
Scalers and Timers
Scintillation Detectors

COMPUTER

 PERIPHERALSAnalog-to-Digital Converter
Dise Memory
Magnetic Tape Units
Mark Sense Readers

Frequency Standar
Logic Module Testing
Automatic Network Analyzer
Nuclear Counting
Recording
Spectrum Analyzers
Sweepers
Itme Standards
Ultrasonic Detectors
Volmeters
Wave Analyzers

STATISTICAL/

DIGITAL
Multichanvel Analyzer
Random Noise Generator
Signal Analyzer/Averager

acousitic

Impulse Sisund Level Meters
Loudness Analyzers
Spectrum Analyzer

Multiverter

Power Supply Programmer
Punched Tape Reader
Tape Punch
Teleprinters

Amplifiers

Attenuators
Coaxial Instrumentation
Detectors
Directional Couplers
Frequency Meters

Cable Fault Locators
Cable Testing
Distortion Analyzers

Leak Detectors
Microwave Link Analyzer Spectrum Analyzers

Amplifiers
Displays
Hot Carrier Diodes
Infrared Sources

Amplifers
Displays
Infrared Sources

Phase Shifters
Power Meters
Power Supplies
Signal Generators
Solid State Devices
Spectrum Analyzers

Sweepers
SWR Indicators
Transistor Chips
Vector Voltmeter
Waveguide Instrumentation

TV Waveform Monitors
Wave Analyzers

[^0]Microwave Transistors
Mixers
Photochoppers
Photo Diodes

PIN Modulators
Step Recovery Diodes
Switches
Transistor Chips

ALPHABETICAL INDEX he a to communications

A

A
A to D Converser 119, 122, 244, 246
AC Calibrator 191
AC Current Probe 225
AC Meter Calibrator 198, 199, 200
AC Micro-Voltmeter 206
AC Power Supply (Magnetic Tape Recorders) 183
AC Probe 208, 217, 220, 225, 549
AC Voltmeters 206, 240-246, 249
AC/Ohms Converter 118, 242, 246, 249
AC/Ohms to DC Converter 242, 249
AC to DC Converters 162, 249, 252
AC/DC Meter Calibrator 198, 199
AC/DC Range Unit; Remote Unit 240
AC-DC VM, DC Standard 196, 197
$A C, D C$ Voltmeter Calibrator 198.200
Accessories
400 Series 225
$410 \mathrm{~B} / \mathrm{C}$ 215
Analytical Instrumentation 42
Cable 226, 549
Carrying Cases 227, 228
Camera 553
675A Detectors 419
Instrument Case 227, 228
Oscillator 383
Oscilloscope $523,528,531,544,545,548,549$
Oscilloscope Cameras 551,552
Probes, 428A 224, 225
Probe, AC Current 225,549
Probe, Active 544
Probe, High Frequency 225, 548
Probe, Voltage Divider 221, 225, 548
Sampling RF Voltmeter 217
Test Mobiles 550
Voltmeter 225, 226
Accessory Handles 228
Acoustics, Technical Information 91
Adapter
50 to 75 Ohm 531
BNC to Binding Posts 383,548
Coaxial 458
Microwave W/aveguide 460
Oscilloscope Cameras 553
Probe to BNC 548
Probe to GR 523
Quick-Connect 476
Type N to APC- $\overline{7}$ 528
Voltmeter 225
Waveguide-to-Coaxial 312
Waveguide-to-Waveguide 312
AEC.Standard Configuration 68
Atomic Absorption Photometer 48, 49
Atomic Frequency/Time Standard 644, 646
Attenuator
75 Ohm 338
Current Controlled 264
Derade 321, 383
Fixed Coaxial 304
Set 321, 383
Sets, Coaxial 303
Step, Coaxial 303
Telephone Patch Panels 321
Variable 305
Variable Coaxial 302
Variable Flap 305
Variable VHF 302
Audio Frequency Analyzers (Distortion) 435,436
Audio Frequency Oscillators 323, 327, 375.382
Audio Frequency Signal Generators 380, 386
Audio Spectrum Analyzer 93
Auto-Viscometer 51
Auro Volmeter 218,238, 241-251
Automatic Frequency Divider 610,611
Auromatic Network Analyzer 478
Automatic Sample Changer 80
Automatic Tape Degausser 183
Automatic Test Systems 114, 115
Automatic Transfer Oscillator 610
Automatic Viscometer 51
Autoranging Voltmeter 218
Averagers, Signal 88, 89
B
Battery Converter 159
Bartery Operated Oscillators 323, 375, 378
Battery Operated Voltmeters 211,219
Beta-Counter, Automatic 80
Bidirectional Counter 630
BIN, Nuclear Instrument Modules (NIM) 76
Bipolar Power Supply 587
Bolometer Mount 294
Brackets, Joining 72
Bridge, Impedance Universal 257
Bridge. RF 258
Broadband RF Volmeter 216
Broadband Voltmeters $206-217$
C
Cabinets, Modular 227
Cable Amplifier 100
Cable Fault Locators 316, 330, 530
Cable Testing, Fault Locating 316, 333, 530
Cable Testing, Technical Information 333
Cable Testing, Time Domain Refectiomete 524,530,542
Cables, Oscilloscope 349
Cables, Test Leads 226
Calculator 130,131
Calibrated Averaging, Technical Information 87
Calibrated Susceptance 531
Calibration Resistor for 4800A 254
Calibrators
$A C$ 191
AC/DC Meter 198-200
AC Meter 191, 198, 200
Meter 191-200
Peak Power 290
Voltmeter 292
Calorimetric Power Meter 191, 200
Cameras
Oscilloscope 551, 552
Accessories 553
Adapters 553
Capacitance Meter 257
Capacitor, Decade 222
Capacitor, High Accuracy 222
Card Reader 112
Cardiac Arrhythmia Monitor 54,55
Cardiac Pacemaker 55
Cardiotach Preamplifier 60-62
Cardiotachometer Plug.in 60-62
Cardiotocograph 56
Carriage, Microwave Slotted Section 284
Carrier Amplifier, Preamplifier 163
Carrying Cases 228
Cases, Instrument, Modular 227
Cell, Volume and Surface Resistivity 223
Central Station Console (Medical) 55
Cesium Beam Frequency \& Time Standard 644
Cesium Beam Tube 643
CHN Analyzer 45
Chart Advance, Incremental 148
Chronometer, Cesium 644
Clip-on Milliammeter 224
Clocks
Atomic, Cesium Beam and Rubidium 644, 646
Digital 134
Frequency Divider and Clock 665
Coaxial Adapter Kit 258
Coaxial Attenuators 302, 304
Coaxial Attenuators, Variable 302
Coaxial Crystal Detector 307
Coaxial Sliding Load 309
Coaxial Slotted Lines and Sections 282
Coaxial Step Attenuator 303
Coaxial Switch 313
Coaxial Test Equipment Table 274
Coincidence/Anticoincidence Detector, Nuclear 78
Coincidence Detection, Nuclear 71, 76, 78
Comb Generators 264, 410, 460
Combining Cases 227
Communication Test Equipment 320, 327
Communications Test Equipment; Cable Fault,Locating, Technical IoformationTest Equipment 316, 333, 530, 542
Communications Test Equipment, Telephone Test Meter, Oscillator $322 \cdot 323$
ALPHABETICAL INDEX continued
Comparator: to Fast Coincidence
Comparator
Analog 235
Digital 119, 243
Frequen¢y 652
Hi, GO, LO 243, 235
Component Testing 114, 115
Computers
Controlled Test Systems 114,115
Digital 104-109
General Purpose Digital: Technical Information 103
Input/Output Options 109
Magnetic Tape Units 111
Time-Shared System 110
Data Acquisition Systerns 128
Computing Calculator 130,131
Condenser Microphone Assy. 100
Constant Current Power Supply 368
Control Unit (for RF Units) 432
Controller, Preset 625,628
Converters
Analog-to-Digital 122
AC-DC 162, 240-243, 249, 252
AC/Ohms to DC 239-243, 249
BCD to Binary (Multichannel Analyzer) 73
Battery 159
D to A 113, 137, 564
Frequency 391
Microwave 460
Microwave Frequency 612
Thermal 197
Voltage to Frequency 247
Counters, Electronic
Bidirectional 630
Build-in Module 621
Controlling 625,628
Low Cost 620
Microwave 607, 608, 610,611
Plug-in Type 594.602
Plug-in Accessories for 603.609
Preset 625.628
Preset (Nuclear) 79, 82
Reversible 630
Ruggedized 600
Technical Information and Selection Guide 588.594
Time Interval 604, 605,636
Universal 616,618
Couplers
Digital Instrument 12 I
Directional 297, 299
Dual Directional 296, 297
Output 121
Signal 163
Coupling Transformer 260
Crossbar Scanner 118
Crossover Pickoff 78
Crystal Detectors, Microwave, as Waveguide 307
Crystal Detector, Closed Loop 307
Crystal Detectors, Sodium Iodide 85
Current Meter, Low Current 119, 223, 224, 239
Current Probe 225, 549
Custom Test Systems 114, 115
D
D-A Converter 128, 137
D/A Interface 113
Data Acquisition Systems 124-129
Data Acquisition Systems, Computerized 128
Data Acquisition System Tutocial 116
Data Amplifier $118,483,484$
DC Ammeters $214,219,220,221$
DC Coupling Preamplifier 60.63
DC Defibrillator 55
DC Digital Voltmeters 234.251
DC Meter Calibrator 198, 199
DC Microammeter 214, 219, 221
DC Milliammeter 214, 220, 224
DC Multifunction Meters 213.215, 218.221, 239
DC Nanoammeter 219
DC Null Meter, Voltmeter/Ammeter 218, 219
DC Plug-in (Medical) 60-62
DC Power Supplies 296,556.587
3 kW 582
10 kW 583
Accessories 561
Bench 570.571
Category Index 557
Constant Current 568
Definitions 562
Digitally.Programmable 113,564
Dual, Narrow Range Adjustabic 585
High Isolation 586
High Stability 526.27
High Voltage Bench 580
High Voltage Rack 580
IC Test 576-578
Klystron 296
Laboratory 572.573
Low Voltage Rack 576
Medium Power Modular $\$ 69$
Medium Voltage Supply 579
Modular Plug-in 586
Narrow Range Adjustable 584
Options 561
Plug-in Modular 586
SCR Regulated 581
Slot 584
Strain Gage 586
Vacuum-Tube Voliages 579
Voltage/Current Rating List 558-560
DC Power Supply/Amplifer 468, 587
DC Power Supply/Calibrators 566-567
DC Preamplifier (Medical) 60-62
DC Preamplifiers $60-62,249$
DC Standard AC-DC VM, AC-DC $\triangle V M$ 196, 197
DC Standard/Differential Volmeter 192, 193
DC Transfer Standard 194
DC Voltmeters
192-198, 213-215, 218-221, 234-246, 248-251
Decade Capacitor 222
Defibrillator 55
Degausser, Magnetic Tape 183
Delay Generato 351,625
Delay Lines, Plug-in (NIM) 77
Delay (Group) Detector 334.341
Delay, Pulse 78
Demodulator Display 334-341
Demodulator, Microwave Link Measurement 334.341
Demodulator, Phase Sensitive 160-163
Detectors
AC True RMS 197
Couplers 297
Crystal 307
Directional 297
Gas-Flow 80
Group Delay 334-341
Guard 80
Microwave (see also: Probes, Microwave) 297
Mount 283, 294
Nuclear 80, 85
Nuclear, Uses 68
Phase 264
Sodium Iodide 85
Tracking for 675A 418, 419
X-ray 86
Diagnostic Instrumentation 56
Diagnostic Sounder 56
Differential Amplifier 483
Differential Gain/Phase Measurement at I.F. 334-341
Differential Pressure Transducer $60-62$
Differential Voltmeter-DC Standard 192-193, 196-197
Digital Ammeter Plug-in 239
Digital-to-Analog Converter 113, 137
Digital
Analyzers $70,72,88,89$
Clock 121, 134, 243
Comparator 119
Computers 104
Couplers 122
Delay Generator 351, 625
Frequency Meter 611
Logic Module Test System 123
Magnetic Tape Units 111
Module Test Systems 114, 115
Multifunction Meter 241, 242, 243
Ohmmeter Plug-in 239
Printer $133,135,136$
Scanner 121
Systems 124-129
System Elements 118.121
Technical Information 187•190, 201-205, 229.233
Voltage Sources 564
Voltmeter 234-246, 248, 251
Voltmeters, Integrating 119, 241, 242, 243
Voltmeter Plugs-ins 238-240, 603
Digitally Programmed Power Supply 564
Diodes, (Hot Carrier, Light Emmitting, PIN,
Step Recovery) 262
Directional Couplers 296, 297, 299
Directional Detectors 297
Discriminator, Pulse Height 76, 82
Discriminator, Window 76,82
Displacement Transducer 184
Display Demodulator 334-341
Displays, Large Screen X-Y 506
Displays, Precision Raster 330
Display Sections for 8551 B Spectrum Analyzer 458
Displays, X-Y 501, 506
Distortion Analyzers (FCC Approved) 435-436
Distortion Analyzers Technical Information 434
DME/ATC Test Set 408
Double Balanced Mixer 264
Doubler Probe for 3200 B 396
Doubler Sets, Frequency 371
Doubler, Swept Frequency 406
Down-Converter 607,608
DP/DT Plug-in 60-62
Driver, Synthesizer 664
Dual Directional Couplers 296, 297
Dual Output DC Power Supplies 572
Dual Pulse Unit 351
Dual Range Labs Power Supplies 572
Dual Trigger Unit 351
Duplex Register 128
DVM Tutorial 229-233
E
Ear Plethysmograph 55
ECG Amplifier, 3.Channel 56
ECG Amplifier, 6-Channel 56
ECG-EEG Preamplifies 55
ECG/General Purpose Preamplifier 60-62
ECG Preamplifier 60.62
EEG Kit 60.62
EEG/ECG Plug-in 60.62
Electrocardiographs 36
Electromyograph 56
Electronic Counters (see also: Counters Electronic) 588.636Enclosures, Modular227
Executive Software, Data Acquisition 129
Extension, Universal 476

F

ALPHABETICAL INDEX continuad

Fault Locators to Meters, Power

Fault Locators, Cable 316
Feed-Thru Terminations ($50-875.0 h m$) 383, 548
Feed Thru Terminations ($600 . \mathrm{Ohm}$) 548
Fetal Hear Monitor 56
Filters, Low-Pass and Bandpass Microwave 306
Filter, Microwave Bandpass 459
Filter, Microwave, Voltage Tunable 459
Filter, Notch, Microwave 460
Filter Set 98
Fixed Coaxial Attentators 304
Flexowriter Coupler 121
Fluid Pressure Transducer, Medical 60.62
Flutter and Wow Discriminator 634
FM-AM Signal Generator 390, 391
FM Deviation Measurement $607,612,613,634$
FM Discriminator 634
FM Signal Generator 407
Force Transducers, Medical 185
Frequency
Comb Generator 460
Converter $606,608,610,611$
Converter, Microwave 612
Counters 588.636
Divider, Automatic 610
Dividers, Clocks 655
Domain Oscilloscope 326, 450, 532
Doubler 410
Doubler Probe 396
Doubler Sets 406
Meters 611, 634, 635
Meters, Coaxial \& Waveguide, Microwave 308
Standard $643,644,652,648$
Standards, Variable $658,660,652$
Synthesizers 658,660,662
Function Generator
Instruments 371-375
Technical Information 366.368
Variable Phase 371
Voltage Controlled $372 \cdot 374$
G
G-Band Equipment Table 276
Galvanometer Driver Ampliffer 8-Channel 173
Gamma.Counter, Automatic 80
Gamma Detector 85
Gas Chromatograph, High Efficiency 36
Gas Chromatograph, Laboratory 37
Gas Chromatograph, Preparative 38.40
Gas Chromarograph, Research 35
Gas-Flow Counting System 80
GC Strip Chart Recorders 41
Geiger Mode Gas-Flow Detectors 80
Generator
Pulse 342-360
Audio Signal 380
Comb 460
Function, Low Frequency 371.374
Function, Technical Information 366
Function, Variable Phase 371
Noise, Pseudo Random 102, 361.365
Signal (see also: Source, Signal; Oscillators;Sweepers; Sweep Generators)387.420
FM-AM 390,391
HF 387,388
Glide Slope 409
Low Frequency 380
SHF 402-404
Telemetry 391, 407
Transmission 334.341
UHF 397-400
VHF 396, 392
Spectrum 410
Square Wave 348, 349, 371-375
Sweep 416.427
Sweep, Technical Information 411.415
Generator/Swreeper (8601A) 384, 387, 420
Glide Slope Signal Generator 409
GO/NO-GO Comparator 235, 243
GSR Bridge Plug-in $60-62$
Guarded Crossbar Scanner 118
Guarded Data Amplifier 118
H
Harmonic Mixers 312
H-Band Equipment Table, Waveguide 278
H-Band Test Set 401
Heart Sound Amplifier 56
Heart Sound Preamplifier 60-62
Hererodyne Converter 606
High Frequency Probe 213, 225
High Gain Amplifier 60-62
High Gain Preamplifier 60.62
High-Go-Low Comparator 235, 243
High Speed A to D Converter 119, 122
High-Voltage DC Power Supplies 568
Histograms, Frequency of Occurrence 70,88
Hybrid. 75 Ohms 338
Hybrid Integrated Circuits 267
IC Power Supply 578
ILS Receiver Test Set 409
Impedance Bridge 257, 258
Impedance Meter 254
Impulse Sound Level Meter 98
Incremental Chart Advance 148
Indicator, Swept Frequency 530
Inductance Meter 254.261
Inductors, Reference 260, 261
Input Scanners 118
Instrument Cart, Mobile (Medical) 55
Instrument Cases 227, 228
Instrumentation Magnetic Tape Recording System 176.183
Instrumentation Tables, Microwave Equipment 274
Insulation, High Resistance Meter 223
Insulation Sampling Cell 223
Integrated Circuits, Hybrid 267
Integrating Digital Voltmeters 241-243, 244, 246, 248-251
Integrating/Dual Síope Digital Voltmeter 241.243
Integrating/Potentiometric Digital Voltmeter 248-251
Integrating Preamplifier 60-62
Integrator, Digital for GC 43, 44
Intensive Care 54,55
Interface, Computer (Averaging) 90
Intermediate Band, Magnetic Tape Recorder 179-180
I/O Coupler, Signal Analyzer 90
IRIG-Instrumentation Recording 176-183
J.K
J-Band Equipment Table 277
K-Band Equipment Table 281
Keyboards 148
Kits, Accessories for 3406A 217
Kits Probe 217
Kits, Probe for 411A 217
Klystron Power Supply 296
L
Lab DC Power Supplies 569.572
Lead Bricks; Low Background 80
Leading Edge Pickoff 78
Leak, Friction Detectors 316
Limit Comparator 119, 235, 243
Limit Tester 235,243
Line Follower 148
Line Matching Transformer 383
Linear Amplifer, Nuclear 76
Linear Displacement Transducers 184
Linear Velocity Transducers 185
Linearity Measurement on Microwave Links 334.341
Linearsyn Transducers 184
Loads, Moving 310
Loads, Sliding 309
Log Converter, BCD (Multichannel Ánalyzer) 73
Log Level Preamplifier 163
Logarithmic Converters 146, 147
Logarithmic Voltmeters 207.210
Logic Module Test System 123
Logic Probe 545
Loop Adapter, Magnetic Tape 67
Loudness Analyzer 96
Low-Background Counting System 80
Low Frequency Function Generators 371.374
Low Frequency Generators 371.374
Low Frequency Voltmeters 211
Low Gain Amplifier 8-Channel 164,173
Low Gain DC Preamplifier 160
Low Level Preamplifer 60.62
Low-Pass, Bandpass Filters 306
M
Magnetic Tape Coupler 121
Magnetic Tape Degausser, Automatic 183
Magnetic Tape Servo 183
Magnetic Tape Unit
Analog $176 \cdot 183$
Digital $11!$
Medical 67
Magnetometer Probe 224
Manufacturing Facilities 14.15
Mark-Sense Reader 112
Marker Generators 422,460
Measuring System 40 GHZ 614
Medical
Instrumentation 53
Magnetic Tape Recorders 67
Preamplifiers $60 \cdot 62$
Research 57,58,59
Transducers $55,60-62$
Medium Gain Amplifiec 8-Channel 164,173
Medium Gain DC Preamplifier 160
Membrane Osmometer 50
Meters
AC-DC VM, AC.DC \triangle VM, DC Standard ... 196, 197
Ammeters 214, 215, 219, 220, 221, 224, 239
Auto-Voltmeter 218, 238, 240
Calibrator, AC/DC 199
Clip.On DC 224
$D C$ VM, $D C \triangle V M, D C$ Standard 192. 193
Differential VM 192,195-197
Digital VM 234-246, 248-251
Frequency 635
High Resistance 223
Insulation Resistance 223
Kilovoltmeter 192, 195, 196, 208, 213, 214218, 220, 234.243, 248.251
Low Curcent 223
Microammeter 214, 220, 221, 224, 239
Microvoltmeter 206-209, 219
Microwave Frequency (Reaction) 308
Milliammeters 239
Milliammeters, Clip On DC 22壬
Millivoltmeter 251
Multi-Function Meters,192, 195.197, 213.215, 218-221, 236.246, 248, 249
Nanoammeter 219, 221, 224
Noise Figure 314
Ohmmeter 213.215, 218, 220, 239, 241-243, 249
Microwave Power 286-292
Peak Power 290
Power, Ruggedized 291

ALPHABETICAL INDEX continued

Meters, a to Preamplifler, ECG/EEG

Q

259, 261

Ratio $195,234,241-243$
RX ... 258
SWR 285,293
Vector Impedance . 254, 255
Volt-Ammeter . 218, 219
Voltmeters .. 192, 195-198, 206-220, 234-246, 248-251
Volt-Ohm-Ammeter 214, 220, 239
Volt-Ohm-Ammeter Plug-in 239
Volt-Ohmmeter . 215, 218
Microphone
Assemblies . 100
Contact, Medical . 60.62
Power Supply . 100
Mictovolt-Ammeter . 219, 221
Microwave
Amplifiers (Technical Information) 481
Amplifiers 490
Equipment Instrumentation Tables 274.281
Frequency Converter 608, 610, 612, 613
K-Band Mixer 460
Link Analyzer 334 -341
Mixer, Waveguide X., P-, K-, R-Bands 460
K.Band, P.Band, R-Band, X-Band Mixers 460

Power Meters . 286 292
Spectrometer . $46-47$
Switches Solid State 263
Test Equipment . 296
Test Equipment (Calorimetric Power) 292
Test Equipment (Technical Information) 268
Test Sets . 401
Milliammeter, Clip-On . 224
Milliohmmeter 222
Millivoltmeter 206, 220, 234-243, 248.251
Millivoltmeters, RF 216, 217
Mismatch 17 DB (75 OHMS) 338
Mixers, Double Balanced 264
Mixer, 8-Input, Multichannel Analyzer 73
Mixers, Harmonic 312
Mixer, Microwave Waveguide 460
Mobile Instrument Cart, Medical 55
Mobile Resuscitation Systems 55
Modular Enclosure Accessories 228
Modular Enclosure Systems 227
Modulators . 264, 300
Modulator, Absorption-Type 300
Modulator, Microwave Links Measurement 334-341
Modulators, PIN 300
Module Testers 114, 115
Molecular Rotational Resonance Spectrometer 46
Molecular Weight Determination 50
Monitor Scope 59
Monitor, TV Pictuse 331
Monitor, TV Waveform 328
Monitor, Video 331
Mounts
Barretter, Microwave 294
Bolometer 294
Detector 294
Thermistor 289
Moving Loads 309, 310
Multichannel Analyzer 70
Multichannel Analyzers, Uses 68
Multichannel Scaling 70, 88
Multifunction Meter 213
Multifunction Meter, Digital 241, 242, 243
Multiscaler 70
Multi-Scaling Input 73

N

Network Analyzer 257
Applications Table 471
Automatic 478
Low Frequency 418,419
Specifications 473, 474
Systems 471.474
Technical Information 461
Test Unit, Refection 474
Test Unit, Transmission 474
System 469
System Selection Chart 470
NIM Modules (Nuclear) 76
NIM Power Suppiy 76
Noise Figure Meters 314
Noise Generator, Pink and White 102
Noise Generator, Pseudo Random 361-365
Noise Sources 314
Noise Sources, RF 314
Noisy Signal Enhancement, Technical Information 87
Notch Filter (8439A) 460
Nuclear
Analyzer 70
Counter 79, 82
Counting Systems, Types 68
Instrument Modules (NIM) 76.79
Measurements, Technical Information 68-69
Preamps 84, 86
Radiation Measurement 68
Null Meters DC 218, 219
Numeric Display, Solid State 262
Numerical Display, Medical 55
Numetical Readout, Medical 55
0
Ohmmeters .. 213, 214, 215, 218, 220, 239, 241-243, 249
Ohmmeter, Low Resistance 222
Ohmmeter, Milliohm 222, 249
Ohms Converter 118,246
Open Fault Locators 316
Optical Mark Reader 112
Optical Recording Systems 65
Optoelectronic Devices 262
Ordering Information 13
Oscillators (see also: Generator; Signal Sources;
Signal Sweepers; Generators, Sweep)
Oscillators
Audio and Ultrasonic 371-382
Battery-Operated 323,378
Crystal Controlled 371
Low Frequency 377
Low Distortion $371,375,376,377,380$
Portable 323,378
Pushbutton 378
Quartz 648
Sinusoidal 371.382
Sweep $373,374,416 \cdot 419,422,424$
Synchronizer 431
Technical Information 366-370
Telephone Test 323
Test 381-382
Tracking 447
Transfer 613, 607
Ultra-Low Frequency 371-374
VHF 396
Oscilloscopes
Accessories 523,528,531,544
Cameras 551-553
Frequency Domain $326,450,532$
General Information 491
Glossary 554
Large Screen 514
Medical 55
Phosphor Chart 554
Probes 523, 548
Remote Monitor 66
Selection Chart 494
Technical Information 491.494
Testmobiles 550
TV Wave Form 328
Variable Persistence 513,536
Osmometer, Vapor Pressure 50
Osmometer, Membrane 50
Output Coupler 121
P-Band Equipment Table 280
Pacemaker 55
Paper Tape Coupler 121
Patch Panels 320, 321
Patient Alarm Display 55
Patient Monitoring 54, 55
Patient Selector 55
PC Board Testing 114, 115
Peak Power Calibrator 290
Phase Detector 264
Phase Lock Function Generator 373
Phase Locking: see Synchronizer, Oscillator 431
Phase Sensitive Demodulator 162
Phase Shifters, Waveguide 311
Phonocardiograph 56
Photoconductor Devices 263
Photometer, Atomic Absorption 48, 49
Physiological Recording Systems 57.67
PIN Modulatocs 300
Pipe Locators 316
Planchet Counting System 80
Plethysmograph 55
Plug-in DC $60-62$
Comparator 234
Digital Voltmeter 236-240
DC Modules 586
EEG-ECG 60-62
For Electronic Counters $604-609$
Function Generator 372-374
Galvanic Skin Resistance, Medical 60.62
Thermal Dilution, Medical 60.62
Wave Analyzer 324, 441-443
Point Plotter 145
Portable Case, Amplifier 484
Portable Case, V to F Converter 247
Portable Test Set 320,321
Portable Volmeters 211,322
Power
Amplifier $486,489,587$
Voltage Amplifers 485.488
Measurements (Technical Information) 272
Meter 286, 289, 290
Meter, Calorimetric 292
Meter, Microwave 289
Meter-Ruggedized 291
Power Supply
AC 183
Active Probes 549
Digitally Progammable 564
High Voltage 580
Klystron 296
Microphone 100
Nuclear Instrument Modules (NIM) 76
Regulated DC 556.587
Standby 654
Preamplifer
Cardiotach 60-62
Carrier 161
Carrier, Medical $60-62$
Charge Sensitive 84, 86
DC 60.62, 249
DC Coupling 63
ECG 60-62
ECG/EEG 55

ALPHABETICAL INDEX continued

Preamplifler, ECG to Stide.Scrow Tuners

ECG/General Purpose 60.62
EEG . 60.62
General Purpose, Nuclear 84
Heart Sound . $56.60-62$
High Gain . $60-62$
Integrating . 60.62
Log Level . 163
Low Gain DC 160
Low Level 60-62
Medica! . $60-62$
Medium Gain DC 160,184
Microphone . 100
Nuclear 84, 86
pH , Medical 60.62
Phase Sensitive 162
Plug-in 60-62, 160-163
Pressure Processor . 60.62
Respiration Rate 60.62
Respiratory . 60.62
Scintillation 86
Precision AC Amplifier . 487
Precision AC Calibrator 191
Precision Analog Voltmeters 192, 193, 195-197
Precision Analog Voltmeters \& Sources
Technical Information 187.190
Precision DC Sources 192.197
Precision Digital Voltmeters 241-243, 248-251
Precision Noise Generator 102
Precision Raster Displays 330
Precision Ratiometer 195, 241-243
Preparative Gas Chromatograph 38.40
Prescaler 603, 608
Preselector . 459
Preselecters, Lowr.Pass and Bandpass 306
Preselector, Spectrum Analyzer 459
Preset Counter 625, 628

Pressure Processor Preamplifier 60.62
Pressure Transducers 60.62, 185
Pressure Transducer, Applications 60-62
Primary Frequency Standard 644
Printer 133, 135, 136
Probability/Density/Analyzer 70
Probes
AC 208, 213, 225
AC Current 549
Active . 544
Carriage ... 284
Coaxial "N"' Connector 215
Coaxial "T" Connector 215
Current ... 225
Frequency Doubler 396
High Erequency 213, 225,548
Logic 545, 549
Magnetometer 224
Microwave, for Coaxial and Waveguide Sections 284
Oscilloscope 548
Resistive Divider 523, 528, 544
Voltage Divider 208, 225, 548
Voltmeter 225
Production Testing, Capacitor 222
Programmable Test Systems 114,115
Programmers 120
Proportional Mode Gas-Flow Detectors 80
Pseudo Random Noise Generator 102, 361-365
Pulse
Amplifier 488
Detector 264
Duration Unit 351
Generator 625
Generators, Selection Chart 343
Generators Technical Information 342
Generators, Variable Risetime 344,358
Height Analyzer, Nuclear 70-76, 82
Modulator 264
Wave Transducer $60 \cdot 62$
Shaper, Nuclear 76
Spectrometry 68
Timing, Nuclear 78
Tracer 545
Punched Card Coupler 121
Punched Tape Coupler 121
Pushbutton Oscillator 378
Pyrolyzer 42
Q Merer 259, 261
Q Standards 260
Quartz Oscillator 648
Quartz Thermometer 52
Quick-Connect Adapter 476
R
R-Band Equipment Table 281
Rack Adapter Frames 228
Radiation Detectors 85
Random Noise Generator 361.365
Ratio Meters 195, 241-243
Ratio Meter, Standing-Wave 285, 293
Reader, Optical Mark 112
Readout, Numerical 55
Real Time Executive Software 129
Real-Time Audio Spectrum Analyzer 93
Real-Time Spectrum Module 93
Receiver, Standard Frequency 652
Receiver Test Systems 114,115
Record Amplifiers, Magnetic Tape 176.183
Recorder Coupler 121
Recorders
Digital 72,81, 132-136Direct Writing, Ink66,170-171
Direct Writing, Thermal 63-66, 157-159, 165-169
Magnetic Tape, Analog 67,176.183
Optical 65
Photographic 65
Strip-Chart 152
Technical Information $132,138,149,154.156$
Trend 54, 55, 153
Ultra-Violet 65, 66, 172, 173
X.Y 139
Recording Systems
Ink 170, 171
Ink, Medical 66
Magnetic Tape 176-183
Magnetic Tape, Medical 67
Optical, Medical 65
Photographic Medical 65
Technical Information $154,155,156$
Thermal $157-159,165 \cdot 169$
Thermal, Medical 63-66
Ultra-Violet 172.173
Uitra-Violet, Medical 65.66
Reed Scanner 118
Reference Inductors 260, 261
Reflection Coefficient, Measurement of 285,293
Reflection/Transmission Test Units 475
Reflectometer 529
Refiectometers, Crystal Detectors for 307
RF
Impedance Meter 255
Millivoltmeter 216, 217
Noise Sources 314
Sampling Voltmeters 216, 217
Test Set
114, 115
Test Systems
428. 430
Unit
432
Unit Holder207.217
Regulated Power Supplies 556.587
Remore Alarm Indicator 55
Remote Control Unit, Magnetic Tape Recorders 67, 183
Remote Monitor 55
Remote Monitor Oscilloscope 66
Resistance Meter Cell, Insulation Sampling 223
Resistance Meter, High Resistance 223
Resistance Meter, Milliohm 222
Resistivity Cell, Insulation Sampling 223
Respiration Rate Preamplifer $60 \cdot 62$
Respiration Rate Transducer 55, 60-62
Resuscitation System 55
Reversible Counter 630
RMS Voltmeter 212,241-243
Roll Chart Adapter 148
Router, 8-Input, Multichannel Analyzer 73
Rubidium Frequency Standard 646
RX Meter 258

S

S-Band Equipment Table 276
Sales \& Service Offices
Africa, Asia, Australia 20, 21
Central \& South America 22
Europe 18, 19
United States of America \& Canada 16, 17
Sample Changer, Radioisotope 80
Sampled Voltage Analyzer 70
Sampling, Insulation Resistivity 223
Sampling RF Volmeter 216, 217
Sampling Oscilloscopes 494, 542
Scaler-Timer, Nuclear 79, 82
Scanner
Digital 121
Input 118
Programmer 115
Scintillation Detector 85
Selective Voítmeters 324,325,441.447
Services 23-33
Servo Systern, Magnetic Tape 183
SHF Test Set 401
Shorting Switch, Waveguide 310
Shorts, Coaxial 309
Shorts, Waveguide 310
Signal
Analyzer I/O Coupler 90
Analyzers, Digital 88, 89, 70, 72
Averager 88
Averager (Multichannel Analyzer) 73
Averaging, Technical Information 87
Conditioners Equipment. . 60-62, 154, 160-164, 173, 48
Coupler 163
Delay 55
Multiplexer 433
Sources 342.433
Sources, Special Purpose, List of Signal Sources to 40 GHz 384
Signal Generators (see Generators, Signal)
$50 \mathrm{KHz}-40 \mathrm{GHz}$, List of 384
Aircratt Test 408
Audio Frequency 380, 386
FM 407
FM-AM 390
Power Amplifies 489
Programmable 386
Signal Sources 371
Signal Sources 379
SHF 402
Sweeper (675A) 386
Sweeping 386
Technical Information 384, 385
Telemetry 407
UHF 397
VHF 390
Signal Switch 55
Single Channel Analyzers 76,82
Slide-Screw Tuners 311
ALPHABETICAL INDEX continued
Sliding Loads to Voltmeters, Calibration System
Sliding Loads 309,310
Slotted Lines, Coaxial and Waveguide 282
Slotted Line Sweep Adapter 283
Slotted Sections 282, 283
Slotted Section Carriage 284
Solid State Devices 267
Sound Level Meter, Impulse 98
Sources, Noise 314
Sources, Pseudo Random Noise 102,361-365
Sources, Signal: (see Sweepers; Generators, Signal; Oscillators; Generators, sweep)
S.Parameter Test Set 476
Special Purpose DC Preamplifier 163
Spectra, Gamma 69
Spectrometer, Gamma 70
Spectrum
93, 326, 450, 455,5 532
Low Frequency 448
Oscilloscope Plug-in 532
Preselector 459
Generator 264, 410
Spectrometer, Molecular Rotational Resonance 46
Square Wave Generators Instruments 371-375
Stabilizer, Phase-Lock Frequency 394, 431
Standards
AC 191
Cell, Electronic 194
DC 192-194, 196-197
Frequency and Time: Instruments 643.654
Frequency and Time: Technical Information $637-642$
Inductance 260
Q 260
Voltage Transfer 194
Standby Power Supply 593,654
Standing Wave Indicator 294
Step Attenuator, Coaxial 303
Storage Oscilloscopes 513,536
Strain Gage Conditioning Equipment 92, 624
Strip Chart Recorders
For GC 41
Technical Information 149
5 -Inch 152
10-Inch 150
Plug-ins 151
Summation Averaging, Technical Information 87
Susceptance, Calibrated 531
Sweeper/Gencrator 386-387, 420
Sweep Drive 444
Sweep Generators (Technical Information) 411
Sweep Function Generator 372-374, 416
Sweep Oscillator $372.374,416.419,422,423$
Sweeping Signal Generator 386
Swept Frequency Indicator 530
Swept Frequency Instruments 480
Swept-Frequency Measurements Instruments 416.419
Swept-Frequency Measurements(Technical Information)379,411.415
Switch, Coaxial 313
Switch, Shorting, Waveguide 310
SWR Indicator; Mounts 270
SWR Meter 269
SWR Merer, Microwave 293
SWR, Refiection Coefficient Measurement 267, 268
Synchronizer 392
Synthesizer, Driver 606
Synchronizer, Oscillator 431
Synthesizers, Frequency: Instruments 658-664
Synthesizers, Frequency: Technical Information 656, 657
Systems, Custom 114
Systems, Data Acquisition 124-129
Systems, Mobile Resuscitation 55
System Programmers 120
Systems, Recording 183
T
Tachometer Generator 635
Tape Recorders, Analog 176-183
Tape Servo, Magnetic 183
Teleprinter Coupler 121
Telemetering Magnetic Tape Recorders 176-183
Telemetry Signal Generator 391.407
Telephone
Cable Fault Locators 316
Test Meter 322
Test Oscillator 323
Test Set 302.305
Television Waveform Monitors 328, 329
Temperature Probe 623
Terminal Shield for 4800A 254
Terminations
50- and 75.Ohm Feedthru 548
75 Ohm 338
Coaxial 309
Sliding Load 309, 310
Shorts 292
Waveguide 310
Waveguide, High-Power 310
Test Equipment, Microwave
(Technical Information) 268
Test Equipment Table, Microwave, Coaxial 274
Test Leads 226
Testmobiles 550
Test Oscillators 327, 381-382
Test Oscillator Telephone 323
Test Oscillator, Video 327
Test Sct
ATC Transponder 408
Communications Systems 320-323
Microwave 401
DME/ATC 408
RF 365
ILS Receiver 409
SHF 401
S-Parameter 476
Telephone Systems 320-323
Transmission Line 320.323
VOR Receiver 409
X-Band 401
Test System, Digital Logic Module 123
Test Systems, Automatic 114, 115
Thermal Converters 197
Thermal Dilution Plug-in 60.62
Thermistor Mounts 288, 289
Thermometer, Quartz 52
Third-octave Filter 98
Time Domain Reflectometer 529
Time Interval
Analyzer 70
Counter 576
Measurement $134,604,616,618,636$
Time Scale Translator 652
Time-Shared System, Computer 110
Time Standards 644, 646, 655
Timers $134,604,616,620,622,628,636$
Timer, Preser (Nuclear) 79, 82
Timing Modules, NIM 78
Timing Pickoff 78
Track Selector, Reproduce Magnetic Tape Recorders 183
Tracking Oscillator $325,446.447$
Transducer
Amplifier Indicator 184
Differential Pressure 60.62
Displacement 184
Fluid Pressure, Medical 60.62
Force 185
Force, Medical 60.62
General $60 \cdot 62,184,185$
Linear Displacement 184
Linear Velocity 185
Linearsyn 184
Low Level Force 185
Medical 60.62
Pressure 185
Pressure, Medical 78
Pulse Wave 60.62
Respiration 55
Respiration Rate 60.62
Velocity 185
Transfer DC Standards 194
Transfer Oscillator 607, 610,613,614
Transfer Standard Reference Bank 194
Transformer, Isolating 383
Transformer Line Matching 383
Transistor Bias Supply 477
Transistor Chips 267
Transistor Fixtures 476
Transistor Test Jig 258
Translator, Time Scale 652
Translator, Ultrasonic 316
Transmission Generator 334-345
Triangular Generators (see Function Generators) 366.375
Trend Recorder 54.55,153
Tunable Voltmeter 206
Tuners, Slide-Screw 311
Tuned-Amplifier Voltmeter 293
TV Broadcast Monitors 330
TV Picture Monitor 314-315
TV Monitors 331
TV Waveform Monitor 328
Typewriter Coupler 121
U
UHF Signal Generator 361
Ultrasonic Diagnosis 56
Ultrasonic Translator Detectors 316
Ultraviolet Recording Systems 65
Universal Counter 616,618
Universal Coupler 121
Universal Extension 476
Universal Impedance Bcidge 257
Univerter 391
Up.Converter, Microwave 460
V
V to F Converter 247
Vapor Pressure Osmometer 50
Variable-Persistence Oscilloscope 513,536
Variable Phase Function Generators 371
Variable Rise and Fall Time Pulse Generator 344
Variable Risetime Pulse Generator 344,358
Vetorcardiograph 56
Vector Impedance Meter 254-255
Vector Programmer 56
Vector System 56
Vector Voltmeter 467
VHF Oscillator 396
Video Test Oscillator 327
Viewing Hoods 549
Viscometer, Automatic 51
Viso-Monitor 55
Viso-Scope 55
VLF Receiver-Comparator 652
Voice Channel, Magnetic Tape Recording 183
Voltage Divider Probe 225
Voltage-to-Frequency Converter 247
Volrage Source, Digital 113
Volt-Ammeter 218, 219
Voltmeters
AC $206-217,220,240-246,249$
AC Calibrator 191, 198-200
Calibrator, AC/DC 198, 199
Broadband Sampling 216
Calibration System 198-200

ALPHABETICAL INDEX continued

Voltmeters, DC to YIIG

DC 192, 193, 195-198, 213.215,
218-221, 234, 236.246, 248-251234-246, 248-251Digital
Logarithmic Scale 207.210
Microwave 294
RF 207-217
Selective $324.325,441.447$
SWR 294
Technical Information 187-190, 201-205, 229.233
True RMS $212,241 \cdot 243,322$
Tunable 206
Vector 467
VOR Receiver Test Set 409
W
Wall Mount Bracket 55
Wave Analyzers 324, 325, 441-447
Wave Analyzers Technical Information 437.440
Waveguide Adapter, Microwave 460
Waveguide Crystal Detector 307
Waveguide Mixer, Microwave 460
Waveguide Reflection/Transmission Test System 476
Waveguide Shorts 310
Waveguide Stand, Clamps 312
Waveguide-to-Coaxial Adapters 312
Waveguide-to-Waveguide Adapters 312
Waveguide Sliding Load 310
Wavemeter 408
Weighted Averaging, Technical Information 87.88
Wideband Instrumentation Recorder 181, 182
Working Standard, Capacitance 222
WWVB Receiver 652
$X-Y$
X-Band Equipment Table 279
X-Band Instrumentation $607,608,610,611,613,614$
X-Band Test Set 401
X-Y Displays 501,506
X.Y Recorders 138-145
Built-in Time Base 140
General Purpose 139
High Sensitivity 142
2.Pen 141
Plug-in Module 144,145
With Plug-in Module 143
Technical Information 138
X-ray Detector 85,138
YIG Filter (Gas Tunable Element in 8441A Preselector) 459

GENERAL

Hewlett-Packard products are manufactured in factories located throughout the free world. The Hewlett-Packard field sales office, representative, or distributor in your area is equipped to handle all your needs for information on any Hewlett-Packard product, and for parts or service on HewlettPackard products you are already using. A worldwide listing of field offices, representatives and distributors commences on page 16.

Order by model number

When you order, please specify the catalog model number and name of instrument desired. For example. "Model 180A Oscilloscope." To prevent misunderstanding, include significant specifications. Whenever you want special options or features such as special color, non-standard power line voltage, etc., include specific instructions.
Many Hewlett-Packard instruments are supplied in cabinets along with easily actached hardware for direct mounting in $19^{\prime \prime}$ equipment racks. Other Hewlett-Packard instruments are available in cabinets for bench use or with $19^{\prime \prime}$ panels (for example,
"180AR") for rack mounting. Catalog listings indicate the availability of cabinet or rack mounting areangements. Please be sure your order indicates which you desire.

Price and delivery information

The illustrations and product information herein were current at the time this catalog was approved for printing. However, in order to continue to offer the finest instromentation available, Hewlett-Packard Company reserves the tight to change specifications, designs, models or prices without notice and without liability for such changes. Prices listed are F.O.B. USA factory or warehouse, except as indicated. Consult your nearest field sales office to confirm prices at your location and to obtain current delivery information.

Local technical assistance

Technical assistance in selecting equipment and preparing orders is available, without charge, from field engiseers at sales offices in the USA and in principle areas throughout she world.

FOR CUSTOMERS IN THE USA

Where to send your order

Your order should be made out to the Hewlett-Packard Company and sent to the Hewlett-Packard office nearest you. Each field office has special communication channels to the Hewlett-Packard factories to assure prompt and efficient handling of your order. For Delcon products see page 316.

Snloping methods

Shipments to destinations in the USA are made directly from local factories or warehouses. Unless specifically requested otherwise, express or rruck transportarion is used, whichever is less expensive and most serviceable to you. Small items are sent parcel post. If rapid delivery is needed we will gladiy ship by the more expensive methods of air freight, air express, of air parcel post when specified on your order. In many parts of the USA a consolidated air freight service provides the speed of air transport at surface rates. Ask your feld engineer for details.

Terms

Terms in the USA are 30 days net. Unless ccedic has already been established, shipments will be made C.O.D., or on receipt of cash in advance.

Quotations

Upon request, quotations including destination prices, will be furnished to you by your local Hewlett-Packard sales office.

FOR CUSTOMERS OUTSIDE THE USA

Where to send your order

In many countries, your order can be placed directly on your local Hewlett-Packard distributor or representative. If there is none, as yet, in your area, your order should be placed directly on the office indicated for your part of the world.

Shipping methods

Shipments to customers outside the USA or Western Europe are made from the appropriate Hewlert-Packard facility by either surface or air, as requested. Sea shipments usually require commercial export packaging at a nominal extra charge.

Terms

Terms for orders from countries outside the United Stares of America which are placed on the Hewlett-Packard Company, Hewlett-Packard S.A., or Hewlett-Packard Inter-Americas, are irrevocable letter of credit or cash in advance, unless other terms have been arranged previously. Terms for orders placed on authorized Hewlett-Packard distributors are murually determined between the customer and the distributor.

Quotations and pro forma finvolces

FAS, CIF, C\&F, etc. quotations or pro forma invoices, as well as exportation and importation assistance, are available on request from local authorized Hewlect-Packard sales office or representative.
"Advancing the state of the "art" and "contribution" are expressions often heard in Hewlett-Packard's 18 research and development laboratories across the United States and around the world. The expressions accurately reflect the philosophy on which the company was founded in 1939 and which today guides the development of new products used in rapidly increasing numbers to test, to measure and to compute.

Other expressions are heard, too. These include "finest craftsmanship" and "highest quality" in the company's 18 manufacturing plants. "Service" is another. It is the watchword of the sales engineering staffs. With "fast" and "expert" added, it becomes the motto at HP's customer service facilities.

Ali these expressions could be merely hollow words. At Hewlett-Packard they aren't. Our aim is to bring to our valued customers the best products available, well designed, well made, well maintained.

We aren'c perfect, but we try to be.
Fifty-thousand customers know us and our 2,000-pius products, which broadly cover the fields of electronic, medi-
cal and analytical instrumentation, data acquisition and processing equipment, digital computers and electronic calculators. They sell at better than a quarter-billion-dollars-ayear clip.

Hewlett-Packard has 1,500 engineers and scientists dedicated to helping you solve your problems. Over the years, their contributions to technology have been numerous: the first stable audio oscillator . . . first high-speed electronic counter . . . atomic-controlled frequency standards, clocks accurate to a second in 30,000 years . . . this century's most significant development in thermometry, a quartz thermometer precise to $1 / 10,000$ th of a degree Centigrade . . . many important innovations in oscilloscopes. . . leadership in voltmeters . . a desk-top calculatoc that can outperform some small computers . . . versatile digital computers designed to interface easily with measuring instruments . . . gas chromatographs able to detect and identify quantities as minute as a million-millionth of a gram . . . patient-monitoring systems thar markedly reduce the mortality rate for cardiac patients . . and many others. Tomorrow there will be still more.

Microwave, Frequency \& Time, and Corporate Headquarters, Palo Alto, Callf.

Detcon (Mountaln View, Cahfornia)

hP Associetes (Palo Alto, California)

Palo Alto, Californla

Lovalana, Colorado

Colorado Spiness, Colorado

Rockaway, New Jersey

Ayondale, Pennsylvania

Harrison (Berkeley Heights. New Jersey)

HP GmbH (Boblingen. West Germany)

Waltham, Massachusefis

HP Limited (South Queens. ferry. Scolland)

Yokogawa. HP. Limited (a joint venture in Tokyo, Japan)

Son Diego, Califorma

alabama

(1)P.O. 80×4207

2003 gyid Saring Road 5.W. Huntsville 35802
Tol: (205) 881.4591
TWX: 810.726 .2204

ARIZONA
2
ARIZONA
3009 North Scottsdale Road Scottsdale 8525
Tel: (602) 945.7601
TWX: 910.950-1282
(3) 5737 East Broadway Tucson 85716
Tel: (602) 298.2313
TWX: 910-952.1162

CALIFORNIA

3939 Lankershlm Boulevard
North Kollywood 91604
Tel: (213) 877-1282
TWX: 910.499 .2170
(5) 1101 Embarcadera Road Palo alka s 4303
Tel! (4!5) 327-6500
TWX: 910-373.1280
(6) 2591 Canlsbad Avenue

Sacramento 95821
Tel: (916) 482.1453
TWX: 910 -367-2092
(7) 1055 Shattar Street

San Diago 92106
Te1: (714) 223.8103
TWX: 910-335-2000

COLORADO
(8)

7965 East Prentice
Englewood 80110
Tel: (303) 77I-3455 TWK: 910.935 .0705

9

CONNECTICUT
508 Tolland Street East Martiord 05108 Tel: (203) 289.9394 TWX: 710-425-3416
(10) 111 East Avenue Norwalk 05851
Tel: (203) 853-1251
TVX: 710-468-3750
(1)

DELAWARE
3941 Kennatt Pike WiImington 19807
Tel: (302) 655.6161
TWX: 510-660.2214

FLORIDA
12 P.O. Box 545
Suite 106
9999 N.E. 2nd Averue
Miami Shores 33153
Tel: (305) 754-4565
TWK: 810 -848-7262
(1) P.O. Box 20007

13 Herndon Station 32814
G21 Commonwealth Avenue
orlando
Tel: (305) 841-3970
TWX: 810-850-0113
P. O. Box 8128
(14) Madeira Beach 33708

410 150th Avenue
St. Petersburg
Tel: (813) 391.0211
TWX: 810.863 .0366

P.O. $0 \times \times 28234$

450 interstate North Allanta 30328 Tel: (404) 436.6181 TWX: 810.766 .4890

HAWAll (Medical Only)
X-ray \& Medical Equlpment Co.
1157 soulh King St.
Honolulu 96814
Tel: 506.900

ILLINOIS
5500 Howard Street Skokla 60076
Tel- (312) 677-0400
YWX: 910.223 .3613
INDIANA
$\$ 002$ Meadows Drlve
Indianapolis $\mathbf{4 0} 205$
Tel: (317) 548-4891
TWX: 810.341-3263

LOUISIANA
(10) P.O. B0× 856

1942 Williams Boulevasd Kenner 70062
Tel: (504) 721-6201
TWX: $810-955.5524$

MARYLAND
(19) 6707 Whitestone Road

Bathmore 21207
Tel ${ }^{2}$ (301) 944.5400
TWX: 710-862.0850
(20) P.O. Box 1648

2 Choke Cherry Road geckyille 20850
Tel: (301) 948.6370
TWX: 710-828-9684

MASSACHUSETTS
2132 Hartwell Ave
4exington 02173
Tel: (617) 861.8960
TWX: $710.326-6904$

MICRIGAN
24315 Northwe
southleld 48075
Tel, (313) 35d.9100
TWX: 810-232-1532

MINNESOTA
(23)

2459 University avenue
St, Paul 55114
$\mathrm{T} \mathrm{e} \mid:$ (812) 545.9481
TWX: 910-5B3-3734

MISSOURI
22
9208 Wyoming Piace
Kamsas cily 64 L14
Tel: (816) 333-2445
TWX: 910.771-2087
2812 South Brentwood Bivd.
St. Louls 63144
Tel: (314) 962-5000
IWX: 910.780-1870

NEW JERSEY
20 W. 120 Century R
paramus 07852
Tel: (201) 265-5000
TWX: 720-990-4951
(27) 1060 N. Kings Highway

Cherry MIII 08034
Tol: (609) 6674000
TWX: 710.892. 4945

NEW MEXICO
P.O. Box 8366
station C
6501 Lomas Boulevard N.E.
Albuquerqise 87108
TEI: (505) 255.5586
TWX: 910-989-1665
(24)

156 Wyatt Drlue
Las Criscer 88001
Tel: (505) $526-2485$
TWX: 910-983-0550

NEW YORK
(30) 1702 Centras Avenu

Abbany 12205
Tel: (518) 869.8462
TWK: 710-441-8270
(3) 1219 Campville Road Endicott 13764
TE1: (607) 754-0050
TWX: $510-252.0890$

82 Washington strest
Poughkeepsie 12601
Tel: (914) 454.7330
TWX: 510-248-0012
(33) 39 Saglinaw Drive

Rachester 14623
Tel: (716) 473.9500
TWX: 510.253-59811025 Northern Soulevard
Roslyn, Long Island 21576
Tel: (516) $869-8400$
TWX: $510-223-0811$
355858 East Mollay Road
Syracuse 23211
Tel: (315) 454-2486
TWX: 710-541-0482

NORTH CAROLINAP. O. Box 5188

1923 North Main Street
Higt Point 27282
Tel: (919) 882-6873
TWX: 510-926-1516

OHSO
25575 Center Ridge rosd
Cleveland 44145
Tel: (216) 835.0300
YWX: $810-421-8500$
3460 South Dixle Drive
Dayton 45439
Tel: (513) 298-0351
TWX: 810-458-1925

OKLAHOMA
2919 Unlted founders Boulevard
oklahoma City 73112
Tel: (405) 848-2801
TWX: 910-830-6862
OREGON
(13)
delmis mall, Sulte 158
4475 S.W. Scholls Ferry Road
Portland 97225
Tel: (503) 292.9171
TWX: 910.454-5103

PENNSYLVANIA
41
2500 Moss Side Eoulevard
Monroeville 15145
Tel: (412) 271.0724
TWX: 710-797-3650
(12) 144 Elizateth Strest

Wert Conshohocken 19428
Tel: (215) 248.1800, 828.6200
TWX: 510.660-8715

TEXAS
(43) P.O. Box 1270

201 E. Arapahoe rd.
Richerason 75080
Tel: (214) 231-8101
TWX: $910-867.6723$
(4) P.O. Box 22813

4242 Richmend Avenue
Heusion 77027
TO1: (713) 667.2407
TWX: 910.881-2645
45 GOVERNMENE CONTRACY OFFICE
225 Billy Mitchall Road
San Antonio 78226
Te): (512) 434.4171
TWX: 910-871-1170

UTAH
(16) 2890 South Main Street

Salt Lake Cify 84115
Yel (801) 486-8166
TWX: 910-925-5881
virginia
(47) P.O. Box 6514

2111 Soencer Road
qichmond 23230
Tel: (703) 282-5451
TWX: 710.956 .0157

WASHINQTON
433-108th N.E.
433-108th N.E.
Bellevug 98004
Tel: (205) 45 4.397
TWX: 910.443-2303

FOR U.S. AREAS NOT
LISTED:
Contact the regionat office near. est you: Atlants, Georeia.... North Hollywood, Callforniz... Paramus, New Jersey . . Skokie, lilinois. Their complete addresses are listed above.

CANADA

ALBERTA

Hewlett-Packard (Canada) Ltd.
11745 Jasper Ave.
Edmonton
Tell (403) 482.5561
TWX: 610-831.2431
BRITISK COLUMEIA
(50) Howlett-Packaro (Ganada) Lto

304-1037 West Broadway
Vancouver 9
Tel: (604) 738.5301
TWX: 610.922 .5059

MANITOBA
(5) Hewlett-Packard (Canada! Ltd.

511 Bradiord Ct
St. zames
Tel: (204) 786.7581
nova scotia
Hewlett-Packard (Canada) Ltd.
7001 Mumford Road
sulte 356
Halffax
Tel: (902) 455-0511
TWX: 610.271 .4482

ONTARIO
53 Hewhett-Packard (Canade) Ltd.
880 Lady Ellen Place
Ottawa 3
Tel: (613) 722-4223
TWX: 610-562-1952
(54) Hewlett-Packard (Canada) Lto.

1415 Lawrance Avanue West Taronta
Tel: (116) 249.9196
TWX, 510 -492-2382

QUEBEC
Rewlelt.Packard (Caneda) Ltd.
275 Hymus Goulevara
pointe clatie
Tef: (514) 697-4232
TWX: $610-422$-3022
Telex: 01-20807

FOR CANADIAN AREAS NOT
FOR CANA
LISTED: Contact Hewletr-Packard (Can.
Contact Hewlett-Packard (Can-
ada) Lod. In Painte Cialre, at the complete adodress listed above.
Offices handle all catalogued products
except as notedi
∞ Handles analyucal products
Pages 34.52
Mandles medical products
Pages $53-67$
Handles als other products
Pages 68.664

AUSTRIA

（1）Unliabor GmbH
Wissenschaftichs Instrumenta
Rumnelhardtgasse 6／3
P．O．Box 33
Viennà $\mathrm{A}-1095$
Tel： 426181
Cable：LABORINSTRUMENT
Vienna
Telex： 75762
BELGIUM
2）Hewlett－Packard Benelux S．A
348 goulavard du Souverain
grussels 16
Tel： 722240
Cable：PAlOBEN Brussels
Telex： 23494
DENMARK
（3）Hewlett－Packard A／S
Langebjerg 6
2850 Nasrum
Tel：（01） 804040
Cabla：HEWPACK AS
relex： 6640
FINLAND
（4）Hewlett．Packard O／Y
Gyldenintia 3
Helsinkl 20
Tel： 673538
Cable：HEWPACKOY－Helsinki
Telex：12－1563
FRANCE
5 Hewlett．Packard France
Box No． 6
Quartlere de Courtabolief
Bolte Postale No． 6
91 Orsay
Tel： 9208801
Cable：HEWPACX Paris
Telex： 60048 HEWPACK ORSAY
（G）Hewlett－Packard France
4 Qua des Etrolts
69 Lyon 50
Tel： 426345

OERMANY

1
Hewlott－Packard Vertrlebs－Gimbh
Lietzenburgarstrassa 30
1 Berlin W 30
Tel： 248836
relex： 183405
B Hewlett－Packard Vertrlebs－GmbH
Herrenbergerstrasse 110
703 8bolingen，Worttemberg
Tel：07031－6971
Cable：HEPAG Bodblingen
Telex： 7265739
Rewlett－Packard Vertrlebs－GmbH
Achenbachstrasse 15
4 Disseldiof 1
Tel， 6852 58／59
Telex： 8586533
（10）Hewlett－Packard Vertriebs－Gmbl
Kurhessenstrasse 95
6 Frankfurt 50
Tel： 520036
Cables HEWPACKSA Frankfunt
Telex：42 3249
（1）Hewlett－Packard Vertriebs－GmbH
日ein Strohhause 26
2 Mamburg 1
Tel： 2405 51／52
Cable，REWPACKSA Hamburg
Telex： 215332
（12）Hawlett－Packard Vertriabs GmbH
Reginfriedstrassa 13
8 MUncken 90
Tel＇： $0811695121 / 22$
Cable：HEWPAGKSA Munich
Telex： 524985
GRERCE
Kostos Karayamnis
18，Ermou Street
Athens 126
Tel： 230301
Cable：RAKAR Athens
Telex： 5962
－ 1 ＂INTECO＂Technlcal Agencles
Skoufáa 15
Athens 136
Tel： 831072
Telex： 5962
© Etanern Company
Amerikis Street 12
Amerixis Sir
Ahens 134
Athens 134
rel： 628972
Gable：ETANEM Athans
ICELAND
Elding Trading Company Ine．
Hainarhuoll－Tryegvagotu
Reydjavik
Tel： 15820
Cable：ELDING Reykjavik

IRELAND
Hewlett－Packard Lid
224 Bath Road
Slough，Bucks，England
Tel：\＄lough 753．3334）
Cable：HEWPIE Slough
Têlex： 84413
is 15 Smith \＆Sheppard（1940）Ltd．
124 St．Stephen＇s Green
Dublin
Tél： 52500
Cable：SURGICAL Dublin
italy
（17）Hewlett－Packard Itallana S．p．A．
Viala Lunigiana 46
20125 Milan
Tel： 681584
Cable：HEWPACKIT Milan
Tolex： 32046
Howleft．Packard Itallana S．p．A．
Palazzo Italia
Plazza Marconi 25
00144 Rame．Eur
Tel： 5912544
Cable：HEWPACKIT ROME
relex． 61514
NETHERLANOS
（19）Rewlett－Packard Benerux，N．V．
do Boelelaan 1049
Amsterdarn， 2 II
Tel： 427777
Cable：PALOBEN Amsterdam
Tolex： 13216
NORWAY
Hewlettr－Packard Norge A／A
Nesvelen 13
Haslum
Tel： 538360
Cable：HEWPACK Oslo
relex： 6621
PORTUGAL
(21)
rertra
Rua Rodrigo da Fonseca 103
P．O．80x 2531
Lisbors 1
Yel： 688072
Cable：YELECTRA Lisbon
Telex： 1598

F－Munditer
intercambio Mundiar de
Commerclo S．a．r．I．
Avenide Antonlo Augusto
de Agular 138
LIsbon
Tel： 732131
Cable：INTERCAMBIO Lisoon

SPAIN

（22）Atalo Ingeniaros
Urgel， 259
Garcetons， 12
Tel；230－69．88
（23）Ataio Ingenleros
Enrique Larreta 12
Madrla， 16
Tel： 2354344
Coble：teleatalo madrio
Telex： 27249
SWEDEN
（24）
Hewlelt－Packard（Sverige）AB
Haga hersgatan 7
43104 Mbindas 4
Tel：031－275800
（25）Hewlett－Packard（Sverigo）AB
Svatsarvăgen 7
S171 20 Solna 1
Tel：（08） 981250
Cable：MEASUREMENTS
stockholm
Telex： 10721
SWITZERLAND
（26）Hewlett Packard（Schweltz）AG
Zurcherstrasse 20 8852 schlieren Zurich
Tel：（051） 9818 21／24
Cabla，HEWPACKAG Zurich
Telex： 53933
67 Hewlett Packard（Schweitz）A．G．
Rue du Bois－du－Lan 7
1217 Meyrin－Geneva
TEl：（022）4） 5400
Talex： 22485

TURKEY
Telekom Englnearlng Eureau
P．O．30X 376 －Galata
Istantuol
Tel： 494040
cable：TELEMATION Istanbul
P Or．Faruk Komill
Yall Konagi Caddesi No． 35
Harbiye，istentul
Tels 481807
Cable：PIKTRON Jstantul
UNITED KINGDOM
（29）Hewlett－Packart Lto
224 Bath Road
slough，8ucks
Tel：Slough 753．33341
Cable：HEWPIE Sloush
Telex：84413
yuboslavia
（30）Belram S．A．
83 avenue des M1mosas
grussels 15，Belglum
grussels 15 ，Be．glum 19
Tel： 34 33 32， 342619
Cable：BELRAMEL Brussels
Telex： 21790
for areas not listeo，
CONTACT：
Hewleit Packard R．G．
Rue du Bols．du－Lan 7
1217 Meycir Gengra
1217 Mzyrin－Genava
Tel：（022） 415400
Cable：HEWPACKSA Geneva
Cable：HEWPACKSA Geneva
thex：2．24．85
(1)

SALES \＆SERVICE OFFICES

```
Offices handle ell catalogued groducts
except as noted:
    ~Hsndles analytical products
        Pages 34-52
    f Handles medical products
        Pages 53-67
    Hancles all other products
        Pages 68-664
```


ANGOLA

de
de Equipamentos Eléctricos S ：
Rua de Barbosa Rodrigues
42.1°
Box 6487
Luanda
Cables：Yelechra luanda
AUSTRALIA
（2）Hewlett－Packard Australla Pty，Litd．
22．25 Welr Street
gler Itis， 3146
Victorla
Tels 20.1371 （s limes）
Cable：KEWPARD Melbourne
Telex： 31024
（3）Hewlett－Packaro Australla Pty．Ltd．
8）Alexander Street
Crows Nest 2065
Now South Wales
Tel： 43.7856
Cable：HEWPARD Sydney
（4）Howlett．Packard Australis Pity．Lid． 97 Churehlil Road
Prospact 5082
Plospact 5082
South Australia
South Austra
Cable：HEWPARD Adelaide
（5）Hewlett Packara Australla Pty．Led．
2nd floor，Sulte 13
Casablanca Buildings
196 Adelarde Terrace
Perth，W．A．
CEYLON
（6）
Unltad Electricals Ltd．
P．O．Box 681
Yahala 8utiding
Staplas Street
Colombo 2
Tel： 5496
Cable：hOTPOINT Colombo
CYPRUS
$(1$ Kyprorlics
19－190 Hommer Avenue
P．O． 80×752
Nicosia
Tel：6282－75628
Cable：HE－I－NAM
ETHIOPIA
Arrican Salespovier \＆Agency Private Lto．，co．
P．O．Box 718
58／59 Cunalingham St．
Aodls Ababa
Cable：ASACO Addisababa
HONG KONG
（9）Schrildt \＆Co．（Hong Kong）Led．
P．O．Box 297
1511，Prince＇s Bullding
10，Chater Road
Hong Kong
Tel：240158， 232735
Gablei SCHMIDTCO Hong Kang
INDIA
The Sclentific instrument Co．，Ld．
6．Tel Bahadur Sapru Road
Alsahabad 1
Tel： 2451
Cable：SICO Allahbad
$(11$ The Scientlic instrument｜Co．，Ld．
240，Dr．Oadabhal Naorofl Road
Bombay 1
Tel：26－2642
Cable：SICO Bombay
$\infty \quad$ Ploneer Equlpment Co．，PVI．Ld．
Sehsarla Chambers
139，Nagindas Master Road
P．O．Box 1909
Fort，日ombay 1
Tel：25．1882
Cable：PIOMETAL Bombay
The Sclentiflc Instrument＇Co．，Ld．
11．Esplanade East
calcutta 1
Tel：23－4129
Cable：SICO Calcutta
∞ Ploneor Equlpment Co．，Pvt．Ld．
3．Esplanade East
Calcutta 1
（13）The Scientifle ！nstrument Co．，Ld．
F．30，Mount Road
Madres 2
Tel： 86339
Cable：SICO Madras
∞ Pioneer Equlpment Co．，Put．LJ．
22，Royapottah High Road
Flist Floor，North Wing
Madres 14
（14）The Sclentific Instrument Co．，Ld．
8．7，Almerl Gate Exta．
Hew Delhl 1
Telt 27．1053
Cabia：SICO New Deims
\sim Plonaer Equipment Co．4 Pvt．Ld．
36．8．Nizamứoln West
Naw Destil 13
indonesia
25．Bah Bolon Trading co．N．Y．
Dialan Merdeka 29
Bandung
IRAN
（16）Telecom，Ltd．
P．O．Box 1812
240 Kh ．Sabs shomall
Teneran
Tel： 43850,48111
Cable：BASCOM Teheran
isfaEl
Electronics \＆Engineering
Div．of Motorola｜srafi Lto．
16，Kremenetski Street
Tel－aviv
Tel： 35021 （4 lines）
Gable：BASTEL Tel－Avlv
Telex：8astel Ty 033－569
JAPAN
（6）Yohogawa－Hewlett－Packard Ltd．
Nisel lbaragl 9ldg．
2.2 .8 Kasuga
sbaragi－Shl
Osika
Tel： $\mathbf{1 3}$ ．1641
（19）Yokogawa－Hewlett－Packard Ltd．
Ilo Bullaing
No．59．Kotori－cho
Naxamura－ku，Nagoya Cliy
Tel：551－0215
（21）Yokogawz－Hewlett－Packaro Lid．
Ohashil Bulldins
59 Yoyogi l－chrome
Stlbuya－ku，Tokyo
Tel：370－2281
Telax：232－2024YHP
Talax： $232-2024$ YHP
The Nissho Company Ltd．
Nissto Bullding
10，N Thonbashl－Edobashl，1－chome
Chuo－ku，roxyo
Tel：275－5111
Cable：NISSHOCONY Tokyo

KENYA
（21）R．J．THury Ltd．
P．O．Box 2754
Sulte $517 / 518$
hotel Ambassadeur
Naisrobi
Tal：25670，26803，68206， 58196
Cablei ARJAYTEE Nairobi
F Internatlonal Aerado（E．A，），Litd．
Nalrobl Alrpart
P．O．Box 19012
Nairobl
Tel： 82222
Ceble：INTAERIO Nalrod
KOREA
American Trading Co．，Korea，Lid．
P．O．Box 1103
Das Kyung Bidg．
170 Sojons Ro
chongro Ku
Seaul（4 lines）
Tel： 75.5841
Cable：RMTRACO seoul
7 Asia Science \＆Company
Internatlonal P．O．Box 1250
23－15，1－KA，Choongrmoo．ro
Choong．ku，seoul
Tel：28．1431
Cable：ASIASCIENC Seout
LEBANON
－ 23 F．Makhlout \＆Co．
P．O．Box 983
144，Damiscus Ruenue
Belrut
Tel：226221． 242662
Cable：MAKHLOUFCO Belrut
（1）
（31）

（3）

39

SALES \＆SERVICE OFFICES

Ofices handie all catalogued products
except as notedi
∞ Mandies analyticas products
Pages $34-52$
Handies medical products
Pages 53.67
Handlos all other products
Poges $68-664$

AROENTINA
$\begin{array}{r}0 \\ 7 \\ \hline 18\end{array}$
Nowlett－Packaro Argentina
5．A．C．e．
Lavalle 1171－30
Buanos Ahes
Tel：35．0436，35－0827，35－0431
Telex：012－1009
cadle：hewpackarg
$\infty \quad$ Lutz．Ferrando y Cla，S．A．
floflos 240 （R．5）
Buenos aires
Tel：46．7241．48－1635
Cable：OPTICA Guenas Alres

2 Hewlett－Packard DC BrasII 1．e．C Clda．
Rua Coronel：Oscar Porto，89）
Sao Psula－8，SP
Tel：71．1503
Cable：HEWPACK Sao Paulo
3 Hewlett．Packard Do Brasll l．e．C．Ltda． Avenida Franklin Roosevelt 84－ grupo 203
Rlo da janairo，2C－39，GB Tel： 32.9733
Cable：HEWPACK Rlo de sanairo
CHILE
Hoctor Calcagni P ．
Casllla 1394？
Estada 215 －Ohicina 1016
Sontiag
Tel：31．890，490．505
F General Machinery Co．，Ltds．
Paraguay 485
Casilia 13510
Santiago
Tel：31123， 31124
Cable：GEMCO Santlago
colombia
Instrumentacion
Henrik A．Langabask \＆Xler Ltda．
Carrera 7 \＃48－59
Aparlado Aereo 6287
Bogala， $10 . E$ ．
TA1：45．78．0S，45．55－45
Cable：AARIS Bogota
萐 General Electric de Colombla， S．A．
Apartado Alreo 8799 y 3744
Kllo Metro 7 Carateráa a Bosa Gogots
Tel： 38.2040
Cable：GELCOLSA Bogota
Telex：044－704，0 44.809
costa rica
Lic．Alfredo Gallegos Gurdían
Apartado 3243
San lose
rel：21．86．23
Cable，galgur san José
ECUADOR
Calle Guayaqull 1246
Post Otfice 80x 3199
Qulto
Tel： 12496
cable：HORVATH Qulto

J．A．Vizcalno V．ecra． Garcle Moreno No． 1224 Casilla 2925
Qulto
Tel：213697； 217034
Cable：vizcaino qulto
EL SALVADOR
Electrónica
Apartado Postal 1589
27 Avenlda Norte 1133
San Salwador
Tel： 25.74 .50
Cable：ELECTRONICA
San Salvado：
guatemala
Olander Ássoclates Latin America
apartado 1226
7a．Calle，0－22，Zona 1
Guatemala city
Tel： 22812
Gable：OLALA Guatemala city

11

Apartado Postal No． 4
Teguolgalpa，D．C．
Tel：2－2871
Cable：RODAIGUEZ Tegucigalpa

mexico

de C．V．
Apartado Postal 12.832
Eugenia 408，Dept．
Mexico 12．D．F．
Tal：43－03．79，36．08．78
Nicaragua
12 Roberto Terán 0.
$\stackrel{\rightharpoonup}{阝}$
Adartado Posial 689
Edificto Terán
Managua
Tel： 3451,3452
Cable：ROTERAN Managua

PANAMA

Electrónica Balboa，S．A．
P．O．Box 4929
Ave．Manuel Espinosa No．13．50
Bidg，Allna
panama Clity
Tell 30833
Cable：ELECTRON Panama Clty
PERU
Fernando Ezeta 8.
Avenlda Petit Thouars 4729
miraflores
Casilla 3051
Lima
Tel： 50346
Cable：FEPERU Lima
Compañia Electro Medica S．A．
Casilia 1030
tima
Cable：ELMED LIma
pUERTO RICO
（15）San Juan Electronics，Inc．
P． 0 ．Box 5167
Ponce de Leon 154
Pda．3－Pta．de Tieria
San Juan，P．R． 00506
Tel：（174）725－33a2
Cablor satronics san juan
Telax：SATAON 3450332
uruguay
Pablo ferrando S．A．
Comercial e Industrial
Avenida Italla 2877
Casilla da Correo 370
Monteyldeo
Tel：40－3102
Cable：Radium Montevideo
venezuela
howlett－Packard 0 e Venezuela
C．A．
Edificio Arlsán office No． 6
Avda．Francisco de Miranda
Apartado del Este 50933
Chacaito
caracas
Tela 71．88．05，71．88．69，71．88．76
Cable：HEWPAK Carscas
FOR AREAS NOT LISTED，
CONTACT：
Hewlett－Packard Inter－Americas
3200 Hillviow Ave．
Pale Alto，Callformia 94304
Tell（415）326－7000
TWX，910－373－1267
Cable：HEWPACK Palo Alto
relex：034．8461

1

TOTAL SERVICE--PROVIDED WITH EVERY HEWLETT-PACKARD INSTRUMENT

SERVICES

For nearly three decades, users of measuring instrumentation have found that they can rely on the integrity of HewlettPackard. This customer confidence has built Hewlett-Packard into one of the world's foremost manufacturers of electronic and scientific measuring instruments.

Companies making sophisticated measuring instruments have a special responsibility to their customers because of the highly critical ways in which instruments of this kind are often used. Whether the use is found in the maintenance of international communications, in the control laboratory of a petroleum refinery, or in a hospital operating room, it is essential that the equipment's performance meet its advertised specifications.

In recognition of this responsibility, Hewlett-Packard firmly adheres to the philosophy that its obligation to you as a customer does not end when your new instrument is delivered. In purchasing an HP measuring instrument, you are purchasing a way to do a job. You have the right to expect that your instrument will continue to do this job today, tomorrow, next week, and for a reasonable number of months and years in the future.

Hewlett-Packard implements this philosophy in two ways: (1) by initially making sure that it designs and builds for HP customers the finest, most reliable instruments possible, and (2) by backing up those instruments with a customer service program which can respond with speed and completeness to HP customers' needs.

This customer service program is one of the most important facets of Hewlett-Packard's worldwide operations. Directly involved in it at present are some 850 people located throughour the company.
. HP's customer service begins during the instrument design phase. Service engineers in each manufacturing division work closely with design and manufacturing engineers to assure that every instrument is as easily serviceable as possible.
... More than 100 HP field sales offices located in North America and abroad provide rapid and convenient service for Hewlett-Packard instruments. You need not correspond with a factory several thousand miles away for repair service, replacement parts, and technical assistance.

Backing up these local offices are regional repair centers and major service centers with extensive replacement parts inventories and facilities for major overhauls and large calibration and repair operations. Serving HP's customers are five repair centers and one service center in the U. S. and Canada, and one service center in Europe.
Listed below are the elements of Hewlett-Packard's customer service program. The following pages briefly describe some of the benefits available to you as an HP customer under each of these headings:

- THE HEWLETT.PACKARD WARRANTY
- PRE-SALE PRODUCT INFORMATION
- TECHNICAL PUBLICATIONS
- TECHNICAL TRAINING PROGRAMS
- CUSTOMER SERVICE AGREEMENTS
- REPLACEMENT PARTS
- REPAIR SERVICE
- RECALIBRATION AND STANDARDS CALIBRATION

When you buy a Hewlett-Packard instrument, you can count on receiving an instrument built with quality materials and workmanship. You can be sure that this instnment will perform as celiably and consistently as possible for a sophisticated piece of equipment.

The Hewlett-Packard warranty is an expression of confidence in the ability of HP instruments to measure up to this standard of performance.

The following warranty is the heart of an important and enduring Hewlett-Packard aim-to satisfy you initially and to keep you satisfied. It guarantees you an instrument which will perform the way you expect in to perform. It is backed by nearly 30 years of experience in the manufacture of precision measuring instruments:

Certification

The Hewletr-Packard Company certifies that this instrument was thororghly' rested and inspected and found to meet its published specifications when it was shipped from the fac. vory. The Hewlest.Packard Company further certifies that its calibration measurements are traceable to the U.S. Na. tional Bureat of Standards to the extent allowed by the Burean's calibration facilit).

Warranty and assistance

All Hewlett-Packard products are tuarranted against de. fects in materials and workmansthip. This warranty applies for onse year from the date of delivery, or, in the case of certain major components listed in the operating manyal, for the specified period. We will repair or replace products which prove to be defective during the warvanty period provided they are returned to Hewlett-Packard. No other warranty is expressed or implied. We are not liable for consequential damages.

Service contracts or customer assistance agreements are available for Hewlett-Packard produtls that require maintenance and repair on-site.

Every instrument manufactured is sublected to a thorough mechanical test.

A complete electrical test is also made to ensure that each instrument meets its published specifications.

TECHNICAL SUPPORTING INFORMATION

ε
 SERVICES

Hewlett-Packard offers a wealch of technical information to help you select and use Hewlett-Packard products.

Technical data sheets

For the greatest possible detail on any individual HewlettPackard products, ask for the data sheet. Elaborate daca is there on performance, dimensions, capabilities, options, and prices.

From the Hewlett. Packard engineering laboratories which originate the products, you may also have a wide variety of technical information on using Hewlett-Packard products. More than 80 such Application Notes are described in the current Application Note Index. Ask your local HewlettPackard field engineering office for a copy, or write HewlertPackard Co., 1501 Page Mill Road, Palo Alto, California 94304.

New product information

From time to time through the year, recently-introduced Hewlett-Packard products are described in summary in brochures which will supplement the information in this catalog. For a copy of the most recent issue, get in touch with your local Hewlett-Packard feld engineering office or write Hew-lett-Packard Co., 1501 Page Mill Road, Palo Alto, California 94304.

Hewlett-Packard Travelabs

Touring exhibits of Hewlett-Packard products are brought by bus, ship, and airplane to much of the world. Demonstrat. ing equipment conveniently near you, these visits are scheduled by local Hewlett-Packard offices. The office nearest you has details.

Participation in professional shows

Almost every day in the year Hewlett-Packard shows and demonstrates equipment at a professional conference somewhere in the world. Often those who developed the products on display are on hand to talk with you about uses and capa. bilities.

Sophisticated measuring instruments are very often rather intricate pieces of hardware. To take full advantage of the capabilities of these instruments, users generally have to familiarize themselves with a considerable amount of highly technical information. The primary source of this information for a particular instrument is the wsitten material supplied by the manufacturer of that instrument.

Recognizing this responsibility, Hewlett-Packard devotes unusual attention to developing and distributing to its customers the most informative, readable, and generally useful written material of any manufacturer of measuring instrumentation.

Operating and Service Manuals

Hewlett-Packard's Operating and Service Manuals are outstanding technical publications-logically organized, well written, containing ample photographs, diagrams, and illustrations, and compatible with several publications standards. Included in each manual are operating instructions, maintenance and calibration information, and a table of replacement parts.

A manual is supplied with each new instrument. As a further service, extra manuals for all current Hewlett-Packard instruments, as well as for many older instruments, are also available at reasonable cost.

Service Notes

This series of technical publications is intended primacily as a rehicle for disseminating repair and maintenance information on Hewlett-Packard instruments. Acting as a convenient means of updating customers' Operating and Service Manuals, Service Notes cover such topics as new or special calibration techniques, instrument modificarions, and special repair procedures-all written in a detailed manner. Ask your local feld specialist for a copy of the Service Note Index 50 you can order those Service Notes of interest to you.

Bench Briefs

This newsletter brielly describes new Service Notes and other service publications as they become available. Servicing tips and suggestions which may be helpful to you are also included. Your local Hewlett-Packard field sales office will be happy to place your name on the regular Bench Briefs mailing list.

Each month engineers and scientists of the various Hew-lett-Packard laboratories report new developments in electronjc measurement in the Hetwlell-Packard Journal.

To receive the publication, ask any Hewlett-Packard field office or write: Editor, Hewlets-Packard lownal, 1501 Page Mill Road, Palo Alto, California 94304.

Your local Hewlett-Packard field office reports on its activities and on neg Hewlett-Packard products in Meornicement Neu's, six times each year. A convenient card accompanies each issue, to request new litecature, application notes or ocher desired information.

Ask your local Hewlect-Packard field office to place you on the Measurement News mailing list.

Analytical Advances is a quarterly journal of technical information on analytical measurement techniques, including gas chromatography, atomic absorption photometry, and vapor pressuce osmometry. Successor to Farts and Methods, the new publication reports new findings from the HewlettPackard chemical applications laboratories as well as new engineering developments. Subscriptions are available for the asking from any Hexilett-Packard field office, or write $A n$ aljtical Advances, 1501 Page Mill Road, Palo Alto, Califormia 94304.

In Molecnles and Micromaves, scientists of the HewlettPackard MRR (molecular rotational resonance) laboratory report new developments and findings in microw ave spectrometry. Molecules and Microulazes is issued from time to time, as findings emerge. To add your name to the subscription list, get in touch with your local Hewlett-Packard field office, or write Molecmles and Aircrowaves, 1501 Page

Measuring for Medicine and the Life Sciences is a quarterly publication of the Hewlett-Packard Waltham Division's biomedical technical staff. It regularly reports on actual field practice in medicine and the life sciences, with techniques and results of applying new measurement methods. To add your name to the subscription (ist, ask any Hewlett-Packard field office, or write to Measuring for Medicine, 1501 Page Mill Road, Palo Alto, California 94304.

More than sevency Hewlett-Packard Applitation Notes are available. Each covers a special aspect of measurement in considerable depth. Copies are distributed only on request, which will gladly be received by any Hewletr-Packard field office, or may be sent to Inquiries Manager, Hewleit-Packard Co., 1501 Page Mill Road, Palo Alto, Califomia 94304 . An index of currently-available Hewlett-Packard Application Notes is available from the same sources.

What subjects		Seminar locations		30^{\prime}
Applications	Service	At your local HP	At HP manufacturing	
How to use	How to	field sales		Product
Instruments	Repair HP Instruments	office		Training

Contact your local HP Field Sales Office
for seminar information

Many Hewlett-Packard customers have found that an HP Customer Service Agreement is the best way to optimize their instrumentation maintenance expenditures. Each agreement is shaped to best meet each individual customer's needs and at the same time, save him money.

HP Service Agreements offer a well-tested service program that can reduce your costs by ensuring reliable operation, minimum downtime, and maximum useful life for your instruments. For a fixed annual cost; you can let HP assume all or part of your maintenance responsibilities.

Some of the senices you may choose to include in your agreement are: 1) regularly scheduled and documented calibration and preventive maintenance; 2) a fixed number of emergency repair service calls; 3) an unlimited number of emergency repair service calls; 4) the replacement of any worn or defective parts; 5) service to be performed at your location or at HP facilities; 6) pick-up and delivery of your
instruments; 7) the use of the HP standards lab for your special requirements. This list by no means defines all of the service options you may choose under an HP Service Agreement to best meet your maintenance needs.

An additional benefit under most HP instrument Customer Serrice Agreements is that new HP instrumentation you purchase during the course of the Agreement may be included under the Agreement at no additional charge.

Hewlett-Packard's Customer Service Agreement program is based on years of detailed maintenance information on each HP instrument. By taking advantage of this information you can improve the usefulness and efficiency of each of your instruments, and do it at a fair price. You mary find, as many other satisfied customers have, that a HewlettPackard Customer Service Agreement is the best answer to your maintenance needs.

Contact your local HP field office for more information.

Inventories

Prompt instrument maintenance, done aither in your facility or by Hewlett-Packard, depends on the immediate availability of replacement parts. For this reason, HP maintains extensive parts inventories at its field sales offices in many locations. Thesc feld salcs officcs are backed up by service centers, which maintain full factory level inven. tories, including many parts for older HP instruments.

Parts Identification

As mentioned earlier, every HP instrument manual has a "Table of Replacement Parts" to make it easy for you to identify parts you wish to replacc.

If you need further help in identifying replacement parts, be sure to call your Hewlett.Packard field sales office. Each office maintains extensive technical files to help identify parts rapidly and further support is given each office by the service centers which have complete microfiles including many of the older products. This capability provides complete information in a matter of seconds.

Delivery Time

When it comes to replacement parts, customers have a right to expect product quality and fair value from their supplier. From Hewlect-Packard, this is exactly what they receive. Customers also have a right to expect fast delivery. With its extensive distribution of field sales offices and convenient local inventories, HP is uniquely qualified to provide fast delivery.

Normally, a replacement part order received by a USA field sales office will be filled and shipped the same day. Even if the office does not have the part in stock, this speed is not lost thanks to a computerized dataphone communications 5y'stem linking each field office and service center.

In the USA if a field sales office receives an order for a part which it cannot supply, the order will be instantly relayed to a service center via the dataphone Jink. The order is then filled and shipped directly to the customer by the service center.

Hewlett-Packard can in this way offer unusual speed in the delivery of replacement parts.

AT LEAST 90\% OF THE ORDERS FOR REPLACEMENT PARTS RECEIVED BY AN HP FIELD SALES OFFICE WILL BE SHIPPED THE SAME DAY - EITHER FROM THE SALES OFFICE ITSELF OR FROM A SERVICE CENTER.

A wide variety of instrument accessories are always. available for Hewlett-Packard Froducts.

Shown here is the modification kit for the internal light source of the model 196A oscilloscope camera.

These items make up a spare parts kit for the model 417A VHF detector.

Other Supplies

In addition to the usual replacement parts, Accessories and Operafing Supplies are also in stock ready for immediate delivery.

Modification Kits may also be ordered from your nearby field sales office. Two publications from HP Customer Service, "Service Notes" and "Bench Briefs" (referred to earlier under TECHNICAL PUBLICATIONS), keep you abreast of modifications which are available.

Several types of Spare Parts Kits are available to sustain continuous operation from your HP instruments when they are being used in an isolated area, or where loss of the instrument's use would be extremely critical. 'Running Spares" and "Isolated Service Kits" offer varying degrees of completeness, and you can choose the kit that most nearly satisfes your requirements.

Ordering Procedure

When ordering a replacement part or supply item, please specify: (1) the HP stock number for the part, and (2) its complete name as indicated in the "Table of Replacement Parts" in your Operating and Service Manual. Since the characteristics of a given component may have been altered in subsequent production changes, you should be sure to take this information from the Operating and Service Manual you originally received with the instrument.

As indicated above, your local field sales office can also provide help in parts identification. If you do place an order for a part without a stock number, please include the instrument model number, its serial number, a complete description of the part, its function, and its location within the instrument.

SERVICES

Hewlett-Packard is always prepared to back its products with the best possible repair service at a fair price.
To this end, most HP field sales offices throughout the world have repair and maintenance groups. These offices are backed by regional repair centers and service centers which have complete maintenance facilities, sophisticated test equipment, factory trained specialists, and a full line of replacement parts. You are thus able to deal with one local HP sales office for all your instrumentation needs.
Service is always provided at a price which reflects a fair value for the work actually done and is consistent with what
customers reasonably expect to pay for the benefits received. In addition to needed repairs, HP performs calibration, preventive maintenance, and both mechanical and ejectrical inspection to ensure satisfactory operation and a prolonged life for your HP instruments.

HP also offers extensive overhaul services for older instruments. These models can often be rebuilt to meet the specifications of the current production models. If a model is no longer manufactured, an overhaul will restore the instrument to its original usefulness.

RECALIBRATION AND STANDARDS CALIBRATION

Recalibrations are performed by factory trained techniclans at local field service facilities

To insure that an electronic instrument continues to perform reliably, its operation should be routinely verified from time to time. Each Hewlett-Packard operating and Service Manual provides the information you need to recalibrate instruments in your own facility, If you prefer, the local HP sales office will be happy to arrange your recalibration for you.

In addition to this normal recalibration service, HewlettPackard also offers a standards calibration service for a wide variety of components, instruments and systems.

A standards calibration generally consists of obtaining the necessary corrections to be applied so that an instrument can be used with improved accuracy. In other cases, the standards calibration report is evidence of compliance with requirements for traceability to the National Bureau of Standards. important in government contracts.

The calibration report issued on every calibration gives the measurement conditions, a brief description of the technique used, the measurement uncertainty, the statement of traceability, and the actual test data, expressed in the most useful form. HP's standards capabilities cover almost all of the usual electronic quantities, at frequencics from de to 40 GHz . An instrument of any manufacture can be calibrated, provided only that it is in good condition and shows the requisite stability.

Most customer standards calibrations are done by the Measurement Standards Laboratory at HP's headquarters in Palo Alto, California. As a further service, however, many of the HP feld sales offices have been equipped with standards calibration capabilities for selected types of measurements.

Contact your local Hewlett-Packard field sales office for more information on the recalibration and standards calibration services available to you from HP.

The DC Room in HP's Palo Alto Standards Laboratory has temperature controlled within $\pm 0.03^{\circ} \mathrm{C}$.

ANALYTICAL INSTRUMENTATION

INTRODUCTION

Long recognized as the foremost sup. plier of electronic measuring instruments for the engineer, Hewlett-Packard has more recently become an important source of analytical instrumentation for the chemist and research scientist.

Gas chromatographs

Easily the most popular instrament in chernical laboratories around the world, the gas chromatograph (GC) has had a revolutionary effect on analytical chemistry because of its almost universal application, great speed and Iorv cost.

Hewlert.Packard offers as complete a line of analytical and preparative gas chromatographs as any manufacturer anywhere in the world.
Analytiral GC. Hewlett-Packard manufactures three basic types of analytical GC's: Series 5750 "research" instruments incorporating all the state-of-the-art advances in design to permit the highest possible level of performance for a great variety of analyses: Series 700 "labora. rory" instruments, modular in design, available with only the basic equipment chat is required to perform a particular class of analyses; and Series 402 "highefficiency" instruments whose primary advantage is a large oven that accommodates U-tube glass columns for the analysis of sensitive materials. The choice between these three types should be based along functional lines.

Preparatine GC. Aucomative preparative GC's are used to isolate components of complex chemicals and collect them as pure fractions. There is a choice of two Hewlett-Packard instruments in this category: Serjes 775/776 large-5cale preparative GC's that accommodate any size column up to $\{$ inches $O D$; and the Model 5795A preparative attachment for converting analytical GC's to fully auto. matic small-scale preparative rook.

Spectrometers

The HP Model s960A Aromic Absorp. tion (AA) Pbotometer is a fast and accurate way to detect the presence of metallic elements in ppmand of ten $p p b$ concentrations. The 5960 A is fundamentally faster and easier to use than other AA instruments because it employs push. button-selected resonant wavelength filters rather than the traditional mono. chromator. It produces reliable six.ele. ment analyses as fast as 60 seconds. reading out the results directly in concentration. Because of irs unique resonant line isolation and dual wavelength compensation, it is capable of routine opera. tion at the highest degree of repeatability.

The HP Series 8400 B Microutave Spectrometer provides a means of mea. suring the total amount of information (frequency, intensity and line wideh) available from gas-phase microwave spectroscopy absorption lines. Research scientists use this measurement to provide information in such areas as molecule identification, molecular concentration, bond distance, bond angle, molecular vibrational levels, barriers to internal rotation, equilibrium constants, molecular collision rates. and reaction kinetics.

Specialized instruments

The Model 185 Carbon Hydrogen Nitrogen Analyzer performs a complete elemental analysis of organic materials simulcaneously and automatically in less than 10 minutes.

In the ferv years since its introduction, the 185 has already gained considerable acceptance among microchemists. The reason is its ability to perform, even under difficult circumstances, elemental analyses whose accuracy is well within the accepted allowable error of $\pm 0.3 \%$. at a speed advantage of 4 to 8 times over classical methods. In addition to being faster than the classical methods, the Model 185 also requires a much smalicr laboratory investment because it enables a technician with only a minimum of microanalyucal training and experience to obtain reliable results under normal laboratory conditions.
The Model 2801 A Quarlz Tbermom. eler is an entirely novel temperature measurement rechnique. It employs a small quartz disc transducer that operates within a protective probe housing as a piezoelectric resonator for a sensor oscil. lator. The resonant frequency of the quartz crystal varies as the temperature of the probe in such a manner that the frequency of the sensor oscillator ourput signal is a linear function of temperarure. Probe temperature is displayed as a direct digital readout in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$. A bed output is also provided for input to compurers and other data handling systems.
The 2801 A operares oves the range of -80 to $+250^{\circ} \mathrm{C}\left(-112\right.$ to $\left.+482^{\circ} \mathrm{F}\right)$ with measurement resolution to 0.0001°. It is equipped with two sensing probes and can indicate the absolute temperature of either probe or the difference betreen them.

Molecular weight instruments

Hewlett-Packard offers the polymer chemist a choice of three instruments to help him make fast and accurate molec.
ular weight determinations of all sizes of molecules: the Model 302 B is a vapor pressure osmomerer for number-average molecular weight dererminations between 50 and 29,000 ; Series 500 Membrane Osmometers provide the same type of determination between 10.000 and 1.000 . 000: and the Model 5901B Auro.Viscometer gives viscosity-average molecular weight determinations and incrinsic viscosity measurements. At one time or another, the polymer chemist needs the kind of information that each of these Hewlett-Packard instruments is capable of producing for him. He may even want to make molecular weight measurements according to the classical cryoscopic or ebulliomerric methods. If so, he can simplify his job by using the Model 2801 Quartz Thermoneter, described earlier. Once again, the choice between the various types of Hewlett-Packard instru. ments should be based on functional considerations.

Data handling

The HP Model 3370 A Integrator is an electronic digital integrator that automatically provides accurate quantitation of a GC analysis and presents the results on a built-in printer and, if desired, on an optional 8 digit visual display. A unique internal programming feature gives the operator a choice of four push-button-selected programs to optimize the integration of different sample types and peak shapes.

The HP Mrodel 7127A/7128A Strip Chawl Recorders are available with plug. in modules for a variety of uses including GC, osmonetry, temperature and mul-tiple-span measurements. They are compact, solid-state recorders with 10 -inch calibrared chares, $1 / 2$-second full-scale pen speed and $\pm 0.2 \%$ calibrated accuracy.
Hewlett-Packard manufactures a broad line of other data handling instruments including digital computers, magnetic tape recorders. oscillographic recorders and $\mathrm{X} . \mathrm{Y}$ recorders.

Accessories

Often the effectiveness and utility of Herilett-Packard instruments can be significantly extended through the use of an accessory that has been specially engineered for that purpose. The most important ones are described in the Analytical Instrumentation section of this catalog. Complete information on these and many other useful accessories is given in the Columns and Accessories Catalog, available on request.

RESEARCH GC
 Automated, multiple-detector for top performance 5750B Series

GAS GHROMATOGRAPHY

Series 5750 Gas Chromatographs are automated yer fully versante instruments whose performance is equal to the strictest research requirements. They are a 'lop-of-the-line' instrument incorporating improvements that are available in no other gas chromatograph. Behind these improvements stand some quict bue important advances in the state-of-the-art that have made gas chromatography an even more useful tool than it was just a few years agn when the 5750's predecessor was introduced. Parallel advances in design make the 5750 still the most useful gas chromatograph arolind.

Specifications, Series 5750B

Datectors

Flame ionization
Dual detector unit.
Isolated jet, operating potential 350 rdc
Extended linear operating range of over 10° with hydrocarbon sample.
Senstrivity: 40 millicoulombs/gram of carbon with lydrocarbnn sample and oxygen as combustion gas.
Operating temp: ambient to $500^{\circ} \mathrm{C}$.
Voltage-stabilized power regulator.
Flame igniter standard.
Thermal conductivlty
Dual decector unit.
Operating temp: ambient to $450^{\circ} \mathrm{C}$.
Carrier gas: helium, 5-200 $\mathrm{ml} / \mathrm{minute}$.
High-sensitivity, spiral flow-thru tungsten-rhenium filament.
Noise: $\pm 1 / 4 \%$ at 150 ma , detector $350^{\circ} \mathrm{C}$. isochernal oven. helium carrier gas
Drift: $\pm 4 \%$ per hour at 150 ma , detector $350^{\circ} \mathrm{C}$, isothermal oven, helium carrier gas.
Power-proportioning temp. controller.
Relatively insensitive to fow shanges.
"Detector protector": carrier gas pressure reduction automatic. ally cuts of filament current.

Electron capture

Pulsed voltage: 5, 15, 50 and 150 microsecond intervals.
Electron source
(I) 200 millicuries tritium.
operating temp.: ambient to $220^{\circ} \mathrm{C} \pm 5^{\circ}$.
(2) 2 millicuries Ni^{63}
operating temp: ambient ro $355^{\circ} \mathrm{C} \pm 5^{\circ}$.
Integral overheat protection.
Carrier gas: argon-merhane or helium with purge.
Purge gas: argon-methane.
Voltage-stabilized porver regulator.
parallel plate confguration.

Mlero cross-section*
Electron source: 200 millicuries tritiuro.
Operating temp.: ambient to $220^{\circ} \mathrm{C} \pm 5^{\circ}$.

Oven

Temperature range: ambient to $500^{\circ} \mathrm{C}$ with deteciors and injection port at $100^{\circ} \mathrm{C} .80^{\circ} \mathrm{C}$ is minimum oven temperature possible with detectors and injection port at $275^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$.
Isothermal gadients: $\pm 0.5 \%$ max. (measured in air)
Programmed gradients: $\pm 1.0 \%$ at $10^{\circ} \mathrm{C}$ per minute $10400^{\circ} \mathrm{C}$ (measured in air)
Max. heating rate: 50° to $400^{\circ} \mathrm{C}$ in 10 minures with 120 Vac across the heaters and without columns.
Cooling rate: $400^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 8 minutes without columns.
Linear programmer: 10 rates from 1° to $60^{\circ} \mathrm{C} /$ minute.
Simultaneous installation of up to 3 detertors.
Capacity: up to 150 feet of $1 / 4$ inch $O D$ column and proportional lengths of $1 / 16^{\prime \prime}, 1 / 8^{\prime \prime}$ and $1 / 2^{\prime \prime}$ OD columns.
Power-proportioning temperature controller
Automated programming cycle including cooling.
Installable accessories: injection splitter, effuent splitter, heated collecrion vent, gas sampling valve, backfush valve.
T. C. bridge

Continuous current adjustment and readout (0.300 ma).
Coarse and fine zero controls.
Attenuator for bridge output (12 positions to 1024).
Output polarity switch.
Separate output for electronic integrator.
Line-operated power supply.

Electrometer

Single and dual-channel models.
Input (each channel): dual flame ionization, single flame ioniza. tion, electron capture or micro cross-section detectors.
Sensitivity: 1.0×10^{-12} A full scale output on a 1 mv . recorder at range 1 , attenuation 1.
Dinamic range: 100,000 to 1 on all range resistors.
Total linear range of $4.0 \times 10^{-14} 1010^{-5} \mathrm{~A}$.
Noise: $2.0 \times 10^{-1+}$ A peak to peak (cables disconnected at the electrometer).
Drift: $5 \% /$ hr on mose sensitive range (cables disconnecred at electrometer)
Coarse and fine zero controls, with background suppression of 1.0×10^{-19} A on all ranges.*
Separate input and output attenuation controls.
Line-operated power supply.
Output impedance: to recorder $\leq 1.28 \mathrm{k} \Omega$; 10 integrator $=11.5$ $k \Omega$.

How to order

5751B Dual flame detector instrument with single-channel electrometer.
$\$ 4200$
5752B Dual thermal conductivity detector instrument with bridge.
5753B Electron capture detector instrument with single-channel electrometer.
5754 B Dual flame and dual thermal conductivity detector instrument with single. channel electrometer and bridge.
5755 B Dual fame and clectron capture (tritium) detector instrument with dualchannel electrometer.
5756B Dual flame, dual thermal conductivity and electron capture (tritium) detector instrument with dual.channel electrom. eter and bridge,

[^1] nolse and drift.

HIGH EFFICIENCY GC
 Multi-detector, dual U columns, all-glass system Series 402

Designed specifically for the analysis of thermally sensitive, polar and other hard-to-chromatograph materials, Series 402 High-Efficiency Gas Chromatographs incorporate a number of unique instrument characteristics that minimize or eliminate the decomposition or absorption of unstable materials.

Performance

Even with the most sensitive materials-pesticides, steroids, vitamins, organo metallics, polyfunctional industrial organic chemicals-the 402 produces a chromatogram that bears all the marks of a high-efficiency instrument:
pede symmetry' so fine that there is no trace of tailing ever at picogram levels of detection;
column efficiency' so high (often exceeding 700 theoretical plates per foot) that even the most difficule separations are completed on as little as 12 feet of column;
elimination of component loss so complete that steroids give accurate quantitative response, even ar the nanogram level;
sensifinity 50 high that picogram quantities of many matecials are detected without even extending the detector;

Specifications

Gas flow system

Facilities for handling four gases:
(1) Carrier gas: dual differential fow controllers and needle valces; dual matched 3 -inch rotameters sized for helium flou' range of $0.250 \mathrm{cc} / \mathrm{min}$ at 40 psig ; drying tube.
(2) Hydrogen: dual needle valves; dual matched 3 -inch rotameters sized for flow range of $0-100 \mathrm{cc} / \mathrm{min}$.
(3) Air: dual needle valves; dual matched 3 -inch roamerers sized for flow range of $0.700 \mathrm{cc} / \mathrm{min}$.
(4) Purge: needle value, drying tube.

Column system

Dual on-column injection with remorable flash heaters.
Dual columns, each 4 or 6 -feer, glass C-shaped with 3 mm ID and 6 mm OD (longer glass columns of paper clip configura. tion and meral columns may also be used).
Oven: stainless steel shell with double insulation $11 / 2^{\prime \prime}$ thick; wo loremass heaters each 800 watts; two blowers; thermal fuse.
Effluent spiltter (optional); annular split design; made of glass with Tefont insert for min. sample contact with metal: inf. nitely variable split ratio of approx. 1: 1 to 20:1.

Detectors

Dual flame ionizatlon (standard): Jow-mass design; minimum sample contact with metal.
Twin flame: for independent aperation of both sides of the dual Alame detector.
Electron capture: choice of eritiun cell for operation up to $220^{\circ} \pm 5^{\circ} \mathrm{C}$ and nickel cell for cemperatures up io $355^{\circ} \pm 5^{\circ} \mathrm{C}$: tritium cell has 200 millicaries source and nickel cell, 2 milli. curies; pulsed voltage upe with variable pulse interval of S. 15. 50 and 150 microseconds; built-in overheat protection, tritium cell of Tefion* and-stainless steel: nickel cell made of ceramic and stainless steel; venring required; requires specifir AEC license,
Mlcro cross-section: 200 millicuries tritum source; dc volage type; no purge gas required: built-in overheat protection; made of Teflon* and stainless steel; no venting required below $150^{\circ} \mathrm{C}$: requires specific AEC license.

* Dupont's registerea trademark for rlourocarbon resin

Electrometers

Sensitivity: 4.0×10^{-12} A full scale on 1 mV recorder.
Linear dynamic range: 4×10^{-15} to $1 \times 10^{-8} \mathrm{~A}$.
Background suppression: $10^{-8} \mathrm{~A}$. supplied by batrery.
Input attenuation: 4 powers of 10 .
Output attenuation: 8 multiples of 2 .
Output for potentiometric recorders: 0.1 mV .

Temperature controls

Oven: power-proportioning concroller and linear programmer with 12 rates from 0.5 to $30^{\circ} \mathrm{C} / \mathrm{min}$.; max. temp. of $400^{\circ} \mathrm{C}$: max. temperature gradient of $2^{\circ} \mathrm{C}_{\mathrm{i}}$ max. heating time from ambient to $400^{\circ} \mathrm{C}$ is 40 min ., cooling from $400^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 15 min .: program delay timer cariable 0.20 min .
Infection port: voltage-stabilized power regulator: max. temp. of $490^{\circ} \mathrm{C}$.
Flame detector: voltage-srabilized power regulator; max. temp. of $425^{\circ} \mathrm{C}$.
Auxillary detector: voltage-stabilized power regulator; max. temp, of $225^{\circ} \mathrm{C}$, or $360^{\circ} \mathrm{C}$.
Readout: indicating pyrometer and fire-position selector switch.

How to order

Basic dual flame ionization detector instrument with single-channel electrometer, $115 \mathrm{~V}, 50$ or 60 Hz (specify)
$\$ 4000.00$

Options

Options
Adds second electrometer channel (for
altemate or simultaneous operation of rwe
jonization detector systems, or for indepen-
dent operation of both sides of a dual flame
detector)
Adds detector and all necessary hardware
for electron capture (tritium foil) detec-
tion
Same as Option 02 excepl that detector con-
tains a high-temperature Nín fo:l
Two-nay effluent splitter
$230 \mathrm{~V}, 50 \mathrm{~Hz}$ operation

LAB GAS CHROMATOGRAPH
 Low-cost modular dual-column GC Series 700

GAS CHROMATOGRAPHY

The basic Series 700 unit is an isothermal gas chromatograph with a flexible two column design that permits single column, series or parallel tro-column operation as well as dual column compensation. The 700 is also capable of nanual temperature programming and high-temperature operation, with independent control of injection port, derector, and oven to $400^{\circ} \mathrm{C}$. Injection can be either directly onto the column or into a flash vaporizer. All Series 700 oven modules are equipped with a voltage-stabilized power regulator. An adapter plate and switch permit bypassing the standard power regulator and allow's the plug.in use of either a Model 220 Temperature Controller or a Model 240 Temperature Programmer for oven control. Excepr for Model $700-00$, all Series 700 instruments are equipped with flow controllers.

Series 700 specifications

Detectors

Four interchangeable detectors:

(1) Thermal conductivity:
dual detector
four-wire hot flament rype, 300 mA range
W or WX filament standard
(2) Flame ionization:
dual detector
low-mass design on cast aluminum base
nanual flame igniter
(3) Electron capture (tritium or N^{63})
pulsed voltage type with variable interval of 5,10 , 50 and 150 microseconds
200 millicuries tritium or 2 millicuries of $\mathrm{N}^{c z}$ source with integral overheat protection
no venting required below $150^{\circ} \mathrm{C}$
specific AEC license required
(4) Micro cross-section:

DC voltage type
200 millicuries tritium source with integral overheat protection
no venting required below $150^{\circ} \mathrm{C}$
specific AEC license required

T. C. bridge

Continuous current adjustment and readout
Coarse and fine zero adjustment
Attenuator (12 positions to 1024)
Outpur polarity switch

Power requirements:
for W filaments- $15 \mathrm{~V} \mathrm{dc}, 300 \mathrm{~mA}$ for $W X$ filaments- $30 \mathrm{~V} \mathrm{dc}, 300 \mathrm{~mA}$

Electrometer

Input: HP dual Rame ionization, electron capture or micro eross-section detectors.

Sensitivlty: 1×10^{-11} A full scale.
Linearity: $\pm 1.5 \%$ full scale over entire range.
Time constant: less than 1 second at full sensitivity.
Noise: less than $10^{-13} \mathrm{~A}$.
Drift: less than 1% full scale per hour.
Live zero and background suppression,
Power requirements: self-powered from integral 135 V battery supply: no ac.

How to order

700.00 Dual thermal conductivity detector (TC) instrument.
$\$ 1200.00$
700-0019F Dual TC instrument with power supply and dual flow controllers.
700-0119F Dual TC instrument with power sup. ply, dual fow controllers and proportioning oven temperature controller.
2025.00

700-2419F Dual TC instrument, with WX filaments, power supply, dual for controllers and proportioning detector temperature controller.
1850.00
700.021 Dual TC instrument with power supply, dual flow controllers and linear programmer
2300.00

700-231 Dual TC inscrument with WX fila. ments, power supply, dual for controllers, proportioning detector temperature controller and linear programmer 2550.00
700-1099F Dual flame ionization detector (FI) in. strument with dual flow concrollers.
1900.00

700-1199F Dual FI inserument with dual flore controllers and proportioning oven temperature controller.
2350.00
700.12 Dual FI inscrument with dual flow controllers and linear programmer.
2600.00

700-3099F Electron capture detector (EC) instrument with dual flow controllers. Option 04 for ${ }^{164}$ Electron Capture Derector, add $\$ 2 \% 5$.
$\$ 2050.00$
700-3199F EC instrument with dual flow control. trollers and proportioning oven temperature controller. Oprion 04 for N^{i}. Electron Capture Derecior, add \$275.
700-4099F Micro cross-section detector (MCS) instrument with dual flow controllers.
1850.00

700-4199F MCS instrument with dual fow controller and proportioning oven temperature controller.
700-42 MCS instrument with dual fow conrrollers and linear remperature programmer.

AUTOMATIC AND MANUAL PREP GC
 Models 775 and 776

Model 775
Automatic PREP GC

An all-purpose preparative gas chromatograph, the Model 775 accommodates with equal ease, both the "long narrow" columns of $3 / 8,1 / 2$ or $3 / 4$ inch $O D$ and the new "short-wide" columns of $21 / 2$ and 4 inches $O D$. Because of this unique capa. bility, it is equally capable of making high-capacity, high-sesoLution and trace component separations.

Specifications, Model 775

Injection system

Sample reservair: pressurized; can be filled, emptied and fushed without removing from instrumene: 300 ml capaciry standard, optional 1000 and 2250 ml available.
Prep injection: three types provided.

1. Septum-port for manual syringe.
2. Auto-injector for automaric injection adjustable $1 / 4$ to 12 ml .
3. Timed system for automatic injection adjustable 0 io 125 ml .

Column system

Oven: 12 in , wide by $61 / 2$ in decp by 53 in . high; accommodates up to 400 feet of $3 / 8-\mathrm{in}$. OD column, or up to 80 inches of $4-\mathrm{in}$. OD; also accepes proportionate length of $1 / 4,3 / 4$ and $21 / 2 \cdot$ in. OD column.
Thermal conductivity detector: (standard)-four-filament type with high-capacity design (no splitting required): integral power supply and bridge controls.

Collection system

Component selector: automatically selects for collection up to six components in a sample containing up to 17 components.
Manifold: seven positions; heated up to the trap, to prevent condensation; check valves prevenr diffusion; plugs provide access for cleanout.
Bath: accommodates up to seven 50 ml traps; adjustable and removable: optional refrigeration unit and bath for cool. ing down to $-13^{\circ} \mathrm{C}$.
Traps: seven 50 ml glass spiral traps standard; optional 50 ml glass thermal gradienr, 10 ml and 2 ml glass traps and 1 liter stainless steel traps also available.

Complete instrument

Model 775 Automatic Preparative GC with thermal conducrivity detector, one 300 ml sample reservoir, seven 50 ml glass spiral traps, $48^{\prime \prime}$ of $1 / 4^{\prime \prime}$ OD stainless steel column, $80^{\prime \prime}$ of $3 / /^{\prime \prime}$ OD stainless steel column and ElectroniK 18 re. corder.
$\$ 11,000.00$

The Model 776 Preparative Gas Chromatograph offers an economical alternative to the Model 775, with the same true prep-scale capacity but without the automatic features. It accepts any prep column between $3 / 8$ and $4^{\prime \prime} O D$, handles up to $125 \mathrm{ml} /$ injection, with a demonstrated collection efficiency of 90.98% at purity levels approaching 100%. The 776 aiso has an integral analytical ge capability.

Model 776 Specifications

Columins

Preparative: accepts up to 80 inches of 4 " OD; proportionate lengths of $1 / 2^{\prime \prime}, 3 / 8^{\prime \prime}, 3 / 4^{\prime \prime}$ and $21 / 2^{\prime \prime}$ OD.
Analytical: $1 / 4^{\prime \prime}$ OD.

Detector

Unique flame ionization detector design avoids back forv of tame gas, permits nitrogen as carrier gas.
Integral electrometer.
Temperature control
Controllers: independent indication and control of injection port and manifold to $350^{\circ} \mathrm{C}$, and column oven to $300^{\circ} \mathrm{C}$.
Safety Imit contraller: hi-limit oven teroperature cut-off prevents accidental overheating of columns; interlock pretents operation of column oven heater without fan.

Sample injection

Semi-autornatic: gas-operated injector for 1.00 to 125 ml injections.
Manual: septum rype.
Vaporizer: high-capizity' heat sink supplies 664 calories per ${ }^{\circ} \mathrm{C}$ temperature drop for sample vaporization.
Sample reservoir: 75 ml pressurized reservoir.
Sample collection
Traps: five 50 ml glass traps and cooling bath; manually selected bypass.

Recorder

Optional strip chart recorder.

Flow measurement

Rotameter: for continuous indication of carrier gas flows; needle ralves for control.
Manometer: for measurement of detector gas flows.

Complete instrument

Model 776 Manual Preparative GC with Flame Ionization Detector, including 75 ml sample reservoir, five 50 ml glass spital uaps and cooling bath, $80^{\prime \prime}$ of $3 / /^{\prime \prime}$ OD stainless steel prep column, and $48^{\prime \prime}$ of $1 / 4$ OD stainless sreel analytical column.
$\$ 5,300.00$

PREP GC ATTACHMENT Automatic prep accessory for analytical GC Model 5795A

GAS CHROMATOGRAPHY

The Model 5795A Preparative Attachment automates an alytical gas chromatographs for reliable smail-scale prepara. tive work. Easily installed in less than an hour, the 5795 A converts an analytical GC to fully automatic preparative work without interfering in any way with the instrument's ability to perform as an anlytical GC. The 5795A offers the chromatographer an unusually economical arenue to reliable automatic preparative $G C$ because it does not involve a wastefu! duplication of the basic gas chromatograph. It also introduces mechanical simplicity and advanced electronic circuitry to small-scale prep GC instrument design and so eliminates the uncertainty and unreliability that have plagued previously designed instruments. The 5795A can be installed on any H.P Series 5750 and 810 Gas Chromatographs. It can be readily adapted to other H-P Gas Chromatographs and most competitive instruments.

Three modes of operation

In the amtonatio mode, the S795A performs continuous cycles of sample injection and fraction collection until stopped by the operator. It can be used with temperatureprogrammed instruments capable of automatic re-equilibration and with isothermally-opesated GC's.

The semi-antomatic mode provides a single cycie of automatic sample injection and fraction collection. It can be used for "scouting" runs, and in temperature-programmed runs with instruments that cannot re-equilibrate automatically,

Manhal operation can also be used for "scouting" runs, or when the operator wants to cut the peaks at his discretion.

Three compact components

The 5795 A programs, actuates and controls repeated cycles of sample injection and sample collection until stopped by the operator. To perform these operations automatically, it employs three compact units.

The control anit permits setting the operating mode and trap program. It programs the peaks to be collected, those to be bypassed and the recorder signal level at which peaks are cut. The unit also counts the peaks, signals the end of a cycle, and starts a preset delay period before the next altomatic injection.

The infection "nit meters the desired sample volume and performs a true "slug" injection into the analytical GC. Its unique action provides a short blast of carier gas a few milliseconds after the sample injection to purge the unit of sample, eliminating dribble and consequent ghost peaks.

The collection wini directs the effluent from the analytical GC to one of six collection traps or to a bypass trap. A 12 -position collection value, programmed by the control unit, establishes a flow patl for the column effluent through a manifold to the appropriate trap thus preventing fow to all other traps.

Advanced design features

True slug-injection, achieved by a unique control logic for the 5795A's metering pump, eliminates band spreading dur. ing the injection.

Pressmized sample reservoir eliminates the possibility of vapor lock in the injection mechanism and maintains uni-

form sample composition by preventing volatilization of low-boiling sample components.

Positive displarement prmp for sample injection provides injection repeatability of better than $\pm 5 \%$ or 5μ. Its carrier gas-operated foating piston design introduces a new standard of reliability for unattended operation.

Easj, thorough cleaning prevents sample contamination; all liquid-contad surfaces (stainless steel and Tefion) in the injection mechanism can be cleaned-in-place with solvent and then purged dry with carrier gas.

Simplified collection manifod has no moving parts yet positively prevents cross-contamination from trap to trap.

Snap-action collection vatue changes trap connections instantly, thus permitting complete collection of desired sample components. The valve is located down-stceam of the traps where it operates at lower temperature to optimize reliability.

Solid-state comtrol circuitry increases reliability and minimizes maintenance. An electronic commutator eliminates stepping switches in the control circuit, for example, and a power interrupt system prevents automatic startup after power failure to avoid conramination of previously collected fractions.

Performance

Without discounting the importance of good instrument design and convenience features, no automatic preparative gas chromatograph is really worth its purchase price unless it excels in two performance categories: (1) reliable automation, i.e., it does its job unattended not only during the working day, but ovenight and weekends when there's no one around to supervise it; (2) purity of collection, i.e., it collects the separated components without contaminating them with adjacent components because of faults in the injection or collection system. A series of tests has proved that the 5795 A excels with regard to both of these performance criteria.

GAS CHRDMATOGRAPHY contruvad

Automatic prep accessory for analytical GC
Model 5795A

Specifications

Control unit
Operation modes: four-position switch for selection of desired mode:

1. automatic-continuous recycling with automatic injection and collection
2. semi-automatic-automatic injection and collection for a single cycle
3. manual-pushbutton-actuated injection and operation of collection valve
4. standby-used during serup

Trap program: twenty 3 -position slide switches plus a 2 -position Last Peak switch; permit automatic collection of any number of peaks up to a maximum of 6 , in a sample that contains up to 20 (as sensed by peak level sensor), automatically bypassing all others.
Peak level selector: sets peak height at which trap program operates; rectives signal from retransmitting potentiometer in chromatograph recorder; adjustable 0 to 100% of re. corder full scale.
Pre-Injection time delay: 0 to 40 minutes in 2 -minute steps.
Manifold temperature control: continuously adjustable from ambient to $300^{\circ} \mathrm{C}$
Power interrupt system: prevents automatic startup after poner failure to avoid contamination of previously collected fractions
Dimensions: $63 / 4^{\prime \prime}$ high, $163 / /^{\prime \prime}$ wide. $183 / 8^{\prime \prime}$ in. deep
injection unit
Type: positive.displacement pump, carrier-gas operated
Sample reservoir: stainless steel, pressurized with carrier gas; 30 ml capacity standard, 75 ml optional; can be filled, emptied and flushed withoue removing
Injection volume: concinuously adjustable from $20 \mu 1$ to 1 ml by micrometer volume selection
Injection volume repeatability: better than $\pm 5 \%$ or $5 \mu 1$
Sample contact surfaces: stainless stcel, Teflon
Operating pressure: 50.75 psig carrier gas pressure
Mounting: main assembly (metering pump) mounts on gas chromarograph oven; injection assembly on chromato. graph injection port by means of adaptor (provided)
Dimensions: main assembly- $81 / 2^{\prime \prime} h, 37 / 8^{\prime \prime}{ }^{\prime \prime}, 101 / 2^{\prime \prime}$ d
injection assembly- $21 / 4^{\prime \prime}$ high by $33 / 4^{\prime \prime}$ wide by $31 / 6^{\prime \prime}$ deep (not including reedle)

Collection unit

Manifold: heated by two 40 -watr cartridge elements to prevent condensation; engineered restrictions prevent difusion; dial thermometer indicates temperature
Collection valve: fast-acting, solenoid-operated valve with positive detents at each of 12 positions; located downstream of traps; automatically synchronized during auromatic and servi-automatic operation: position indicator and manual advance
Traps: seven trap positions; all traps seal automatically when pushed in position; 2, 5 and $10 . \mathrm{ml}$ traps available
Batt: adjustable and removable
Mounting: adaptor connects to exit port of gas chromatograph; mounting legs adjust to required height
Dimensions: $151 / 2^{\prime \prime}$ high, $16^{\prime \prime}$ wide, $93 / 4^{\prime \prime}$ deep
Power requirements
Power: 117 V ac, $60 \mathrm{~Hz}, 5 \mathrm{~A}$ (switch for 220 Vac)
Carrier gas: supplied to Injection Unit at 50 psig minimum. 75 psig maximum
Trap cooling: ice, dry ice/acetone, etc, depends on application

Chromatograph requirements

Detectors: thermal conductivity, or flame ionization detector with $10 ; 1$ effluent splitter and heated collection vent
Recorder: requires retransmitting potentiometer, $0-5 \mathrm{~K}$ ohms

Ordering
No.
How to order
Description
Price

Complete attachment

5795A Preparative Atrachment for analyrical $\$ 2900.00$ gas chromatographs consisting of: Injecrion Module with $30 . \mathrm{ml}$ sample reservoir, Collection Module with seven conical traps (5 ml) and Control Module (spec . ify one option from Group A and one (rom Group B) GROUP A
Opt. 06 For use with Series 7620 GC's n/c
Opt. 07 For use with Series 5750 and 810 GC's n/c
Opt. 08 For use with Series 700 GC'sadd 110.00
Opt. 09 For use with Model 720 GC's.........add 110.00 GROUP B
Opt. 11 Retransmitting potentiometer for HP Recordersadd 50.00
Opt. 12 Retransmitting potentiometer for Honeywell Recordersadd 225.00 ADDITIONAL OPTION'S
Opt. 0450 Hz operation $\quad \mathrm{n} / \mathrm{c}$
Opr. 15 Substitute 75 -mil sample reservoiradd 7.00
Opt. 21 Substitute ser of seven (7) spiral traps add 70.00
Opt. 22 Substitute set of 7 vigreux trapsadd 28.00

Individual units

5796A Injection Unis with standard $30 . \mathrm{ml}$ reser- $\$ 900.00$ voir: adapted for use with 7620, 5750 , 810,720 and 700 GC 's
Opt. is Substiture $75-\mathrm{ml}$ sample reservoir add 7.00
5797A Collection Unit (specify one option from 900.00 Group A)
GROUP A
Opt. 06 For use with Series 7620 GC's $\quad \mathrm{n} / \mathrm{c}$
Opt. 07 For use with Series 5750 and 810 GC's $\quad \mathrm{n} / \mathrm{c}$
Opt. 08 For use with Series 700 GC's add 90.00
Opt. 09 For use with Modei 720 GC'sadd 90.00 Additional Options
Opr. 20 Cable with pushbutton for manual in. dexing of collection valve and for sup. plying power to manifold heater add 35.00
Opt. 21 Substitute set of seven spira! trapsadd 70.00
Opt. 22 Substitute set of seven vigreux traps ..add 28.00
5798A Control Unit (specily one option from 1300.00 Group A)
Opt. 0450 Hz operation n / c
Opt. 06 For use with Series 7620 GC's n / c
Opt. 07 For use with Series 5750 and B10 GC's n/c
Opt. 08 For use with Serits 700 and 720 GC's n/c

Accessories

19150A $30-\mathrm{ml}$ sample reservoir
$\$ 40.00$
$19151 \mathrm{~A} \quad 75 \cdot \mathrm{ml}$ sample reservoir $\quad 47.00$
19152 A 5 ml conical trap $\quad 13.00$
$19153 \mathrm{~A} \quad 2 \cdot \mathrm{ml}$ vigreux trap $\quad 17.00$
19154A $10-\mathrm{ml}$ spiral trap $\quad 23.00$
1915sA Retransmitting porentiometer for HP $\quad 50.00$
19156 A Retransmitting potentiometer for Honey- 225.00 well Recorders
19157 A Cable for manual switching (for use with $\quad 35.00$ Collection Unit)
19158A Heared collection line for connecting 90.00
19159A Heated collection line for connecting 90.00 Collection Unit to Model 720 GC's

H30.7128A

Compact solid-state instruments with a 10 -inch calibrated chart and one or troo pens, these strip chart recorders are specifically designed for use with gas chromatographs. To insure accurate recording of the chromatogram, they incorporate plug-in input modules whose low-pass filter rejects power line frequencies and the differential noise that is commonly associated with ge detector output.
The Model H10.7127A has one and the H10.7128A has two servo-actuated pens and input modules. All input modules are equipped with a detector selector switch that allows the operator to choose either of two ge detector signals for recording. Both models have a 1 mV full-scale span for each pen; input can be floated up 10500 V above ground with high common mode rejection; zero can be positioned over full span or suppressed up to 100% of full scale.

Standard features:

One or two servo pens
Detecror selecior for each pen
One-haif second full-scale pen speed
Four chart speeds
Three-position chart table

Optional features:

Disc integrator
50 Hz operation
Fully adjustable limit switches
Event markers

Specifications

Sensitivity: 1 mV full scale.
Response time: 0.5 second max. full scale (0.6 sec. max. 50 Hz).
Accuracy: $\pm 0.2 \%$ of full scale.
Linearity termiral based: 0.1% of full scale.
Dead band: 0.1% of full scale.
Pen: capillary type.

Zera: right side.
Chart: 10 -inch calibrated width, 120 feet long.
Chart speeds: $1 / 4,1 / 2,1$ and 2 inches per minute.
Interference rejection: 120 dB dc common mode; 100 dB line frequency common mode.
Source impedance: up to $5 \mathrm{k} \Omega$ withour effect on performance.
Radio frequency interference: meets MIL-I-6181D.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 42$ va for Model H10-7127A, 65 va for Model H10-7128A.
Dimenstons: $16 \frac{3}{4}$ in. long, $8.11 / 16 \mathrm{in}$. high, $71 / 4 \mathrm{in}$. deep.
Weight: Model H10.7127A, 25 ibs net; 32 lbs shipping. Model H10-7128A, 30 lbs net, 38 lbs shipping.
Accessories supplied: 4 red and 4 blue ink cartridges, balancing pot Jubricant and cleaner, ink system cleaner, extra pen for each channel, rear input mating connector, pen cleaning wire, one roll of paper. power cord, instruction manual
Prices: (basic frame plus input module for each channel).
Single channel, Model H10.7127A \$1100
Dual channel. Model H10-7128A 1650

	OPTIONS (lactory-Inslalige at tmg of purthase)	
01	High.low limit switches on Madel H10-7127A, and channei one only on Model H10.7128A.	\$ 60.00
03	115 or $230 \mathrm{~V}, 50 \mathrm{~Hz}$ operation.	N/C
07	Disc integrator cchannel two only on Model H10.7128A).	685.00
09	High. Iow limil switches on channel two of Model H10-7128A.	50.00
10	Hightow limit switches on both channels of Model H10-7128A.	100.00
12	Mounted in cabinet compatible with H.P gas chromatographs.	100.00*

-No charge when ordered with Serles 402 or 5750 instruments.

Sl- 4 Solid Sample Injector

The Solid Sample Injector is ideally suited for introducing exact weights of solid or viscous materials into a gas chromatograph and is adaptable to most makes of chromatographs. It employs a glass melting point capillary to hold and inject sample. Stainless steel, I lb Sl-4, Solid Sample Injector basic price: $\$ 150$.

80 Pyrolyzer

The Pyrolyzer extends the scope of GC by decomposing nonvolatile samples semiautomatically and is useful in analyzing large polyfunctional molecules. Suitable for direct connection to HP instruments, these pyrolyzers can be adapted to most other GC makes. $115 / 220 \mathrm{~V}, 60 \mathrm{~Hz}(50 \mathrm{~Hz}$, optional), 16 lbs. 80 Pyrolyzer basic price, including adapters: \$400.00.

60 Backflush Valve

The Backflush Valve reverses direction of carrier gas through the column with the twist of a knob. This rapidly clears the column of unwanted components in an analysis: e.g., natural gas analysis, where only low-boilers are of importance. The valve has an integral heater and a replaceable tefion rotor with compression adjustment for leakfree operation up to $225^{\circ} \mathrm{C}$ and 50 psig. For proper operation the heater requires an auxiliary controller. For prices and ordering information, see table.

| For Instrument |
| :--- | :--- | :---: | :---: |
| models |\quad| Desorlption | Part No. | Prige |
| :--- | :---: | :---: |
| Series 700 | Backflush valve, with temp
 confroller and pyrometer
 readout | 60 C |
| Series 810 | Backflush valve only | 600 |
| Series 5750 | Backflush valve only | 19030 A |
| Serios 810 or
 Series 5750 | Temp controlle! with py-
 rometer readout | 19045 A |

50B Automatic Attenuator

Regardless of input signal intensity, the Automatic Attenuator holds all peaks on the recorder chart. Eleven positions of Binary artenuation factors from 1 through 1024 to infinity are available. The unit attenuates the signal each time the peak approaches 95% of chart width, and scales down each time the peak falls below 35% of widrh. All peaks are clearly identifiablc. Quantitative data are readily calculated by the usual peak height or area method. 50 B Automatic Attenuator basic price: $\$ 350.00$ (limit switches to adapt for the various makes of recorders are optional).

19035A Sample Injection Splitter

Specially designed for use with small-diameter, lowforv GC columns the Sample Injection Splitter (not shown) attaches directly to the injection port and provides a variable split ratio to give proper volume of sample injection on these columns. Includes integral heater to keep the system ar in. jection port temperatures, Careful splitter design minimizes the ghosting, nonlinear, and fractionation difficulties often encountered in splitter systems. (For use with Series 5750 Gas Chromatographs only,) 19035A Sample Injection Splitter price: $\$ 100.00$.

19034A Effluent Splitter

Effluent splitters ace for simultaneous operation of two or three detector systems in gas chromatography. They also can be used to divert portions of effluent in a flame or electron capture GC system (which are destructive to samples) to an analytical collection system, For use with Series 810 and 5750 Gas Chromatographs, the 19034A Effluent Splitter convects to either threeway splits (for the Series 5750) or two-way splits (for both series). It comes complete with a set of interchangeable splitters for fixed ratios in all combinations possible with $1: 5: 10$ splits (e.g., $1: 5: 5,1: 10: 5$, 1:1:1). All mounting hardware is included for connection to $1 / 4^{\prime \prime}$ outlers. Price: $\$ 175$.

19055A Total Collection System

For trapping components of a mixture as they elute from an analytical instrument, the total collection system (nok shown) traps both carrier gas and component as desired. The system consists of a 300 ml glass Alask, a manifold needle valve and a soap-film flowmeter. Useful for smallscale collections needed in further analytical work. Requires adapters for specific instruments. 19055A Total Collection Sysiem, basic price without adapters: $\$ 120$.

GC DIGITAL INTEGRATOR Features pushbutton-selected internal programs Model 3370A

 GAS CHROMATOGRAPHYThe Model 3370A Integrator provides accurate, unattended quantitation of a gas chromatograph (GC) analysis. It operates according to a preset progeam that enables its internal logic to detect the beginning, apex and end of a chromatographic peak; to distinguish noise and reject it; and to provide baseline correction when desired.

The 3370A incorporates important new features that make it easier to use and increase its performance level beyond the state-of-the-art.

Selectable internal programs

The 3370A's unique programming feature allows the chrom. atographer a choice of four pushbutton-selected sets of analysis parameters.
For the research laboratory, this feature permits selecting precisely the correct program for different sections of a chroma. togram, and even changing the program at will in order to optimize the integration of different parts of the chromatogram.

For the control laboratory, selectable programs make it possible to optimize the analysis parameters for each kind of sample, while reducing set-up and integration procedures to simple 1-2-3-4 insiructions for technician operators.

One of four pushbuttons is used to activate the desired program. The Manntal Program pushbutton selects a series of ad. justments located on a swingdown panel. Because each of the analysis parameters is easily changed during a run, this mode of operation is ideal for trial runs and one-of-a-kind analyses. In addition to a control for each of the important analysis
parameters, the swingdown panel also contains a number of drawings which greatly facilitate the use of the controls by graphically showing how each affects the integration.

The three other pusbbuttons activate one of three programs contained on a printed circuit board that plugs into the back of the 3370A. Each program is completely changeable by moving plug. in circuit pins to various positions on the board which correspond to the analysis parameter settings on the swingdown panel.

Additional boards can be pre-set and plugged into the 3370 A when desired, thus giving it literally an unlimited choice of pushbutton-selected programs to meet changing requirements.

Slope sensitivity controls

When using an integrator that has a single slope control, the chromatographer is forced to compromise the accuracy of integration whenever the up slope of a peak differs from the doun slope. With the 3370 A , separate $u p$ and down slope sensitivity controls let the chromatographer optimize the integration of all railing, overloaded and other imperfectly shaped peaks.

Coded event markers

Coded, superimposed event markers graphically establish the precise relationship of all integrator functions to the recorded chromatogram. The 3370 A employs five types of coded markers that positively identily (1) when the analysis starts, (2) when integration starts, (3) when integration stops, (4) when area count is printed and (5) when baseline is reset.

Built-in printer

The 3370 A has a buile-in printer that prines out the area count to a total of 10^{3}. expressing it to the fourth significant digit, with a floating point notation (data multiplier). It also prints and continuously indicates time to four digits. selectable as hundredths of minutes or seconds.

Calibrated controls

The 3570A controls are calibrated in real terms: mv/nim for slope sensitivity, min for baseline reser delay, etc. Signifi. cance to the chromatographer is two-fold: he can precalcmlase the exact settings by making measurements on a sample chromatogran and presed them precisely in zeal cerms on the 3370A controls.

Top performance speciflcations

In all three of the most important measures of performance for electronic integrators, the 3370 A sets new standards: precision of $\pm 0.05 \%$ (vs. $\pm 0.1 \%$ state-of-the-art); linearity of $\pm 0.1 \%$ (vs. $\pm 0.25 \%$); dynamic range of $1,000,000: 1$ (vs. 200.000:1).

Specifications

Range

Voltage range: 0.1 V .
Linear dynamic range: $>10^{4}$.
Resolution: I $\mu \mathrm{V}$-see.

Performance ratlings

Area repeatability: $\pm[.05 \%$ of reading $\pm 1 \mu \mathrm{~V} \cdot$ sec per sec of peak duration \div baseline drift etror $]$.
Area accuracy: $\pm[.1 \%$ of reading $+1 \mu \mathrm{~V} \cdot \sec$ per sec of peak duration + baseline drift error? (only includes area between start integrate command and prins area command).
Recorder presentation accuracy: $\pm 3 \%$ of secting.
Accuracy of controls: (slope sensitiviry, pak summation and rear shoulder) $\pm 10 \%$ of setring.
Baseline drift: $<1,4 \mathrm{~V} / \mathrm{min}$.

Input characteristics

Input terminals: a pairs of input terminals selectable remotely or from front swing-out panel; input can be floated or grounded.
Input impedance: $>10 \mathrm{M} \Omega$.
Input overload: input overiond automatically detected and princed.
Minimum area count: $1 \mu \mathrm{~V}$-ser.
Maximum area count (single peak): $10^{5} \mu \mathrm{~V} \cdot \mathrm{sec}$.
Maximum area count (analysis): $10^{\circ} \mu \mathrm{V} \cdot \mathrm{sec}$.

Output characteristles

Recorder output: 2 reconder outpues (1 mV and 1 V) isolated from input, are available on cear panel; fuil-scale recorder out. put corresponds to 3370 A input voltage equal to recorder presentation setting; event markers are coded and superimposed upon recorder output.

Printer autput:

Area: 4 most significant digits and data multiplier (floating poiat notation).
Time: 4 digits of time selectable as hundredths of minutes or seconds.
Rate: 2 peaks/sec maximum.
BCD output: all information princed is simultaneously available in binary coded decimal form ($1 \cdot 2 \cdot 4 \cdot 8$, " 1 " srare positive).
Voltage to frequency output; V to F output provided for visual display of integration.

Programming

Internal programming: front panel pushbutions select 1 of 3 sets of 8 programmed analysis parameters.
Remote programming: all front pancl controls (excepr secorder) can be remotely controlled by clectrical contact closure.

General

Operating temperature: insurument will operate within sperifications from $10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+73^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 30 \mathrm{~Hz}$ to $60 \mathrm{~Hz},<40 \mathrm{~W}$.
Welght: net $40 \mathrm{lbs}(18,2 \mathrm{~kg})$; shipping so lbs ($22,8 \mathrm{~kg}$).
Dímenslons: $163 / 4^{\prime \prime}(42.5 \mathrm{~cm})$ wide by $57 / 32^{\prime \prime}(13.3 \mathrm{~cm})$ bigh by $183 / \mathrm{g}^{\prime \prime}$ (46.7 cm) deep.
Accessorles furnlshed: rack mounting kic

How to order

Ordering
No.
General Description
Price
3370 A Electronic Digital Incegrator with internal
programming and built-in printer; for opera(ion at 115 or $230 \mathrm{~V}, 50$ or 60 Hz

OPTIONS

01* Visual display consisting of a.digit nixie tube readout of area count in separate housing (see photagmph)
02 Total area accurnulator (for printout of ac. 300 cumulated count and time at end of run)
*Can also be ordered separaiely as Model No. 18990A: price is $\$ 700$.

18990A Visual Display

CHN ANALYZER Simultaneous microdetermination of C, H and N Model 185

 CHN ANALYSIS

The classical Pregl and Dumas methods for the microderermina. tion of carbon, hydrogen and nitrogen are slow, tedious and expensive. With the Model 185 Carbon Hydregen Nitrogen Analyzer. the microchemist now has at his disposal an equally accurate and reliable alrernate mechod that is 4 to 8 times faster - the complete 185 analysis takes less than 10 minutes.
In addition to being faster than the conventional methods, the 185 also requires a much smaller laboratory investment because it enables a technician with only a minimum of microanalytical training and experience to obeain reliable results under normal laboratore conditions.

Instrument design features

The Model 185 CHN Analyzer incorporates a number of important design features that are unique among instruments for elemental analysis, the result of Hewlett-Packard's experience in the field which surpasses that of any ocher manufacturer.

Two-stage furnace for optimum oxidation and reduction: the Model 185 uses a tro-stage furnace for sample combustion:
(1) an oxidation furnace, automatically controlled at any temperature between 750 and $1050^{\circ} \mathrm{C}$ as selected by the analyst for the best oxidation conditions for the sample at hand;
(2) a reduction furnace, automatically held at 400 to $600^{\circ} \mathrm{C}$ to provide complete reduction of all nitrogen oxides and excess oxygen, thus ensuring nitrogen determinations that are celiable within the allowable error of ± 0.3 \%.

Automatically timed combustion cycle: the peak height response obtained during the chromalography of the oxidation products is dependent upon the time the sample is confined in the combustion chamber. In the 185, the combustion period is automatically and precisely controlled to eliminate analytical error from this source. A fow diversion switch and timer are used for this purpose. In the "Timed" position, carrier gas flows through the furnace until a "Start" button is pushed. When timer is stanted, carrier gas bypasses the furnace for a precisely rimed 20 or 50 second period, at end of which it is autematically re-directed through the furnace. sweeping combustion products into the gas chromatograph.

In the "Manual" position, carrier gas bypasses the furnace. Pilot lights indicate whether carrier gas flow is in "bryass" or "through furnace"

Tworzone oven for consistent GC analysis: the 185's column oven consists of an ourer shell and an inner column oven, each equipped with separate and independent temperature concrot. The outer shell maintains an ambient temperacure near that of the
oven and keeps column temperature stable. Peak height thus re. sponds to sample composition only and the baseline is stable.

Single-column single-detector GC system: improved column lechnology led to the single-column, single-detector design of the 185. All three combustion products $-\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{3}$ - are separated in a single pass resulting in a chree-peak chromatogram, one peak for each of the combustion products.

Automatic sensitivity selector: an automatic sensivivity selector keeps all three peaks on scale for all types of samples, and allows difect peak height readout of the analytical trace. This feature releases the operator from having to manually attenuate the CO: peak on each analytical run, thus providing unattended operation from sample injection to completion of run.

Specifications

Analysis time: 10 minutes cotal.
Accuracy; comparable to Pregl and Dumas methods. Based on test analyses with NBS standards; the same limitations that apply' to the classical method also apply to the 185, especially with regard to samples that are dificult to combust.

Sample range: any solid or liquid material that buens completely at $1050^{\circ} \mathrm{C}$ or less, including those that contain $\mathrm{O}, \mathrm{S}, \mathrm{P}, \mathrm{Cl}, \mathrm{Br}, \mathrm{J}$, F. As, Sb، and Sn.

Furnace: wo-stage type with oxidation furnace and reduction furnace, each independently temperature-controlled.

Oven: two-zone type with inner oven and outer shell, each inde. pendently temperature-controlled.

Temperature control:

1. Oxidation furnace: variable voltage transfomer, adjustable to $1050^{\circ} \mathrm{C}$.
2. Reduction furnace: variable voltage transformer, adjusenble 400 to $600^{\circ} \mathrm{C}$.
3. Oven: thermostat controller, adjustable ambient to $150^{\circ} \mathrm{C}$.
4. Shell: thermostal controller, adjustable ambient to $150^{\circ} \mathrm{C}$.

Temperature readout: pyrometer graduated $0.1200^{\circ} \mathrm{C}$ and five. position selector switch for readout of a positions noted abose plus ambient.
Detector: four-filament thermal conductivity type equipped with current adjustment. bridge balance and output attenuation controls.
Carrier gas: automatically timed bypass controt: shutoff control. pressure regulator.
Balance: Cahn Ratio Electrobalance.

How to order

Description

Price
185 Model 185 with Honeywell ElectroniK 16 Strip Chart Recorder and Cahn Ratio Elec-tro-balance
$\$ 6600.00$
19046A Gas Purifer
$\$ 300.00$
(Resulator Carrier Gas cylinder regulator kit (twoKit) stage pressure regulator, σ feet of $1 / 4 \mathrm{in}$. O.D. copper tubing with appropriate fil. ungs). Specify carrier gas supplier or CGA No. of cylinder outlet

SPECTROSCOPY

he

MRR* SPECTROMETER
Rotational energy transfer, molecular structure and concentration-Model 8400C

The HP 8400C Series MRR* Spectrometers are designed to measure the function $\log S$ rs. $\log P_{o}$ as well as the frequency, r^{\prime} of a microwase absorption line. The signal amplitude, S, is due to the resonant absorption of microwave radiation by the gas and can be related to molecular concentra. tion, N. From the power incident on the gas. P_{0}, the rotational broadening relaxation time, f , can be calculated. The frequency measurement, w_{0}. provides information on molecular structure.

- Molecular Rotational Resonance.

Sensitivity

The signal-to-noise performance of any spectrometer depends on several factors: the bias conditions on the crystal detector, the crystal detector, the frequency stability (long rerm and short term), the available radiation power, and the Stark Modulator-Stark Cell combination. These factors must be considered over an entire waveguide band. The figure to the right is a slow scan through the $\mathrm{J}=2 \rightarrow 3$ transition of the $0^{18} \mathrm{C}^{12} \mathrm{~S}^{34}$ line in natural abundance in about a 90% pure sample of OCS.

8400 C Molecular Rotational Resonance Spectrometer

Specifications

Sensitivity

Time constant, 100 seconds
Signal power $=10 \times$ noise power
Sufficient to detect: X-band signal/ cm of $10^{-10^{-24}}$
P-band signal/cm of $10^{-10} \cdot 14$
K-band signal/cm of $10^{-0 \cdot 20}$
R-band signal/ cm of $10^{-0 \cdot 3+}$
Signal calibrator accuracy: $\pm 0.6 \mathrm{~dB}$ in the signal amplitude of two lines.
Frequency
Range: four waveguide bands from 8.2 to $12.4,12.4$ to $18.0,18.0$ to 26.5 , and 26.5 to 40.0 GHz .
Stability: long term, $2 \times 10^{-8} /$ day; short term, $5 \times 10^{-5} /$ minute.
Sweep width: over any part or all of a Frequency band.
Sweep rates: continuously variable from 10 to 10,000 seconds.
Readout: to $\pm 10 \mathrm{kHz}$.

Modulation

Frequenciy: 33.333 kHz .
Stark voltage: ground to base, 0 to 2000 V ; base to peak, 0 to 2000 V .

Square wave: rise time, $1.2 \mu \mathrm{~s}$; fall time, $1.2 \mu \mathrm{~s}$.
Stark cell
Volume: $\cong 500 \mathrm{cc}$ (6 feet).
Plating: gold, both septum and walls.
Price: from $\$ 44,000$ to $\$ 61,000$ per frequency band. Conversion kits also available.

Slow Scan J $=2 \rightarrow 3$ Transition of Oleci2sj4

SPECTROSCOPV SPECTROPHOTOMETRY

AA PHOTOMETER
 Fast multi-element atomic absorption analysis Model 5960A

The Model 5960A Atomic Absorption Photometer is fundamentally faster and easier to use than any of its contemporaries. Other AA instruments employ a monochromator, a sensitive optical device that is better suited to basic research than to coutine analysis because it requires careful adjustment at every use, preferably by a trained spectroscopist. In contrast, the 5960A eliminates the monochromator, replacing it with a series of discrete resonant wavelength filters that are instantly and correctly pushbutton-selected by any operator regardless of skill.

Fast six-element analysis

The practical significance of the s960A design becomes abundantly clear when multi-element analyses are required, as they often are. With all monochromator instruments, a multielement analysis takes a long time becausc monocinomator, slit and electronic balance must be changed every time the element is changed. With the 5960 A , a six-element analysis can be performed on a siggle sample in litule more time than it takes to push six buttons.

To perform a multi-element analysis with the 5960A, the opecator simply:
a-rotates elemenr selector wheel to place any of six hollow carhode lamps in operating position instantly, without ad. justment or warm-up;
b-pushes resonant wavelenglb selector button to position the proper narrow bandbass filter, each accurately pre-calibrated and zeroed;
c-aspirates the sample and, within a few seconds, reads its concentration directly on a built-in meter or from a recorder; d-uses the same sample for uninterrupted determination of as many as six elements, without adjustments of any kind betw'een elements.

Modular design for easy expansion

The 9960 A is delivered custom-cquipped for pushbutton analysis of up to any six pre-selected elements. And the modular design of its source and wavelength selectors permits expansion of the instrument's capability beyond the originally specified elements. The conversion which takes no more than a few minutes, involves only the replacement of hollow cathode lamps, and a factory-assembled single filter assembly which locks into place withour alignment or adjusiment.

Fixed optical system

All optical components are mounted on a massive cast aluminum optical bench. They are permanently relared to one another and never need alignment. A unique dual-wavelength technique compensates for instabilities in a single pass hence does not introduce the troublesome and slow optical nulling of double-beam instruments. Flame emission is effectively eliminated without source modulation. Wide-range optics are highly efficient from 1900 to $8000 \AA$.

Interchangeable burners

The 5960 A can be operated with either of two interchangeable burners: a new laminar fow burnes that optimizes per. formance and is quier, and a total consumption burner. Either burner mounts on a rigid structural arm that is aligned in the optical path, and is completely accessible from front and back.

Design of the laminar fow burner minimizes explosion hazard by virtue of its extremely small premix volume-0.05 cubic inches, about $1 / 100$ th as much as in previous designs Very economical of fuel and oxidant gas flow, it can be operated with hydrogen-air, acetylene-air and acetylene-nitrous oxide.

The total consumption burner is a non-clogging type with readily interchangeable aspirator. External gas mixing eliminates the possibility of explosions, and the burner can be operated satisfactorily with hydrogen fuel and air as support gas.

Performance

The salient fact about the performance of the 5960 A is its speed: no other instrument can produce reliable results anywhere near as fast. A six-element analysis can be completed in as little as one minute, about ten times faster than conternporary instruments of other makes.
But speed is only one important factor in rating the performance of an AA instrument: the detection limit, linear operating range and precision are equally significant.
Detection limits of the 5960 A are considerably greater than the vast majority of analytical applications require, as illus. trated below:

Elemiont	Typleal Dotection Limil ($\mathrm{u} / \mathrm{g} / \mathrm{ml}$ In watet)	LInaar Oparating Rango ($\mathrm{kg} / \mathrm{mI}$)
Czacium	0.006	0108
Copper	0.08	0 to 10
Gold	0.4	0 to 25
Iron	0.5	0 to 70
Lead	0.8	0 to 50
Lithium(natural)	0.04	0104
Magnesium	0.001	0 to 8
Manganese	0.04	0 to 15
Mercury	2.5	010200
Nickel	0.4	01060
Potassium	0.003	0 to 8
Silver	0.1	0 to 15
Sodium	0.01	0 to 7
Strontium	0.06	0 to 15
Tin	1.2	0 to 250
Zinc	0.05	0102

Linear operating range of the 5960A often exceeds the performance of higher-priced instruments, especially in the case of the more sensitive elements (see table above).

Precision of the 5960A is unsurpassed. No other AA instrument is capable of routine operation at a higher degree of repeatability. The reasons are obvious. Resonant line isolation, which is accomplished by discrete narrow bandpass filters in the 5960 A , is repeated precisely in the same way at every use. In monochromator instruments, the procedure is subject to variations at every use, even with the same operator, and especially with nonexpert personnel. Dual wavelength compensation in the 5960A eliminates variations from instabilities in the source and electronics without source modulation. Finally, direct concentration readout greatly reduces the chance of error in the calculations.

Specifications

Optical

Single-beam. single-pass fixed optical system.
Dual wavelength compensation (without source modula. tion.
System range of 1900 to $8000 \AA$ (fused silica lenses).
Compensation for scattered light and neutraliy absorbed light.
Resonant line isolation by 6 pushbutton-selected narrow bandpass filters.
Filters easily substituted in 6 .filter assemblies.
Single wide-range multiplier phototube detector.

Source

Turrer holds 6 hollow cathode lamps, all in operating condition.
Lamp selector on front panel.
Solid-state power suppiy provides regulation to all 6 lamps.
Lamp current individually controlled from 0 to 30 mA dc .
Lamp current indication on milliammeter with 1 mA graduations.

Photornetric

Sensirivity of 0.01 absorbance full scale.
Range of $0.01,0.10$ and 1.00 absorbance full scale.
Calibration controls are continuous over full range.
Meter output is linear with absorbance.
Recorder output: 50 mV full scale, 5.1 k ohm output im. pedance.

Burners

Two directly interchangeable types, both made of stainless steel.
Vertical adjustment by screw knob.
Incidence adjustment: loagitudinal or perpendicular to optical path (laminar flow burner).
Sample introduction by aspiration.
Laminar fow burner: Quiet.
Sample aspiration rate: recommend $3.6 \mathrm{Ml} / \mathrm{min}$. Path length: 1 inch.
Fuel: acetylene at $2 \mathrm{ft}^{3} / \mathrm{hr}$; or hydrogen at $2.4 \mathrm{ft}^{3} / \mathrm{hr}$. Support gas: air or nitrous oxide, at $14 \mathrm{fr}^{3} / \mathrm{hr}$. Premix volume: $0.05 \mathrm{in}^{3}$.
Total consumption burner: safe. Sample aspiration rate: recommend $3.6 \mathrm{Ml} / \mathrm{min}$. Fuel: hydrogen at $4.8 \mathrm{ft}^{3} / \mathrm{hr}$. Support gas: air at $20.30 \mathrm{ft}^{3} / \mathrm{hr}$.

Physical

402/8" long, $16-1 / 16^{\prime \prime}$ high, $18 \frac{3}{3 \prime}$ " deep; 125 lbs net. Electrical
105.125 V or $210.250 \mathrm{~V}, 50$ or $60 \mathrm{~Hz}, 285 \mathrm{~W}$.

	How to order	
Ordering No.	Description	Price
5960A	Atomic Absorption Photometer with Laminar Flow Burner and Support installed; for operation at 115 V . 230 V, $90-60 \mathrm{~Hz}$.	\$4,400.00
	ELEMENT OPTIONS	
	NOTE: The 5960A is operational only with the addition of at least one element option; it accommodates up to six element options, factory installed; beyond the first six, options are ship. ped separately foc customer installation. Each element option includes a bollow cathode lamp, filter and holder, pushbutton label and 100 m ! of standard solution.	

28	Calcium	add 310.00
33	Copper	add 310.00
40	Iron	add 310.00
45	Gold	add 400.00
48	Lead	add 330.00
49	Lithium (natural)	add 355.00
53	Magnesium	add 310.00
54	Manganese	add 315.00
55	Mercury	add 335.00
58	Nickel	add 310.00
64	Potassium	add 360.00
74	Silver	add 310.00
75	Sodium	add 360.00
76	Strontium	add 360.00
83	Tin	add 350.00
89	Zinc	add 385.00

ADDITIONAL OPTIONS

of Substitute total Consumption Burner . add 100,00
15 Strip Chart Recorder 7127A with 17501A plug.in input module, $10^{\prime \prime}$. add 1200.00 calibrated chart, 0.2% accuracy, four-speed chart drive; $115 \mathrm{~V}, 50$ or 60 Hz .

BURNER MODELS

5963A Total Consumption Burner add 300.00
5964A Laminar Flow Burner add 200.00

The Model 302 Vapor Pressure Osmometer measures the osmotic concentration of a solution, operating on the principle of vapor pressure lowering. From this data, number-average molecular reights of solute species in solution are determined precisely.

The Model 302 VPO is designed for molecular weight ma. terials in the range of 100 to 25,000 and are effective for both natural and synthetic polymer measurements. It can be operated at $25^{\circ}, 37^{\circ}, 50^{\circ}, 65^{\circ}, 100^{\circ}$, or $130^{\circ} \mathrm{C}$ and can operate successfully with sample sizes as small as 10 microliters. It is capable of measuring temperature differential between sample and solvent drops to better than $0.0001^{\circ} \mathrm{C}$.

How to order

Ordering No.	Description	Price	
302 B	Vapor Pressure Osmometer for aquerous $\$ 2700.00$		
	and non-aquerous operation at $115 / 230 \mathrm{~V}$,		
	50.60 Hz (specify one or more temperature		
	control options and one or mare probe options)		
	Ternperature control options		
06	Fixed thermostat, $25^{\circ} \mathrm{C}$	add	\$100.00
07	Fixed thermostat, $37^{\circ} \mathrm{C}$	add	100.00
08	Fixed thermostat, $50^{\circ} \mathrm{C}$	add	100.00
09	Fixed thermostat, $65^{\circ} \mathrm{C}$	add	100.00
10	Fixed thermostat, $100^{\circ} \mathrm{C}$	add	100.00
11	Fixed thermostat, $130^{\circ} \mathrm{C}$	add	100.00
12	Variable temperature controller, 25	add	400.00
	$130^{\circ} \mathrm{C}$, with sensor for operation at 60 Hz		
13	Variable temperature controller, 25 to add 400.00		
	$130^{\circ} \mathrm{C}$, with sensor for operation at 50 Hz		
	Probe options		
20	Probe for non-aquerous operations,	add \$190.00	
	25 to $80^{\circ} \mathrm{C}$		
21	Probe for non-aquerous operation,	add	190.00
	70 to $130^{\circ} \mathrm{C}$		
22	Probe for aquerous operation,	add	250.00
	25 to $80^{\circ} \mathrm{C}$		

Series 500 Membrane Osmometers are automated instruments for the precise and speedy determination of the numberaverage molecular weight of natural and synthetic polymers in the range 10,000 to $1,000,000$. They operate with aqueous as well as organic solvents, at temperatures between $5^{\circ} \mathrm{C}$ and $130^{\circ} \mathrm{C}$. The 500 measures osmotic pressure with a repeat ac. curacy of $\pm 0.02 \mathrm{~cm}$ of solvent in a range of 20.00 ... on samples as small as 1 ml .

Based on the dynamic method of measuring osmotic pressure, the 500 reaches equilibrium when no more than 10^{-5} liter of solvent has moved into the membrane.

Individual readings are frequently completed within 10 minutes after the sample has been introduced... and a full concentration series, withim an hour.

How to order

Ordering
No. Description Price

501 Standard membrane osmometer, 10 mV re. corder output; $115 \mathrm{~V}, 60 \mathrm{~Hz}$
$\$ 9900.00$
502 High temperature membrane osmometer, 10 mV recorder output: $115 \mathrm{~V}, 60 \mathrm{~Hz}$ 5750.00

503 Low temperature membrane osmomerer, 10 mV recorder output; $115 \mathrm{~V}, 60 \mathrm{~Hz}$

Options (factory-installed)

03	For operation at $25^{\circ} \mathrm{C}$	100.00
04	For operation at $37^{\circ} \mathrm{C}$	100.00
05	For operation at $50^{\circ} \mathrm{C}$	100.00
06	For operation at $65^{\circ} \mathrm{C}$	100.00
07	Thermostat for operation at $100^{\circ} \mathrm{C}$ (Model 502 only)	100.00
08	Thermostat for operation at $110^{\circ} \mathrm{C}$ (Model 502 only)	100.00
09	Thermostat for operation at $130^{\circ} \mathrm{C}$ (Model 502 only)	100.00
10	Variable Temperature Controller	375.00
11	1 mV recorder output	n/c
12	Thermostat for operation at $5^{\circ} \mathrm{C}$ (Madel 503 only)	100.00
20	so Hz operation (115 V)	n/c
21	50 Hz operation (230 V)	75.00

Recorder

H02.7127A Moseley strip chart recorder with 17504-80060 plug-in 10 mV inpur module, 10 -inch calibrated chart. 0.2% accuracy, four-speed chart travel; $115 \mathrm{~V}, 50$ or 60 Hz

AUTO-VISCOMETER Automatic programming, recording of efflux time Models 5901B and 5903A

Highest accuracy in determining efflux times yields highest accuracy in final calculations-whether for intrinsic viscosity, kinematic viscosity, or for molecular weight.

The instruments described here-in combination-provide extremely high accuracy and reliability in measuring efflux times. Using the Auto. Viscometer and the Programmer you can expect:
a) 20 times better accuracy than stopratch techniques.
b) Unlimited and automatic repear measurements on any riscometer.
c) Automatic sequences for all four viscometers in the system with up to 10 repeat measurements per viscometer.
d) A permanent record of all efflux times measured.

59018 Auto.Viscometer

The Auto-Viscometer measures efflux time in glass capillary viscometers with a transistorized electronic counter using a quartz crystal oscillator as a time base reference. This approach not only makes viscosity measurements more efficient, but produces results ar least 10 times more accurate than stopwatch techniques. The electronic counter measures efflux time automatically through use of photocell detectors mounted at upper and lower refereace points on the glass riscometer. Positioning screws are provided for spacing adjustments between upper and lower reference points. Each detector consists of a self-contained, miniature light source and phorocell in a compact submersible unit. "On and' Off" riggering of the time interval counter occurs when the meoiscus of the solution drops past the detectors; the time is read on the Nixie ${ }^{\text {®i }}$ display. This reading remains until intentionally erased by the operator. After the operator records the efflux time, he can either repeat the run or switch to another channel for a new measurement.

5903A Programmer

The repetition of efflux time measurements yields data of high confidence, and final viscometry calculations will have utmost precision. A combination programmer and printer, the 5903 A virtually eliminates the tedium of constant monitoring and recording of data, while giving you the capability for unlimited measurements. It attaches to the Auto-Vis. cometer to automatically program efflux time measurements. The Programmer can control a sequential run from channel
to channel (one through fouc on the Auto.Viscometer) and will repeat the program for as long as the operator wishes. Up to 10 repeat measurements per channel can be made, with 40 -second intervals between meastirements. Alternately, an unlimited number of repeat measurements can be done on individual viscometers. This automatic printout of efflux times gives you a permanent record of measurements, and is a time-saver. Each reading, moreover, is coded with viscometer number and run number. The printer is identical to HP 562A, described on page 135 in this catalog.

Specifications, 5901B Auto-Viscometer

Range and resolytion: up to 1000 seconds ± 0.01 second; up to 100 seconds ± 0.001 second.

Readout: Neon Nixie ${ }^{\text {® }}$ 5-Digit Register with decimal point indicated.

Accuracy: at least ± 1 second. Based on reproducibility of typical measurements of efflux time up to 300 seconds using Model 5910A Bath.

Operating temperature: $5^{\circ} \mathrm{C}$ to $135^{\circ} \mathrm{C}$.
Glassware: detectors will accommodate viscometers with 6.5 to 10 mm diameter at point of detection.
Response time: 10 microseconds.
Minimum meniscus speed: 1 inch per minute.
Power requirements: $115 / 230 \mathrm{~V} \pm 10 \%, 50$ or $60 \mathrm{~Hz}, 60$ walts.

Dimensions: $10^{\prime \prime}$ high, $81 / 2^{\prime \prime}$ wide, $13^{\prime \prime}$ deep.
Weight: net 17 lbs ; shipping 22 lbs.

5903A Programmer

Printer: see specifications on HP 562A on page 135.
Programmer: sequence and repeat selectors for four viscometer channels.

Power requirements: $115 / 230 \mathrm{~V} \pm 20 \%$; 50 or $60 \mathrm{~Hz} ; 130$ watts.

Dimensions: $121 / 2^{\prime \prime}$ high, $203 / 4^{\prime \prime}$ wide, $181 / 2^{\prime \prime}$ deep.
Welght: 35 lbs .

Ordering No.	How to order	
Nescription		

QUARTZ THERMOMETER

$0.0001^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ resolution, direct measurement Model 2801A

The method of temperatare sensing employed in the 2801 A Quartz Theroometers is based on the sensitivity of the resonant fre. quency of a quartz crystal to temperature change.

Temperature range of the 2801A Quartz Thermometer is -so to $+250^{\circ} \mathrm{C}\left(-112\right.$ to $\left.+482^{\circ} \mathrm{F}\right)$. The quartz thermomerer is considerably more linear than a platinum resistance thermoneter:上. 05% of span from - 40 to $+250^{\circ} \mathrm{C}$ compared with a typical fig. ure of $\pm .55 \%$ for the same range for platinum thermometers. Linearity of the quartz thermometer is superior to that of thermocouples and thermistors, which have an exponential characteristic. The excellen: sensing tharacteristics of the quartz chermometer are supplemented by the adrantages of direce digital readout (no bridge balancing, or reference to resistance or voltage-temperature tables or curres), immunity to noise and cable resisance effects, no reference junction, and good interchangeability between sensing probes.

The 2801A is equipped with two sensing probes for measuring temperatare al either probe or the difference between the two. A 6 -digic visual readour and recording outpur with a choice of push-button-conirolled sample times provides resolution of $0.01,0.001$ or $0.0001^{\circ} \mathrm{C}$ or F . With Option M40 (100 second sample period) resolutions of $0.001,0.001$ or $0.00001{ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ can be obeained Signal polarity indication is provided. The 2801A includes the capability for operation as a 300 kHz electronic counter.

Temperature sensing probes

Various standard probe configurations are available for the 2801 A Quartz Thermometer. Probes from the 2850 series are furnished with the quartz thermometer. Outline dranings for all models appear at righ.

Remote operation of probes

Each emperature sensing probe has a quartz-crystal which is resonant at a frequenc; dependent upon temperature, and is driven by a 2830A Sensor Osciliator. The oscillators are rransistorized derices enclosed in small die-cast aluminum housings. They are normally installed in the 2801 A fush-mounted in a fromt panel recess. 12 foot cable connects each probe to its associated sensor probe: this cable forms part of the tuned circuit and cannot be altered in length. However, the sensor oscillators may be unplugged from the instrument and connected to it by standard 75 -obm coaxial cable up to 500 feet in length, with no loss in measurement accuracy. For greater distances, one or two 2831 A Amplifers may be used for a maximum of 4500 feer.

Specifications 2801A

Temperature range: -80 so $+250^{\circ} \mathrm{C}\left\{-112\right.$ to $+482^{\circ} \mathrm{F}$ with Oprion M1).
Calibratton accuracy: chermometer-probe combination calibrated at factory to within $.02^{\circ} \mathrm{C}\left(.04^{\circ} \mathrm{F}\right)$ absolute, traceable to NBS .
LInearlty: -40 to $+250^{\circ} \mathrm{C}$. Better than $.15^{\circ} \mathrm{C}\left(.27^{\circ} \mathrm{F}\right)$ referred to best hit straight line through $0^{\circ} \mathrm{C} ;-80$ to $-40^{\circ} \mathrm{C}$. Beter than $0.7^{\circ} \mathrm{C}$ $\left(1.26^{\circ} \mathrm{F}\right.$) referred to same line as above; 0 to $+100^{\circ} \mathrm{C}$. Betrer than $.05^{\circ} \mathrm{C}\left(.00^{\circ} \mathrm{F}\right)$ referred to best fit straight line through $0^{\circ} \mathrm{C}$. Stablity:
Short term: better than $\pm .0001^{\circ}$.
Long term: zero drift less than $\pm .01^{\circ} \mathrm{C}\left(.018^{\circ} \mathrm{F}\right)$ at constant probe temperature for 30 days.
Amblent temperature effect: less than $.002^{\circ} \mathrm{C}$ per ${ }^{\circ} \mathrm{C}$ change.
Dlsplay: 2801A: 6 -digit in.line readour in C°, or ${ }^{\circ} \mathrm{F}$. Decimal point. ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$, and polarity inditation included. Readout and units in. sation in $k c$ in counter mode of operation. Storage feature holds display between readings.
Digital recorder output: $\mathrm{BCD}, 4 \cdot 2^{\prime} \cdot 2 \cdot 1$, positive-truc, for each digi, decimal point (exponent), polarity, and operating mode. 8-4.2.1 positive tree optionally arailable.
External programming: selected by contact closures or transistor circuit closures to ground. Measuremens initiation, probe seleclion
($\mathrm{T} 1, \mathrm{~T} 2$, or $\mathrm{T} 1 . . \mathrm{T} 2$), and resolution (.01, .001, or $.0001^{\circ}$) programmable.
Counter operation: Frequency Range: 2 Hz to 300 kHz ; Resolu. tion: 10,1 , and 0.1 Hz ; Sensitivity: 0.5 to 10 V rms; Inpuc Impedance: $1 \mathrm{M}, 50 \mathrm{pF}$ shunt; Gate Time: $0.1,1$ and 10 sec .
Power required: $115 / 230 \mathrm{~V} \pm 10 \%$, 50 to $60 \mathrm{~Hz}, 85 \mathrm{~W}$.
Instrument environment: ambient temperalures from 0 to $+55^{\circ} \mathrm{C}$ (+32 to $+130^{\circ} \mathrm{F}$), at relative humidity to 95% at $40^{\circ} \mathrm{C}$.
Welght: net $22.5 \mathrm{lb}(10,1 \mathrm{~kg})$, shipping $35 \mathrm{lb}(15,9 \mathrm{~kg})$.
Dimensions: $3.15 / 32^{\prime \prime} \times 16.5 / 16^{\prime \prime} \times 16.3 / 4^{\prime \prime}(88 \times 414 \times 429 \mathrm{~mm})$.
Price: 2801 A Quartz Thermometer, including two 2830A Sensor Os. cillators and two (matched) 2850 series Temperature Sensors. \$3,800.

HP-2831A Amplifier Specifications

Operating frequency: 28 to 29 MHz approx.
Gain: 40 dB approx.
Power required: +12 to +20 V de , at 8 mA approx. (Normally supplied by HP 2801A.)
Connectors: coaxial output connector mates with HP 2801A Quartz. Thermometer.
Operating conditions: same as HP 2830A Sensor Oscillator.
Dimensions, welght, finish: same as HP 2830A Sensor Oscillator. Price: 2831 A Amplifer, $\$ 100$.

Instruments and Systems for Measuring, Montoring and Recording Physio. logical Data: The following pages summarize the main features of the majority of Hetvietr-Packard instruments for clinical medicine, clinical laboratory, patient monitoring, resuscitation, multichaone! diagnosis and multichannel research. Additionally, references will be made in the following text to various Hewlett-Packard test instruments which are applicable to the medical instrumentation listed.

Two additional publications ate available describing Hewlett-Packatd's clinical and patient monitoring instruments in full detail. These are the Diagnostic In. sirmmentation catalog and the Patient Monitoring Compendiam, To receive your complimentary copies, contact the nearest Hewletr-Packard sales/scrvice office (see lists on pages 16.22).

Total system concept

In ordar to best meet your needs as a customer in the bio-medical field, Hew-lett-Packard strives to provide, wherever possible, a total data acquisition system rather than isolated instrument components. Thus Hewlett-Packard's medica! customers are assured of obtaining the desired results in the most appropriate form.

A total data acquisition system contains a signal pickup, signal conditioner, readout device and, as required, a dara storage unit.

The pickup consists of electrodes for sensing biolectric phenomena and trans. ducers for converting the physical phenomena into electrical signals. The signal conditioner amplifies the signal from the pickup so that there is sufficient drive for readout devices or it may modify the pickup signal to convert the data into a more useful form for readoue. The readout device presents the data in a form convenient for monitoring and/or study. The storage device preserves the dara for readout at a later time.

The readouts can be in the form of an oscilloscope, XY recorder, visual display, alarm, and/or typewriter output.

Oscillographs are available in four basic types: heated stylus, ink, optical phorographic, and optical ultraviolet.

The visual displays consist of various sized single and multishannel oscilloscopes, meters and numerical readouts. The wide choice of Herrlett-Packard in-
strument components in the categories listed above distinctly equips HewlertPackard to provide total dara acquisition systems.

Clinical medicine

Hervett-Packard has developed an extensive group of instruments primarily for clinical applications. These instruments monitor and/or display ECG. VCG, heart sounds, simultaneous fetal ECG and labor contractions, nerve conduction and muscle voltages, and internal body structures.

ECG instruments include the 1500A elecrrocardiograph (portable use) and the 1511A (a mobile unir). Either Electrocardiograph can be combined with the 15068 Heart Sound Amplifier for heart sound recording. In the heart station, multichannel ECG's can be recorded by systems employing the 1508A (three channel) or 1509A (six channel) ECG Amplifier. The 8020A Cardiotocograph monitors instantaneous fetal heart rare and labor contractions for indication of fetal distress.

For VCG presentation, the 1520 A Vec. torcardiograph System, which combines a 1507 A Vector Programmer with a 780 6A (Option 01) Viso-Scope, provides a degree of lead network fexibility never before available.

The 7214A Diagnostic Sounder and the 1510 A Electromyograph are versatile instruments useful in diagnostic, research and teaching applications. Determining the brain midline, observing heark valve motion, detecting pericardial effusion and locating foreign material within the hody are some of the applications of the 7214A. The 1510 A is used to monitor nerve conduction and the electrical acrivity of muscle tissue.

Patient monitoring

Patient monitoring has been shown to be of great value in the coronary care unit, intensive care unit and recovery room. Intensive care of patients is aided and indeed enhanced through the use of electronic instruments which continuous. ly observe various physiological phenomena such as ECG. arterial and venous pressures, temperature and respiration. The physiological data is appropriacely displayed on readout devices for convenient and effortless monitoring by the medical staff. High and low limits can
be set so the nursing sraff can be parricularly alerted when an abnormal situation occurs which may indicate patient distress.

Hewlett-Packard Company has designed a special series of electronic instruments for the particular function of patient monitoring. The $; 80$ Series of monitoring units offers many possibili. ties of system variation to satisfy the particular requirements of monitoring in different areas.

780 bedside units are small, compact, selfcontained instruments which arc used to monitor various combinations of patient parameters. Signals from these units are available for use at a central station where a number of patients can be conveniently monitored. Ancillary 780 equip. ment includes the 7810A Mobile Carr, 780.15 Wall Mount Bracket, 780.16 Ear Plethysmograph and the 780.21 Remote Alarm Indicator.

In some areas where patient monitoring is combined with data acquisition for research. such as the operating room, Hewletr-Packard multichannel systems are used with either the 350 or 760 Series of signal conditioners.

Resuscitation

A 7839 B Resuscitation System combining a Defibrillator, Pacemaker, Electrocardiograph and Scope on a mobile cart can be used in all areas of the hospital in cardiac emergencies.

Multichannel diagnostic systems

Multichannel systems are used routine. ly in cardiac catheterization laboratories to record pertinent data, such as cardiac biood pressures, indicator dilution characteristics and the electrocardiogram. In the heart station, multichannel electrocardiograms may be recorded in addition to heart sounds and various pulses. In the pulmonary function laboratory, the recording of respiratory airflows. volumes and pressures is essential in analyzing respiratory diseases.

Test equipment

Throughour the Hewlett. Packard cata\log will be found a wide choice of elec. tronic test equipment ideally suited for trouble-shooting, alignment and performance checkout of medical data acquisition systems.

Walter Reed General Hospltal, Washington, D.C., Is typical of big city hospitals using Hewlett-Packard patlent monitoring instruments. At each bedside of the intensiva care unlt, four wall.mounted 780 Series half modules monitor and/or display systolic and diastolic pressure. central venous pressure, respiration rate, heart rate and ECG. Blood pressures are measured by Hewlett. Packard pressure transducars, respiration rate is detected by a chest expansion transducer and heart rate is derived from elther the R-wave of the ECG slgnal or the $780-16$ Ear Plethysmograph.

Monitor these vital parameters with HP 780 Series intensive care instruments:
-heart rate
-peripheral pulse
-ECG
-EEG
-temperarure (${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$)
-respiration rate
-venous pressure
-arterial pressure
-systolic pressure
-diastolic pressure
-mean pressure
--cardiac arrhgthmias
With a Hewlett-Packard ICU system, parient monitoring is effeclive, economic and easy. Monitoring and data recording are con. Linuous-the patient is effectively never left alone. In case of patient distress, light and audible alarms generated at the central station by the bedside monitors bring a nurse immediately to the patient. This immediate knowledge of an alarm condition allows iminediate investigation and treatment, resulting in more efficient and more effective parient care.

But Hewlett-Packard systems go beyond merely monitoring for patient distress. The continuous information about each patient of ten enables a crisis to be foreseen and made less severe or completely prevented.

The patient care systems pictured represent an almost unlimited number of combinations of half module and full module units. All units in the 780 Series are electrically and physicaily compatible. Since each provides one or more specific monitoring, recording or display functions, the desired system can be easily and economically achieved by selecting only the specific modules needed.

Advantages of this building block concept include a cost which reflecrs only those monitoring capabilities needed and complete flexibility to change or expand the system to monitot more patients, more parameters or a different combination of parameters at each bed.

Reliability, patient safety and comfort, high readabilicy and acoxacy of display data, and ease of operation by hospital personnel are foremost in the design criteria of 780 Series instruments. Reliability is provided by all solid state circuitry (except cathode ray tubes) and operation of key components well below rated values. Where monitors make direct electrical connection to the patient,
isolation circuits are employed, and cables and transducers are light weight for greatest patient comfort. Visual indicators have large, easy-to-read numerals, and illuminated plaques of contrasting colors distinguish various monizored conditions. Adjusiable slarm delays permit the medical staff to select a delay interyal which will prevent transients or other events of no clinical significance from triggering an alarm.

Planning, training and service

To ensure that the right patient monitoring system is installed in your hospital and that it will provide continuing clinical value, every Hewlett-Packard medital instrument salesman is a trained bioengineering consultant, familiar with the needs, objectives and budgets of hospitals like yours. He will discuss your present and anticipated needs with you and recommend the sysrem which most economically and Aexibly meets those needs. Comprehensive, writeen proposals are always supplied prior to contract agreement.

Another benefit is the availability of installation services and responsibility for performance from local Hewlett-Packard sales and service offices. Key features of the new 780 Series warranty (in the United States only) are:

- round-the ciock emergency repaic service for the full one year warranty period. Response time will be no greater than twents-four hours to hospitals within 100 miles of Hewlett. Packard sales and service offices. If you are more than 100 miles from an authorized Hewlert-Packard service facility, a mutually agreeable guaranteed response time will be negotiated.
- three customer assistance calls at approximately 30, 60 and 90 days after the instaliation (for systems priced at $\$ 3000$ or more purchased after November 1, 1968). These trips will be made to check on proper operation and understanding of the system, and to perform preventive maintenance using instructions supplied by Hew-lett-Packard. A system logbook is provided for the hospital to make note of anything of significance occuring between visits.

Finally, local Hewlett-Packard field office men rill train your srafi in operating and maintenance procedures using formal hospital seminars and training booklets and informal discussions with the staff.

Patient monitoring compendium

Foy furber paient monitoring systems and service information, ask your local Hewlen. Parkard sales and serivice offee (see lists on pages 16.22) for your complimentar' copy of the Patient Monitaring Compondium. In it lou'll find detailed information about the individual inslruments, an ICU systems planning guide and an appli. cation section.

These two 780 Serlos patlent monitors, with a 1500A ECG Recorder and 7805B Signal Delay, are a complete system for monitoring and re. cording ectopic beats. The 7822A Arrhythmia Monitor has a run of ectopics alarm (3 or 6 widened beats of ventricular origin without an intervening normal beat) and a frequent ectoples alarm (6 or 12 pre. mature or widened beats/minute). It slso controls the ectopic beats recorded on the 1500A ECG Recorder and the 7825A Trend Fecorder. In a typical installation, the 7825 A plots widened or premature beats/ minute in the bar graph mode and heart rate in the analog mode.

Bedside monitors

Model 780B Viso-Moniror. Monitors heart rate and peripheral pulse with visual alarms of discress conditions and signal outputs for central station display/recording; records ECG automatically at preset intervals or manually; delivers pacing current automatically (after preset asystole interval) or manually. $\$ 2375$.

Model 7803A Monitor Scope. Displays one or cro patient parameters on an $8 \times 10 \mathrm{~cm}$ screen. Scope traces are easy to read with automatic intensity control and safety amber filter. Also used at the central station. $\$ 680$ (dual-channel); $\$ 625$ (single-channel, Option 01).

Model 7805B Signal Delay. Records pre-alarm data on an endless tape loop for immediate diagnostic aid upon alarm or later research data. $\$ 725$ (single-channel); $\$ 855$ (dual-channel, Option 01).

Model $780.7 / 7$ A Patient Monitor. Monitors ECG or pulse and displays derived heart rate; applies pacing stimulus (Model 780.7 A without pacing); high and low heart rate limits on front panel meter-visual alams if limits exceeded. \$850 (780-7); \$715 (780-7A).

Madel 780.8 Patient Monitor. Displays temperature and respiration rate on front panel meters with adjustable high and low alarm limits-visual alarms if limits exceeded. $\$ 725$.

Model 780-9 Patient Monitor. Displays systolic and diastolic (or mean) blood pressures on front panel meters with adjustable high and low alarm limits-visual alarms if limits exceeded. $\$ 910$.

Model 780-18 ECG.EEG Preamplifier. Used with a 7803A Monitor Scope as a basic monitoring system in the ICU. The iwo units are a practical, portable monitor that can be quickly set up at the patient's bedside for routine monitoring or emergency use, $\$ 330$.

Model 780-19 Patient Monitor. Displays temperature and venous pressure on front panel meters with adjustable high and low alam limits-visual alarm if limits are exreeded. $\$ 910$.

Model 7822A Arthyshmia Monitor. This small hybrid computer monitors ECG for premature or widened beats; generates alams and displays on associated units.

Model 7825A Trend Recorder. Records one to four patient parameters on independent channels capable of producing standard analog traces or plotting bar graphs. Used with the 7822A Arrhythmia Monitor for a long term record of ectopic beats. $\$ 925$.

Central station modules

Model 780.6 A Viso-Scope. Displays patient parameters, such as ECG, pressure and pulse waveforms, on a s inch screen. $\$ 700$ (single-chandel) ; \$875 (four-channel, Option 01).
Model 780-11 Patient Selector. Combines visual and audible patient distress alarms with patient signal swritching to associated display or recording instruments. $\$ 730$.

Model 780.12 Parient Alarm Display. Senses alarms from bedside monitors for any of four conditions at up to eight beds, actuates an alarm chime and illuminares a patient-identifying numeral indicating the alarm condition. $\$ 1000$.
Model 780.13A Signal Switch Expands the capabilities of a 780. 11 Patient Selector 10 additional signals per patient and an automatic mode of signal transfer to associated display/recording instruments. $\$ 290$ (standard unit); $\$ 655$ (Option 01 automatic switching); additional $\$ 55$ per bed (Option 02 relay assemblies).

Model 7824A Analog Display. Displays up to four channels of physiological information on 2.5 inch rectangular meters. $\$ 425$.

Model 780 -800B Remore Monitor. Used with a 780 B Viso-Monitor at the bedside, the 780.800 B duplicates all visual displays of the 780B, beeps with each QRS complex and has a steady alarm tone in case of patienr disuress. \$3t0.
Model 5601A Numerical Display, Displays three-digit values of four slowly charging patient parameters-such as blood pressures; hearr, pulse and respiration rates; and ternperature-on illuminated numerals 0.6 inch high. $\$ 2100$ (upical four paramerer display).

Resuscitation instrumentation

Model 7802B Defibrillator. Provides a ds, capacitor discharge countershock for termination of ventricular fibrillation and, with Option 01 Syachronizer circuit, for conversion of arrhythmias such as atrial Gbrillation. Option 02 amplifer is for ECG monitoring. $\$ 1135$; $\$ 1525$ (with Options 01 and 02).
Model 7804A Pacemaker. Provides electricsl stimulus internally or externally to cardiac patients with atrio ventricular dissociation, ventricular slowing resulting in reduced cardiac output or cardiac arrest. AC and rechargeable battery-powered models are both available. $\$ 520$ (AC operation only); $\$ 600$ (battery and ac line opcration).

Model 7839C Mobile Resuscitation System. Consists of a 7802 B Defibrillator, 7804 A Pacemaker, 1500 A Electrocardiograph and 7803A Monitor Scope mounted in a 7810A Cart for quick response in a cardiac emergency.

Ancillary equipment

Model 7810 A Mobile Cart. Used as an emergency resuscitation catt for quickly geting all instruments, drugs and supplies to the patient or as a bedside cast for a monitoring system.

Model 21114A Respiration Transducer. Detects chest expansions/ contractions as small as 0.015 inch to monitor respiration rate. Used with a 780-8 Patient Monitor or $760-2200$ Respiration Rate Pre. amplifer. $\$ 100$.

Model 780.15 Wall Mount Brackec. Holds up to two 780 half modules on a nugged bracket, freeing area around bedside and protecting monitors from possible damage. $\$ 35$.

Model 780.16 Ear Plethysmograph. Deterts bload pressure pulsa. tions with a light-photocell arrangement atcached to the ear. Used with a 780-7/7A Patient Monitor or a 780 B Viso-Monitor. $\$ 100$.
Mrodel 780.21 Remote Alarm Indicator. Alerts personnel in corridors, doctors' or nurses' lounge, etc. to distress conditions with a flashing red light and repearing alarm tone. $\$ 130$.
Model 7837A Centra! Station Console. Used to mount central station instruments in a single, efficient console; options give a variety of configurations. Minimizes installation time; all equipment-including sentral junction box-factory-mounted before shipraent.

The cardiovascular intensive care unit at Christian Holmes Hospital, Cincinnati, Ohog. makes extensive use of hP monitoring, warning and display instituments. At the central station, the nurse can select and display ECG's on the 780-6A Viso-Scope and monltor patient variables on the 56014 Numerical Display. In cases of patient distress, visual and audible alarms are given by the 780.11 patient Selector and the alarm patients ECG is automatically recorded on the strip chart ra. corder. Bedside modules include ECG, pulse and heart rate moritors and a $D C$ Deflbriliator ready for use il needed.

DIAGNOSTIC IHSTRUMENTATION

Clinical applications instruments in the Hewlett-Packard product line are pictured and briefly described below. These units monitor/display ECG, VCG, heart sounds, simultaneous fetal heart rate and labor contractions, nerve conduction and muscle voltages, and internal body' structures.

Detailed information on each instrument is found in the Hewlett-Packard 1969 Diagnossic Instrumentation catalog. To receive your complimentary copy, simply call or write the Hewlett-Packard sales and service office nearest you (see lists on pages 16-22). MEDICAL SYSTEMS

The photograph at the right and the functional block diagram below demonstrate the combination of HewlettPackard signal conditioning, recording and display instruments into an integrated system. These two configurations are representative of many different systems, each of which is specifically oriented to the needs of a particular operating room, hospital laboratory or research center. Each system provides its own special advantages through a complete selection of medical electronic instrumentation. Transducers, standard instruments, cabinets and cabling are designed to be electrically and mechanically compatible with each other. HewlettPackard provides a single, highly-experienced source of total system design, manufacture, and installation with a responsibility for continued accuracy that is backed up with service atrention from people completely familiar with every system element.

The system shown at the right is designed for the cardiovascular catheterizarion and research laboratory of an 800 bed hospital. It displays the waveforms of up to eighe patient phenomena simultaneously on the 17 inch oscilloscope, photographically records eight variables (from dc to 500 Hz), and records or reproduces seven of these on magnetic tape. One of the system's important features is the Model 4681 A Control Section, which enables the operator to select either the signal conditioner outputs or the tape recorded data for display and recording and to regulate each signal for uniform correlation among traces.

The systems engineering capabilities represented by the block diagram are applicable to the monitoring and recording requirements of a catheterization laboratory. Maximum in. formation with minimum equipment and cabling in the catheterization lab itself (dashed outline) are provided by features such as waveform and numerical displays at each end of the room; all patient signals are routed to the main parts of the system in an adjoining room by a junction box near

the table. The junction box can transmit up to 10 patient sig. nals. In the block diagram the centrally located control panel affords the operator convenient, complete control of the presentation of patient phenomena.

 physical location, operating conditions and choice of patient phenomena to be monitored. Oscillographic recording equipment can use, for instance, the thermal process for proven reliability, the ink process for dependably clear, crisp traces on Z-fold paper, or the optical process for a high frequency sange recording with overlapping traces. For versatile data storage and playback, Hewlett-Packard analog magnetic tape recording subsystems provide the number of direct or FM channels the user needs (from 1 to 14), a voice channel for spoken commentary, and valuable options such as an endless loop for repetitive playback and a remote control unit. Hew-lett-Packard tape recording specifications conform to established IRIG (Inter-Range Instrumentation Group) standards so that tapes can be replayed by hospital and research centers

MEDICAL RESEARCH

SYSTEM APPLICATION
 Selecting Amplifiers and Transducers 350 and 760 Series

APPLICATION	RECOMMENDED PREAMPLIFIER		COMPATIBLE TRANSDUCERS**
Anesthesia Level	$\begin{aligned} & 350-27000 \\ & 760-2700 \\ & \hline \end{aligned}$	High Gain Preamplifier (using 2-lead EEG) High Gain Preamplifier (using 2-lead EEG)	350-2700-C8 EEG Kit, 25 ft cable, electrodes
Apex Cardiogram (ACE)	$\begin{aligned} & 350-3200 \mathrm{~A} \\ & 350-2700 \mathrm{C} \end{aligned}$	ECG/General Purpose Prosmplifier High Gaın Preamplifier	APT. 16.1 Pulse Wave Transducer with T4I-18 Power Supply, 21050A Contact Grystal Microphone and Adapter 21066A or 21051/B/C/D Pulse Wave Transducer and 21066A Adapler
Auscultalion, Aural	350-1700C	Heart Sound Preampliiler no Phonocardiograms)*	210504 Contact Crystat Microphone
Ballistocardiogram (ECG)	350-3200A	ECG/General Purpose Preamplifier	ASTRO. SPACE LABS Air Bearing Table BOWEN \& CO. Ballisto coil and magne!
Blood Density (Dye Difution using Densitometer)	$\begin{aligned} & 350-1000 \mathrm{~B} \\ & 350-2 \mathrm{~B} \\ & 350-2700 \mathrm{C} \\ & 350-3200 \mathrm{~A} \\ & 760-\mathrm{i} 300 \\ & \hline \end{aligned}$	DC Preamplifier DC Plug-in (used wilh 350-1500A) High Gain Preamplifier ECG/General Purnose Proamplifier OC Preamplifier	WATERS Densitometel $\times 250$ WATERS Densitometer $\times 300$ GILFORD Densitometer 103 or 10318
Cardiacoulpus Curve	350-15	Thermal Dilution Plug-in (used with $350-1500 \mathrm{~A}$	14012A Thermistor Probe, Modal I30 Card. Come.
Diastolic Pressure	700-3100	Pressure Processor	The 760-3100 must be used with the $760-3000$. The readout is generally a S601A or 7824A.
DC Transducer Applicatlons	Same as Blood Density		Supplied by customer.
Electrocardiogram (ECG) for adult, animal, child	$\begin{aligned} & 350-3 A \\ & 350-2700 \mathrm{C} \\ & 350-3200 \mathrm{~A} \end{aligned}$	ECG/EEG Plug in (used wilh 350-1500A) High Gain Preamgtifler ECG/General Purpose Preamplifier (singio ECC only)	One channel: 350-3200-C8 ECG KIt, Sleads, 8 ft with electrodes, straps, Redux creme. Multichannel: Order 1069-04B ECG Panel and 8 wire patient cable 154.1100M-C2. overall length 12 H .
	760-1600	ECG Preamplifier	Leads 1,2,3 only solecled on 760-40A and 760-41 Junction Boxes.
Electrocardiogram - Fetsl	$\begin{aligned} & 350-3 A \\ & 350-2700 C \\ & \hline \end{aligned}$	ECG/EEG Plug-in (used with 350-1500A) High Gain Preamplifier	350-2700-C8 EEC Kil, 25 ft cable, electrodes.
Electroencephalogram (EEG) (2-lead EsConly)	$\begin{aligned} & 350-2700 \mathrm{C} \\ & 760-2700 \end{aligned}$	High Gain Preamplifier High Gain Preamplifisar	350-2700-C8 EEC Kit, 25 ft cable, electrodes $350-3200-68$ and $760-40 \mathrm{~A}$ or $760-41$ Junction Box.
Electro Cautery Protection	$\begin{aligned} & 760-40 \mathrm{~A} \\ & 760-41 \end{aligned}$	Junction Box function Box	Cautery protection is provided for a 5 -wire lead ECG cable and a 2 -lead EEG in the 760-40A or 760-41 Junction Box.
Electrometry, Muscio Tissue	350-27000	High Gain Preamplifier	$350-2700-\mathrm{C} 8$ EEG Kil, 25 tt cable alectrodes MEDISTOR A-34 Micro-electrode adapler, or similar last rise fime neutralized elactro. meter.
Electromyogram (EMG), General	350-3700A	Integrating Preamplifier	
Eloctromyogram, Small inuscle	350-2700C	High Gain Preamplifies	
Electro.0culogiam (EOG)	350-2B	DC Plug-in (used will 350-1500A)	350-2700-C8 EEG KII (connector must be changed, zero suppresslon requised). LEXINGTON INSTRUMENTS EOG Elaclrodes (siliver/silver-chlaride sponge).
$\begin{aligned} & \text { Flow } \\ & \text {-Air } \end{aligned}$	$\begin{aligned} & 350-1100 \mathrm{CM} \\ & 350-3700 \mathrm{~A} \end{aligned}$	Camer Prampliffer Integrating Preamplifiet	270 Transucer, $\pm 29.4 \mathrm{~mm} \mathrm{Hg}(\pm 400 \mathrm{~mm}$ $\mathrm{H}_{2} \mathrm{O}$) wilh 10 ft cable (pneumotach screen and $1 / 8 \mathrm{in}$. ID tube also required - see Respiratory Measurements).
$\begin{aligned} & \text { Flow } \\ & \text {-Liquids } \end{aligned}$	Same as Blood Density		AVIONICS Elactromagnetic flowmeler BIOTRONICS Electromagnelic Flowmeter CAROLINA MEDICAL Electromagnetic flowmeter.

-Phonocardograms on Optical Systems only. *Hewiett-Packard Number or alternalive commercial source.

APPLIGATION	RECOMMEHDED PREAMPLIFIEA		COMPATEELE TRANSDUCERS"
Gaivanic Skin Pesistance (GSR)	350-12	Qolvanic Sxin Resistance P)ug.In (used with 350-1500A)	$\begin{aligned} & \text { (2) 9301-0157 PALMER Skin Eleclrodes olus } \\ & \text { (1 ea) } 865-7476 P 1 \text { Cable } \\ & 865-7476 P 2 \text { Cable } \end{aligned}$
Cas Analysis	$\begin{aligned} & 350-1000 \mathrm{~B} \\ & 350-1300 \mathrm{C} \\ & 350-3200 \mathrm{~A} \end{aligned}$	DC Preamplifier DC Coupling Preamplifilar SCG/General Purpose Preamplifier	Carbon Dioxide : GODART Capnograph (speeial cabla) Nilrogen: WATERS Nitrogen Gas Analyzer A) MED-SCIENCE ELECTRONICS Nilrälyzap
Hean Rate, Average and Heart Bear Time Interval	350-3400A	Cardiotach Preampliner	(Direct 1rom ECE) 350-3400-C§ ECS Acces. sory Kil (3 leads) With simultaneous ECG. or from arlerial pressure, requires plimaty pressure or ECG equipment, plus one listed 8120 cable) 8120-1024, Cable oulpil 2 R . 8120-0791, Cable oulpul، 4-: 2 ft. 8120-1022, Cable oulpul. 12 \%. 3120-1023, Cable oulpul, 20 Fl.
	160-3A	Cardrotachometer Plug-in (average heart rate only)	Heart Rale deler mined lrom [CG 780-1E00 10 760-3A Hean Rate deter mined from Pulse 760-3000 to 760-3A Hearl Rale delermined from Plelhysmograph 780-1610760-3A.
Hearn Sound	350-17000	Heart Sound Preamplifer (aural auscultation only)	21065k, Audiophone and either: 62-1500-C16, Microphone (Dynamic) with 14065A Adapler os 21050A, microptone (Contacl C 1 ystal).
Intra-cellular Potential's	350-2700C	High Gaıın Preamplifier	MEDISTOR Micro.electrode Amplifier A34 or similar last rise time neutralized electromerer.
Mean Pressure	$350-1100 \mathrm{CM}$ $760-3000$ $760-3100$	Carter Preamplifier Carres Preamplifier Pressure Processor	Carrier Amplifiers may be put in the 'average' mode to resd mean pressure. The 750-3100 must de used with the $760-3000$. The readout is generatly a 5601 A or 1824 A .
Nerve Potentials	350-2700C	Hrgh Gain Preamplifier	MED ISTOR Micro electrode Amplifier A34 or similor fast rise time neutralized electromeler.
Nystagmogram	$\begin{aligned} & 350-2700 C \\ & \text { with } \\ & 350-1500 \\ & \text { and } \\ & 350-3 A \\ & \hline \end{aligned}$	High Gajn Preamplifer	350-2700-C8 [EG Kil, 25 ft cable, electrudes.
Oxygan Perfusion during Anesthesia	350-2700C	High Cain Preamplifier	350-2700-C8 EEG Kil, 25 tl cable, electrodes.
Physiological Pressures: - Arterial change in olessure over a period of time (DP/OT Differentiator)	$\begin{aligned} & 350-1500 \\ & \text { with } \\ & 350-16 \end{aligned}$	Low Level Preamplifior DP/DT (Diterenualor) Plug.r	350-16 obtains input from arlerial pres sure channel (350 - 1100 CM Preamplifie i) through any 8120 -Series cable, seo Hearl Rale lisling.
Physiological Pressures: - Arterial	$\begin{aligned} & 350-1100 \mathrm{CM} \\ & 780-3000 \end{aligned}$	Cartier Preamplíier Carrier Preamplaier	267AC Single ender. -103 to +250 mm Hg . 8 1tcable 26) BC Diflerential $-10010+250 \mathrm{~mm} \mathrm{Hg}$. s ticable 12808 Tianspareni Dome. Single-anded $-4010+250 \mathrm{~mm} \mathrm{Hg} .10$ 1t cable: exlension cobles 6. 10, 15, 20, 25 and 50 il avaliable.
Physiological Pressures - Venous. Spinal. Gastro-intestinal, Esophageal	$\begin{aligned} & 350-11000 \mathrm{CM} \\ & 760-3000 \end{aligned}$	Calfie: Preamplifiey Carrer Preamplifier	
Plethysmogram, Body	$350-1100 \mathrm{CM}$	Carrler Preamplifier	270 Pressure Yransducer (for 1/8 in. ID Tubing).

'Kewlett-Packaro Number of aliernallue commerchil iource.

APPLICATION	RECOMMENDED PREAMPLIFIEA		COMPATIBLE TAANSDUCERS'
Plethysmogrsm, Limb-Digit	$\begin{aligned} & 350-1100 \mathrm{CM} \\ & 350-2700 \mathrm{C} \\ & 350-3200 \mathrm{~A} \end{aligned}$	Carrier Preamplitior High Gain PreamplitieI ECC/General Purdase Preamplifier	PARKSCD. Metoury.fitled Tubing with Matching Circuit Adzoter PARKS CO. Impedance Type Sensor with Parks Special Interconnecting Eable.
Pnêumogram	$\begin{aligned} & 350-7700 \mathrm{C} \\ & 350-3200 \mathrm{~A} \\ & 350-1100 \mathrm{~cm} \end{aligned}$	High Gaín Preamplifier ECG/General Purpose Preamplifier Carrier Preamplifier	Pneumogradh Altachment 108 with Pulse Wave Altachment 210518/C/D Pneumograph Atlachment 108 with Pressure Transducer 270.
Fulmonary functon Studies - Flow	$\begin{aligned} & 350-1100 \mathrm{CM} \\ & 350-3700 \mathrm{~A} \end{aligned}$	Carrier Pr samplifier ntegrating Preamplifier	Flow (air): 270 Transducer, 651 -Series Fneumo Tach Screens (see Respiratoly Measuremenls). Volume: (1) Use 350-3700A 10 derive volume from ar flow measurements. (2) 108 Pneumo Tach Allachment replaces 651 Senes Preumo Tach Use 350-3700A to derive volume from $350-1100 \mathrm{CM}$ outpul.
Pulse Wave (carotid)	$\begin{aligned} & 350-2700 \mathrm{C} \\ & 350-3200 \mathrm{~A} \end{aligned}$	figh Gain Preamplifler :CG/General Pupposo Preamplitiel	21051 B Pulse Wave Atrachment (phone plug-use with 760-60A Junction Box) 21051C Pulse Wave Attachment (5 - Din A/N connectol) APT-1G-11 Pulse Wave Iransducer (with strap).
Respiratory Measurements	$\begin{aligned} & 350-5000 \mathrm{~B} \\ & \text { and two } \\ & 350-1100 \mathrm{CM} \end{aligned}$	Respiratory Preamplifier Cartier Preamplifier Volume from 350-5000B Flow from 350-1100cm Pressure from 350-1100 CM Resistance from 350-50008 Compliance from 350-50008	Resistance and Complance can be delermined by calculations involving dala Irom simullaneous recording of esoghageal pres. sure and air flow. When using 350-50008 Respuratory Preamplifjer, determination can oe made directly from a recorder with the Collowing Pneumo Tach Screens: measurements are in liters per minute; 270 Transducer also required, see Flow, Air: Small Animal (Cone) 65l-288C. 25L, $0.2 \mathrm{in.2}$, D.S in. $\mathrm{H}_{2} \mathrm{O}$ pressure drod. Children (Cone) 651-266C, 90L, 1.0 in. 2, 0.3 in. (Mask) 651 -266M, $\mathrm{H}_{2} \mathrm{O}$ pressure drop. Sedentary Adulls (Cone) 651-267C $\quad 180 \mathrm{~L}, 20 \mathrm{~mm} 20.24 \mathrm{in}$. (Mask) 651-267M. H2O piessure drod. Working Adults (Cons) $651-285 C, \quad 600 \mathrm{~L}, 7.0 \mathrm{in},{ }^{2}, 0.3 \mathrm{in}$. (Mash) 651-285M, $\mathrm{H}_{2} \mathrm{O}$ pressure drop. Phax 日reathing $651-286 \mathrm{~m}, 5.50 \mathrm{~L}, 12.5 \mathrm{in} .2,0.27 \mathrm{in}$. Capacily $\mathrm{H}_{2} \mathrm{O}$ oressure diop.
Respiration Rate	760-2200	Respiration Rate Preamolifler	21IIAA Respiration Rate Transducer
Sysiolic Pressure	760-3100	Pressure Prccessor	The $760-3100$ must be used with the $760-3000$. The readout is generally a 55014 or 7824 A .
Temperalure. Body	$350.1 \overline{100 C M}$	Cariler Preamplitier (with 760-53 Tempera. ture Brídge) Carrier Preamplifier	$750-53$ Temperature Bride range of $20^{\circ} \mathrm{C}$ $1044^{\circ} \mathrm{C}$, balanced at $37^{\circ} \mathrm{C}\left(58.6^{\circ} \mathrm{F}\right)$ Full range of campatible probes and cables ayallade including new Air Temperature Prote, Model 11056 A. Please request technial data on 760-53 for complete information on Bidge and Probes. 760-20 Monitor Mater, metar indicator for visual temperature monilaring. Wall or bench mount.

7712B two-channel recording system

The 7712B two-channel thermal recording system features mobile cart mounting to facilitate clinical and research appiications of the system. Ir is also available in portable case or for rack mounting. Any two of the versatile 350 Series Plug-in Preamplifiers may be used as signal conditioners. Recording channels are 50 mm wide with a frequency response from dc to 125 Hz , untess limited by the preamplifier. Pushbutton selecred chart speeds of $1,5,20$ and $100 \mathrm{~mm} / \mathrm{sec}$ are standard with $2.5,5,25$ and $500 \mathrm{~mm} / \mathrm{sec}$ speeds on Options 10 and 11. Marker on tight margin for 2 -second timing is standard; a second optional event marker can be mounted between channels 1 and 2.
Power requlrements: $115 \mathrm{~V}, 60 \mathrm{~Hz}, 200$ watts.
Size: recorder $14^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $17 \mathrm{~K}_{4}^{\prime \prime}$ deep ($356 \times 483 \times 738 \mathrm{~mm}$) ; eart $39^{\prime \prime}$ high, $26 \% "$ wide, $201 / 2^{\prime \prime}$ deep ($997 \times 179 \times 920 \mathrm{~mm}$).
Weighti in cart, net $130 \mathrm{lts}(58.5 \mathrm{~kg})$; shipping $172 \mathrm{lbs}(77.2 \mathrm{~kg})$; recorder only, 60 lbs ($27,2 \mathrm{~kg}$).
Price: HP Model 7712B, less pieamplifiers, si970

7714A four-channel recording system

The 7714A four-channel thermal recording system for use with any four 350 Series Plug-in Preamplifiers is complete in its fully enclosed upright cabinet. It is also available without cabinet for rack mounting. The system features a horizontal chast table for easier notation on the recording. The four recording channels, each 50 mm wide, provide a recording response from de to 125 Hz unless limired by the preamplifier. Mechanically selected chart drive speeds of $0.25,0.5,1,2.5,5$, 10, 25,50 and $100 \mathrm{~mm} / \mathrm{sec}$ are standard. Righe margin time marker provides t sec timing marks from builr-in timer, manual and remote marking possible; second event marker can be installed between channels 1 and 2 for semore marking; also solid state marker driver amplifiers for dc event marking are available.

Power requirements: $115 \mathrm{~V}, 60 \mathrm{~Hz}, 350$ wates.
Slee: $721 / 2^{\prime \prime}$ high, $24^{\prime \prime}$ wide, $26^{\prime \prime}$ deep excluding base $(1842 \times 610 \times 660 \mathrm{man}$). $361 / 2$ " deep with base (927 mm)
Welght: net 473 lbs (214 kg) ; shipping $969 \mathrm{lbs}(256 \mathrm{~kg}$).
Price: HP Model 7114 A , less preamplifiers, $\$ 3970$.

7716A six-channel recording system

The 7716A six-channel Thermal Recording System is designed to operate with any six of the 350 Series of Plug.in Preamplifiers as a single cabinei-mounred system. It is also available in portable cases and for rack mounting. The system features a flush-front recording drive to allow observation of the recording as it is being made. The six recording chanaels, each 50 mm wide, record from do to 125 Hz unless iimited by the preamplifer. Speeds selected electricaliy by pushbutton are; $0.25,0.5,1,2.5,5,10.25,50$ and $100 \mathrm{~mm} / \mathrm{sec}$. Right margin time marker provides 1 sec timing marks; provision for manual or remote event marking from external contact closure; " D " version recorders provide 1 sec and 1 min timing markers; optional
second evenr marker can be installed between channels 1 and 2 and actuated by external contacts; also, solid state marker drives amplifiers for do event marking are available.
Power zequlrements: is $\mathrm{V}, 60 \mathrm{~Hz}, 900$ wates.
Stze: $7242 z^{\prime \prime}$ high, $24^{\prime \prime}$ wide. $26^{\prime \prime}$ deep cxcluding base ($1842 \times 610 \times 660$ mm) , $361 / 2^{\prime \prime}$ wilh base (927 mm).
Weight: nct 974 lbs (259 kg) ; sbipping $670 \mathrm{lbs}(302 \mathrm{~kg}$).
Price: HP Model 7716A. less preamplifers. $\$ 9325$.

7717B six-channel recording system

The 7717B six channel Thermal Recording System features a visual display facility for one to four channels (HP Model 780.6A Opt 01 Scope) as a unified system complete in one up. right cabinet. The syscem operates with any six of the 350 Series of Plug.in Preamplifiers. Each recording channel is 50 mm wide and provides a response from dc to 125 Hz unless limited by the preamplifier. Speeds selected electrically by pushbutton are: $0.25,0.5,1,2.5,5,10,25,50$ and $100 \mathrm{~mm} / \mathrm{sec}$. Right margin timer marker provides i sec riming marks; provision for manual or remotc event marking from external conract closure; " D " version recorders provide 1 sec and 1 min timing markers; optional second event marker can be installed between channels 1 and 2 and actuated by external contacts; also, solid state marker driver amplifiers for de event marking are available. ECG Input Panel (buffer amplifiers) optionally a vailable.

Power requirements: $115 \mathrm{~V} .60 \mathrm{~Hz}, 970$ viats.
Slza: $721^{\prime \prime}$ high. $24^{\prime \prime}$ wide. $26^{\prime \prime}$ dsep excluding base ($1842 \times 610 \times 660$ mom), $36 y^{\prime \prime}$ with base (927 mm).
Welght, net 590 lbs (266 kg); shipping $686 \mathrm{lbs}(300 \mathrm{~kg}$).
Price: HP Model 7717B, less preacaplifiers. 86400 .

7718A eight-channel recording system

The 7718A eight-channel Therma! Recording System provides the advantages of eight recording channels on one chart with a wide response from dc to 150 Hz unless limited by the preamplifiers. This provides a maximum of recording facilities to add Aexibility to both clinical and research applications and furnish a maximum amount of recorded data for any one observation. Each channel is 40 mm wide (50 div). The system operates with any eight of the 350 Series of Plug-in Preampli. fiers. Electrically selecred speeds by pushbutton are: 0.25, 0.5, $1,2.5,5,10,25,50$ and $100 \mathrm{~mm} / \mathrm{sec}$. Right margin marker provides 1 sec timing marks; provision for manual or renlote event marking from exrernal contact closure; "D" version recorders provide 1 sec and 1 min timing markers: oprional second event marker can be installed between channels 1 and 2 and actuared by external contacts; also, solid state marker driver amplifiers for do event marking are available. The system is also available in portable cases and for rack mounting.

Power requirements: $115 \mathrm{~V} .60 \mathrm{~Hz}, 950$ watts.
Slze; 721/2" high, 24" wide, $26^{\prime \prime}$ deep excluciog base (1842 $\times 610 \mathrm{x} 660$ man). $361 / 2^{\prime \prime}$ with base (927 mm).
Welight: net 532 lbs (240 kg) ; shipping $628 \mathrm{lbs}(283 \mathrm{~kg}$).
Price: HP Model 7718A, less pecamplifers. $\$ 6350$.

7719B eight-channel recording system

The 7719B eight-channel Thermal Recording System features a visual display facility as a standard part of the complete system. This facility is designed around a cathode ray oscilloscope and may be used for the display of vectorcardiographic loops or for showing orher physiological phenomena such as ECG, EEG, pulse wiaves, etc. The entire system is complete in one upright cabinet and includes provisions for inserting any selec. tion of eight 350 Series Plug-in Preamplifiers. Each channel is 10 mm wide (50 div) with a recorded frequency response from ds to 150 Hz unless limited by the preamplifier. Electrically selected speeds by pushbutton are: $0.25,0.5,1,2.5,5,10,25,50$ and $100 \mathrm{~mm} / \mathrm{sec}$. Right margin rimer marker provides 1 sec timing marks; provision for manual or remote event marking from external contacr closure; " D " version recorders provide 1 sec and 1 min timing markers; optional second event marker can be installed between channels 1 and 2 and actuated by ex. ternal contacts; also solid state marker driver amplifiers for $d c$ event marking are a vailable.

ECG Inpur Panel (buffer amplifiers) optionally available.
Power requirements: $119 \mathrm{~V}, 60 \mathrm{~Hz}, 950$ wats.
Size: $721 / 2^{\prime \prime}$ high, $24^{\prime \prime}$ widc. $26^{\prime \prime}$ deep excluding base $(1942 \times 610 \times 660$ am). $361 / 2^{\prime \prime}$ with bise (927 mm).
Weight: nat $532 \mathrm{lbs}(240 \mathrm{~kg}$); shipping $628 \mathrm{lbs}(285 \mathrm{~kg}$).
Price: HP Model 7719B, less prearoplifiers, $\$ 7325$.

7720A eight-channel recording system

The 7720A eight-channel Thermal Recording system operates with any eight 350 Preamplifers. The system features a horizontal chart table for easier notation on the recording. Multichansel recording furnishes maximum comparative informa. tion on its chart for clinical or research measurements. Re. cording channels are 40 mm wide (50 div), with a recorded response from do to 150 Hz , unless limited by the preamplifier. Electrically selected chart speeds are $0.25,0.5,1,2.5,5,10,25$, 50 and $100 \mathrm{~mm} / \mathrm{sec}$. An ECG Input Panel with buffer ampiifiers is optional.

Power requirements: is $\mathrm{V}, 60 \mathrm{~Hz}$, 950 walls.
Size: $724 / 2^{\prime \prime}$ high. $24^{\prime \prime}$ wide, $26^{\prime \prime}$ deep excluding base ($1842 \times 610 \times 660$ mm), $361 / 2^{\prime \prime}$ pith base (927 mm).

Weighs: net 532 lbs (240 kg); shipping 628 lbs ($2 \mathrm{B3} \mathrm{~kg}$).
Price: HP Model 7720A. less preamplifiers, $\$ 6650$.

7721A six-channel recording system

The 7721 A six-channel Thermal Recording System operates with any six 350 Preamplifiers. The system features a horizontal chart table for easier notation on the recording. Multi-channel
recording furnishes a maximum amount of information on the chart for clinical or research measurements. Recording channels are 50 mm wide (50 div), with a recorded response from dc to 123 Hz unless limited by the preamplifier. Electrically selected chart speeds are $0.25,0.5,1,2.5,5,10,25$, 50 and $100 \mathrm{~mm} / \mathrm{sec}$. An ECG Input Panel with buffer amplifiers is optional.

Power requirements: is $\mathrm{V}, 60 \mathrm{~Hz}, 950$ watts.
Slze: $721 / 2^{\prime \prime}$ hig $\mathrm{b}, 24^{\prime \prime}$ wide, $26^{\prime \prime}$ deep excluding base ($1842 \times 610 \times 660$ ©om). $361 / 2^{\prime \prime}$ with base (927 mm).
Weight: net $532 \mathrm{lbs}(240 \mathrm{~kg}$) ; shipping $628 \mathrm{lbs}(283 \mathrm{~kg}$).
Pruce: HP Model 7721A. less preamplifiers. \$5620.

7722B eight-channel recording system

The 7722B eight-channel Thermal Recording System operates with any eight 350 Preamplifiers. The system features a horizontal chart table for easier notation on the recording. Multichannel recording furnishes a maximum amount of informa. tion on the chart for clinical or research measurements. Recording channels are 40 mm wide (50 div), with a recorded resporise from de to 150 Hz unless limited by the preamplifier. Elecrrically selected chart speeds are $0.25,0.5 .1,2.5,5,10,25$, 50 and $100 \mathrm{~mm} / \mathrm{sec}$. It also contains a $780-6 \mathrm{~A} 4$-channel scope; an ECG Input Panel with buffer amplifiers is optional.
Power requirements: $115 \mathrm{~V}, 60 \mathrm{~Hz}, 030 \mathrm{~m}$ atts.
Size: $721 / 2^{\prime \prime}$ high, $24^{\prime \prime}$ wide, $26^{\prime \prime}$ decp excluding base ($18-42 \times 610 \times 660$ ram). $\$ 61_{2 " 1}^{\prime \prime}$ with base (927 mm).
Welght: net $332 \mathrm{lbs}(340 \mathrm{~kg}$): shipping 628 lbs (283 kg).
Prica: HP Nodel 7722 B , less preamplifers, 87725.

4568B photographic recording system

The 4568 B Photographic Recording System features the same optical photographic recorder used in the f561B and 4564 B systems, operating with any eight of the 350 Series of Plug-in Preamplifers to provide separate or overlapping channels of wide-range data recording. Use of all eight channels provides a thorough presentation of physiologic events and their waveforms, as they may occur in clinical investigation of a patient or in research-oriented experimentation on a subject. The wide frequency range from dc to 500 Hz (unless limited by the preamplifier) permits extensive small-animal investiga. tion, as w'ell as routine recording of such high frequency variables as heart sounds and electromyographic potentials. Other ranges available on order.
Power requivement; 115 V .60 Hz , spprox. 1000 watts.
Slze: $722^{\prime \prime}{ }^{\prime \prime}$ high. $24^{\prime \prime}$ wide, $26^{\prime \prime}$ deep excluding base ($1842 \times 610 \times 660$ $\mathrm{mm}) .361 / 2^{\prime \prime}$ with base (927 mm).
Wolght: net 456 dbs (216 kg) , shipping $552 \mathrm{lbs}(248 \mathrm{~kg}$),
Price: HP Model 4568B, less preamplifiers. $\$ 5160$.

4561B Monitor recording system

The 4561B system features a wide-range, four-channel optical recorder (Rapid Developer optional), plus a multichannel large-screen monitoring oscilloscope. The recorder, with its eight manually selected chart speeds (2.5 to $200 \mathrm{~mm} / \mathrm{sec}$ ond; 5 to $100 \mathrm{~mm} / \mathrm{sec}$ ond with Rapid Developer), uses either 6 inch wide, 200 foot long bromide recording paper or (with Rapid Developer) a 6 inch wide, 175 foot long roll. Paper is dark. room-loaded, exposed in the recorder under normal room illumination, then developed in the darkroom or by Rapid Developer 963 . Beams may be superimposed or separated into rheir individual portions of the chart. Amplitude and timing lines are recorded at the same time as the data, with the timing lines being controlled by an independent synchronous motor. Recorded frequency response extends from de to 500 Hz (orher ranges available) unless limited by the Preamplifier. The monitoring oscilloscope is the same as used in the 7734 A , and provides the same features. The system accepts any six 760 Series Preamplifies; the output from four appears on the oscilloscope and recorder, leaving two channels for other display devices or for mounting other plug-in units.

Power requiraments: $119 \mathrm{~V} .60 \mathrm{~Hz}, 650$ watrs.
Size: $721 / 2^{\prime \prime}$ high. $24^{\prime \prime}$ wide, $26^{\prime \prime}$ deep excluding base ($1842 \times 630 \times 660$ mm), $361 / 2^{\prime \prime}$ with base (927 mm).
Weight: net $408 \mathrm{lbs}(184 \mathrm{~kg}$), shipping $533 \mathrm{lbs}(240 \mathrm{~kg})$.
Price: HP Model 4561B, less preamplifiers, $\$ 4765$.

4564B photographic recording system

The 4564B Photographic Recording System features the same optical recorder as the 45618 system, but utilizes the more versatile series of 350 Plug . in Preamplifiers which permit recording an extensive variety of physiologic phenomena, at a frequency range from do $t 0500 \mathrm{~Hz}$ or as limited by the preamplifier (to 1 kHz with $350-1700 \mathrm{C}$). Rapid Developer 563 (optional) provides the advantages of wide-tange optical recording withour the delay of darkroom processing before the final recording may be used.

Pows requirements; $115 \mathrm{~V}, 60 \mathrm{~Hz}$, 3pprox. 770 wates,
 $\mathrm{mm}) .3612^{\prime \prime}$ with base (027 mm).
Weight net 498 lbs (216 kg), shipping 394 lbs (292 kg).
Price: HP Model $\$ 364 \mathrm{~B}$, less preamplifers, 83455.

7723B six-channel recording system

The 77238 six.channel Thermal Recording System operates
with any six 350 Preamplifiers. The system features a horizontal chart table for easier notation on the recording. Mfultichannel recording furnishes maximum comparative information on its chart for clinical or reseatch measurements. Recording channels are 50 mm wide (50 div). with a recorded response from de to 125 Hz , unless limited by the preamplifier. Electrically selected chart speeds are $0.25,0.5,1,2.5 .5,10,25,50$ and $100 \mathrm{~mm} / \mathrm{sec}$. It also contains a Model $780-6 \mathrm{~A}$ four-channel scope; an ECG Inpur Panei with buffer amplifiers is optional.

Power requirements: $11 ; \mathrm{V}, 60 \mathrm{~Hz}, 950 \mathrm{w} / \mathrm{tts}$.
Size: $7242^{\prime \prime}$ high, $24^{\prime \prime}$ wide, $26^{\prime \prime}$ deep excluding basc ($18.42 \times 610 \times 660$ mos). $36 \frac{1}{2} 1$ with base (927 com).
Woight: net 532 (bs (240 kg); shipping $628 \mathrm{lbs}(283 \mathrm{~kg}$).
Price: HP Model 7723B, less preanpligers, 366%.

4508BT ultra-violet recording system

The 4508 BT system features a special ultraviolet sensitive recording paper whose latent image may be developed simply by exposure to fluorescent illumination. The chart paper roll may be loaded under normal room lighting, and is developed by the built-in post exposuce fluorescent lamp, so the multschannel data may be viewed a ferw seconds after it is recorded. The system uses any eight of the 350 Series Preamplifers, for a recorded frequency response from de to 500 Hz (to 1 kHz with $350-1700 \mathrm{C}$) unless limited by the preamplińer. The recorder provides nine pushbutton selected speeds from 2.5 to 1000 $\mathrm{mm} / \mathrm{sec}$. Data channels may be separate or may overiap to the full width of the eight inch chart. Time and amplitude lines are recorded with the dara for maximum accuracy.

Power requirements; 115 V .60 Hz , approx. 1600 warts.
Size: $72 \frac{1}{2}$ " higb. $24^{\prime \prime}$ wide, $26^{\prime \prime}$ deep excluding base ($1842 \times 610 \times 660$ man), $361 / 2$ " with basc (927 mm).
Welght: nec $190 \mathrm{lbs}(85,3 \mathrm{~kg}$), shipping $250 \mathrm{lbs}(113 \mathrm{~kg})$.
Price: HP Model 4508BT, less preamplifers, $\$ 7100$.

7734A Monitor recording system

The 7734 A system features a complete, multichannei, $131 / 2^{\prime \prime}$ $\times 10^{\prime \prime}$ (viewing area) oscilloscope for data presentation, with a four-channel data recorder having a dc to 125 Hz response (unless limited by Preamplifier). Oscilloscope sweep speeds are 3,6 and $12 \mathrm{~mm} /$ second, automatic or manual, plus $30 \mathrm{~mm} /$ second manual, on a long persistence screen. The thermal recorder makes an instantaneous record of four 50 mm channeis at a mechanically selected $0.25,0.5,1,2.5,5,10,20,50$ or 100 $\mathrm{mm} /$ second chart speed. The system uses any six 760 Series

Preamplifiers: the outpuc from four appears on the oscilloscope and recorder, leaving two channels for other display devices or for mounting other plug-in units.
Powor requirements: $115 \mathrm{~V}, 60 \mathrm{~Hz}, 600$ watts.
Size: $721 / 2^{\prime \prime}$ high. $24^{\prime \prime}$ widc, $26^{\prime \prime}$ decp excluding base $(1842 \times 610 \times 660$ mm). $3642^{\prime \prime}$ with basc (927 mon).

Weight net $408 \mathrm{lbs}(184 \mathrm{~kg}$), shippiog $504 \mathrm{lbs}(223 \mathrm{~kg}$).
Prlce: HP Model 7734A, less preamplifers, $\$ 4980$.

4689A remote monitor oscilloscope

The HP 4689A Remote Monitor Oscilloscope can accept, by option, either an 8 -channel gating amplifier for 8 data channels or a 4 -channe! gating amplifer for 4 data channels. By displaying the data simultaneously on a 17 inch screen, the 4689 A serves as a valuable visual monitoring adjunct to HP mulcichannel recording systems. The 4 -channel monitor can be used only with systems that accept 760 Preamplifers; the $8 . c h a n a c l$ monitor can be used with systems that accept 350 or 760 Preamplifiers and with 780 Patient Monitoring Systems. The 4689 A is invaluable for large screen monitoring in $O R$ or catheterization laboratories, for teaching purposes and for research applications.

Automatic sweep speeds for the oscilloscope are 3, 6, and 12 seconds; manually controlled speeds are $3,6,12$ and 30 seconds. The large screen provides ample room ($131 / 2^{\prime \prime}$ top 10 bottom) for clear, well-separated presentation of multiple waveforms. A 10 -division graticule facilitates amplitude measurements. A Polaroid (6ilter minimizes interference from room lighting. Controls on the gating amplifier permit adjustment of each signal for position at any level on the screen and for sensitivity of up to 2 inches deflection on the scope, for each centimeter on a direct writing recorder.

Power requirements: $115 \mathrm{~V}, 60 \mathrm{~Hz}, 275$ prites (8 chânnels): $115 \mathrm{~V}, 60 \mathrm{~Hz}$, 18S watrs (4 channels).
Size: $293 / \mathrm{s}^{\prime \prime}$ high, $2114^{\prime \prime}$ wide, $211_{4}^{\prime \prime}$ decp ($746 \times 540 \times 340 \mathrm{~mm}$).
Weight: net 115 lbs (8 chanqels) ; net 112 lbs (4 channels).
Price: HP Model 468fA (4 chanol garing amplificr), \$325, HP Model f688A (8 channel gating amplifier). \$700. HP Model 1689A. $\$ 1675$. Com. bine price of gating ampliger with price of 4699 A :o obtain toral system price.

7868A ink recording system

The 7868A System is an eight-channel, modulared pressurized ink recording system designed for medical applications. It feasures Z-fold chart paper for instant access to any part of the recording. This feacure facilitates observation of physiological variables to assess experimental trends or to decide on immediate action. The chart can be copied by any method, with the uniform trace width giving exceptional clarity even at high frequencies.
The 7868A System uses up to eighr Hewlett-Packard 350

Series Preamplifers to provide a capability to fit your special requirements from temperature to EEG applications. Any combination of preamplifiers can be used, and it is easy to change the function of an individual channel by loosening two front panel thumbscrews and replacing the preamplifier with a different model.

Because the system translates patient phenomena into visible waveforms it logically includes everything from sensing the data at the patient to providing a chart, or other output, for the observer. The applications of a 7868 A System are determined mainly by its transducers and preamplifiers. Each transducer picks up a physiological variable from the patient and couples it, electrically, to a preamplifer, which conditions the signal for one channel. The preamplifer output is applied to a power amplifier that drives the recording pen for that channel. From the preamplifier output on, all eight system channels are identical.

The 7868A System, which features complere control of the variables to be recorded, also provides many new operator conveniences. Any part of the record is immediately accessible with 2 -fold chart paper. The paper, numbered at intervals, provides its own reference within the recording and indicates the amount of paper remaining.

The Z-fold chart paper is perforated so that any sheet can be readily removed. Z-fold chart paper can be stored fiat or filed in book form by punching and binding the sheets into such documents as medical reports, laboratory notebooks, and formal publications. Rolls or Z-fold packs can be installed without paper threading in less than one minute.
Fourteen chart speeds (including standard 25 mm and 50 $\mathrm{mm} /$ second speeds) permit convenient matching of the chart speed to the waveform being recorded, for easier reading. These chart speeds range from 0.025 mm to $200 \mathrm{~mm} / \mathrm{sec} 0$ d.

The low pressure ink supply is modulated to match the re. cording pen velocity and chart speed. assuring sharp, constantwidth traces over all points of the signal waveform.

The recording fuid, a permanent blue ink that dries rapidly on contact with the paper, permits high resolution copying of recorded data. The fluid comes in a disposable plug-in cartridge that supplies over 1000 miles of recorded line, and which can be replaced from the front of the systern without stopping the recorder. A light indicates when the cartridge must be replaced.

Power requirements: $115 \mathrm{~V}, 60 \mathrm{~Hz}, 350$ patts (less preampligess).

Slzo: $721 / 2^{\prime \prime}$ high, $24^{\prime \prime}$ wide, $36^{\prime \prime}$ deep excluding base $(1842 \times 610 \times 660$ mm). $361 / 2^{\prime \prime}$ with base (927 mm).

Welght 390 lbs (249 kg), in csbinec with representative group of 330 Preampliers.
Pries; 7868A system, less preamplifiers, $\$ 10,390$.

MAGNETIC TAPE RECORDING Moderate cost, system compatible

 Models 3907B, 3914B, 3917B, 3924 BMEDICAL SYSTEMS

System performance:

HP 3900 Series magnetic tape record/reproduce systems (see page 177 for specifications) are available with 7 or 14 analog data recording channels plus: one edge track for recording voice commentary or timing information, six standard speeds from $17 / 8$ ips to 60 ips , and choice of plug-in circuit cards for direct, FM or pulse mode recording. Low cost eler. tronics incorporate both record and reproduce functions on the same circuit card. Low bandwidth systems (3907B. 3914B) have a maximum freguency response in direcr mode of 100 kHz ; intermediate bandaidth systems (3917B. 3924 B) have a response to 250 kHz . Systems are housed in mobile cabinets, as shown at right, in portable cases, or unmounted for installation in RETMA standard cabinets.

Performance of these systems is compatible with the widely accepted standards of the Inter-Range Instrumentation Group, permiting the playback of 3900 Series tapes on other com. patible systems, and vice-versa. Representative specifications include: $0.2 \% \mathrm{PP}$ flutter (dc to 200 Hz , at 30 and 60 ips); extremely low interchannel crosstalk, even when direct and FM channels are mixed on the same head stack; at least 40 dB signal-to-noise ratio; direct connection of single-ended inpurs from 0.5 to 10 V rms (direcs) and ± 1.2 to $\pm 3 \mathrm{~V}$ PP (FM). 20 K input resistance.

System features:

An important advantage offered by the 3900 Series tape sys. tems is the compatibility of the tape systems to the many Hewlett-Packard medical signal conditioners and signal dispiay instruments. Standardization of connectors and cables for Hew. lett-Packard medical instrumentation has made this possible. Standard cables connect the output of such instroments as the 1508A. 1509A Multichannel ECG Amplifiet or the 1510A Elecrromyograph to the rape system. Similarly, connecting cables are available for Hewlect-Packard multichannel ink, thermal, oprical or ultraviolet medical recording systems; tape playback signals are conveniently displayed on the multichannel 5601A Numerical Display. 768 S Oscilloscope or the 1309A Monitor. This compatibility is augmented by other benefits such as ease of tape reel loading, system alignment without elaborate equipment or special skills; rapid location of data by a precision tape footage counter; maintenance-free transport except for periodic cleaning of magneric heads and tape guides: availability of optional tape speeds; and purchase of only those circuit plug ins needed for the desired operating mode. A complete list of accessories is available for the tape systems, including the 3907-11A Remote Control Unit shown, and the 3907. $0.4 \mathrm{~B}, 3914.04 \mathrm{~B}$ Loop Adapters for repetitive playback of up to [25' lengths of magnetic tape.

Medical applications:

The 3900 Series magnetic tape systems are valuable tools for research, training, and diagnostic studies, Catheterization laboratories and operacing room installations typically include one or more tape recorders in data acquisition systems. Complete procedures can be recorded on an unattended 3900 tape system which provides 8 hours of recording time at $17 / 8$ ips tape speed. Tapes can be played back up to 32 times faster than when recorded to facilitate viewing or analysis of slowly changing variables.

3900 Series Magnetic Tape System in vertical mobile cabinet

3907-11A Remote Control Unit

Hervett-Packard offers research grade instruments for measurement of nuclear radiations. Important characteristics of nuclear radiations are their energy, angular distribution, and time relationships. Electronic pulse techniques ate used for assessing and resording these characteristics.

Pulse spectrometers start with a radiation detector capable of producing an electrical pulse with amplitude related to the energ; of the incident radiation. These decector sig. nals are further amplified and are shaped suitably for analysis. Finally, the shaped pulses are sorted according to size or to time of arrival and are counted. A spectrum show. ing numbers of pulses versus energy constitutes the output information. Hewletr-Pack. ard Nuclear offers instrumenes capable of serving in each one of these areas: detectors, amplifiers, scaler-timers, multichannel ana. lyzers, automatic sample changers, and recorders.

The area of greatest interest for Hewlest. Packara's instruments lies with research physicists and chemists, with leachers, and with specialists in nuclear medicine. The Hewlett-Packard packaging format utilizing modular design and a unique systems approach brings real benefits for customers who need complex systerns adaptable to a varicty of measurements.

Hewlett-Packard scintillation detectors find application for measuring gamma or X-radiation from solids of liquids. The ap. propriate model can be selected for sample size and for either planchei or test tube counting. The NaI(T1) crystal and a preampamplifier arc housed in a scurdy. case. Or, where a separate preamplifer is needed, Hewletr-Packard offers a versatile unit capable of serving with a variety of detectors including semiconductor, gas pro. portional, Geiger, and scintillation.

Hewlet-Packard scalers accept pulses from a wide variect of nuclear detectors to accumulate, display and record nuclear erents.
The Hewletr-Packard Multichannel Ana. lyzers are the fastest, most accurate, more versatile systems available for spectrum analysis.

In the AEC.NBS standard confguration, Hewlett-Packard offers the NIM Series of nuclear instrument modules: a power supply and conbining case, a linear amplifier, a single channel analyzer, a scalter-timer, and timing units. Soon these will be joined by other modules presently under develop. ment.

Naclear counsing systems built arnund Hewlect-Packard automatic sample changers or manual changers offer capability to counc α, β, and γ. Backgrounds for counting are the lowest available, up to 120 planchers can be counted in one loading, and the

Figure 1. Nuclear system block diagram.
printed record includes complete informa. tion: count, time, and sample number.

Systems capability

Hewlett-Packard ofiers a unique systems capability among nuclear instrumentation manufacturers: witness to this is the catalog you are now reading, flled with data acquisition and recording instruments and systems of every type. This in-house capability brings the customer an inportant benefic. His instrumentation interface problems are for the most part eliminated entirely, and those that remain can be completely solved on an engi-neer-to-engineer basis within Hewlent-Pack. ard where cechnical details can be exchanged in full.

Spectrometer systems-single channel anaiyzer

The basic nuclear instrumentation systent Herilett-Packard offers for counting nuclear events with use of a single channel analyzer is show'n in Figure 1. It is a complete system for derecting, counting, and displaying gamma radiation. All systems for counting nuclear events contain these basic instruments, although they may be packaged dif. ferently. The Hewlett-Fackard packaging format, utilizing modular cabinets, provides for the widest possible range of applications. Instruments are grouped so that they may be used to count almost any rype of nuclear event if the proper detector is used.

With the HP 5585A Single Channel Analyzer or the 5201L Scaler.Timer operated in pulse height analysis mode, that is in the "natrow window- $\triangle E$ mode," the system may be used for counting all puises with heights falling within a window having a width calibrated between 0 and 0.5 vols. With wis narrow window, the user is able to easily analfze the photo peaks of radia. tion samples.

NIM Series

Hewlert-Packard now has in production six instruments in the AEC-NBS standard configuration: the 5580A/B NIM Power Supply (a combining case and supply), the 5582A Linear Amplifier, the 5583A Single Channel Analyzer, the 5984A Dual Timing Pickoff, the ss85A Fast Coincidence, and the S590A Scaler-Timer.

The AEC-NBS standard configuration is a concep: aimed at reducing the experi. menter's interface difficulties. A typical physics experiment requires a ratber large array of equipment; incerface problems often result. An AEC.NBS committee took these problems in hand and has formulated a set of standards (TID-20893) for compatibility in size and coltage requirements among instruments.

The 5580A/B NIM Power Supply pro. motes troublefree operation of the modular instruments it houses and powers by provid. ing hefty power capability, blower cooling, and protection cincuits. In addition to ± 24 \checkmark and $\pm 12 \mathrm{~V}$. the $5580 \mathrm{~A} / \mathrm{B}$ also supplies $\pm 6 \mathrm{~V}$. Many modular instruments utilize integrated circuits, and many of these require $\pm 6 \mathrm{~V}$. An efficient blower forces air through each module and also through the supply itself.
The 5582A Linear Amplifier provides maximum flexibility for nuclear pulse counting with all types of detectors and with a wide range of counting rates. RC shaping time constants, selectable by front panel switches, allow the experimenter to choose the optimum pulse shape for the detector and preamplifier he is using. In addition to RC shaping. there are two plug-in delay lines for shaping. The 5582 A provides single or double differenciation and also integration, and gain is variable from 2 to 1280.

The 5585A Single Channel Analyzer has two basic modes of operation: single chan-
nel for pulse height analysis and dual integral where the discriminators operate as completely independeat integral discriminators. The 5583 A offers 200 manosecond multiple pulse resolution, and surobed and/ or gated operation.
With the aid of the 5384A Dual Timing Pickoff and the 5585A Fast Coincidence, the experimenter can make precise time as well as pulse height information the basis for his nuclear studies. The 5584 A offers leading edge or zero crossing detection in each one of two independent channels. The 5585A accepts up to fout channels of information and has meaningful resolving times down to one nanosecond.

A key unit in nuclear counting systems is the scalertimer that totalizes the pulse count. The 5590A Scaler. Timer has a highly readable display of lighted digits and combines sealing and timing for the same measurement. Both count and time can be pre. set, and pulse resolution is 100 ns. Automatic or manual operation and printer output are included.

Automatic nuclear counting systems

Built around the 5560A Automatic Sample Changer, the Hewlett-Packard Nuclear Counting Systems bring uitra-low back. grounds (down to 0.1 count per minute) ro meet the needs of α, β counting of low acrivity samples. More reliable and far faster counting of musuiple samples is possible with these systems. The 5560A has a 120 sample capacity, with a manual drawer for interrupting the automatic mode at any time. This changer is ideal for use in health physics, on-site reactor environmental monitoting, bio-scientife studies and chemical investigations.

The 5560A's modular design lers the user virtually design his own counting system. He can use stintillation derectors for γ counting, or even for $\beta \cdot \gamma$ or y,y coincidence rork. Modular design lets the user build up his system unit by unit, starting with a manual changer for example, yet looking toward a furure sysiem that is automatic and computer-compatible.

Applications in nuclear medicine

Hewlett-Packard offers the means to acquire and analyze a mass of measurement dar-and to give the nuclear medical spe. cialist results in a form that is directly usefui.

To nuclear medicine, Hewletr. Packard brings more than 23 pears of electronics experience. With a Hewlett-Packard system made up of components that are field proven and reliable, and pur together by a team of experts, the nuclear specialist need nor worry about such matters as time constants, frequency response, linearity, impedance marching, systems and line noise, cabling
and grounding, overload recovery, count rate shift-all problems that Hewlett-Pack. ard's nuclear instrumentation engineers can solve for him.

Multichannel analyzers

The Hewlett-Packard Multichanmel Analyzers rapidly record complete energy spectra by simultaneously registering data into up to 4096 or even more memory channels. The resulting spectrum, in the form of a histogram plot with the number of events as a function of energy (pulse height, voltage, time), can be displayed "live" during accumulation, or after.
Multichannel analyzers, first developed for nuclear physics research and today wideIf used also for analyzing mixtures of radionuclides, have a host of potential applica. tions in many other areas.

The Hewlett-Packard analyzers, described on the next six pages, are extremely versatile instruments. The 5401A offers three modes of operation: puise height analysis, sampled voltage analysis, and multichannel scaling.
In Pulse Height Analysis mode, the MCA accumulates a pulse height distribution. In Sampled Voltage Analysis mode, the S401A continually monitors an input waveform, samples it on command, and processes waveform amplitude at that instant as though it were a pulse. Result is a plot of the prob. ability density function of the sigral. In Multichannel Scaling mode, the s401A se. quentially addresses each channel and ir may be incremented by an input pulse string: thus, each one serves as a scaler. This is useful for Mossbauer applications and timerate studies.

Analyzer features

Figures 2 and 3 are oscillograms. Figure 2 sbows a spectrum of selenium- 75 taken with a lithium-drifted silican decector. Fig. ure 3 show's the probability density function for a sine wate. The SAOIA's CRT is far superior to any offered as srandard equipment on a multichannel analyzer. The HP HS1-180AR Oscilloscope is the mainframe for the S431A Display plug.in; all that is needed to have a 50 MHz dual channet oscilloscope is a set of two plug-ins: the HP 1801A Vertical Amplifer and the HP 1820A Time Base.
Modular design and use of plug-ins make the S40LA easy 10 modify and to expand. A log display unit, an 8 -input router, and a multi-input multiscale unit are among the special-purpose modular units and plug-ins now offered for Hewlett-Packard Analyzers. With modular systems, the user has the assurance that tomorrow's capabilities can be added at minimum cost.

Input-output flexibility is assured by pro. vision of an interface card cage which accepts cards to interface the 5410A to peripherals such as a teletype or digital recorder or even to a Hewlett-Packard compurer.

Figure 2. Spectrum of selonlum-75.

Figure 3. Probability density function for a sine wave.

Single and multi-parameter analyzers

The Hewlett-Packard single and multiparameler analyzers combine the features of the analog-to-digital converter and display unit in the sf01A with the flexibility of a sofware-controlled memory.

These systems add the capabilities of an instrumentation computer-monitoring and control of the experiment, calculation and manipulation of data-to those of the ad. canced hardware built into the 5401A ADC and display. These capabilities, plus the special software provided, bring the user analytical systems of great power.

The single parameter analyzer uses one display, one ADC, the HP 2115 Computer with a $4 k$ memory, and a teletypewriter as irs minimum configuration. Multi-parameres systems may utilize from two to four ADC's.

The dual-parameter analyzer's softerare package includes sub-routines for three display modes: isomerric (with virtualiy 360° totation to any of 20 viewing positions). contour displays, and an X and Y slice of the dara, intensified.

Special software programs give these systems the ease of operation of an instrument by providing direction to the computer so that it is a silent partner. Yet, when the user so desires, he has at his command a system with all the flexibility afforded by FOR. TRAN programming capability.

5401A Multichannel Analyzer

H51-180A Oscilloscope with 5431B Display Plug-in

5422A Digital Processor

5416A Analog to Digital Converter in 5410A Power Supply/interface

Advantages:

1024 Channels, optionally 4096 or 8192 0.05% Integral; i \% Differential linearity, worst case 100 ns multiple pulse resolution (MCS mode)
The Hewlett-Packard 5401A Mutichannel Analyzer is a fast, accurate, versatile tool for spectrum analysis work. It has a pulse height analyzer (PHA) mode of operation, a sampled voltage analysis (SVA) mode of operation (for probability function analysis) and a multichannel scaling (MCS) mode of operation. It consists of a power supply/ interface mainframe with plug-in analog to digital converter (ADC), a digital processor, and an oscilloscope mainframe with display plug-in. This modular separation, with the functional grouping of controls, and the annunciator functionkeying system makes the front panel self explanatory.

The combination of 12 bit resolution, 0.05% integral linearity and high digitizing speed is unmatched in the industry. Low repetition rate analyses may easily be monitored by a unique display mode which combines the advantages of live and static readout.

The HP 5401A. Multichannel Analyzer adapts easily and economically to input/output devices through selection of plug-in cards in the interface "card cage". Cards for a wide variety of $5 / O$ devices are available either with the initial order or at any time after receipt of this instrument.

Specifications
 ACCUMULATION MODES
 Pulse height analysis (PHA)

In this mode, the analyzer atcumulates a pulse heighr distribution. Automatic termination of data accumulation may be emplojed. Coarse pulse amplitude discrimination is provided. Coincidence with an externally applied signal may also be a criterion for acceptance of a pulse.
Input pulse requirements:
Amplitude: 10 V ; positive.
Puise shape: >100 ns to peak above the baseline.
Input Impedance: $1 \mathrm{kS},<60 \mathrm{pF}$ shunt; de coupled.
Trigger Level: 0 to 10 V , adjustable (establishes timing).
Time to peak: 1 to $15 \mu \mathrm{~s}$ adjustable, or 3μ s fixed.
ADC clock rate: 200 MHz .
Output Range: 512, 1024, 2048, or 4096 channels.
Conversion gain (channels out/volt in):
Range: 4096 to 512 channeis/ 10 volts.
Temperature stabillty: $< \pm 0.005 \% /{ }^{\circ} \mathrm{C}$.
Time drift: $< \pm 0.01 \% / 24$ hours.
Trigger distortion: linearity periurbed within 50 mV of trigger. Baselfine (input offset)

Analog: $\pm 1 \mathrm{~V}$ adjustable, 0 or -5 V fixed.
Count rate shift: $<10 \mathrm{mV}$ to 90% dead cime.
Temperature stability: $< \pm 1.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
Time drlit: $< \pm 1 \mathrm{mV} / 24$ hours at fixed temperature.
Digital: 0 to 3584 in steps of 512 channels.

Linearity

integral: $< \pm 0.05 \%$ over full range.
Differential: <1 $\pm \%$ over full range.
Except, in PHA mode offset $<100 \mathrm{mV}$, see Trigger Distortion

Pulse analysis time

Output range setring determines analysis time in eirher fixed or or vaciable (internally selected) mode:

512 channels $=$	$9.5 \mu s$ fixed or	$(2.8+0.005 n) \mu s$
1024	9.5	$(3.1+0.005 n)$
2048	16.5	$(3.8+0.005 n)$
4096	30.5	$(6.0+0.005 n)$

where $n=$ number of channel addressed
Systern dead time: analysis time plus time to peak.
System noise: less than 1 mV mas referred to the $A D C$ input.

Coincidence inputs (normal and strobed)

Amplitude: 4.12 V positive.
Pulse shape: dc level or with specified timing. For TimingNormal, input must be high for >100 ns after pulse crosses trigger level and prior to the coincidence strobe. For Timingstrobed, input must be high for a >300 ns interval which includes the coincidence strobe. Coincidence strobe is a 200 ns pulse, generated at the end of the time-to-peak setting Strobe monitor jack provided.

Timing jitter-strobe: $\pm 50 \mathrm{~ns}$ from average.
Discriminators (upper and lower level) range: 0 to +10 V . Lower level discriminator sets trigger level.
Meter: tbree ranges, each with $\pm 5 \%$ accuracy, displays reading of dead time 100% full scale, or counting rate at either 100 kHz or 10 kHz full scale.
Llve timer accuracy; $\pm 0.5 \%$.
Data control: add or subtract, switched.
Tlming: count up to Preset, or down to Zero.
Preset time range: Live or Clock time, switch selectable: 0.01 min to 5000 min (decade steps x multiplier in $1,2,5$, steps).
Memory grouplng: any quarter, any half or whole memors. Pulses exceeding selected memory range are rejecred. No pulses are stored in 1st chennel of group selecred.

External routlog: exteroal control of memory grouping.
Pulse requlrements: positive 4.12 V for $>100 \mathrm{~ns}$.
Memory: 10^{0} counts per channel; 1024 channels standard, 4096 or 8192 optional. Address is binary; 24 -bit data aoord is BCD coded.

Multichannel scaling (MCS)

In this mode, the analyzer sequentially addresses each channel of the sefected portion of memory and the contents of each address may be incremented by an inpur pulse string. There is provision for vertica! display. The address information is converted 10 an analog volage available for such applications as driving a Mössbauer apparatus.

Input pulse requirements: (AEC standard compatible),
Amplitude: 4-12 positive.
Input impedance: 1 ks (de coupled).
MInimum pulse width: 25 ns; separation 65 ns.
Pulse pair resolution: 100 ns (10 MHz).

Sample time per channel: 10μ s to 5 s (decade steps x muitiplicr in $1,2,5$, steps), or ext.

Preset sweeping: 1 sweep to 500,000 sweeps (detade steps x mulriplied in 1, 2, 5, steps).

Sweep modes

Single: internal or external rriggering.
Continuous: internal or external triggering with saw-tooth sreep drive; increasing channel number. Also, internal riggering with triangle waveform drive; increasing then decreasing channel number. (Output is available to drive Mössbauer apparatus for three sweep modes.)
Dead time between channels: $2.2 \mu \mathrm{~s}$.

Sampled voltage analysis (SVA)

(Probability density functions.) Operation in this mode is identical to pulse height analysis except that the ADC continuously monitors a slowly changing voltage, samples it upon receipt of a pulse, and processes the sampled roltage as rhough it were a pulse.

Input signal requirements

Amplitude: 10 V .
Polarity: positive or bipolar.
Bandwidth: 512 Channel Range, dc to $120 \mathrm{kHz}: 4096$ Channel Range, dc co 15 kHz

Input Impedance: $1 \mathrm{k} \Omega$, $<60 \mathrm{pF}$ shunt, dc coupled.
ADC clack rate: 200 MHz .
System dead time: Analysis Time plus Time to Peak.
Elapsed time or sweeps: first channel of selected memory group records elapsed time in increments of 0.01 min (PHA \& SVA) or of number of sweeps (MCS \& TEST).

Digital processor operatlons

Transter memory quarters: the contents of a quarter or half may be copied into ans other quarter or half respeccively. Receiving group coatents are erased prior to copying.

Erase: the entire memory, or the contents of any selected quarter or half may be erased.
Accumulate cycle: accumulation of data mas be manually controlled or may be automatically sequenced through a cycle of erase, accumulate for preset time or sweeps, and read-out into the device selected on the 5410A Interface panel. Single cycle selecrs one such sequence; Auto cycle selects indefinitely repeated sequences.

Read-in/Read-out Modes

CRT display (IInear) modes

During PHA and SVA accumulation, each channel addressed by the ADC is displayed live for about $12 \mu 5$. Prior to Start, address is displayed at baseline. After Start, the vertital displacement of the displayed point shows channel contenc (see Gain below). During MCS \& TEST modes the CRT is statically unblanked. During Dis. play function the entire memery is displayed in an interiaced sequence which sweeps from first to last channel at line frequency (to eliminate ficker), and any channel is displayed at least six times per second. Accumulation during display. Read function allows selection of any contiguous sequence of channels by setring of digital switches.

200 MHz clock rate ADC; expandable memory Model 5401A

Channel identification

Decades; intense dot for channels numbered 10 .
Sub group: $1 / 2 \mathrm{~cm}$ tail on data point.
Horizontal galn: x1 to $\times 20$ continuous. Expand about center screen.
Horizontal quarters full screen: 1, 2, 4 selectable.
Quarter overlap: halves or quarters may be overlapped. 2nd, 3rd, 4th quarters and 2nd half are movable vertically to fully off screen up or down.

Vertical galn; $x 1$ through x^{3} consinuous.
Vertical callbration: $200,5001 \mathrm{k}$ through 200 k counts $/ \mathrm{cra}$ in $1,2,5$ sequence, selectable. In Log position (with K-20 special) i decade/cm. Analog output (plotrer connector and BNC's for $\mathrm{X} . \mathrm{Y}$ and Unblank).
Amplitude: +5 V full scale into open circuit.
Impedance: 100 .
Resolution: $\pm 0.0125 \%$ of full scale.
Integral linearity: $\pm 0.0125 \%$ of full scale.
Zero drift: $\pm 0.01 \% /{ }^{\circ} \mathrm{C}, \pm 0.1 \% /$ day at fixed temp.
Gain drift: $\pm 0.05 \% /{ }^{\circ} \mathrm{C}, \pm 0.1 \% /$ day at fixed cemp, full scale.
Output rata: external timing, 600 channels per sec, max; internal, 1-20 channels per second, variable.

Digital input/output

Code: parallei, 8 821 BCD.
Serial: IBM compatible or ASCII as selected by I/O cards. Levels, polarity and control logic are determined by I/O cards provided with the various I/O options.

Maximum transfor rate; 60,000 characters or channels $/ \mathrm{sec}$. Format:
Parallel: 10 digits simulaneously, four address, six data.
Serial: 76 character line sequence (one address, 10 data channels) is determined by serializer cards of processor and adapted by 1/O cards to match requiremenes of specific device.

Input/output options

Peripheral devices for readin or readout of digital data are specified by option number according to column headíngs A, B and C in the table below. Under column A are listed options which provide the peripheral device for service on 115 V 60 Hz plus cards and cables required for interface with the card-cage of the HP s410A. Column B lises devices operated from 330 V 50 Hz mains. Column C lists options which provide cards and cables only. The peripheral device is not supplied. A number in pareatheses indicates the time in minutes for transfer of 1024 channels of memory, Note that typewriter readout of all 8192 channels of the largest available memory would require nearly 2 hours. Computer transfer takes less than 1 sec .

Processor options

Option 20: Substitute 4096-channel memory.
Option 21: Substitute 8192-channel memory.
NOTE: The 1024, 4096 and 8192 channel memories are opcionallj; interchangeable ar any time.

Name	Capabulity	A EO Hz Davioe oarde cabje	B 50 Hz divice oarda sambla	C Cards oshite only
$\begin{aligned} & \text { PIInter } \\ & \text { HP } 5050 \end{aligned}$	Parallel readout 20 chan/s (0.87)	Option 02	Optient 52	Optort 12
Teleprinter HP 2752A	Serlal readout 10 char/s (13)	03	53	11
Talaprinter HP 2752A	Serlalingut 10 char $/ \mathrm{s}(13)$	04	54	11
Tape Punch HP 2753 A	Paper tape oulpost 120 chat/s (I.L)	05	55	13
Tape Reader HP 2737A	Paper tape input 300 char/s (0.4)	06	56	14
Mag Tape Kennedy 1400, elc.	Mag taper readout 200 to 800 bpl (0.310 1)	07	57	available
Computer HP 2114/5/5	DM Interlace between memories	Consult factory		08
Telepinter HP 2752A	Sgrialinoul 8 oulput $10 \mathrm{char} / \mathrm{s}$	10	50	11

Option 11 cards and cable provide interlace for both readout and readin.

Equipment list

The standard HP 5401A Multichannel Analyzer consists of one each of the following. Total net weight is $111 \mathrm{lb}(50 \mathrm{~kg})$. Shipping weight is $148 \mathrm{lb}(67 \mathrm{~kg})$.

5410 A Power Supply/Interface 45 lb (20 kg).
5416A Analog to Digital Converter (plug-in) $6 \mathrm{lb}(2,8 \mathrm{~kg})$.
5422 A Digital Processor $27 \mathrm{lb}(12 \mathrm{~kg})$.
5431 B Display (D to A converter pluge in) $6 \mathrm{lb}(2,8 \mathrm{~kg}$).
HS1-180AR Oscilloscope $26 \mathrm{lb}(11,5 \mathrm{~kg})$.
05421.6030 Display cable (dual $36 . \mathrm{pin}$).
$05421-6033$ Power cable (50 -pin).
05421.6034 Data cable (50 -pin).
05421.6035 ADC Decimal Data cable (dual so-pin).

Rack mounting kits, power cords, extender cards and card puller are provided.

Dimenslons: ypical for HS1-180AR, 5422A and 5410A, $163 / 4$ " wide $\times 51 / 4 "$ high $\times 213 / 8^{\prime \prime}$ deep ($425 \times 133 \times 543 \mathrm{~mm}$).

Power lnput for full capacity operation: $425 \mathrm{~W}, 50.60 \mathrm{~Hz} 115$ or 230 V .

Price: available on request.

Accessories

A convenient method of preserving the visual display arailable on the scope is 10 plot the analog of memory contents on an $x-y$ recorder. The HP 7004A provides an ideal combination of accuracy and speed and may be interfaced directly with the 5431A Display plug-in through a connector on the rear of the H51-180AR mainframe. It plots an analog record of any selected portion of the memory at the rate of 50 channels per second. Required are: HP 7004A, \$1295; two 17170A DC Coupler plug-ins, $\$ 50$ each: 17173A Null Detector plug-in, $\$ 200$; 17012B Ploter, 595 ; and 10640B Cable, $\$ 50$. An extended plat for good resolution of individual channeis on continuous or fan-foid paper may be obtained using the HP 1700 A Incremental Chart Advance, $\$ 893$.
Insertion of the HP 2801 A Dual Channel Amplifer, \$650, and the HP 1820A Time Base, 5475 , in place of the S431B Display plug-in converts the H51-180AR to a laboratory quality oscilloscope with 50 MHz bandwidth and eriggering to 100 MHz for fast timing setup and checkout. A wide variety of plug-in modules is avalable in the HP 1800 series.
The three mainframes of the 5401 A may be conveniently joined to make a single unit with the use of the Joining Brackec kit. HP \$060.0243, \$30.

ANALYZER SPECIALS
 Multi-input, BCD input, log display Model 5400A, K series

 NUCLEAR

K05-5400A, multi-input, multi-scaling
Replaces the ADC to permir multiscaling of up to 8 independent inputs at common sample time into $1,2,4$, or 8 equal segments of memory. Memory cycle time prevents acceptance of puises within $3 \mu 5$ following a pulse. Pulses coincident within about $150 \mu \mathrm{~s}$ are both lost. The address at which a pulse is incremented is determined as follows: The most significant $0,1,2$, or 3 bits are determined by selection of $1,2,4$, or 8 memory segments (Groups switch). The balance of the address (up to 15 bits) consists of the contents of the address scalec. The address scaler range is selected by the Channels/Group switch. The address scaler is incremented by the timing controls of the digital processor (S422A, 2116B, etc.) or by ex. rernal inpur to the K05-5400A. A sweep may be initiated and stopped either manually, or by signal to the internal connector (rear) or to the front panel BNC. Continuous or single sweep mode is selectable by switch. input requizements are $>+4 \mathrm{~V}$, >100 ns wide. Price, $\$ 1500$.

K09-5400A, eight-input routing

This four-width NIM module provides the capability for accumulation of up to cigit separate pulse height spectra simultaneously into $1,2,4$, or 8 equal segments of memory. The K09.5400A is connected between the ADC and the processor (memory) so as to add $0,1,2$, or 3 most-significant bits to the address output of the $A D C$ according to the selection of $1,2,4$, or 8 memory groups. (Within any given memory eighth, for example, each address has the same, unique combination of the first 3 most significant bits). The information necessary for this routing is supplied by logic inputs to the front panel BNC which corresponds to a given memory seg.
ment. A logic pulse must be generated for each analog pulse to be analyzed and must arrive at the K09.5400A input during Time-to-Peak of the ADC. The arrival of more than one logic pulse during this interval will cancel the analysis of the analog pulse. The eight (or fewer) analog pulse sources are connected to a summing network such as the K15-5400A (see below) so as to provide a single input to the ADC. The router output is an address of up to 15 bits. Combinations of ADC Output Range and Memory Group settings which would produce a router output of more than 15 bits are ambiguous and will actuate the Invalid light. Price, $\$ 1000$.

K15-5400A eight-input mixer

This single-width NIM module provides passive summation of up to 8 inputs through $1 \mathrm{k} \Omega$ each to a common son output. It is conveniently used for combining the preamplified outputs of up to 8 nuclear detectors for input to an ADC. The NIM configuration is for convenience of mounting and connection; no power is required. Price, \$150.

K10-5400A \log display converter

This $31 / 2$ " high rack. width module (oot illustrated) is provided with integrally attached cables to permit its insertion in place of the standard 05421-6030 Display Cable to provide the capabilicy for logarithmic display of the HP 5422A Digital Processor memory. When the Counts/Div saitch of the HP S431B Display is set to Log position, the CRT display will be linear in address (X -axis) and logarithmic in counts (X axis). When the Vertical Gain control is calibrated, the vertical calibration is one decade per cm . The cable arrangement permits the module to be located either above the H51.180AR mainframe or behind the analyzer. Price, $\$ 600$.

K20-5400A BCD input

When the $A D C$ is replaced by this plug-in module, a device which provides +8421 BCD coded output (e.g. electronic counter) in up to 9 digits may be connecred to the HP 5401A through the 50 -pin connector mounted in the front panel. The selector switch allows any three decimal digits from the input to be converted to binary form and addressed in a manner similar to ADC operation. The resultant accumulation in PHA mode is a frequency histogram which displays the relative probability of occurrence of any selected reading between 0 and 999 . Price, $\$ 750$.

H06-5401A multichannel analyzer with signal averaging

This modification of the HP 5416A ADC and the HP 5422A Digital Processor (not illustrated) allows eirher one-shot digitizing of an analog input to the ADC or, with synchronized repetitive sweeping, signal averaging for enhancement of the signal-to-noise ratio. The ADC operates in the Sampled Voltage Analysis mode, sampling the input waveform so as to provide a gate time proportional to instantaneous input amplitude. The processor operates in the Multiscaling mode, accumulating at 10 MHz in a channel for the corresponding gate time. Price, add $\$ 400$ to price of MCA.

NUCLEAR

ANALYZER SYSTEMS

Single parameter, multiparameter
Model 5405A (Single), Model 5406A (Multi)

5406A Multiparameter Analyzer

Advantages:

On-line computation
4096 trords of data storage
Easy expandibility
Monitoring and control of experiments
Easy peripheral interfacing

General

The HP 5405 A Single Parameter Analyzer system and the 5406 A Multiparamerer Analyzer system combine the features of the Analog-to-Digital Converter and Display Unit used in the HP 5401A Multichannel Analyzer (see page 70) with the flexibility of a software concrolled nemory. The 5406A system may also be used in a multiplex mode with up to 16 ADC's mulriplexed into a single computer memory. The advanced hardware design of Herlett-Packard's displays and ADC's coupled with the special software provided with these systems gives the user the most advanced and fexible analyzing/computing systems available.

Single parameter analysis

The 5405A Single Parameter Analyzer uses a single display, a single $A D C$, a $2115 A$ with an $4 K$ memory, and a reletypewriter as its minimum configuration. The capabilities of the 5405 A system are quite similar to those of the 5401A system, but with the additional flexibjity of the computer monitoring and control of the experiments plus the calculation and manipulative power available from an instrumentation computer. It can be operated in a pulse-height analysis mode for nuclear pulse-height spectrometry and in a sampled voltage analysis mode for siatistical analysis of amplitude data.

Multiparameter analysis

The HP 5406A Multiparameter Analyzer system is identical in hardware configuration to the $5405 A$ sysrem except that it may be confgured with roo to four analog-to-digital converters. When using two ADC's (standard 5406A configura. tion) the user may accumulare data that has a coincidence requirement in addition to the normal pulse-height versus count rate data. The \mathbf{X} dimension range is 1 to 4096 channels and the Y dimension range is 1 to 4096 channels, in increments of powers of 2 .

Internal coincidence capability is in the microsecond range. With this system, coincidence circuits musr be added externally ro supply the coincidence input to the ADC's for resolution in the nanosecond range. External coincidence equipment such as the HP 5584A and the HP 5585A (shown on page 78) may be used for higher resolution.

Sub-routines are included in the software package to allow the user to have 3 display modes for the dual paramerer data collected in the 5406 A system. These are isometric with a rora. tional capability for 20 different viewing positions (displayed data can essentially be rotated 360° around its central axis), contour displays, and an X and Y slice of the data. Figure 1 illustrates the isometric display of a two parameter experiment.

Oprionally available with the 5406A system is up to a total of 16 ADC 's with a multiplex control so that the ADC's (1 through 16) may be scanned at a $>0.2 \mathrm{MHz}$ rate for inputting data into the computer memory.

Software

A special sofroare program has been written to permit the user to have the ease of operation of an instrument rather than a computer. Special softrare package consists of an EXECL. TIVE program and a PREPARE EXECUTIVE TAPE program (PET). The PET program is for configuring the EXEC program into a users' package. Also supplied in the software package are a standard Hewlett-Packard sub-routine library for such operations as Accumulace, Display, Erase, Punch, Type, Transfer, Read-in, and such computing routines as Integration, Differentiation, Background Subtraction, Spectrum Stripping, etc. Control sub-routines can also be written to control external devices through the use of an output card such as the relay register or a general purpose register. When configuring a package by the use of the PET program, the user calls up from the sub-routine library, via the reletype by a question and answer rourine, those sub-toutines he desires to use. It is also possible for the customer to develop his orn

Figure 1. isometric Display
sub-rourine library in FORTRAN or modify existing subroutines in ASSEMBLY.

Furnished with each 5405A and s406A system will be all of the standard HP 2115 A computer software. The user will be able to make general purpose measurements immediately by using the PET and EXEC program with the HewlettPackard sub-routine library, and can easily modify the package to suit his specific needs. The computer, with its standard software, will also allow the user the convenience and flexibility of a stand-alone instrumentation computer.

Output peripherals

By the use of the HP 2115A instrumentation computer in this system, the addition of output or input peripherals (such as the high speed digita! tape transports, paper tape punches, photo-readers, etc.) is quite easy. All of these peripherais have been interfaced to the HP 2115A computer and are optionally available. Their interfacing requires only the I/O cards and the software driver routine for outputting or inpulting data via these peripherals.

Additional peripheral instrumentation

For expanding the capability of either the single parameter, multiparameter, or multiplexed system, additional instrumeniation may be added to the system, such as, the K05.5400A Mulci-Input/Multi-Scale plug-in and the K09 8 -input router (see page 83).

For additional information concerning oprional configuracions of these systems, or for additional applications informa. tion, please contact the factory.

Specifications

Interface

Outputs: 0.12 bit, buffer storage, impedance; " 1 " $=$ saturated non to ground, " 0 " $=1 \mathrm{~K}$ to +10 V or open circuit.
Flags:
DAR $=$ Data Ready to Computer: " 1 " implies Data Avail. able, " 0 " implies Data Uindefined.
RFD $=$ Ready for Data from Computer: " 1 " implies ready to accept new data, " 0 " implies not ready to accept new' data.
Impedance: Data Ready: same as outpurs. Ready for Data: " 1 " same as ouputs, " 0 " >4 V or open circuit.

Timing: delay between availability of data and Data Ready signal $>0.5 \mu \mathrm{~s}$ or $>10 \mu \mathrm{~s}$, selectable on ADC interface board.
Minimum delay from RFD to DAR: same as above.
Minimums acceptable RFD width: RFD $=$ " 0 " $>500 \mathrm{~ns}$; $\mathrm{RFD}=$ " 1 " until DAR.

Modes: single parameter, multipasameter, multiplex.

Hardware configurations

Single parameter (SGL): single ADC; control and timing board; buffer and offser board; live time clock board panel with offset, live/clock; mode and bit programming control.
Multiparameter (MPR): 2 to 4 ADC ; control and timing boards; buffer and offset boards; live time clock multiparameter control; jumpers; and panel as in single parameter.
Multiplex (MPX): 2 to 16 ADC's; multiplex control; inter. face boards the same as in multiparameter.

Timer controi: LIVE/CLOCK/OFF: counts stored in Channel 0,10 per second. In LIVE mode, clock gated off by busy signal. MPX: each ADC gates clock. MPR: clock gated off when any $A D C$ busy.
Zero offset: each ADC may be independencly offser 0.4095 channels.

Bit programming: output bits from each ADC may be shifted with respect to 12 bits to computer.
ADC holdotf (output, MPR): for inpur to NORMAL coincidence input on $A D C$. Saturated transistor to ground.

Sample input: for external sampling of $A D C+4 \mathrm{~V}$ to +12 V . width $>200 \mathrm{~ns},>1 \mathrm{k} \Omega .<60 \mathrm{pF}$.

Delay (holdoff): 200 ns to $>1 \mu \mathrm{~s}$, variable.
Single mode: 1 ADC to 1 computer.
Multiparameter: 2-4 ADC's to 1 computer.
Single events: $1 A D C$ processes pulse, other $A D C$'s outpur 0.
Coincidence events: all $A D C$'s process pulses; oucputs from ADC's merge into 12 bits controlled by bir programming.
Timing: at start of time to peak in the first ADC a delay timer starts. At the end of holdoff (variabie from 0.2 us to $>1 \mu 5$) delay a holdoff signal is applied to the normal coincidence inputs on all ADC's. Any ADC which has not yet detected a pulse will be held off for the event being analyzed. The coincidence window is, therefore, equal to the holdoff delay.

Multiplex: 1-16 ADC's to 1 compurer.
Priority: $A D C$'s are scanned at $>0.2 \mathrm{MHz}$ sate until one is ready. It outputs to computer, and when RFD is received scanning resumes. Scan can resume either with next ADC or with first $A D C$, by programming a jumper.
Memory region: cach ADC is assigned a 4 bit code (less for fewer ADC's). The code bits become the most significant bits of the output to the computer.

Control signals: from computer to ADC via interface. Each ADC may have the following functions controlled by a GPR card or equivalent: SVA/PHA mode; stabilizer on/off mode; sample inpur waveform-pulse; trigger stabilizer-pulse.

Ordering Information, price: please consult the factory.

NUCLEAR

Nuclear Instrument Modules

AEC compatible series
Models 5582A, 5583A, 5580A/B

Advantages:
TID-20893 compatible
Easy to operate
Versatile. research grade instruments
Model 5583A
The Hewlett-Packard Model 5583A Single Channel Analyzer is the most versatile instrument of its type ever offered. The 5583A has two basic modes of operation: single channel for pulse height analysis and dual integral where the discriminators operate as completely independent integral discriminators.
In the single channel mode, discriminator A may operate as $\triangle \mathrm{E}$ (narrow window) to determine the window width up to 1.00 V wide. The window is tied to discriminator B ($\mathrm{E}_{\mathrm{m} 1 \mathrm{n}}$) which determines the window's position relative to zero volts. Discriminator A may also operate as $E_{\text {max }}$; the two discriminators may then be raried independently over their range.

In the single channel mode there are outpurs triggered from both the leading edge and trailing edge of the input signal. The trailing edge outputs, fast negative and slow positive, are generated for input signals with amplitudes within the window limits. For single channel analysis work, this instrument may be strobed, either internally or externally.

A gate input allows the application of a +3 V signal to inhibit the output of the single channel analyzer.

The discriminators have a highly readable and in-line display of voltage $0.05 \cdot 10.05 \mathrm{~V}$, set by 10 -turn pots.

Model 5582A

The Hewlett-Packard Model 5582A Linear Amplifier is an original HP design which provides maximum fexibility. for nuclear pulse counting with all types of detectors and with a wide range of counting rates.

Front panel switches give the user his choice of pulse shaping for optimum response: integration and single or double RC differentiation, or single or double delay line shaping. Eight RC time constants from 20 ns to $5 \mu \mathrm{~s}$ are provided.
The delay lines are plug-ins, making a change easy if different time constants are needed. Shaping times from 1μ is to 100 ns are available. The standard 5582 A is sup. plied with $1 \mu s$ delay lines and these are temperature compensated for stability.

The fine gain control is variable from 2.00 to 5.00 by means of a 3 -turn pot with horizontal in-line gain markings which eliminate ambiguity in reading.

Model 5580A/B

The Hewlert-Packard 5580A/B NIM Power Supply provides output voltages required by AEC-NBS standards (TID-20893), houses any combination of modular instruments (NIM) in a sturdy bin, and promotes trouble-free operation by oversized power capability, blower cooling, and special protection circuits.

Total power output capability is 120 watts and current ratings allow heavy drain without overload: $\pm 24 \mathrm{~V}$ at 2 A , $\pm 12 \mathrm{~V}$ at 4 A , and $\pm 6 \mathrm{~V}$ at 5 A . Direct witing between each connector and the six supplies improves regulation. The 6 V supplies are particularly useful with integrated circuits.

The $5580 \mathrm{~A} / \mathrm{B}$ incorporates a number of features that prorect the nuciear instrument modules to which it is supplying power. A warning light advises the operator when operation could be marginal and protection circuits act auto. matically to prevent costily damage due to shorts and overloads.

The 5580 A and the 5580 B are electrically identical. Both are rack mount or bench top convertible, all hardware in. cluded. The 5580 A provides space for 11 single widths in the NIM configuration and is packaged to be compatible with the standard Hewlett-Packard modular enclosure system. The 5580B has space for 12 single widths and because of this has its side frames $1 / 2 \mathrm{in}$. wider than the standard HP enclosure.

Specifications
 5582A Linear Amplifler

Input

Polarity: positive or negative.
impedance: $1.5 \times \Omega$, de coupled.
Maxlmum voltage: 15 V peak, 15 V dc.
Gain
Range: 2 to 1280.
Resettability: one minor division (0.2% of full range at constant temperature).
Control: coarse, switch from 1 to 256 in binary steps. Fine, continuously rariable from 2.00 to 5.00 .
Pulse shaping
RC mode: integration, first and second differentiation: Time constants for each, $0.02,0.05$ and 0.1 to 5μ in $1,2,5$ sequence. Delay line mode: single or double; $1 \mu s$ delay lines (plug-ins) are standard; others are available.
Amplifier
Rise time: $<40 \mathrm{~ns}$, typicaily 25 ns .
Bandpass: 2 kHz to 6 MHz , typical.
Stability: gain shift $<0.05 \% /{ }^{\circ} \mathrm{C}$, typically $0.02 \% /{ }^{\circ} \mathrm{C}$.

Output

Amplitude: $\pm 10 \mathrm{~V}$ except $\pm 5 \mathrm{~V}$ ac 0.02 and $0.05 \mu \mathrm{~s}$ differentia . tion time constants.
Impedance: $<5 \Omega$; minimum load 90Ω.
Polarity: positive and negative.
Delay: 65 ns, relative to inpur, rypical.
Linearity: integral, $<0.3 \%$; differential, $<1 \%, 0.3 \%$ below 8 volts (typical).
Noise: $<15 \mu \mathrm{~V}$ RMS referred to inpur at maximum gain.
Crossover walk: < $\ddagger 0.5$ ns.
Count rate shift: $<0.05 \%$ with inputs $1010^{\circ} \mathrm{CPS}$, ripical.
Overload recovery: from a 200 x orerload to 2% of baseline in less than 3 non-overload pulse widths.
Gain control Input: for extemal fine gain control: BNC.
Power required: $+24 \mathrm{~V}, 260 \mathrm{~mA}_{\mathrm{i}}-24 \mathrm{~V}, 325 \mathrm{~mA}$.
Preamp power out: +24 V (TNC connertor).
Price: $\$ 550$.
Option 01: 5382A without delay lines, $\$ 500$. With special delay lines installed, add $\$ 75$. Plug-in delay line kits (each has two delay lines): $\$ 75$.

Thme Consfant, ns	$\begin{gathered} \text { Dalay LIna } \\ \text { Kits } \end{gathered}$	5682 A whth Spaolal Delay Lines Installed
100	K01-5582A	H01-5582A
200	K02-5582A	H02.5582A
300	K03.5582A	H03-5582A
400	K04.5582 A	H04-5582A
500	K05.5582A	H05.5582A
600	K06.5582A	H06-5582A
700	K07.5582A	H07.5582A
800	K08-5582A	H08.5582A
900	K09.5582A	H09-5582A

5583A Single Channel Analyzer

Modes of operation
Single channel- $\triangle E$: pulses becween $E_{m i n}$ and $E_{m u l u}+\Delta E$.
Single channel- $E_{m a x}$: pulses berween $\mathrm{E}_{\text {rin }}$ and $\mathrm{E}_{\text {max }}$.
Dual Integral: pulses greater than $E_{m a n}$, two channels.
Multiple pulse resolution: 200 ns.
Input clrcult: ac coupled, 1 ms time constant. Impedance is 500Ω, single channel; 1 ksl , dual integral.
Input signal: so mV to 10 V . Unipolar positive or bipolar with positive portion leading (negative on special order). Discriminator sensitivity to a 30 ns wide pulse drops to 90% of nominal. Nominal is defined as NaI-shaped pulse with rise time constant $0.25 \mu_{5}$ and decay time constant $1 \mu \mathrm{~s}$.

Discriminator Ranges

$\mathrm{E}_{\text {Tin }}$ and $\mathrm{E}_{\text {mut }}$: adjustable from 0.05 V to 10.05 V .
ΔE : adiustable from 0.005 V to 1.005 V .
Emin bias input: allows external control of lower level discriminator, I V to sican complete range.
integral linearlty: $\pm 0.25 \%$ of full scale.
Temperature stabisity: $<0.01 \% /{ }^{\circ} \mathrm{C}, \mathrm{E}_{\text {mux }}$ and $\mathrm{E}_{\mathrm{ruln}}:<0.1 \% /{ }^{\circ} \mathrm{C}$,
$\triangle \mathrm{E}_{\text {; }}$ change over $0.55^{\circ} \mathrm{C}$ with de voltage tolerance per TID. 20893.

Spurious output pulses ("leak through"): none for input pulses ourside windorr (as measured with Co.57).
Strobe input: 0.6 V negative and 15 ns wide (min.), ac coupled. Gate input: $>+3 \mathrm{~V}$ inhibits single channel outputs (dc coupled),
Outputs: avilable in all three modes; dc coupled, conform to AEC preferred practice logic.

Output	Pulse		Trlggered From
	Amplitude	W/dth	
Dual Integral A and B	$\begin{aligned} & +5 \mathrm{~V} \text { into } \\ & 100 \Omega \\ & +6 \mathrm{Vopen} \\ & \text { crcuit } \end{aligned}$	100 ns	Leading edge of input pulse.
Single Channel Positive			Tratling edge of input pulse or from strobe input.
Negative	$\begin{gathered} -0.8 \mathrm{~V} \text { into } \\ 50 \Omega \end{gathered}$	$20 \mathrm{n5}$ (5 ns rise time)	

Power required: $\div 24 \mathrm{~V}, 225 \mathrm{~mA} ;-24 \mathrm{~V}, 190 \mathrm{~mA} ; \div 12 \mathrm{~V}$, 10 mA .
Price: 5583A. $\$ 550$.

5580A/B NIM Power Supply

Outputs, de: $\pm 24 \mathrm{~V}$ at 0 to 2 A ; $\pm 12 \mathrm{~V}$ at 0 to $4 \mathrm{~A} ;=6 \mathrm{~V}$ at 0 to 5A. Alaximum oulput power, 120 W .
Outputs, ac: 115 V at line frequency.
Regulation: line, less than 0.05% for a 10% change. Load, ourput impedance $<0.040 \Omega \mathrm{dc}:<0.3 \Omega$ at 300 NHz .
Temperature coefficient: $0.02 \% /{ }^{\circ} \mathrm{C}$.
Ambient operating temperature: 0 to $55^{\circ} \mathrm{C}$.
Noise and ripple: peak to peak 3 mV .
Recovery time: ceturns to within 0.1% of specified output within $50 \mu \mathrm{~s}$ for a iA load current change.
Input line voltage: 105 to 129 V or 210 to 250 V , 50 to 60 Hz .
Price: 5580 A (11 modular widths), $\$ 775$. 5580 B (12 widths). $\$ 825$.
Options: for applications not requiring the full set of ourput voltages.

Option	Power Supplies Inoludes'	6680A	6580 B
01	$=24 \mathrm{~V},=12 \mathrm{~V}$	$\$ 725$	$\$ 775$
02	$\pm 6 \mathrm{~V}, \pm 24 \mathrm{~V}$	$\$ 725$	$\$ 775$
03	$=6 \mathrm{~V}, \pm 12 \mathrm{~V}$	$\$ 725$	$\$ 775$
04	$\pm 6 \mathrm{~V}$	$\$ 675$	$\$ 725$
05	$\pm 12 \mathrm{~V}$	$\$ 675$	$\$ 725$
06	$\pm 24 \mathrm{~V}$	$\$ 675$	$\$ 725$

Options 01.06 can later be expanded to full capability by the addition of plug-in regulator board(s): the circuit is tuned to produce $\pm 24, \pm 12$ or ± 6 volts. Model 05580-6004, 575 .

Common Specifications

Operating temperature: $01059^{\circ} \mathrm{C}$.
Connector block, power: AMP 202515.5.
Connectors, signal, Inputs and outputs: BNC.
Dlmensions: standard double-ridith module (5582A and 5583A) 2.703 in . wide by 8.709 in , high by 10.487 in . deep ($68.6 \times 221 \times$ $266,0 \mathrm{~mm}$).
NIM power supply 5580A/B; mechanical tolerances provide for use of the $5580 \mathrm{~A} / \mathrm{B}$ with standard AEC modular instrumentation (TID-20893). 5580A (hold's 11 modular widths): 10.15/32 in. high by $163 / 4 \mathrm{in}$. wide by $193 / 8 \mathrm{in}$. deep ($266 \times 425 \times 472 \mathrm{~mm}$). 5580 B (holds 12 modular videths) : $10-15 / 32 \mathrm{in}$. high by $171 / 4$ in. wide by $193 / 8 \mathrm{in}$. deep ($266 \times 438 \times 472 \mathrm{~mm}$).
Weight: double width module ($5582 \mathrm{~A}, 5585 \mathrm{~A}$) net 3.6 lbs (1.6 kg) ; shipping $5 \mathrm{lbs}(2.3 \mathrm{~kg}$). $5580 \mathrm{~A} / \mathrm{B}$, net $35 \mathrm{lbs}(15.9 \mathrm{~kg}$); shipping $40 \mathrm{lbs}(18.2 \mathrm{~kg})$.
Cables, terminations, and accessories: HP 10519A 50 ohm 6 t. long, BNC connectors, \$7. HP 10517A cable 6 ft . long, TNC connectors, \$8. NTM Power Supply Extender Cable 10521A for ease of servicing modules, $\$ 35$. HP 10510A 50.0 hm BNC termination, $\$ 5$. HP 10:00A 50 -ohm feedthrough termination, $\$ 15$. HP 10100B 100 -ohm feedthrough remination, Si8.

5584A

Advantages:

TID- 20893 compatible Ourstanding performance

Models 5584A, 5585A

The HP 5584A Dual Timing Pickoff determines the times of occurrence of pulses from up to two independent channels, each of which can receive pulses from an amplifier such as the HP 5554A. Preamplifier or the HP 5582A Linear Amplifier and can derect either the leading edge or zero crossing. Output pulses follow by delays independently ser and can be used to gate orher instruments such as the HP 5585A Fast Coincidence and the HP Multichanel Analyzers. A special feacure is an external delay sweep capability for Channel A.

The HP 5585A Fast Coincidence accepts input pulses from up to four channels from such instruments as a strobed single channel analyzer or a dual timing pickoff and examines them over a time period as short as one nanosecond. Pulses which meet your selection of coincidence/anticoincidence criteria erigger an output pulse to drive a scale-timer, to gate or direct routing in a multi-channel analvzer, or to activate further pulse selection circuitry. Outstanding performance: resolving time jitter (chance counting to full) is less than 0.5 ns, typically 0.2 ns, makes possible neaningful resolving times of down to 1 ns .

These double-width NIM instruments accept power from an AEC-rype supply such as the $5580 \mathrm{~A} / \mathrm{B}$ NIM Porier Supply. Outputs are AEC preferred practice slow and fast logic.

Specifications
 5584A Oual Timing Pickoff

Zero crossing detection: two independent channels; each generates a pulse with an adjustable delay following the zero crossing.
Leading edge detection: two independeat channels; each generates a pulse with an adjustable delay following the input LE.
Zero crossing and leading edge: one channel responds as above to each.
Multiple pulse resolution: $100 \mathrm{~ns}+$ delay time.
Crossover walk (ZC mode): 5 ns over range 50 mV to $10 \mathrm{~V} ; 2 \mathrm{~ns}$ over 100 mV to 2.5 V .
Temp stability: resolving time, $<0.2 \mathrm{~ns} /{ }^{\circ} \mathrm{C}$ over nanosecond delar ranges.
Threshold: for each channel, adjusts over range set by mode selector switch.
Delay A: swirch selects delay range for Channel A, 0.1-1.1 $\mu \mathrm{s}$ or $1-11 \mu \mathrm{~s}$. Front-panel 10 -urn pot. adjusts delay continuously. Srreep input can also control delay.
Delay 日: 10 -position switch adjusts Channel B delay from 200 ns to $1 \mu \mathrm{~s}$ in 200 ns steps and from $2 \mu \mathrm{~s}$ to $10 \mu \mathrm{~s}$ in $2 \mu \mathrm{~s}$ steps.
Input A and Input B: switches select polarity for inputs in LE mode.
Indicators: lamps indicate proper polarity for inputs: Decimal point, Delay A display.
Inputs, Channels A and B : accept pulses berween threshold and $10 \mathrm{~V} ; 1 \mathrm{kN}$. For LE mode, either polarity, ac coupled, 100 ns time constant; for ZC. pos. bipolar, dc coupled.
Input, sweep: 0 to 5 V sweeps " A " delay from setting to setting plus 100 ns (low range), plus 1μ s (high range); $4.75 \mathrm{k} \Omega$, dc coupled.
Outputs, Channels A and B: output pulses are triggered by the terminations of the delay periods.
Positive: nominally +5 V into 100Ω, 100 ns width, de coupled.
Negativa: nominally -0.8 V into 50 ?, 15 ns ridth, 5 ns rise time. de coupled.

5585A Fast Coincidence

Multiple pulse resolution: for coincidence measurement, $<200 \mathrm{~ns}$ (ryp. 150 ns) plus resolving time, a .
Asymmetry: for $->2 \mathrm{~ns}$, within $0.75 \mathrm{~ns}+1 \%$ of dial reading (negative inpurs). For coincidence-anticoincidence work. multiple pulse resolution time (see rech. data sheet),
Chance counting to full: short term variation in τ is <0.5 ns (type 0.2 ns).
Temp stability: resolving time. $<0.2 \mathrm{~ns} /{ }^{\circ} \mathrm{C}$ over range.
Inputs: coincidence, 3 sricchable pairs, separate pos, and neg: andicoincidence neg. accepts 0.6 to 10 V pulse >1s ns; pos.. 2 to 12 V . When off, pulse has no effect.
Outputs: positive, negative, live time. Positive is -5 V into 100Ω. width factory ser to 100 ns (80 ns to 500 ns) ; negative is -0.8 V into $50 \Omega, 20$ ns width, 5 as rise. AlI dc coupled.
Resolving time control: 10-tum pot, in line display, 1 ns to 100 ns contisuous.

Common Specifications

Temperature range: 0° to $\div 55^{\circ} \mathrm{C}$.
Power required: $5584 \mathrm{~A},+24 \mathrm{~V}, 350 \mathrm{~mA} ;-24 \mathrm{~V}, 170 \mathrm{~mA}:+12$ $\mathrm{V}, 280 \mathrm{~mA} ;-12 \mathrm{~V}, 300 \mathrm{~mA} .5585 \mathrm{~A},+24 \mathrm{~V}, 60 \mathrm{~mA} ;-24 \mathrm{~V}, 50$ $\mathrm{mA} ; \pm 12 \mathrm{~V}, 400 \mathrm{~mA}$. Can be supplied by $5580 \mathrm{~A} / \mathrm{B}$ NIM Power Supply.
Dimensions: standard double-width module.
Weight: 5584 A, net, $4 \mathrm{lb}, 202(1,9 \mathrm{~kg})$; shipping, $5 \mathrm{ib}(2,3 \mathrm{~kg})$. 5585 A, net, $3 \mathrm{lb}, 10 \mathrm{oz}(1,6 \mathrm{~kg})$; shipping, $5 \mathrm{lb}(2,3 \mathrm{~kg})$.
Price: $5584 \mathrm{~A}, \$ 900.5585 \mathrm{~A}, \$ 900$.

NUCLEAR

Advantages:

Scaler and Timer

In-line lighted display
Dual (count and time) printout
100 ns pulse resolution

Model 5590A

In one compact package, the HP 5590A Scaler-Timer combines scaling and timing (two separate registers), dual preset of count and time, integral discrimination, in-line display, and 8421 BCD printer output including format and printer-paper advance information. Both count and time can be separately preset for the same measurement with the interval terminated by the one that firse limits.
Readout is a row of 6 (optionally 7) digital display tubes easily read. Lighted indicators tell at a glance whether the display shows Count or Time, and also status. Display stor. age holds each measurement in readout until the next one is complete.

The 5590 A is easy to use: pushbuttons command it, lever switches program it, and thumbwheels set the exact preset numbers you want (no confusing scale factors required).

Pulse resolution is better than 100 ns , and a crystal time. base provides accurate timing intervals.

The 5590 A is a 4 -width module in Hewlert-Packard's NIM series compatible with standard AEC modular instrumentation (TID-20893). It is a key unit for building nuclear measurement systems with maximum capability.

Specifications
 5590A Scaler.Timer Performance

Resolving time, signal Input: 100 ns .
Resolving time, ext clock input: 100 ns; $0.5 \mu \mathrm{~s}$ with lever swich at Presat Time.
Count input sensitivity: 100 mV peak 20 ns width at half max. Max inpus rise time limited by 1 ms input IC.
Accuracy: ± 1 count, \pm time base accuracy.
Crystal time base accuracy: $< \pm 5$ parts in 10^{8} with temp scability' berter than ± 5 parts in 10^{5} over range.
Temperakure range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Controls
Pushbuttons: RESET, START, STOP DISPLAY COUNT, and DISPLAY TIME
Preset thumbwheel switches:
Preset count: range (1 to 1999) $\times(10,100$, or 1000).
Presat time: range 0.1 to 999.9 s or min or 2 to 9999 external units.
Lever switches: Function, Presel-Count, Print, Storage, Prese: Time, Time Unit.
Discriminator level potentiometer with preset detent: adjuses discrimination level from 0.1 V to 10 V or sets is at the PRESET value.
Proset screw adjust: factory set 10100 mV . Adjustable from -1 V to +10 V .
Digital display tubes: 6 decades.
Illuminated decimal point: Defines 0.1 time unirs.
Condition indicator: OVERFLOW, ARMED, GATE ON: COUNT, and TIME.

Inputs
Count: berween discriminator and $\perp^{20} \mathrm{~V}$ when LEVEL/PRESET is pos. (disc. and -20 V when LEVEL/PRESET neg.) BNC. 1 kS , as coupled.
External clock; standard AEC pulse +4 to $-12 \mathrm{~V},>30 \mathrm{~ns}$.
Absolute maximurn +25 V . $\mathrm{BN} \mathrm{C}, 3 \mathrm{k} \Omega$. dc coupled.
Accessories Input (24 pin):
Start, stop: $\dagger 4 \mathrm{~V}$ pulse, +25 V max, $>200 \mathrm{~ns}$ ($3 \mathrm{k} \Omega$, dr coupled).
Reset: +4 V pulse, $\dot{+} 15 \mathrm{~V}$ max, $>200 \mathrm{~ns}$ (510Ω, de coupled)
Recycle inhibit: +4 Vdc min, $+25 \mathrm{~V} \max (3 \mathrm{k} \Omega)$. Outputs
Gste: open, +5 V (120Ω source); Closed, 0 V (2.2 $\mathrm{k} \Omega$ soutce $)$.
Printer (50 pin):
Data: 4 .line 8421 BCD " 1 " sate positive: " 1 " state level, 5 V ($2.7 \mathrm{k} \Omega$ source) : " 0 " state lecel, $<+0.4 \mathrm{~V}$.
Reterence levels: $+4.5 \vee$ (120Ω source) and 0 V (Ground).
Print command: +12 V pulse، 200 ns wide (120Ω source).
Paper advance: +8 V puise (1 ko source).
Inhibit: hold-off, +4 V dc min, $\div 25 \mathrm{~V} \max (3 \mathrm{k} \Omega)$.
Accessories (24 pin):
Gate output: same as gare output abose.
Reset output: +5 V pulse, >200 ns wide (120Ω source).
Line power detector output: -5 dc ($5 \mathrm{k} \Omega$ source).
$2 \mathrm{q} V$ dc Supply.
$+24 V d c$ (TNC connector): 10 power scintillation derectors and amplíners.

General

Power requirements: $117 \mathrm{Vac}, 35 \mathrm{~mA} ;+24 \mathrm{~V}, 45 \mathrm{~mA} ;-24 \mathrm{~V}$. $30 \mathrm{~mA} ;+12 \mathrm{~V}, 150 \mathrm{~mA} ;+6 \mathrm{~V}, 1.4 \mathrm{~A}$.
Dimensions: srandard NTM four-width module, $5.407^{\prime \prime}$ wide x $8.709^{\prime \prime}$ high ($137.3 \times 221,2 \mathrm{~mm}$) per TID. 20893 (Rev. 2).
Weight: net, $6 \mathrm{lb}(2,7 \mathrm{~kg})$; shipping. $8 \mathrm{lb}, 7$ oz (3.8 kg).
Price: $\$ 1.675 .00$.
Options:
Option 01: 60 Hz line-frequency time base: less $\$ 75.00$.
Option 02-7 digiral displap cubes in readour; add $\$ 50.00$.
Accessories furnished: HP 10519 A so Ω cable, $6 \mathrm{ft}, \mathrm{BNC}$ con. nectors. Circuit board extender.

Advantages:

Detectors for α, β, γ counting
Lowest backgrounds available
Auromatic and manual modes

Systems 5561A-5565A

Hewlett-Packard Nuclear Counting Systems are built around the 5560A Automatic Sample Changer. These systems offer a selection of detectors including gas-flow detecrors with ultra-low background down to 0.1 count per minute. Sample holder caparicy is 120 planchets of popular sizes. Printout inclucies sample number, count, and time. Oursranding performance, versatiliny, and Gexibiliry aptly describe these systenis, which can serve analytical and experimental needs in physics, chemistry, health physics, nuclear medicine,environmental monitoring, meteorology, the biosciences, and other areas where multiple sample councing is reguired.
The Hewlett-Packard Nuclear Counting Systems are high-performance, rugged systems planned for daily use. These systems are very easy to operate and are ideal for routine use in assessing massive numbers of samples.
An important benefit for the experimenter comes because these systems are combinations of individual state-of-the-art nuclear in. struments that can easily be withdrawn for nuclear experiments when the changer is not required. This versatility is economic justification for purchase of a changer syseem for casual use. Also, these systems are easy to modify or expand. For example. it is easy to add the HP 5400A Multichannel Analyzer or adapt for computer-controlled operation and data analysis via interface to the Hewlett. Packard com. puter systems.
Each system includes a sample changer with both an automatic changing mechanism and a manual drawer, and a detector, preamplifier, scaler-timer, printer, high-voltage power supply, and NIMC bin to hold and power the modular instruments. In addition, systems employing a guard detector include an anticoincidence unit, and propertional systems for use at high count rates have a linear amplifier for the same detector. The scintiliation system has, in addition. a single channel analyzer.

Systems 5561A and 5562A

These gas-flour counting systems offer the lowest backgrounds available for $c y$ and β counting. With a background as low as 0.1
cpm, it is possible to measure low-level environmental contaminants not previously open to analysis with good statistical accuracy

Both systems include a 120 -holder capacity automatic sample changer with manual drawer: 4 in., $4_{\text {T. }}$ lead shielding: guard derector; choice of three sizes of detector windows; thin or microthin windows; proportional or Geiger modes; dual preset count/time; and printout of sample number, count, and time. If count rate is expected to routinely exceed abous 50,000 counrs per minute, choose system 5562A; this system includes the 5582A Linear Amplifier for pulse shaping. A summary of important specifications follows:

5561 A Gas-Flow Counting Systems
WIth Ultra-Low Background

Backpround 00 m	Wlasow, Senaitivo Dia,	Dynsmberang for <1\% Lofer, 19 回	Dellector Mode	Systom Numbert
<0.1	0.5 in .	$\begin{aligned} & 2 \times 10^{4} \mathrm{cpm} . \\ & \text { Gelgeri } \\ & 5 \times 10^{4} \mathrm{cpm} . \\ & \text { Propor. } \end{aligned}$	Geiger	5561A
tyd, $00 B$			Plogor.	55FIA, OD. 05
<0.5	$12 \mathrm{in}$.		Cieiger	556]A, Op, O6
tyD. 0.38			Propar.	5561A. Op. 07
<1.3	2.2 ln.		Ceiger	5581A. Op. 08
tyo. 1.2			Propor.	5561A. Op. 09

5562A Gas.Flow Counting Systems
Ultra-Low Background for High Count Rates

$\begin{aligned} & <01 \\ & \text { typ, } 0.08 \end{aligned}$	0.5 ln .	10^{8}	Propor.	5562R, 00. 05
$\begin{gathered} <0.5 \\ \text { typ. } 0.38 \end{gathered}$	1.2 in.			5552A, 09. 07
$\begin{gathered} <13 \\ \text { tyo. } 1.2 \end{gathered}$	2.2 ln .			5562A, Op. 09

The multiple anode design of the detectors imparts a high uni. formity of efficiency: within $\pm 5 \%$ over the area vicwed. This excellent uniformity allows meaningful, repeatable measurements of non-uniform samples (radio-active deposits are notorious for nonuniformiry).

Systems 5563A and 5564A

These systems offer low backgrounds for a wíde range of counring needs not reguiring the ultimate in background reduction. System 3964 A is for high count rates.

Both systems include a 120 -holder-capacity automatic sample changer with manual drawer; 2 in ., 4_{π} lead shield; choice for detector of window sizes, thicknesses; operating modes; dual preset count/ sime, and printou: of sample number, count, and time.

System 5565A

In this system, the gas-flow detector is replaced with a scintillation detector, and a single channel analyzer is added to make it possible to count a selected range of gatams-ray or $x-r 2)^{\prime}$ energies,
A $2 \times 2 \mathrm{in}$. NaI (Tl) crystal is standard, packaged with its photomultiplier and its preamp-amplifier. On special order, a 3×3 in. crystal is availabie.
For coincidence work, a second detector can be positioned beneath the sample cavity. For X-ray work, a special detector offering ex. cellent sensitivity and low gamma-ray background is available; consult the Factory.
All systems include a 120 -hoider-capacivy automatic sample changer with a 4 in . lead shield; a single channel analyzer, dual count/inne preset; printour of sample number, count, and time. A valuable accessory is the 3582A linear Amplifer for pulse shaping.

Semiconductor detector

The versatile 5560A can be supplied on special order for use with the customer's selection of compatible semiconductor detectors.

Specifications

Brief specifications for the 5560A Automatic Sample Changer and for Systems are presented here. See nearby catalog pages in the nuclear secuion for specifications relating to other ssstem components, or refer to the 5560A Systems brochure available upon request from the Factory.

Automatic sample changer (HP 5560A)

Planchet-holder capaclty: 120 drum, 1 manual drawer.
Method of loading: magazines of 10 holders each, random access and 1 holder by manual drawer,
Planchet slzes: standard holder is recessed to accept the common planchet sizes from $1 / 2^{\prime \prime}$ to $2^{\prime \prime}$. Holders to accept sizes up to 2" dia, $x 3 / 4^{\prime \prime}$ deep a are available on request.
Holder and magazine color: blue gray.
Transport system: motordriven chain in horizontal guided channel and manual drawer.

Controls:

Pushbuttoas: START, STOP, STORE, NEXT SAMPLE
CYCLE MODE switch: SINGLE and CONT.
MULIPLE COUNT switch: 1 through 10 and CONT.
Gas-Flow Valve: 0.01 to 0.08 SCFH.
Indlcators: Sample Number, SAMPLE POSITION-CAVITY, SAMPLE POSITION TRANSIT, MANUAL MODE, ON/ OFF, and CAUTION (when off, indicates drum is released for manual positioning.)
Dimensions:

Detectors, shielding, and guard

Gas flow detectors: Geiger or Proportional.
Sensitive whdow diameters: $2.2^{\prime \prime}, 1.2^{\prime \prime}$, or $0.5^{\prime \prime}$ "
Window density: $585 \mu \mathrm{~g} / \mathrm{cm}^{2}$ scandard. $<100 \mu \mathrm{~g} / \mathrm{cm}^{2}$, optional.
Detector efflciency for $\mathrm{C}^{14} \beta:>24 \%$ (std window), $>32 \%$ (μ thin windows).
Detector etficiency for $\mathrm{Sr}^{\mathrm{ro}} \beta$: $>45 \%$ (std and μ thin windows).
Detector efficiency for $\mathrm{Pu}^{24} \alpha^{:}>25 \%$ (sid window), $>32 \%$ (μ thin window).
Uniformity of efficlency: < $=5 \%$ over central 90% window area.
Operating voltages: typically $850 \pm 50 \mathrm{~V}$ (Geiger), 1050 ± 50 V (α prop), $1450 \pm 50 \mathrm{~V}$ (β prop).
ScIntillation detectors:
Crystal: $2^{\prime \prime}$ dia x $2^{\prime \prime} \mathrm{d}, \mathrm{NaI}(\mathrm{TI}), 3^{\prime \prime}$ dia $\times 3^{\prime \prime} \mathrm{d}$ on sperial order. Crystal window: $0.015^{\prime \prime} \mathrm{Al}$
Resolution: $<8 \% \mathrm{FW} / \mathrm{HM}$ (Cs^{126} photopeak).
Shleiding: $4^{\prime \prime}$ or $2^{\prime \prime}, 4_{\pi}$, low-background lead in gas-flow systems. $4^{\prime \prime}$ low-background lead in scintillation systems. $1 / 4^{\prime \prime}$ OFHC copper on bottom of cavity. $1 / 8^{\prime \prime}$ OFHC copper between guard and sample detectors.

Guard detector: gas-flow detector, ultra-low background systems only. Operating voltages, $850 \pm 50 \mathrm{~V}$ (Geiger), $1450 \pm 50 \mathrm{~V}$ (prop). γ-anticoincidence loss nominally 0.01%.
Background: ultra-low background gas.fow systems, $<0.1 \mathrm{cpm}$ ($0.5^{\prime \prime}$ window), $<0.5 \mathrm{cpm}$ ($1.2^{\prime \prime}$ window), $<1.5 \mathrm{cpm}$ (2.2" window). Standard-background gas-fow syscems, $<3 \mathrm{cpm}$ ($0.5^{\prime \prime}$ window), <9 cpm (1.2" window), <24 cpm (2.2" window).
Maximum count rate for 1% counting loss. $2 \times 10^{\prime} \mathrm{cpm}$ (Geiger), $5 \times 10^{4} \mathrm{cpm}$ (prop), $10^{3} \mathrm{cpm}$, systems for high count rates.
Outputs: gross detector counts, gross guard counts, and net councs are available from front panel connectors.

General

Operating voltage: 115 V or $230 \mathrm{~V}, 60 \mathrm{~Hz}, 50 \mathrm{~Hz}$ opionally available. (Specify 5s51A High-Voltage Supply, Option 01.)
Gas required: $99.05 \% \mathrm{He}, 0.95 \%$ isobutane for Geiger detector; 90% Ar, 10% methane for proportional detector. Pressure 5 PSIG recommended, 10 PSIG maximum.
Gas Input connector: accepts $1 / 4$ " copper tubing; adapter supplied for $0.094^{\prime \prime}$ I.D. plastic gas tubing.
Gas consumption: 0.07 SCFH ($33 \mathrm{cc} / \mathrm{min}$). A $200 \mathrm{ff}^{2}$ gas tank will lase abour 4 monchs with continuous fiow.

Nuclear counting systems

The table which follows indicates which instruments make up each system.

System components

Syolom Camporants Systems		Gan-riow S1Andard Bakyround 55884 6584	Solt illiailan 6585A
5560A Automate sample changer	ठ	T	\checkmark
5580 A Nim power supply	\bigcirc		,
5551A R1gh-voltaga dower supply	\bigcirc	\square	-
H062-5050ג Digltal r6eorder	0 -	-	\bigcirc
5354A Preamplifior (in 55602)	06	\bigcirc	$=$
5582A Linear amplifir	\checkmark		1
5383A Single-chaninel analyzer	-		
5590A Scaler-kmer	3	0	5
Gas- Ilow deloctor (Size. made depands on system) it	-	0	
Qusid deteclor	0		
jesola Scintilation detecto?			\bigcirc

- Nas(Ti) 2×2 in., preamplliar inchuded.
t5582A a recommended accessory.
ttGelger $0.5^{\prime \prime}$ dia furnished untess option is ordered.
The following table shows options which are available to help you tailor your nuclear counting system to your exact needs.

Options

Option 01	Remove manualdrawer
Option 02	Ada a second $\boldsymbol{2} \times 2 \cdot \mathrm{~m}$. Nal (TI) delector below cavlty**
Optian 0.3	Add deep planchel holder; remove shatlow holder
Option 04	Ramove samplo number readout
Option 05	Proporlional, 0.5 in dia \uparrow
0 dilor 06	Goiger, 1.2 jn . dhot
Ootion 07	Proportionas, 1.2 in. dlat
0 Oilon 08	Geiger, 2.2 in. dla \dagger
Option 09	Proporthonal, z_{2} da a diot
0 ation 10	Galger, 0.5 in . datt
Option IT	Proportional, $0.5 \mathrm{in}, \mathrm{drah} \dagger$
Option 12	Getger, 1.2 jn. disp ${ }^{\text {t }}$
option 13	Proporlonal, 1.2 in. dialp
Oplion 14	Gelger, 2.2 ln , diat
Oplion 13	Proporional, 2.2 in. Gipht
Option 16	Substitute microthin wirdow, 0.5 in. detector
Option 17	Substiuta microthía window, 1.2 in . detactor
Optton 18	Sutstitute microthin window, $2,2 \mathrm{ln}$. detector
Opilon 19	Modily lor scintiliation detector

* Second 5551A High-Voltege Power Supply required; not furnished.
fFor 5581A, 5562A.
ft5or 5553A, 3564 A .
Power requirements and weights

	Powers Wotto	Shipplar Wi. Inglimesentis	8hipprag Wh.,	
5560A Sample changer	90	85	-	85
5561 A system	380	216	692	908
5562A	425	226	592	918
5563A	380	208	270	478
5564A systern	380	213	270	483
55i5d system	400	221	592	913

Price; depends upod system components selected. A typical ultralow background system is $\$ 10,555$.

Advantages:

Preset time or count Output for HP printers 6-digit in-line readout 200 ns pulse resolution Output for ratemeter Highly stable
The Hewlett-Packard scaler-timers allow wide fiexibility in nuclear counting applications. The HP 52012 Scaler-Timer has a single-channel pulse height anaiyzer that allows manual or automatic spectrometry. In manual operation, the two integral discriminators have a digital (voltage) readout, and the discriminatoc levels are stable to 0.01% per ${ }^{\circ} \mathrm{C}$ ful! scale. In automatic operation, the lowec level discriminator may be scanned by application of an external roltage.

The HP 5201 L and 5202L differ in that the pulse height analyzer in the 5201 L is replaced by a simple integral dis. criminator in the 5202L. Both may be used to totalize counts, count for a preset time or register time for a preset number of counts to occur. They have selectable preset count times in integral multiples of 0.1 second or 0.1 minute and utilize the power line frequency as the time base. Sampling mode may be either automatic or manual. The HP 5203 L Scaler may be either manually operated or externally gated. It may be slaved to a 5201L or a 5202 L .

All of the scalers and the scaler-timers have the same input counting capability with multiple pulse resolution of 200 ns. A binary-coded-decimal (BCD) output for driving HP digital recorders or other devices is provided in these instruments as a standard feature.

The compact modular cabinet design gives high parta. bility, maximum utilization of space. plus the ability to convert quickly from bench to 19 in. rack mounting configuration (all conversion hardware included at no extra cost).

Specifications, 5201L

General

Resolving flme: preset time mode, 200 ns , preset count mode $10 \mu \mathrm{~s}$.
Maximum periodic count rate: preset time mode, 5×10^{4} counts/s; preset count mode, 1×10^{3} counts $/ \mathrm{s}$.
Preset count times: 0.1 s to 9.999 .9 s in 0.1 s steps; 0.1 min ro 9.999 .9 min in 0.1 min steps.
Sampling modes: "AUTO" position allows repeat of count at sampling rate. Sample time is 200 ms plus count time. "MANUAL" position requires that "START" button be depressed to start sample.
Accuracy: ± 1 count \pm time base accuracy.
Time base: power line frequency (typicaliy $\pm 0.1 \%$ or better). 100 kHz crystal time base optional).
Gate In: gate opens with external de level $>+5 \mathrm{~V}$ and $<+20 \mathrm{~V}$. Gate closes with de level $<+2 \mathrm{~V}$.
Gate out: $>+15 \mathrm{~V}$ when gate open, $<+2 \mathrm{~V}$ when gate closed.
Reset: front panel pushbutton,
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 60 \mathrm{~W}(50 \mathrm{~Hz}$ version optional).

Temperature range: $-0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
+20 V power supply: output through rear TNC.

Pulse height analyzer

Modes of operation: (a) integral; (b) differencial with nar. row window; and (c) differential with wide window.
Input clrcult: ac coupled. Impedance 500 ohms. Maximum input pulse rise time is determined by 1 ms input time constant.
Polarlty: positive or negative (selectable).
Output: nominal 0.5 V pulse into 50 ohms for ratemeter input.
Nal (TI) scintillation counting performance
Discriminator ranges: $E_{m a s}$ and $E_{m a r}$ are adjustable from 0.05 V to $5.0 \mathrm{~V} .{ }^{*}$
$\triangle E$ range: adjustable up to 0.9 V .
Discriminator stabllity: $\pm 0.01 \% /{ }^{\circ} \mathrm{C}$ full scale ($\pm 0.5 \mathrm{mV} /$ ${ }^{\circ} \mathrm{C}$) change in $\mathrm{E}_{\mathrm{mln}}$ and $\mathrm{E}_{\text {max }}$ and less than $\pm 0.1 \%,{ }^{\circ} \mathrm{C}$ of full scale $\left(\pm 0.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$ change in $\triangle E$ over 0 to $+55^{\circ} \mathrm{C}$ and with $\pm 10 \%$ line voltage variations.
Integral IInearity: $\pm 0.25 \%$ of full scale.
5 MHz scaler pertormance (integral mode only) Muttiple pulse resolution: 200 ns.
Minimum puise requisements: 40 ns minimum pulse width, 0.1 V peak.
Functlons
Preset time: displays number of counts during preset time interval of 0.1 s or 0.1 min , x preset number N .
Preset count: displays number of 0.1 sec or 0.1 min intervals required for N counts to occur.
Preset range: "N" number selectable I to 99.999 on rhumb. wheel switches.
Manual: counts from discriminator are rotalized for (a) time between pushbutton START-STOP; or for (b) time dura. tion of a de level applied at rear connector. (See Gate In, above.)

Specifications, 5202L
(same as 5201L except as follows)
Pulse Helght Analyzer:
Low'er level only.
Input pulse sange: 0.1 to 5.0 V (max peak pulse amplitude).
Level adjustment: variable over small range around 80 mV (factory setting).
Input circult: ac coupled. Impedance 1000 ohms. Maximum input pulse rise time is determined by 1 ms input time constant.
Minimum pulse requirements: 40 ns minimum pulse width.
Multiple puise resoiution: 200 ns.

Specifications, 5203L

General

Resolving time: 200 ns
Maximum perlodle count rate: 5×10^{8} counts/s.
Gate In: gate opens with external dc level $>+5 \mathrm{~V}$ and $<+20 \mathrm{~V}$. Gate closes with de level $<+2 \mathrm{~V}$.
Gate out: $>15 \mathrm{~V}$ when gate is open, $<+2$ when gate is closed.
Reset: (a) front-panel pushbutton or (b) automatic internal reset.

* $A E$ is differential between $E_{\text {min }}$ and $E_{\text {mas }}$
$E_{m i n}$ is level set by Lower Level Discriminator (LLD)
$\mathrm{E}_{\text {max }}^{\text {min }}$ is level set oy Uppor Level D(scriminator (ULD)

Power: 115 or 230 volis $\pm 10 \% .50$ to $60 \mathrm{~Hz}, 45 \mathrm{~W}$.
+20 V power supply: output at rear TNC.
Discriminators: same as s202L.

Functions

Check totalize internal source of approx. 80 kHz when START button is depressed.

Specifications, all models

Printer output
Output: 4 -line $B C D(1-2.4 .8)$ code, " 1 " state negative standard; (1.2 .4 .8 code, " 1 " state positive or $1-2.2$-4 code. " 1 " state positive oprional).
Impedance: 100 k ohms each line.
Positive state level: +18 V .
Negative state level: -8 V .

Reference levels: $+17.6 \mathrm{~V}, 350$-ohms source impedance. - 6.9 V .1000 -ohm source impedance.

Print command: +28 V step, frons 2700 ohms in series with 470 pF .
Hold-off requirements: externally applied +5 V to -6 V .
Printer output connector: 50 -pin Amphenol $57-30500$, rear.
Physlcal
Reglstration: 6 long.life rectangular digital display tubes with display storage.
Dimensions: $163 / 4$ " wide, $3-15 / 32^{\prime \prime}$ high, $111 / 4$ " deep (426 x $88,2 \times 286 \mathrm{~mm})$.
Weight: $18 \mathrm{Jbs}(8,2 \mathrm{~kg})$ net; $23 \mathrm{Jbs}(10,4 \mathrm{~kg})$ shipping.
Accessorles furnished (5201L, 5202L and 5203L): tro HP 10519A Cables, 6^{\prime} long. BNC connectors; circuic board extenders: derachable power cord.

Prices: s201L, si950: $\$ 202 \mathrm{~L}, \$ 1400$: $5203 \mathrm{~L}, \$ 950$.

5203L

NUCLEAR

PREAMPLIFIER

General Purpose
Model 5554A

Advantages:

FET Protection
Quick-change Bias Resistor
Switch-selected charge sensitivity. roltage gains
Can be used as combination preamp amplifier

Model 5554A

The HP sss4A ends the experimenter's need for a multitude of special-purpose preamplifiers by providing a single unit that can serve with a variety of detectors, including semiconductor, gas proportional, Geiger, and scintillation. This versatile charge-sensitive preamplifier can be set up for a different detector as fast as the user can reset the charge sensitivity and gain switches, and can slip a replacement bias resistor between the quick-connect clips. No soldering of components is needed.

The 5554A accepts a burst of charge (current pulse) from a nuclear detector and produces an output pulse of coltage proportional to the amount of charge in the burst. This, in turn, is proportional to the energy of the incident nuclear particle or gamma ray photon.

The circuit comprises a charge-sensitive stage coupled to a roltage amplification stage either of two ways, switchselected: via a pole-zero cancellation network that eliminates undershoot and gives an ourput pulse ideal for input to a linear amplifier; or, via a shaping network that differentiates and integrates the output for direct input to pulse analyzing equipment.

The input device is a field-effect transistor (FET) for low. noise performance. The FET is diode-protected against damage from high voltage transients, or protection can be switched out for lowest noise performance.

Noise performance is excellent; at zero externa! input capacitance, FWHM (Ge) is 2.2 keV (typ).

The 5554A is ideal for use with the HP nuclear instru. ment modules (NIM) in the AEC-compatible configuration.

Specifications
 5554A Preamplifier

Charge sensitive preamplifier
Signal input polarity: either.
High voltage: 2.5 kV max, either + or - as required for dectector.
HV decoupling: 3 stages, $\mathrm{R}=1 \mathrm{M}, \mathrm{C}=0.0047 \mu \mathrm{~F}, 7=4.7 \mathrm{~ms}$.
Detector bias reslstor: inserts berveen spring-loaded clips. 1000 NI, $100 \mathrm{MI}, 4.7 \mathrm{M}$ provided; others may be used.
Charge sensitlvity (conversian gain):
With non-shaped output pulse: 10,100 , or $1000 \mathrm{mV} / \mathrm{pC}$ (millivolts per picocoulomb) nominal.
With shaped output pulse: $3,30,300 \mathrm{mV} / \mathrm{pC}$ nominal.

Voltage amplifier

Gain: with $R_{L}=50 \Omega: 1,2,4$, or 8 ; With $R_{L} \geq 500 \Omega: 2,4,8$, or 16 . Loss as a function of Input capacitance: $<3 \%$ at 100 pF for conversion gan 300 or 1000: arthenvise much less. Gain orerall is concersion gain x coltage gain.
Output
Polarity: inverted from input.
Postive output: into a 50Ω load, dynamic range as $5 V$ intu $\geq 500 \Omega .10 \mathrm{~V}$ (with voltage gain X2, X4, or X8)
Negative output: into a 50Ω load, dynamic range is $3,5 \mathrm{~V}$: into $\geq 500 \Omega, 7 \vee$ (with voltage gain X $2, \mathrm{X} 4$, or X 8).
Impedance: 50Ω.
Note: outputs measured with power inpur as -24 Y .
Tall pulse:
Rise time: 50 ns ar zero external capacitance.
Tail time constank: $100 \mu \mathrm{~s}$.
Pole-zero cancellation.
Shaped pulse:
RC differentiation, integration time constants: boih 1 /is. Noise

External Input Capaellanoe, pF	rms ion pairs		FWHM, keV (0 e, 2.98 eV/ion pair	
	Typical	Max.	Typical	Max.
0	310	360	2.2	2.5
10	360	410	2.5	2.9
100	780	900	5.4	6.3

Noise slope: $0.038 \mathrm{keV} / \mathrm{pF}$ max: ryp. $0.035 \mathrm{keV} / \mathrm{pF}$.
Stabllity, linearity
Temperature stability: $0.01 \% /{ }^{\circ} \mathrm{C}$ (nonshaped pulse).
Integral nonlinearity: 0.05%.
Power required: T 20 to -24 V ds, 80 mA max.
Physical
Connectors:
Detector input: BNC, female, high vallage type.
Output: BNC, (emale.
Test input: BNC, female, 50Ω termination. Capacieor. 1 pF $\pm 0.25 \mathrm{pF}$.
Low voltage: TNC, female, $+20: 0+24 \mathrm{~V} d c$
HV: BN'C, female. high voleage type.
FET protection switch: diode netn'ork. normal or out.
Dimensions: $3^{\prime \prime}$ wide, $21 /{ }^{\prime \prime}$ " h gh, $8 \mathrm{k} / \mathrm{s}^{\prime \prime}$ long ($76 \times 57 \times 210 \mathrm{~mm}$)
Weight: net, $1.11 \mathrm{lb}(0,506 \mathrm{~kg})$: shipping. $2 \mathrm{lb}(1 \mathrm{~kg})$.
Accessories furnished:
Power input cable, TNC connectors, 6 ft . long (HP 10517A)
Bias resistor kit: $4.7 \mathrm{M}, 100 \mathrm{~N} .1000 \mathrm{M}$.

Accessories available:

High soltage cabie, 6 ir. long. HV.cype BNC connectors, (HP 10516A, $\$ 10.00$).
Price: 5554A, 5300.00.

SCINTILLATION DETECTORS Premium resolution, stability with low drift 10600A Series

 NUCLEAR
Advantages:

Low drift characteristics
Premium resolution and stability
Hewlett-Packard scintillation detectors utilize selected sodium iodide (thallium activated) crystals and photomultiplier tubes as integral assemblies. These assemblies combine efficient scintillators for gamma ray detection with photomultipliers having the best light collection characteristics. A preamp-amplifier with three levels of gain completes the scintillation detector and is capable of drivine Hewlett-Packard pulse height analyzers directly. The LTC (long-time constant) position on the gain switch gives a low gain output for use into an external amplifier such as the HP 5582A Linear Amplifier.

The HP scintillation detectors are available in both solid and well confgurations, with 2×2 and $3 \times 3 \mathrm{NaI}$ (TI) crystals. A magnetic shield utilized in all detectors maximizes protection from external ac and dc magnetic fields. The entire assembly is sealed against moisture in a stainiess steel case. A TNC connector is used for the lorv-voltage power supply input, a high-voltage BNC. connector is used for the high-voltage power supply input, and a BNC connector for the signal output. A focus control and threeposition selector switch (for selecting: long time constant; short time constant, XI gain; short time constant, X10 gain) are accessible on the detector assembly for optimizing measuraments.

Specifications
All Models

Crystal: Nal (T1).
Typical output:
Long Time Constant (LTC) $0 . j 0 \mathrm{~V} / \mathrm{MeV}$.
Short Time Constant, Gain 10:1.8 V/MeV.
Short Time Constant, Gain 100: $18 \mathrm{~V} / \mathrm{MeV}$.
(Detectar ac $25^{\circ} \mathrm{C}$, High Voltage 1000 V .)
Magnetic field effects:
AC: $< \pm 0.5 \%$ change in pulse height (2 gauss rms).
$< \pm 0.1 \%$ change in resolution (2 gauss rms) 60 Hz .
$D C:< \pm 0.5 \%$ change in pulse height ($\doteq 2$ gauss ficld).
Amplifler
High voltage lnput: 2000 V (maxi), $7.35 \mathrm{M} \Omega$ (approx.).
Low voltage input: +20 V at 21 mA (+25 V max. inpur).
Typical output puise shape @ $25^{\circ} \mathrm{C}$:
LTC: $0.25 \mu_{5}$ rise time-constant, $12.5 \mu_{\mathrm{s}}$ fall rime-constant. $30 \mu \mathrm{~s}$ fall time, peak to 0 volts.

Galn: Xio $0.25 \mu_{5}$ rise time-constant, $1 \mu \mathrm{~s}$ fall time-consrant. 3μ fall time, peak to 0 volts,

Gain: X100 $0.25 \mu_{\mathrm{s}}$ rise time-constant, $1 \mu_{\mathrm{s}}$ fall time-constani. $3 \mu \mathrm{~s}$ fall time, peak to 0 volts.

Maximum no load output:
LTC +4 V
$\mathrm{X}_{10}+10 \mathrm{~V}$
$\mathrm{X} 100+10 \mathrm{~V}$
Output impedance: 50Ω nominal.

Physical

Focus controls to adjust photomultiplier tube for optimum gain and resolution.

Connectors:

Low voltage: TNC connector (female).
High voltage: high voltage BNC connesor (female).
Signal outpuk: BNC connectur (female).
Gain switch: 3-Position Slide Switch:
LTC: Long Time Constant.
X10: Short Time Constant, Gaín 10.
X100: Shorr Time Constans, Gain 100.
Magnetic shield: internal between integral assembly and case
Case: stainless steel, moisture proof.
Accessorles furnished: one HP 10517A cable 6' long, TNC comnecrors.

Specifications
Individual

Model 7 ypo	10581A	10802A	10811A	10812A	10813A	10614A
Crystal Type	Solid		Well Type			
Crystal Dimensions	$2^{\prime \prime}$ dia $\times 2^{\prime \prime}$ long	$3^{\prime \prime}$ dia $\times 3^{\prime \prime}$ long	$2^{\prime \prime}$ dia $\times 2^{\prime \prime}$ long	$3^{\prime \prime}$ dia x $3^{\prime \prime}$ long	$2^{\prime \prime}$ dis $\times 2^{\prime \prime}$ Iong	3" dia \times 3" Oong
Well Dimensions			$\begin{aligned} & \begin{array}{l} v^{*} \text { dia } \\ 1-35 / 54^{\prime \prime} \\ (25,4 \times 39,3 \mathrm{~mm}) \end{array} \end{aligned}$		$\begin{aligned} & 21 / 32^{2 \prime \prime} \text { dia } x \\ & 1.3564^{2} \text { deap } \\ & (16,7 \times 39,3 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 1.024^{N} \text { dia } \\ & 2.3 / 66^{4 \prime \prime} \text { dep } \\ & (26 \times 51 \mathrm{~mm}) \end{aligned}$
Resolution	<8\% ¢WHM*		$<10 \%$ FWHM*			
Dift	$< \pm 2 \%^{* *}$	< $=1 \%^{* *}$	$< \pm 2 \%^{* *}$	<*1\%**	$< \pm 2 \%^{* *}$	$< \pm 1 \%^{* *}$
Stability	$< \pm 2 \%$ ***	$< \pm 1 \%^{* * *}$	$< \pm 2 \%^{* * *}$	$< \pm 1 \%^{* * *}$	$< \pm 2 \% * * *$	$< \pm 1 \%^{* * *}$
Overall Dimensions	$\begin{gathered} 23 k^{\prime \prime} \text { diax } \\ 121 / 4^{\prime \prime} 1008 \\ 70 \times 312 \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & 31 / 2 " \text { dia } x \\ & 133 /{ }^{23 / 2 l o n g} \\ & 82 \times 350 \mathrm{~mm}) \end{aligned}$				$\begin{aligned} & 31 / /^{\prime \prime} \text { dia } x \\ & 133 /^{n} \text { "ong } \\ & (82 \times 350 \mathrm{~mm}) \end{aligned}$
Crystal Window	$0.015^{\prime \prime}$ Aluminum	$\begin{aligned} & 0.019^{\prime \prime} \\ & \text { Aluminum } \end{aligned}$	$0.010^{\prime \prime}$ Aluminum			
Weight: Net Shipping	$\begin{gathered} 5 \operatorname{lbs}(2,3 \mathrm{~kg}) \\ 12 \mathrm{lbs}(5,4 \mathrm{~kg}) \end{gathered}$	$\begin{aligned} & 8 \mathrm{lbs}(3,6 \mathrm{~kg}) \\ & 15 \mathrm{lbs}(6,8 \mathrm{~kg}) \end{aligned}$	$\begin{array}{r} 5 \mathrm{Jbs}(2,3 \mathrm{~kg}) \\ 12 \mathrm{lbs}(5,4 \mathrm{~kg}) \end{array}$	$\begin{aligned} & 8 \mathrm{lbs}(3,6 \mathrm{~kg}) \\ & 15 \mathrm{lbs}(6,8 \mathrm{~kg}) \end{aligned}$	$\begin{array}{r} 51 \mathrm{bs}(2,3 \mathrm{~kg}) \\ 12 \mathrm{lbs}(5,4 \mathrm{~kg}) \end{array}$	$\begin{array}{r} 8 \operatorname{los}(3,6 \mathrm{~kg}) \\ 15 \operatorname{los}(6,8 \mathrm{~kg}) \end{array}$
Price	\$835	$\$ 1475$	\$885	\$1565	8885	\$1565

*FWHM = full width ai hall maximum of Cs. 137 photo peak.
**Pulse Reight change at $25^{\circ} \mathrm{C}$ over 24 hours at 1000 cps .
***Rate shift change from 1000 cps to $10,000 \mathrm{cps}$ (integral count rate $\mathrm{Cs}-137$).

PREAMP-AMPLIFIER
 Three levels of gain, pulse shaping Model 10615A

The Hewlett-Packard Model 10615A Preamp-Amplifier accepts input from a scintillation detector or other nuclear detector and provides output puises suitable for driving a scaler or other follow on instrumentation. The 10615 A is the same excellent preamp-amplifiter used in the HP Scintillation Detectors, Series 10600 A. With the 10615 A , speciaipurpose, high-performance detector assemblies can be quickly and easily made. A standard i0-stage photomultiplier tube plugs directly into the 10615 A 's recessed socket; a BNC adapter (included) provides for easy connection of units that cannot be plugged in directly. The 10615A is housed in a sturdy metal case that provides excelient RFl and noise shielding. This case aiso permirs convenient decontamination, should that become necessary.

The unit is compatibie with HP Scalers and High Voltage Supplies. Dimensions: 2.95 in . (75 mm) diameter, 6.25 in . (158 mm) long. Price, $\$ 295$.

X-Ray Detector

A low-noise, lowrbackground x-fay detection sysrem is easily arranged with use of the 10615 A , as shown. The 10615A connects to an x-ray detector assembly comprising a voltage divider adapter and a Nal(T1) crystal. The adapter has two BNC connectors, one for the signal and the other for the high voluge. (Note that no high voltage connection need be made to the 10615A's high voltage termina! when an adapter is used.)

K02.10600A X-ray detector, Nal(T1) crystal, Price, $\$ 425$.
K03-10600A Plug-in voltage divider.
Price, $\$ 100$.

A new method of signal averaging gives a continuously calibrated display.

Conventional method

For more than a decade man has been able to make use of signals previously too obscured by noise to be usable. The process used has been a form of averag. ing.

If the signal was repetitive, successive reperitions could be sampled and added to the sum of previous reperitions. That part of the signal that repeated exactly each time reinforced the sum while random positive and negative components of noise evencually cancelled themselves out. To obrain a value for the amplitude of the waveform involved dividing by the number of sweeps.

This process is called "summation" averaging and is shown in block form in Figure 1. The sync signal marks the beginning of each reperition and puts the sampling circuir inco operation. The sample values are converted to digital form, stored in successive locations of menory and when the last location of memory is filled, the process stops until another sync pulse arrives. At that time the process srarts over again, adding the new sample values to what is already in memory. The information in memory is converted to analog and in some units
displayed on a built-in CRT. The result. ing display is the waveform growing our of the noise. As the n'aveform grows, it must be scaled domin to keep it on the CRT.

Problems involved

There are three major drawbacks encountered in using the conventional "summation" averaging to reduce noise.

First, the waveform is never calibrated. During the experiment the waveform is continually growing on the CRT, so the operator must wait until the experiment is over, and then manually (sliderule or orherwise) divide the amplitude by the number of sweeps. Thus no information other than waveshape is available until the end of the experiment.

Second, it is difficult, if not impossible to perform experinents involving slowly changing, but noisy signals. Or alternately, if the researcher wants to vary any experimental parameters and observe the results, he must perform a nerv experiment for each change.

Third, if the waveform is a very low frequency, the sweep speed is so slow that the resulting display is a spot jumping from point to point where the waveform should be. Even if the sweep speed is fast
enough to give the appearance of a com. plete waveform, if the repetition rate is low, the display will be a flash of the waveform once each repetition. Thus there can be no visible display of the waveform until the experiment is over,

Even with these drawbacks, "summation" averaging has been the best method available up until the introduction of the HP 5480A Signal Analyzer.

The new method

With the 5480A, not only is the dis. play of your waveform always calibrated (in volts $/ \mathrm{cm}$) and alwrays visible, bur if the waveform changes, the display can follow.

These exclusive features are made possible through an analog-digital feedback rechnique to calculate a new a verage each time a dara point is handled. This new average is derived by use of the old aver. age, the new input value and the number of sweeps which have been taken. Because the 5480 A stores the a verage value rather than the sum in memory, it always has a calibrared display.

A more detailed explanation of calibrated averaging techniques can be found in the Aptil, 1968 HP Journal.

Figure 1. Canventianal methad of "summation" averaging.
Figure 2. HP method of true "calibrgted" averaging.

5480A
Signal Analyzer

Advantages:

Calibrated averaging gives continuously calibrated display.

Display is always visible-regardless of sweep time or repetition rate.
Weighted averaging allows averaging of slowly chang. ing waveforms.

The Hewletr-Packard S480A Signal Analyzer marks a new level of achievement in extracting usable signals from a noisy background. Now, for the frrst time, you can view a continuously calibrated display of your waveform as it is averaged. As a result of the newly developed algorithm used to produce the average, the only change in the display is a rapid transformation from noise into a distinct waveform.

Also for the first time, you can average a waveform that is changing. Logic circuitry follows slow changes by placing more emphasis on new data. This means you can watch the effects as you vary parameters.

A common problem encountered with conventional signal averaging techniques is that at slow sweep speeds or reperition rates, the operator cannot see the waveform as it is processed. Hewlett-Packard has solved this problem, how-
ever, by using a separate and'independent address register for display. The result is a display which is always visible and never fickering-even between sweeps.

The plug-in design of the HP 5480A Signal Analyzer not only guards against obsolescence, but also alliows for a far more versatile instrument. The mainframe contains the core memory, with related circuirry, digital to analog converters, and CRT display, while the two plug-ins chosen depend upon the specific application.

The two standard plug-ins (the HP 5485A Two Channel Input plug-in and the HP 5486A Control plug-in) provide not only complete averaging capability, but also histograms and multichannel scaling (MCS). Frequency histograms from de to 1 MHz and time interval histograms from $10 \mu \mathrm{sec}$ to 500 sec can be performed. Multichannel scaling to 1 MHz with dwell times from $10 \mu \mathrm{sec}$ to 0.5 sec are also standard.

Input/output fexibility is another convenience of the HP 5480A Signal Analyzer. Over 200 input and output connectors solve vistually any digital or analog interfacing problem. Through direct interface with a card and cable assembly, the HP 5480A becomes an input/output device for any HP computer. By interfacing through the Hewlett-Packard S495A Input/Output Coupler, the Signal Analyzer will communicate with a wide variety of computers, as well as with punched tape readers, tape punches, teleprinters, and printers.

Specifications

Calibrated averaging mode

In this mode, the averager performs a crue calibrated average. Waveform amplitudes are read directly from the CRT in volts/cm without normalizing.
Input tharacteristics: (for 5485A Two Channel Input plug-in)
Bandwidth: dc (2 Hz ac coupled) 1050 kHz .
Sensitivlty: $5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ in $1,2,5$ steps.
input impedance: $1 \mathrm{M} \Omega$ shunted by 25 pf .
Polarity Inversion: tup or up selectable.
$A+B$: adds channel B input to channel A inpur and sum is fed through channel A. Polarity of either channel may' be inverted 10 give difference.
ALT: Processes and displays both channels simuitaneously.
Resolution: 1000 points (or 500 or 250 by front panel selector).
Samping rate: 2 samples $/ \mathrm{sec}$ through 100,000 samples $/ \mathrm{sec}$ in 1.2.
5 steps.
ADC clock rate: 20 MHz .
ADC resolutlon: 9 bics from $50 \mathrm{sec} / \mathrm{cm}$ through $5 \mathrm{msec} / \mathrm{cm}$. 7 bics
at $2 \mathrm{msec} / \mathrm{cm}$, 5 bits at $1 \mathrm{msec} / \mathrm{cm}$.
Triggering:
External: Slope: + or - selecrable. Amplitude: $>100 \mathrm{mV},<10 \mu \mathrm{sec}$ rise time. Trigger: level is adjustable. Input Impedance: $1 \mathrm{M} \Omega$ shunted by 30 pf .
Internal: sweep is triggered by internally generated pulse occurring at end of each sweep. This free-running mode is used to control the experiment.
Line: sweep is triggered by line frequency.
Pre analysis delay: $20 \mu \mathrm{sec}$ through 0.5 sec in 1, 2.5 steps.
Post analysis delay: continuously variable from 0.01 to 10 sec.
Sweep time: $1 \mathrm{msec} / \mathrm{cm}$ through $50 \mathrm{sec} / \mathrm{cm}$ in $1,2,5$ steps
External tlme base: up to 20 kHz allows sweep times from $5 \mathrm{msec} /$ cm to ∞.
Horlzontal magnifler: expands horizontal axis by facior of s.
Sweep number: number of sweeps to be averaged may be preselected from 1 through $2^{18}(524,288)$ in powers of 2 .
$d B$ improvement: $d B$ of signal-noise ratio improvement from $0 d B$ to 57 dB in 3 dB increments can be selected.
Memory selection: operatos may select ans quarter, either half, or full memory (1000 points) for each channel independently.
Overlap display: two waveforms may be stored, while two more are processed; then all four displayed simultaneously for comparison.
Display: operator may select CRT display of waveform as it is aver. aged, noise portion only, or input signal after sampling.

Weighted averaging

In this mode the averager is able to follon a slowly changing waveform. This is accomplished by placing more emphasis on new data. The averager essentially "forgets" old data in favor of the new'. All specs afe identical with Calibrated Averaging.

Summation mode

In this mode the averager merely adds successive reperitions of the noisy waveform, resulting in an uncalibrated display which is proportional to the averaged signal.
Sensitivity multiplier: manual adjustment allows scaling of verical up or dorn in power-of-two increments up to 64 counts $/ \mathrm{cm}$.
Automatic scalling; provides automatic scaling down of vertical in power-of-two increments 10 keep display on screen.
Stable baseline: baseline always represents zero volts.
All other specs are identical with Calibrated Averaging, except Weighted Averaging is not posstble.

Hisłogram mode

In this mode the averager displays a probability versus frequency (or time interval) plor. The number of incoming pulses in a set gate time determines the memory location into which a count is placed. After several gate times, a distribution results.

Input characteristles:
Bandwidth: ds to 1 MHz .
Sensitivity: 100 mV .
Input impedance: $1 \mathrm{M} \Omega$ shunted by 30 pf .
Frequency ranges: $200 \mathrm{~Hz} / \mathrm{cm}$ through $10 \mathrm{MHz} / \mathrm{cm}$ in 1,2 , 5 steps.
Time interval ranges: $50 \mathrm{sec} / \mathrm{cm}$ through $1 \mathrm{msec} / \mathrm{cm}$ in $1,2,5$ steps.
Preset totallzert if desired, operator may preset number of values to be hisrogrammed from 10^{3} through 10^{7} in powers of 10 .
Sensitlvity multiplier: expands verlical to 64 counts $/ \mathrm{cm}$ in powerof -two increments.

Multichannel scaling (MCS) mode

In this mode the averager display's a plot of frequency versus time. The averager sweeps through memory remaining at each location for the set gate time. The number of counts placed in each location is determined by the number of incoming pulses occurring during the gate time.

Pulse requirements:

Amplitude: >2V(20 V max).
Maximum repettlon rate: 1 MHz .
Minimum pulse width: 500 ns.
Putse pair resolution: 500 ns .
input impedance: $3 \mathrm{k} \Omega$ minimum.
Dwell time per channel: 10μ sec through 0.5 sec in $1,2,5$ seeps (external time base: $50 \mu \mathrm{sec}$ to ∞).
Sweep modes: sawtooth or triangular sweep. External time base inpur allows any desired sweep shape.
Triggering: extemal triggering is passible on sawtooth sweep.

Outputs

Analog:

X-Y Recorder:
X : 0 to +10 V sweep ramp; 0.2% linearity.
$\mathrm{Y}:-4$ to +4 V ; output is proportional to CRT display (0.5 V output per cm deflection); 0.2% lineariry.
NOTE: These X and Y signals will drive other devices such as scopes, or NMR systems.
Penlift slgnal: $+\mathrm{s} v=$ pen up; $o \mathrm{v}=$ pen down.
Z-axis: $+s$ volt blanking pulses for external scope display.
Point plotter: (typically Moseley 7004A).
Seek: $+10 \mathrm{~V}, ~>50 \mu \mathrm{sec}$ pulse to teil point plotter to seek a null.
Plot: >i2 V, 200 nsec pulse accepted from point plotter indicating plot is complete.
X . Y signals are same as above.
Sweep voltage: 0 to +1 V sweep ramp; conveniently adjusted by changing resistors to give output ramp going from 0 V to any value between 0 to +10 V .
Sync: "Pos" provides $+12 \mathrm{~V},>0.5 \mu \mathrm{sec}$ pulse 2 ut stari of each sweep (before pre-analysis delay); "Neg" provides same except -12 V .
Sampling pulses: pulses go from +5 volts to ground and rerurn to $+S V$ once each time the input is sampled. Pulse width: 100 ns .
Nolse: train of voltage pulses whose amplitude equals difference between input and average; amplitude is proportional to CRT display of noise ($1 / 2 \mathrm{~V}$ per con deflection). (This signal can be gated with Z-axis output).
Digital: four so-pin connectors interface the averager, through the S495A I/O Coupler, to computers, teleprinters, tape punches, lape readers, and printers. (See 5495A I/O Coupler on next page). A direct interface 10 all HP computers is also available.

General

Power: 115 or 230 volts $\pm 10 \%, 50.400 \mathrm{~Hz}, 175$ watrs.
Dimensions: $163 / 4$ " wide, $121 / 2^{\prime \prime}$ high, $243 / 8^{\prime \prime}$ deep overall (425 x $311 \times 503 \mathrm{~mm}$).
Weight: $76 \mathrm{lb}(34,5 \mathrm{~kg})$ net.
Price: 5480A with 5485A and 5486A plug-ins, $\$ 9950.00$.

DIGITAL ANALYZERS

I/O COUPLER
 Complete digital interfacing for the HP 5480A Model 5495A

Advantages:

Interfaces printers, tape readers, tape punches, teleprinters, and computers.
Card-cable assemblies allow plugging in additional digital peripherals at any time.
Capability to add, subtrach, or move any quarter or half of memory to another.

The HP $54951 / 0$ Coupler serves with the HP 5480A Signal Analyzer (see preceding page). The I/O Coupler has two main functions: complete digital input and output interfacing for the HP 5480A and some processing of wave-forms stored in the 5480A memory.

Using only a printed circuit card and cable, you can add digital peripherals to your averaging systern as needed by merely plugging the card and cable into the back of the coupler. Because of the versatile parallel-serial input/output format used, it is possible to interface with many different computers.

The HP 5495A will add or suburace ewo waveforms stored in memory, then place the result back into memory

Color coding of front panel controls makes operation almost self explanatory. Output controls are in blue, input in red and processing controls in white. To further simplify operation, an error light warns of either an illegal control setting or an improper format from an input device.

Specifications

Computer
Direct interface to: HP 2114A, HP 2115A, HP 2116A Computers Data flow: input and outpus
Operatling mode: asynchrunous
Data transfer mode: parallel-serial; the 14 bit binary words of the s480A Sigoal Analyzer are transmitted in 3 segments, 8 bits at a time.
Format:
HP 5480A 24-bit Word

23		0
3rd	2nd	1st segment
	Order of transmission	

This versatile format makes possible interfacing with a widevariey of computers.
Data code: binary
Data transfer rate: 20,000 words/sec.

Teleprinter

Direct interface to: HP 2752A Teleprinter
Data flow: inpur and output
Operating mode: synchronous
Data transfer mode: bit scrial
Format:
2 lines of data, five words each (words are 7 decimal digits plus
sign); ;hen a blank line and 2 more lines of daca. This pattern repeats for 10 lines of data (50 words); then 2 blank lines. after which the whole pattem sepeats. Symbol \#indicales start of data; symbol 5 indicaces end of data
Data code: Standard ASCII
Data transfer rate: 10 characiers/sce.
Paper tape output
Direct interface to: HP 2753A High Speed Tapc Punch

Data flow: ouput
Operating mode: asynchronous
Data transfer mode: character serial
Format: same as relepriater
Data code: Sundard ASCII
Data transfer rate: 120 characters/sec.
Paper tape input
Direct interface to: HP 2737A High Sperd Tape Reader
Data flow: input
OperatIng mode: asynchronous
Data transfer mode: chnracter serial
Format: same as teleprinter
Data code: Smindard ASCII
Data transfer rate: 300 characters/ser.

Printer

Direct Interface to: HP 5050 Digital Recorder
Data flow: outpur
Operating mode: asyachronous
Data transfer mode: word paralle
Format:

S is sign of data (".י" or blank)
$C_{1} \cdot \mathrm{C}$, are decimal digits (" 0 " thru " 9 ")
Data code: $B C D, 1 \cdot 2.4 .8$ positive true
Data transler rate: up to 20 lines $/ \mathrm{sec}$.

General

Powar: 115 or 230 volts $\pm 10 \%, 50.60 \mathrm{H}_{2} .100$ wares.
Dimenstors: $163 / 4^{\prime \prime}$ wide, $7.9 / 32^{\prime \prime}$ high, is $1 / 8^{\prime \prime}$ deep overall (425 x $185 \times 467 \mathrm{~mm})$.
Weight: $32 \mathrm{lb}(14,5 \mathrm{~kg}$) net.
Price: on request.

ACOUSTIC INSTRUMENTATION

Unformantely for those trying to measure and evaluate sound objectively in terms of the sensation experienced by humans, this sensation seems to involve complicared physiological and psycho. logical mechanisms. Indeed, loudness evaluation is several orders of magnitude more complex than measuring the purely physical quantities of sound pressure and sound pressure level.

Since loudness is a subjective quantity the primary instrument for measuring it can only be a human observer.
To determine whether one sound is louder, equally loud, or less loud than another, we would have to let a statistically significant number of people compare the sounds and then average their opinions. Similarly, to determine how loud a sound is, we should have to choose a standard sound and have a significant number of people compare the unknown with the standard.
In acoustics the accepted standard is a pure 1 kHz tone or narrow band noise centered at : kHz . The loudness level of any sound is defined as the sound pressure level of a standard sound which ap. pears to a significant number of observers to be as loud as the unknown. Loudness level is measured in phons, the loudncss level of any sound in phons being equal to the sound pressure level in $d B$ of an equally loud standard sound. Thus a sound which is judged to be as loud as a to dB 1 kHz tone has a loudness level $\mathrm{L}=40$ phons.
Athough the logarithmic phon scale covers the large dynamic range of the ear (120 dB) conveniently, it does nor fit a linear loudness scale. A factor of two in loudness does not correspond to double the number of phons.

It is also difficult to add loudnesses in phons. If, for instance, pee produce ene sonc at 200 Hz with a loudness level of 70 phons, and another at : kHz with the same loudness level, it would be convenient if both tones togecher would yield a loudness level of $1-0$ phons. Unfor. tunately, this doesn't happen. The two tones actually are perceived as a loudness level of 80 phons.
In an effort to obtain a quantity proportional to the intensity of the loudsensation, a loudness scale wvas defined in which the unit of loudness is called a sone. One sone corresponds to a loudness level of 40 phons. For loudness levels of 40 phons or greater, the relationship betreen the numerical values of loudness level L (in phons) and loudness S (in sones) is given by

Loudnoss Level (phons)		Loudness (sones)
140	Threshold of pain	1024
120	Jet aircraft	256
100	Truck	64
80	Orator	16
60	Low conversation	4
40	Quiet room	1
20	Rustling of leaves	
3	Hearing threshold	

Table 1

$$
S=2^{(\mathrm{L}-10) / 10}
$$

(ISO Recommendation R 131). Table 1 compares loudnesses (sones) and loudness levels (phons) of several common sounds.
The loudness level of a 1 kHz tone is the same as its sound pressure level. This would also be true of pure tones of other frequencies if perception were constant with trequency. However. it is not. The loudness level of any other sound (in phons) is not, in general, equal to its sound pressure level (in dB)
Equal loudness contours were first pub. lished in 1933 by Flercher and Munson. slighely modifed curves are now universally accepted as reference data (ISO Recommendation 226). These curves are for pure cones in a frontal sound field (sound traveling in only one direction and approaching the observer from the front).

To human ears, broadband sounds, like those of jet aircraft, seem much louder than pure tones or narrow-band noise having the same sound pressure level. Figure 1 shows what increasing bandwidth does to the loudness of noise hav. ing a center frequency of ikHz and a constant sound pressure level of 60 dB . Up to a critical bandwidth of 160 Hz , the loudness is conseant. Beyond that point. however, there is a maried increase in loudness. At a bandwidth of 2 kHz the loudness lovel I has increased from 60

Figure 1. Effect of bandwidth on louoness,
phons to 74 phons. Loudness $\$$ has increased by a factor of 2.5. Similar in. vestigations using different center frequencies yield different critical bandwidths. At a center frequency of 200 Hz the critical bandwidth is approximately 100 Hz ; at 5 kHz , abour 1 kHz .
The human ear's critical bands seem to be related to another property of the ear: subjective pitch. Subjective pitch tells us how our ears compare the frequencies of different sounds. Needless to say, subjective pitch is not linear, i.e. a unit interval is not the same at 100 Hz and 5 kHz . The unit of subjective pitch is the mel. Remarkable enough, an interval of 100 mel approximates the width of a critical band at any point in the audio range. However, the mel is not used. Instead, the width of a critical band is de. fined as one Bark. Accordingly, the audio range comprises 24 Barks.
Two sounds presented to the ear simultaneously produce a sensation of loudness which is larger than that produced by either of them alone. However. a simple summation of partial loudnesses can only be carried out if the individual sounds are separated widely in frequency. The closer they are in frequency the more chey influence each other, and toral loud. ness may not be quire so large as the sum of the partial loudnesses. This effect is called partial masking. In the extreme case, it becomes total masking, wherein a strong sound renders a lower-level sound completely inaudible. When total masking occurs, low level sound components cannot be heard at all and do not contribute to loudness.

The sounds heard in everyday life are not all uniform. Many, like bangs and rattling sounds, change rapidly with time. Loudness is independent of duration for large pulse widths. Only when the pulse width drops below about 100 ms does the level of a pulse have to be increased to yield the same loudness. The test method has some effect on the results; however, regardless of the method the time con. seant of the ear appears to be between 35 and 100 ms . It also turns out that the law's describing loudness in terms of critical bands are valid for impulsive sound as well as continnous sound. In practical terms this means that sound should be measured with rms detectors with a time constant between 35 and 100 ms . While this seems to be a loose tolerance in light of the achievable accuracies in purely electronic measurements, we must remember that we are dealing with a sub. jective feid in which there is yet much
work to be done. Even so, the outputs of detectors with 35 . and 100 ms time constants differ by only 4 dB in response to a single 5 -ms tone burst, and the outputs of both are prediciable and thus can be compared.

Acoustic measurements start with the transducer (microphone) which converts audio sound pressure into an electrical signal. The choice of a microphone is based on many parameters such as size, frequency response, sensitivity, and directional characteristics. Fortunately, the qualicy of present-day microphones simplifies the selection. The HP 15119A $1 / 2 \mathrm{in}$. Microphone (page 100) is particularly well suited for measurements in both diffuse and free (unidirectional) fields. Its size insures a minimum disturbance of the sound field, it covers a wide frequency and pressure range, it has an essentially flat frequency response, and it is omnidirectional. Where sensitivity is the prime parameter, the HP 15109B, a full 10 dB more sensitive, should be the choice.
Good measurement practice dictates the removal of the observer and other interfering objects, including the indicating instrument, from the sound field. To this end. HP microphones are equipped with 10 - 5 t cables. Longer cables can be used, especially with the HP 15127A Cable Amplifier (page 101)
With the sound signal in electrical form, we need to process and display it in a meaningfu! way. The simplest and most widely used device is the sound level meter, basically an audio rms voltmeter. The frequency response of the sound level meter is shaped to account, in a first. order approximation, for the frequency response of the ear. Three response curves, A, B, and C, (Figure 2) have been standardized, e.g. in IEC Publicarions 123 and 179 and USA Standard S1.f-1961. (The recently proposed D curve is primarily for the measurement of jet aircraft noise.)

None of the three standards specifies detector time constant directly; instead. they specify overall response to a single 200 -ms tone burst. This response, desig.

Figure 2. Frequency response curves.
nated Fast, implies a nominal detector time constant of 127 ms (a Slow mode with a 1 -s time constant is also allowed). Unfortunately, this does not enable us to predict response to shorter bursts (which are commonly found in practice). A German standard, DIN 45633 , Part 2 , specifies an Impulse response in which the corresponding detector time constant is 35 ms , permitting predictable results for tone bursts as short as 9 ms . HP 8052 A and 8062A Impulse Sound Level Merers (page 98) incorporate all three response modes.
The biggest problem in overall instrument response, even for a 200 -ms tone burst, is the mechanical inertin of the meter. Per DIN is 633, the 8052A/ 8062A include a peak detector and stretching circuit between the rms detector and the meter. The rise time of the peak detector is short compared to the $35-\mathrm{ms}$ time constant of the rmis detector; the discharge time, long compared to the response time of the meter. Thus the meter or an external de level recorder has ample time to indicate the maximum rms value of impulsive sounds.
With the sound level meter, then, we measure the frequency and timeweighted rms value of sound pressure. The frequency weighting (A, B, or C) cannot account for masking, and it's impossible to select the right weighting for all spectral components at once. Thus the sound level meter by itself can only be used to compare sounds from similar sources. We cannot. however, use it to compare autos and rypewriters.

For sounds having no significant time structure, seiection of time weighting is immaterial; all three give the same reading. In all other cases-and they are the rule rather than the exception-the Im. pulse mode is mandatory. This is the only one which provides an accurate measurement of sound level maxima and physio. logically significant results.

For all its faults, the sound level meter is an extremely useful tool. It is inexpen. sive, easy to use, and highly portable. Properly used, it can indeed give mean. ingfui data.
Including filters in the measurement system enables us to analyze the individual spectral components of a sound A simple octave-band analysis system includes the 8052A or 8062A and 8055A Filter Set (page 98). Such a system is well suited for a variety of measurements including the determination of noise rating numbers. For greater resolution of spectral components the 80ss A Filter Set can be equipped with third octave filters (page 98). (HP octave and third-octave filters meet the requirements of US Standard S1.11-1966 for Class II and Class III respectively as well as IEC Recommendation 225).

For many applications, faster process. ing of data is necessary or at least desirable. The HP 8051A Loudness Analyzer (page 96) and 8054A Real Time Audio Spectrum Analyzer (page 93) provide rapid, completely automatic an. alysis. The 8051A determines loudness in objective terms according to the Zwicker method (ISO Recommendation S32, Method B). Comprising two octave fiters, one $2 / 3$-octave filter, and 17 thirdoctave filters, each approximating a critical bandruidth, the 8051 A displays a new loudness spectrum on a crt (Figure 3) every 25 ms . The analyzer accounts for masking (the curved slopes in the figure) and the frequency response of the ear. In addition, the 8051 A computes the area under the spectrum and displays it as rotal loudness in sones on a front-panel meter. The crt display can be frozen for recording on a X.Y recorder, and preprinted paper permits Zuicker diagrams to be recorded directly. These diagrams can be used for detailed analysis or fled for reference purposes.

Figure 3. Loudness spectrum.
With 24 third-octave filters, the 8054 A provides an unweighted, uncompensated audio spectrum (Figure -4). It is indeed a real-time analyzes, displaying a new spectrum every 28 ms . With both analog and digital outpurs, the 8054 A is well suited to a variety of a atomated systems and can be interfaced directily with HP computers.

Figure 4. Third-octave spactrum.
Acoustic measurements and instrumentation are discussed in detail in Ap. plication Nore 100. This Note is avail. able from your local HP Field Office.

REAL-TiME AUDIO ANALYZER Spectrum analysis in real time Models 8054A, 8060A

 AcousticsIn a real-time measurement, data must be presented in usable form at essentially the same time the event occurs, and the delay in presenting the data must be small enough to allow a corrective action to be taken if required. An advantage of measuring in real time is that the effects of External adjustments or changes in measurement parameter can be seen immediately and acted upon if necessary.

Measurements that previously took many hours to complete can now be performed in a few seconds with the Hew. lett-Packard 8054A Real-Time Audio Spectrum Analyzer. Unlike other spectrum analyzers, which measure signal frequency components one at a time, the 8054 A looks at twentyfour $1 / 3$-octave frequency bands simultaneously, evaluates them in parallel, and displays the spectrum on a crt in less than 30 milliseconds, doing so at rates up to 42 spectra per second. The $1 / 3$-octave bands have center fequencies from 50 Hz to 10 kHz in the standard instrument, other ranges are oprional. The spectrum can be stored for detailed analysis, and a digital logarithmic roltmeter displays the signal levels in each channel. In addition to the visual displays, the 8054A can be connected to either analog or digital data processing instruments, giving it an unprecedented Rexibility and speed in the processing of data.

The overall capability of the instrument permits measurements of signals as low as $1 \mu \mathrm{~V}$ and as high as 10 volts, an amplitude measurement range of 140 dB . The crt itself has a $\{0-\mathrm{dB}$ display range which can be shifted in $10 \cdot \mathrm{~dB}$ steps to display any portion of the $140-\mathrm{dB}$ amplitude range. The readout is in dB above one microvolt or in dB of sound pressure
level when the input transducer is a condenser microphone with a sensitivity of $5 \mathrm{mV} / \mu \mathrm{bar}$ (HP 15109B). The parallel filters, with a $1 / 3$-octave bandwidth relative to their center frequency, have an attenuation at the center frequency of the adjacent filter of typically 20 dB and at twice and half the center frequency of typically 50 dB . All filters meet the requirements of international standards (IEC 225). One-third octave filters ranging from 2 Hz to 25 kHz are available.

The display modes are selected by the front-panel push buttons designated FAST, SLOW, PEAK, and HOLD. In the FAST position an integrating time constant of about 0.1 s is used in the rms detector for rapid measurement of fast chang. ing signals. The SLOW position provides a 1 -second time constant for more random signals which require a longer integrating time. These time constants are chosen in accordance with JEC Rec, 179. Other rms time constants between 100 ms and 100 seconds can be provided on special order. The rms detectors are accurate, fast-responding devices for continuous input signals with crest factors up to 5 . The PEAK mode indicates and stores the maximum peak amplitude of the spectrom over a selected period. The HOLD mode can be used in the RMS FAST, RMS SLOW, of PEAK position. The spectrum display can be retained at any instant for more extensive analysis when the HOLD push button is pressed. A maximum RMS mode instead of true PEAK is available as a no-cost option.

The crt controls are conveniently located in the center of the front panel. A hinged door conceals these controls during operation to prevent any accidental misadjustments.

BEAL-TLUE AUDIO ANAL YZER conhuazd

Spectrum analysis in real timo
Models 8054A, 8060A

These controls adjust the horizontal and vertical position of the crt display as well as intensity, focus, and horizontal gain. No other calibration or adjustments are required.

Several scanning modes are possible to provide maximum versatility. In the MANUAL/REMOTE position any channel can be selected manually by front-panel push button or remotely by contact closure to ground. The DVM indicates the level of the signal in $d B$ above $1 \mu \mathrm{~V}$ for the selected channel. The X-Y RECORDER scanning mode is used in conjunction with the HOLD display mode to record the displayed spectrum on an X.Y recorder; the channels are scanned at a rate of 1 s/channel. The channel being scanned is always indicated by a brightened portion of the trace on the crt and by an illuminated push button corresponding to that channel. In the PRINT I CYCLE mode a digital recorder can be used to scan and print out just one spectrum. For continuous recording the EXTERNAL INHIBIT mode allows the digital recording device to operate up to a speed of 1 channel/msec. If the recorder or data processing device must accept data at a rate of less than 1 channel/ msec , an inhibit signal from the recorder to the 8054 A prevents new data from being taken during the recording cycle. For instance, with a 5050A Digital Recorder (Page 133) the maximum rate of recording is 20 lines or 20 channels per second, whereas the 8054 A can provide data at a rate of 1000 chanrels per second.

The Hewlett-Packard 8060A Real-Time Analyzer Module provides a twelve-channel extension for the 8054A Real-Time Audio Spectrum Analyzer. The unit is self-contained and extends the frequency range by twelve additional $1 / 3$-octave

filters, giving the 8054 A a thirty-six-channel display covering all Irequencies within 12 octaves. Price on request.

Applications

The 8054 A can analyze any phenomena occurring in the audio spectrum and will find uses in a number of scientific disciplines. It is especially well suited for analyzing airborne or solid-borne sound, vibration, and noise.
For measurements of airborne sound the 8054A has a microphone input which is calibrated for condenser microphones such as the HP 15109B $1^{\prime \prime}$ Microphone Assembly (Page 100) having a sensitivity of $5 \mathrm{mV} / \mu \mathrm{bar}$. The 8054 A supplies a 200 V polarization voltage to the condenser microphone, and microphone correction factors from -1 to +4.5 dB can be compensated in 0.5 dB steps by a rear panel switch. The HP 15119 A $1 / 2^{\prime \prime}$ Microphone Assembly can also be used with the 8054 A if the operator makes a 10 dB correction to all readings to compensate for the $1.58 \mathrm{mV} / \mu$ bar sensitivity of the $1 / 2^{\prime \prime}$ microphone. The HP 15127A Cable Amplifier can be used with the HP 15119A Microphone Assembly to provide the 10 dB gain.

Using a vibration pick-up or accelerometer as the input transducer the 8054 A becomes a real-time vibration analyzer for shock and vibration testing. The operational condition of machinery can be determined through such a vibration analysis. The 8054 A can be a most useful quality control measurement tool to anyone who manufactures or maintains anything with moving parts. Thus, the 8054A finds many applications in the manufacture of automobiles, office equipment, industrial machines, and aircraft.

Since vibration causes the sensation of sound, the acoustical applications of the 8054 A are often closely related to those applications in vibration analysis. Among the acoustical applications are aircraft noise analysis for determination of Effective Perceived Noise Level (EPNL), reverberation time measurements, frequency response testing of sound systems, determination of airborne and impact sound protection in architectural acoustics, and analysis of noise generated by industrial machines, automobiles, and jet engines. Underwater acoustical applications include studies of marine sounds and propagation. The 8054 A is also a useful tool in speech analysis and in the manufacture of loudspeaker and Hi-Fi equipment. Waveform analysis and the characterization of earth tremors are other possible applications.

The major functions of the 8054 A including display mode, range, scanning mode, and channel selection, can be selected remotely by contact closure or saturated npn transistor to ground. Thus the 8054A can be used in closed-loop data processing systems when used with HP Computers 2114 A , 2115 A , or 2116 A (Page 104). The 8054 A easily fits into virtually any automated system whose input signal is in the audio range.
With the advent of the small digital compurer (Page 104) is it now possible to carry both the Analyzer and a computer to the measurement site to obtain processed results as the measurements are made. The flat response of the 8054A makes it possible for the computer to apply a desired weighting factor to the data. The computer can also subtract background noise, make adjustments that account for barometric pressure or relative humidity, and perform other manupulations to give the data in the desired form within an instant of the experiment.

Frequency range: twenty four $1 / 3$-octave filters with center frequencies from 50 Hz to 10 kHz . Other $1 / 3$-octave filters with center frequencies from 2 Hz to 16 kHz are available on special order.
Filter characteristics: attenuation ourside the passband

$$
\text { at } 0.79 \mathrm{f}_{0} \text { and } 1.26 \mathrm{f}_{0^{+}} \quad \text { : typically } 20 \mathrm{~dB}
$$

ar 0.5 fo and $2 \mathrm{f}_{0} \quad$: typically 50 dB
at $0.25 \mathrm{f}_{0}$ and $4 \mathrm{f}_{0} \quad$: typically 70 dB
All filters meet the requirements of international standards (IEC 225).
$-F_{n}$ is the center frequency of the passband. $0.79 f_{n}$ and 126 f o correspond to the eenter frequencies of the adjacent $1 / 3$. ocrave filters.

Readout

CRT display: 40 dB display range, calibrated in dB (s dB / div) with internal graticule. Range indicated. Two channels per horizontal division.
Digital display: four-digit DVM readour of selecred passband level in dB above $1 \mu \mathrm{~V}$. Resolution of 0.1 dB .
Amplitude range: 0 to 140 dB above $1 \mu \mathrm{~V}(1 \mu \mathrm{~V}$ to 10 V$)$. The 40 dB dynamic range displayed on the crt can be shifted in 10 dB steps over the entice amplitude range.
Display modes
RMS slow and RMS fast: dynamic characreristics of rms modes as speciffed in IEC 179. Other combinations of rms time constants between 100 ms and 100 s are available on special order.
Peak: rise time of the peak detector is less than 4 ms .
Hold: storage of the instantaneous crt display can be accomplished in any of the above modes by pressing the HOLD push button.

Acturacy

RMS mode:
Digital display: for steady sine wave signal at filter center frequency: $\pm 1 \mathrm{~dB}$ in upper 30 dB of display, $\pm 1.5 \mathrm{~dB}$ in lower 10 dB of display. For tone burse signals with crest factors less than or equal to $3: \pm 1 \mathrm{~dB}$ in respect to sine wave accuiacy. For signals with crest factors berween three and five: $=1.5 \mathrm{~dB}$ in respect to sine rvave accuracy, for random noise $\pm 0.2 \mathrm{~dB}$ in respect to steady sine reave signals.
CRT display: $\pm 1 \mathrm{~dB}$ in respect to digital display accuracy.
Peak mode: $\pm 1 \mathrm{~dB}$ in upper 30 dB of crt display in respect to steady sine wave rens accuracy. $\pm 1.5 \mathrm{~dB}$ in lower 10 dB of cot display in respect to steady sine nvave ims accuracy.
Hold mode: crt display changes less than $\pm 1 \mathrm{~dB} / \mathrm{hr}$, at full scale, less than $\pm 1 \mathrm{~dB} / \mathrm{min}$ at full crt display -40 dB .

Scanning

Manual remote: any channel can be selected manually by front-panel push button or remotely by contact closure to ground. The digital display indicates the band level, and the channel is identified by illuminating the relevant channel button and brightening the respective zone on the crt display,
$\mathrm{X}-\mathrm{Y}$ recorder: autonatic sequential scanning at a rate of $1 \mathrm{~s} /$ channel of all 24 channels provides analog outpurs suitable for processing by standard X - Y recorders. Scanning can be repeated by remote control.
Ext. inhibit: the rate of scanning is controlled by the hold-off signal (voltage greater than 10 V) from the digital recorder or computer which is processing the $B C D$ output. The scanning is sequential and continuous. A maximum scanning rate of 1 channel/ms can be achieved with a relatively fast computer.
Print 1 cycle: this mode is similar to EXT. INHIBIT, bue only one sequential scanning of the twenty-four channels is completed. Scanning can be repeated by remote control.
Reset: X - Axis and Y. Axis outputs are grounded; digital outpurs produce blanking signals.

Inputs

Input A : directly calibrated in $d B$ of sound pressure level for
microphones with a nominal sensitivity of $5 \mathrm{mV} / \mu \mathrm{bar}$. Microphone correction factors from -1 dB to +4.5 dB can be compensated for in $0.5 \mathrm{~dB}=0.25 \mathrm{~dB}$ steps by a rear-panel switch. A built in power supply provides a $200 \mathrm{~V} \pm 4 \mathrm{~V}$ polarization voltage for condenser microphones and operating voltage for preamplifiers. Up to 12.5 mA can be supplied for the preamplifier and additional cable amplifiers. The input connector is a three-pin Cannon type XLR-3.31 audio connector. Input impedance is >100 $\mathrm{k} \Omega$.
Input B: directly calibrated in dB above $1 \mu \mathrm{~V}$. BNC input connector, Input impedance is $>100 \mathrm{kn}$. The input amplifier has an overload capability of approximately 30 dB .
Max. input: $150 \mathrm{~V} \mathrm{de}, 50 \mathrm{~V}$ peak ac.
Outputs (all outputs-capacitive loading, $\leq 1 \mathrm{nF}$, resistive, $\geq 10 \mathrm{k} \Omega$)
Analog X - Y recorder:
X-Axis: $200 \mathrm{mV} \pm 40 \mathrm{mV} /$ channel. Output impedance: <20n. BNC connector.
Y - Axis: 0 to 8 V full scale, calibrared in $\mathrm{dB} .(200 \mathrm{mV} / \mathrm{dB})$. Output impedance: <20л. BNC connector.
Pen lift: concact closure to operate "Pen." Telephone jack. Ext. oscilloscope:
X : Linear ramp approx, 0 to 8 V . Outpur impedance: <208. BNC connector.
Y: Pos. "Log" $200 \mathrm{mV} / \mathrm{dB}$. Pos. "Lin" 8 V full scale. Oucput impedance: <208. BNC connector.
Z : Provides blanking pulse of approx. +6 V open circuit dc-coupled.
Output impedance: $<15 \mathrm{k} \Omega$. BNC connector.
Auxitiary output: output of Input Amplifier.
Gain range: -40 to +60 dB in $10 \mathrm{~dB} \pm 0.2 \mathrm{~dB}$ steps.
Maximum output swing: approx. 10 V pp.
Output Impedance: <20n. BNC connector.
Digltal outputs:
Connector type: Amphenol 57-40500 (50-pia).
Mating connector: Amphenol 57-30500.
Code: 1.2.4.8 BCD " 1 " state positive. " 0 " level: 0 V nominal; "1" level: +5 V open circuit, nominal; source impedance: $7.5 \mathrm{k} \Omega$ max. each line.
Reference levels: ground; approx. +5 V , low impedance.
Print command: step from approx. 0 V to +6 V dc. coupled, $20 \mu \mathrm{~s}$ minimum duration, $3 \mathrm{~V} / \mu \mathrm{s}$ minimum rise rate, source impedance: 100Ω maximum.
Hold-off requirement: voltage must be more than +10 V . Input impedance: $62 \mathrm{k} \Omega$.
Accuracy of digital outputs and Y-axis outputs: same as digital display.
Remote control: selection of range, channel, and display mode made by contact closure or saturated NPN transistor to ground.
Environment: ambient temperature $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ and relative humidity to 95% at $40^{\circ} \mathrm{C}$.
Power requirements: 110 or $220 \mathrm{~V}-10 \%$, $+15 \%$, 50 Hz to 400 Hz , approximately 100 W .
Dimensions: $163 / 4^{\prime \prime}$ wide (425 mm), $12^{\prime \prime}$ high (306 mm) (without feet) $243 / 8^{\prime \prime}$ deep overall (708 mm).
Accessorles furnished: 200 sheets of Diagram paper (08054. 90100), 10 sheets of Diagram Paper (08054.90101), 1 15 -pin Extender Board, 118 -pin Extender Board, 1 Rack Mounting Kit, 1 Connector Amphenol 57-30500, 1 BNC Male to Binding Post Adaptor, 2 Pen-lift Connectors (Telephone jacks), 2 BNC Banana Cables.
Price: Model 8054A, $\$ 8950$ ($\$ 8000$ at factory in West Germany).
Option 01: A MAXIMUM RMS Display Mode replaces the normal PEAK Mode. No charge.
Option 02: A to D converter and digital display nor included.
Price: less $\$ 600$.

8051A

Until recently, much too little was known about how the ear translates sound pressure into loudness. Early sound level meters attempted to measure loudness by measuring the level of a frequency-weighted sound pressure. They gave good results for continuous narrow-band sounds but were often in error by up to 20 dB for wide-band or impulsive sounds. Recent research has given us a much better understanding of how the human ear works. One result of this research is an instrument that responds to the loudness of sounds in very much the same way that the ear does.

The Hewlett-Packard 8051A Loudness Analyzer gives data which correspond closely to the subjective sensation of loudness. It does this by simulating the known characteristics of the human ear according to Zwicker's method, which is described in ISO Recommendation 532, Method B. The 8051 A divides the audio range into approximately critical bands by use of filters with bandwidths of one-third octave or multiples thereof. The range between 45 Hz and 14 kHz is covered by 20 such filters, according to ISO Recommendation 532. The Analyzer works for wide-band or narrow-band, continuous or impulsive sounds. It can even handle singleshot sounds.

The Analyzer takes inputs from a microphone or a tape recorder and makes a continuous analysis of them. It displays the resulting Zwicker diagram (a plot of loudness density versus subjective pitch) on a crt showing how the loudness components in each of 20 frequency bands contribute to the total loudness. A new plot is made every 25 ms so that even transient sounds can be analyzed conveniently. Total loudness of a sound, that is, the integral of the Zwicker diagram. is also computed by the Analyzer and displayed on a meter.

The 8051A has four measurements ranges which accom-
modate sounds with loudnesses of i to 400 sones $_{G}$, equivalent to the loudness level of 40 to 127 phons. (The subscript G indicates that his loudness is calculated in terms of criticai bands, not subjectively measured). This range includes sounds like those present in a 'quiet room' as well as very large sounds which can cause ear damage. Corrections for frontal or diffuse sound fields are made automatically by the Analyzer according to the settings of front-panel buttons.

How to measure short, impulsive sounds-like the sound of a stamping machine or a single typewriter stroke-has always been one of the most vexing problems in loudness measurement. Previously, the only way to analyze a singleshot phenomenon was to capture it on magnetic tape, make a cape loop and try to analyze the sound by playing it back over and over. With the new loudness analyzer, impulsive sounds are no longer a serious problem. The Analyzer has electronic storage circuits which can be cailed on to 'remember' the peak loudness of sounds occurring during any desired interval. If, as is usually the case, the single-shot sound is muck louder than the background noise in the area, the loudness analysis stored by the Analyzer will be that of the short sound.

The 8051 A can also be instructed to hold its most recent loudness analysis for several minutes. This allows the analysis of a changing sound to be frozen at any desiced time and held long enough for it to be recorded or photographed. Both the hold and peak modes can be remotely controlled. Using the hold fearure together with a built-in display scanner, the 8051 A can make Zwicker plots automatically on an X.Y recorder. Sound pressure levels in each channel can be read from the special Zwitker recorder paper. An additional recorder output is provided for recording total loudness versus time.

Loudness range: 1 sone $_{\sigma}-400$ sones $_{0}$ (corresponding to 40 phons ${ }_{G}-127$ phons $_{G}$) in 4 ranges. Fuli-scale meter deflec. tions: $12,40,120$, and 400 sones $_{6}$. Corresponding sensitivity ranges of loudness density display: $0.12,0.4,1.2$, and 4 (sones a/Bark)/division.
Accuracy: deviation less than $\pm 5 \%$ of full scale from the results obtained by Method B for Calculation of Loudness Level according to ISO Recommendation 532 (DIN 45631; BS4 198, 1967).
Noise: less than 0.3 sone $_{8}$ in the most sensitive range for source resistances of 600Ω or less.
Sound pressure level ranges: representative vaiues of SPI for loudness and loudness density readings at 1 kHz (frontal field).

Range	SPL	Loudness Density	Loudness
sones $_{\mathrm{G}}$	dB	divisions	sones $_{9}$
400	110	5.5 ± 0.3	128 ± 20
120	90	5.7 ± 0.3	32 ± 6
40	70	5.35 ± 0.3	8 ± 2
12	50	5.25 ± 0.3	2 ± 0.6

The maximum measureable SPL at 1 kHz is 114 dB . $0 \mathrm{~dB}=2 \times 10^{-4} \mu$ Ваг.
Microphone Input: suitable for condenser microphones with a nominal sensitivity factor of $5 \mathrm{mV} / \mu \mathrm{Bar}$. Microphone correction factors from -1 to +4.5 dB can be compensated in 0.5 dB steps by rear panel switch. A 200 V $\pm 2.5 \%$ is provided as polarization voltage and to supply the microphone preamplifier and/or additional cable amplifiers.
Maximum current: 12 mA .
input impedance: $100 \mathrm{k} \Omega$.
Connector: Cannon XLR-3-3.
Direct input: accepts signals with 1 mV corresponding to a sound pressure level of 60 dB .
Input impedance: $100 \mathrm{k} \Omega$.
Connector: BNC.
Filfer specifications:
Chanael Relative Bandridth
Center
Frequency
63 Hz
125 Hz
224 Hz
4... 20 one-third octave $\quad 315 \mathrm{~Hz} \ldots 12.5 \mathrm{kHz}$ The $1 / 3$ octave filters have an attenuation of about 20 dB in the center of the next pass band and about 60 dB at twice the center frequency. Roll-off of the octave filters is approximately 40 dB /octave. The filters exceed the requirements laid down in IEC Recommendation 225.
Diffuse field network: response as per ISO Recommendation 454.

Accuracy: $45 \mathrm{~Hz} .4 \mathrm{kHz}: \quad \pm 0.5 \mathrm{~dB}$

$$
5 \mathrm{kHz}-12.5 \mathrm{kHz}: \quad \pm 1 \mathrm{~dB} .
$$

Environment: ambient temperature from $32^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $50^{\circ} \mathrm{C}$) and relative humidity to 95% at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$.
Outputs:
Meter: positive 4 V for full-scale deffection of the meter. Load resistance $1 \mathrm{k} \Omega$ or more.
X-axis: positive 10 V for full horizontal deflection of the sampling point on the crt.
Load resistance $1 \mathrm{k} \Omega$ or more.
Y-axis: positive 7 V for full vertical deflection of the sampling point on the crt.
Load resistance $1 \mathrm{k} \Omega$.
Crt. sync: positive pulse to trigger external equipment coincident with the start of the internal sweep, about +6 V .
Crt. vertical: output waveform of vertical amplifier to drive external oscilloscopes or fast recorders. Positive $1 \mathrm{~V} / \mathrm{div}$. of the vertical deflection on the $c \mathrm{t}$. Load resistance 1 kn or more.
Auxiliary output: output of preamplifier. The gain of the preamplifier depends on the range setting, for DIRECT input and FRONTAL sound field as follow's:

Range - sones	Amplifier-Gain
400	$-20 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$
120	$0 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$
40	$+20 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$
12	$+40 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$

Display:
1nstant: display of the instantaneous loudness spectrum on the crt and indication of the total loudness on the meter.
Peak: display of the maximum total loudness on the meter with the crt displaying the corresponding spectrum. Remote operation by contact closure.
Hoid: storage of display on the crt and loudness reading on the meter. Less than 0.3 div. change of the cre display for up to 2 minutes of storage. Remote operation by contact closure.
Check: internal noise generator checks overall operation of the instrument.
Scanning: manual or automatic. Scanning time for the whole spectrum in the automatic mode is 90 seconds ± 30 seconds.
Overload: overload lamp glows if the crest factor of the signas in any channel exceeds 7 at full scale, or if any of the circuits are overdriven.
Power sequirements: line voltage 110 V or $220 \mathrm{~V},-10 \%$, $+15 \%, 50 \mathrm{~Hz} .400 \mathrm{~Hz}$.
Power consumptlon: approximately 80 W .
Dimenslons: $163 / 4^{\prime \prime}$ wide (425 mm), $12^{\prime \prime}$ high (306 mm) (without feet), $243 / 8^{\prime \prime}$ deep overall (708 mm).
Weight: 64 lbs (29 kg).
Accessories supplled: detachable power cord with Schuko or NEMA plug.
200 sheets of Loudness Analysis Diagram (ISO Recom-
mendation 532) covering each range in the frontal and diffuse sound field.
12 sones free field $\quad \mathrm{P} /$ No.08051-90100
40 sones free field $\quad \mathrm{P} /$ No. 08051-90101
120 sones free field
400 sones free field
12 sones diffuse field
40 sones diffuse field
P/No. 08051-90102
P/No. 08051-90103
P/No. 08051-90104
P/No. 08051-90105
P/No. 08051-90106
P/No. 08051.90107
5060-0779
5060.1744

15-pin extender board
Price: Model 8051A, $\$ 5500$ ($\$ 5000$ at factory in West Germany).

ACOUSTICS

IMPULSE SOUND LEVEL METERS
Precision impulse measurements Models 8052A, 8062A, 8055A

The Heriett-Packard Models 8052A and 8062A Impulse Sound Level Meters can make virtually the complete range of sound level measurements. Basically audio voltmeters, they have selecrable weighting factors, detection modes, and rms time constants, plus appropriate meter seales. Controls are siearly marked, and push buttons simplify selection of operating modes. Borh sound level meters are identical in operation. The 8052 A is powered from standard power lines while the 8062A can be powered from internal rechargeable batteries as well.
Both ims and peak values can be measured. Different time constants (about 1 second "slow" and 100 ms "fast") can be selected for rms measurements of signals with crest factors up to five. These slow and fast modes can measure accurately only continuous and quasi-continuous sounds. But the new impulse mode (35 millisecond integrating time constant) allows accurate measurements of impulsive sounds as well as continuous sounds. The impulse mode ideally permits measurements of impulsive sounds like the stroke of a typentriter key or the blow of a punch press machine. In the peak mode, peak values of single impulses as short as 100 microseconds can be measured accurately.
The frequency response of these instruments is also selectable. In addition to a linear response mode, in which the response is flat from 5 Hz to 20 kHz , three weighted responses (A, B, C) are available. The response curves of these weighted modes meet the requirements specified in the IEC Recommendation 179 for precision sound level meters. The new D-weighting network for monitoring aircraft noise is also available as an option in lied of the B network
The 8052A and 8062A can also be used as audio volemeters when the linear frequency response mode is selected. As with sound measurements, both peak and rms levels can be measuced and crest facrors determined easily. Full-scale sensirivity ranges from 30 microvolrs to 10 volts. A linear analog output propor. tional to the meter deffection (5 V at full scale) is availabie in all modes of operation.
As a companion unit for the 8052 A or 8062 A , the HewletrPackard Model 8055A Filter Set enables octave band measurements to be made quickly and easily. The 805s A is furnished with eight octave filters with center frequencies from 65 Hz to 8 kHz . Each filter satishes the requirements of the IEC Recommendation 225, American Standard (S1. 11.1966) Octave Band Filter. Class II, and German Standard DIN' 45651 . The attenuation outside the band pass of one octave from the center fre. quency is approximately 23 dB , for two octaves and three octaves approximately 47 dB and 65 dB respectively. The signalto noise ratio is greater than 70 dB referred to 3 V rms output. Options are available to include additional filters to extend the center frequency range. Option 01 furnishes two addítional octave filters with senser frequencies of 31.5 Hz and 16 kHz , excending the frequency range from 22 Hz to 22 kHz . Oprion 02 adds an additional octave filter with a 31.5 Hz center frequency and one broad-band filer with a D-weighted frequency response according to the draft secretariar revision (Nov. 67) of ISO Recommendation 507 with a tolerance of $\pm 1 \mathrm{~dB}$. The same 31.5 Hz center frequency, octave filter is added for option 03 with one amplifier section for summing up the outputs of all nine octave filters. Selection of filter is done by push butron, as is filter gain. Three choices of gain are available: $0 \mathrm{~dB}, 20 \mathrm{~dB}$, and variable. In the variable mode the gain of each filter can be set independently berween -20 dB and +20 dB . Thus any weighting curve can be preset for a specific measurement, yet easily can make general measurements without upsetting the
special calibration.
Price: Model 8055A, \$520 (\$475 at factory in West Germany). Oprions 01, 02 and 03 , add $\$ 100$.

For greater versatility the 8059 A Filter Set can be equipped with one-third octave filters covering a variety of frequency ranges. Information and prices on request.

Specifications

Frequency range: $\{\mathrm{Hz}$ to 20 kHz .

Amplitude range:

Using direct input or HP preamplifier: $30 \mu \mathrm{~V}$ to 10 V full scale.
Using HP 15109B I-in. condenser microphane: Sound pressure level: 35 to $140 \mathrm{~dB}\left(0 \mathrm{~dB}=2 \times 10^{-6} \mu \mathrm{bar}\right)$. Sound level (A-welghted): 22 to 140 dB . Octave level: 22 to 140 dB .
One-third octave level: 15 to 140 dB .
Using HP 15119A $1 / 2-\mathrm{in}$. condenser microphone: Sound pressure level: 55 to 150 dB .
Sound level (A-weighted): 40 to 150 dB .
Octave level: 40 to 150 dB .
One-third actave level: 30 to 150 dB .
Overall accuracy: :

6 Hz		20 kHz
		$+0.5$
± 188	$=0.5 \mathrm{~dB}$	-1.0^{dB}

Weighting networks: three weighting networks modify frequency response in accordance with A, B, or C, specified in IEC Recommendation 179 for precision sound level meters (Also see Oprion 01).

Detection mode:

Rms slow and rms tast: indication proportional on ems value of applied signal. Signals with crest factors up to 5 affect accuracy less than $\pm 0.5 \mathrm{~dB}\left(\pm 0.75 \mathrm{~dB}\right.$ above $40^{\circ} \mathrm{C}$, for crest factors above 3). Dynamic characteristics per IFC Recommendation 179.
Impuise: indication proportional to the maximum rms value of applied signals, weighted witha 35 mis time constant per the proposed scandard for impulse sound level meters.
Peak: indication proportional to the absolure peak value of applied signal with an accuracy of $\pm 1 \mathrm{~dB}$: rise time <100 $\mu \mathrm{s}$, discharging rate $<0.1 \mathrm{~dB} / \mathrm{s}$.
Noise: approximately $5 \mu \mathrm{~V}$ referred to the input with the infur $t \in$ eminated in $600 \Omega n^{* * *}$
Absolute maximum input: ac, 50 V peak; dc, 200 V .
Overload recovery time; $<S$ s for 80 dB overioad in FA ST meter response.
Overioad indicator: front panel indicator lighrs when input signal crest facror exceeds five at full scale, or when the inpur signal is excessive.
Self check: internal signal pernits verinication of over-all operarion.
Input impedance: $100 \mathrm{k} \Omega$ shunced by approximarely 100 pF ; about 1000 Mn shunted by approxinately fF when an HP Microphone Preamplifier such as 15108 B with BNC adapter is used.
Microphone input: accepts inpur signals from one of the HP Condenser Mierophones or Preamplifiers and supplies +200 $\mathrm{V} \pm 3 \%$ as polarization voltage for the nicrophone cartridge and operating voltage for the microphone preamplitier."**
Microphone sensitivity: range switch calibrated in dB SPL for microphones with a nominal sensitivity lactor of $5 \mathrm{mV} / \mu \mathrm{bar}$
(See Option 02); deviation up to +1 and -4.5 dB can be compensated for in 0.5 dB steps.
External filter: external filters can be used to limit the frequency range of the 8052A and 8062A. These filters are electrically inserted into the 8052 A and 8062 A circuits using the appropriate connectors on the rear panel of the ROS2A and 8062A.
External filter input: provides output signal to fitter: 100 mV peak or rms for full scale meter indication with 0 dB gain through the filter. Output impedance <20 n. BNC female connector.
Maximum output: 9 V pp.
Load resistance: $\geq 600 \Omega, 1 \mathrm{nF}$.
External filter output: receives output signal from filter. In. put Impedance $>100 \mathrm{k} \Omega$ shunted by approximately 100 pF, BNC iemale connector.
Meter: taut-band meter movement with scales individually calibrated to the noverment; three meter scales, -10 to +10 $\mathrm{dB}, 0.1$ to 1 . and 0.3 to 3 V .
Recorder output: 0 to +5 V proportional to meter deflection. Ourput impedance <20 n, BNC female connector Load resistance $\geq 600 \Omega$, inF.
Operating environment:
8052A: 1.6° to $122^{\circ} \mathrm{F}\left(-10^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$. relative humidity up_{F} 1095% at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$.
8062A: 14° to $113^{\circ} \mathrm{F}\left(-10^{\circ}\right.$ to $\left.+45^{\circ} \mathrm{C}\right)$, relative humidity up ro 95% at $104^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$.
Power requirements:
8052A: 110 or $220 \mathrm{~V},-10 \%,+15 \%$, 50 to 400 Hz , ap. proximately $s W$.
8062A: two internal rechargeable batteries or external 110 or $220 \mathrm{~V},-10 \% .+15 \%$. 50 to 400 Hz , approsimately $5 \mathrm{~W}^{\prime}$. Battery operating time 8 hrs. Batteries are trickle-charged when instrument is operated from external poner line: fast charge can be selected, but instrument cannot be operated in this mode. Battery condition can be read on the meter.
Weight:
8052A: net $9 \mathrm{lb}(4 \mathrm{~kg})$; shipping $11 \mathrm{lb}(5 \mathrm{~kg})$.
8062A: ner $12 \mathrm{lb}(5,5 \mathrm{~kg})$; shipping $1 \mathrm{f} 1 \mathrm{~b}(6,3 \mathrm{~kg})$.
Accessories furnished: ta. 15 -pin extender boards, one cable as power, one adapter BNC to binding post.
Dimenslons: $6.3 / 32^{\prime \prime}$ high, $7.25 / 32^{\prime \prime}$ wide, $11^{\prime \prime}$ deep (155 x $190 \times 279 \mathrm{~mm}$).

Options:

01: A, D, and C weighting nernorks in lieu of A, B, and C networks. The D-weighted network meets the requirements of the draft secrerariat revision (Nov. 67) of ISO Recommendation 507 with a colerance of $\pm 1 \mathrm{~dB}$. Price: Add $\$ 25.00$.
02: range switch calibrated in AB SPL for microphones with a nominal sensitivity factor of $1.58 \mathrm{mV} / \mu \mathrm{bar}$. No addi. tional charge.
Price: Model 8052A, $\$ 670$ ($\$ 600$ at factory in West Germany). Model 8062A, $\$ 720$ (5650 at factory in West Germany).

[^2]
Acoustics

The Hewlett-Packard 15119A $1 / 2$-in. Condenser Microphone Assembly is a precision tool for making critical acoustic measurements. Eirequency response for a plane frontal sound field is $\pm 1 \mathrm{~dB}$ over the entire audio cange, 20 Hz to 20 kHz . Because it is omni-directional, the 15119 A can be used to measure diffuse as well as directional sound felds. Its $1 / 2$-in. configuration ensures a virtuaily negligible disturbance of the sound field by the microphone itself, a prerequisite for accuracy at high frequencies. Thus, full advantage can be taken of the flat frequency response.

Hewlett-Packard also offers a 1 -in. Condenser Microphone Assembly, Model I5109B, for measuring extremely low level sounds. A full 10 dB more sensitive than the 15119 A , the 15109 B otherwise has similar characteristics. Both Microphone Assemblies include a microphone cartridge and preamplifier with a 10 -foot cable.

Both preamplifiers are available separately under model numbers 15108 B in the 1 -in., 15118 A in the $1 / 2$-in. configuration. These preamplifiers are all solid state with field effect transistors ($F=J^{\prime}$) in the input stage. Input impedance is greater than $1000 \mathrm{M} \Omega$ shunted by less than 2 pF . In addition, the preamplifiers have extremely flat frequency response ($\pm 0.2 \mathrm{~s} \mathrm{~dB}$ from 5 Hz to 200 kHz) and low noise and are free from microphonics. With essentially unity gain, these preamplifiers make excellent broadband audio impedance converters and isolators. They are extremely well suited as preamplifers for vibration pickups such as accelerometers. Furnished BNC adapters provide convenient input connectors and increase input capacitance to only \& pF. Operating voltage for the preamplifiers is obtained from the same power supply which provides the polarization voltage $(+200 \mathrm{~V})$ required by the microphone cartridges. Being solid state, the preamplifiers are only a nominal drain on this supply.

The Microphone Assemblies and Preamplifiers make ideal input devices for HP acoustic instrumentation such as the 8051A Loudness Analyzer, 8052A and 8062A lmpulse Sound Level Meters, and the 8054A Real-Time Audio Spectrum Analyzer, All these instruments have microphone inputs (three-conductor audio connectors with which the microphone cable connectors mate directly') and built-in power supplies to provide the +200 V .

15114A microphone power supply

The I5114A Microphone Power Supply permits the use of the Microphone Assemblies and Preamplifiers with instruments which do not provide the necessary volrage or do not have the appropriate input connectors. The microphone preamplifier cable connects directly to the supply, and the audio output signal is available from a BNC connector on the sup. ply for convenient connection to the associated equipment.

The $15114 A$ is a truly portable unit, operating for at least eight hours from four standard 1.5 volt batteries. Rechargeable batteries can also be used, and the compact 15144A Charging Unit recharges even fully discharged batteries over-
night (about 14 hours). The Charging Unit also permits the 15114A to be operated from standard ac line voltages.
Price: Model 15114A, $\$ 140$ ($\$ 130$ at factory in West Germany).
Model 15144A, Price on request.
15127A cable amplifier
The 15127A Cable Amplifier permits HP Microphone Assemblies and Preamplifiers to be operated at considerable distances from associated equipment. A single 15127 A can drive up to 100 meters (330 feet) of cable, even longer if a reduction in upper frequency limit and/or maximum output voltage is permissible. Operating power is obtained from the microphone voltage, so the number of Cable Amplifiers which can be used is limited only by the ability of the power supply to furnish the raquired current. Standard Cable Amplifiers provide 0 dB gain option 01 units, 10 dB gain. If desired, the gain can be changed in the field with a simple wiring change.

The 15127A is particularly useful with less portable measuring instrumentation such as the HP 8051A Loudness Analyzer and 8054A Real-Time Audio Spectrum Analyzer. These instruments can supply enough current from their microphone power supplies to support a Cable Amplifier in addition to a Microphone Assembly. Also, the 10 dB gain of the option 01 Cable Amplifier provides direct calibration of the display of these instruments when used with the $1 / 2-\mathrm{in}$. Microphone Assemblies.
Price: Model $15127 \mathrm{~A}, \$ 90$ ($\$ 90$ at factory in West Germany).

Specifications - 15119A/15109B
Sensitivity (nominal): individual calibration supplied 15119A: $1.58 \mathrm{mV} / \mu \mathrm{bar}(-56 \mathrm{~dB}$ re $1 \mathrm{~V} / \mu \mathrm{bar})$. 15109B: $5 \mathrm{mV} / \mu \mathrm{bar}$ (-46 dB re i V/ $\mu \mathrm{bar}$).
Frequency response: free feld (frontal incident) 15119A: $\pm 1 \mathrm{~dB}$ from 20 Hz to 25 kHz . 15109B: $\pm 1.5 \mathrm{~dB}$ from 20 Hz to 16 kHz . $+0,-3 \mathrm{~dB}$ from 16 kHz to 18 kHz .
Maximum devlation from free field for diffuse field:
15119A: -1 dB up to 3 kHz
-2 dB up to 5 kHz
-4 dB up to 10 kHz
-6 dB up to 20 kHz
15109B: -1 dB up to 1.5 kHz
-2 dB up to 3 kHz
-4 dB up to 6 kHz
-6 dB up to 9 kHz
Dynamic range (from equivalent A-welghted nolse level to 3% harmonic distortion):
15119A: 30 to 150 dB above $2 \times 10^{-1} \mu \mathrm{bar}$
151098: 17 to 140 dB above $2 \times 10^{-4} \mu \mathrm{bar}$.
Temperature coefficient: $\leq 0.01 \mathrm{~dB} /{ }^{\circ} \mathrm{C}\left(0.006 \mathrm{db} /{ }^{\circ} \mathrm{F}\right)$ change in sensitivity, -10 to $+50^{\circ} \mathrm{C}\left(14^{\circ}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$.
Effect of atmospheric pressure: for 10% change in ambient pressure from 1 atm.
15119A: $\pm 0.1 \mathrm{~dB}$ 15109B: $< \pm 0.2 \mathrm{~dB}$.
Power requirements: $+200 \mathrm{~V} \pm 5 \mathrm{~V},<5 \mathrm{mV}$ ripple, 2.5 mA maximum.
Dimensions (not including $10 \mathrm{ft}(3 \mathrm{~m})$ cable):
15119A: $0.50^{\prime \prime}$ (12.7 mm) diameter, approximately $51 / \mathrm{s}^{\prime \prime}$ (130 mm) long.
151098:0.97" (23.8 mm) diameter, approximately $51 / 4^{\prime \prime}$ $(135 \mathrm{~mm})$ long.

Weight:

15119A: net $1 \mathrm{lb}(0,45 \mathrm{~kg})$. Shipping $3 \mathrm{lb}(1,4 \mathrm{~kg})$.
15109B: net $11 / 2 \mathrm{lb}(0,65 \mathrm{~kg})$. Shipping $4 \mathrm{lb}(1,8 \mathrm{~kg})$.
Environment: -10 to $+50^{\circ} \mathrm{C}\left(14\right.$ to $122^{\circ} \mathrm{F}$), relative humidity up to 95% at $+40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$.
Accessories furnished: 1000 pF Input Adapter, Tripod Mounting Adapter.

Accessories available:

HP 15124A for $1^{\prime \prime}$: Insert voltage adapter.
HP 15125A for $1 / 2^{\prime \prime}$: Insert voltage adapter permic determination of microphone cartridge open circuit voltage for calibration purposes. $\$ 50.00$.
HP 15142A for $\mathrm{I}^{\prime \prime}$: Marching capacitors.
HP 15134A for $1 / 2^{\prime \prime}$: Matching capacitors. Capacitive load for measuring noise under operating conditions. \$12.50.
HP 1000.0501 Tripod, permits support of the micro. phone away from bulky objects such as measuring instrumentation, which would interfere with the sound feld. $\$ 35.00$.
Price: Model 15119A, \$275 (\$250 at factory in West Germany).
Model 15109B, S270 (\$250 at factory in West Ger. many).

15108B and 15118A preamplifiers

Gain (at 1 kHz with mput Adapter attached): $0 \mathrm{~dB}+0$, -0.25 dB .
Frequency response (with Input Adapter attached):
With Nominal Load and 1 V rms Maximum Output: $\pm 0.25 \mathrm{~dB}$ from $; \mathrm{Hz}$ to 200 kHz .
With Nominal Load and 10 V rms Maximum Output: $\pm 0.25 \mathrm{~dB}$ from 5 Hz to 20 kHz .
Maximum input: 10 V rms (sine wave).
Dynamic range (from equivalent A-weighted noise level to 1% distortion):
15108B: $17 \cdot 140 \mathrm{~dB}$ above $1 \mu \mathrm{~V}$.
15118A: 20-140 db above $1 \mu \mathrm{~V}$.

Noise (A-welghted):

15108B: $<7 \mu \mathrm{~V}$ rms with 68 pF across input.
15118A: $<10 \mu \mathrm{~V}$ mos with 27 pF across input.
input impedance: $>1000 \mathrm{M} \Omega$ shunted by $<2 \mathrm{pF}$ without input adapter, $<4 \mathrm{pF}$ with.
Output impedance (at 1 kHz): $<100 \Omega$.
Nominal load: $100 \mathrm{k} \Omega$ shunted by 500 pF .
Maximal output current: 0.6 mA .
Power requirements: $+200 \pm 5 \mathrm{~V},<5 \mathrm{mV}$ ripple, 2.5 mA maximum.
Environment: -10 to $+50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$, relative hu . midity up to 95% at $+40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$.

Dimensions:

15108B: $0.936^{\prime \prime}$ (23.78 mm) diameter, $43 / 4^{\prime \prime}$ (120 mm) long not including $10 \mathrm{ft}(3 \mathrm{~m})$ cable.
15118A: $0.50^{\prime \prime}$ (12.7 mm) diameter, $43 / 4^{\prime \prime}$ (120 mm) long not including $10 \mathrm{ft}(3 \mathrm{~m})$ cable.

Weight:

15108B: net $11 / 2 \mathrm{lb}(0,65 \mathrm{~kg})$. Shipping $4 \mathrm{lb}(1,8 \mathrm{~kg})$. 151 i8A: net $1 \mathrm{Jb}(0,45 \mathrm{~kg})$. Shipping $3 \mathrm{lb}(1,4 \mathrm{~kg})$.
Price:
Model 15108B. $\$ 140$ ($\$ 130$ at factory in West Germany). Model 15118A: $\$ 145$ (\$130 at factory in West Germany).

PRECISION NOISE GENERATOR
 Pseudo-random pink and white noise

The Hewlett-Packard 8057A Precision Noise Generator is an audio frequency noise generator producing pseudo-random signals. available at binary and Gaussian distribution outputs. These signals are repeated noisc patterns of known content and duration. Both white and pink noise with an equal ems value can be selected by push buttons. By producing a defined rms value, the high stability of the ourput level allows the use of a directly calibrated attenuaror with 0.1 dB resolution. This makes the 8057 A a highly accurate noise source.

The basis of the 8057A is a clock-concrolled binary waveform generator arranged so that the transitions between outpur levels can occur only on "beats' of an internal clock. Alternatcly, the waveform generator can be timed by an external clock of frequency up to 1 MHz . Hence, the bandwidth can be varied ex. ternalily. A predictable noise pattern can be produced by apply. ing a trigger to the gate input.

A shift register and a digital-to-analog converter together form a lon-pass digital filter. This fitering mechanism converrs the family of two-level outputs from the shift register into a multi-level signal having a Gaussian probability densiry function and a neatly rectangular power spectrum. Crest factors up 103.5 give a remarkably close fit to the Gaussian distribution. The unique feature of the digital filter produces a bandwidth which is directly proportional to the clock frequency.

Outputs from the 8057A are a vailable at a fixed amplitude of 10 volts (binary) and 3.126 volts rms (Gaussian). A precision step attenuator provides control of the Gaussian outpur in 0.1 . 1 , and 10 dB steps from 129.9 down to 20 dB above $1 \mu \mathrm{~V}$ rms. Push buttons allorv an output impedance selection of 50 or 600Ω. A positive 2μ strigger puise available from a rear-panel connector indicates the period of the noise pattern. HewlestPackard also manufactures Model 3722A Noise Generator (Page 363).

Specifications

Gaussian output

White noise

Frequency spectrum: dc to 26 kHz (-3 dB point) (with external clock, upper frequency limit is equal to $1 / 20$ th of external clock frequency). Effective bandwidth: 27 kHz . Spectrum is flat within $\pm 0.3 \mathrm{~dB}$ up to 15 kHz and more than 25 dB down at 52 kHz .
Power density: $362 \times 10^{-4} \mathrm{~V}^{2} / \mathrm{Hz}$.
Crest factor: 3.5.
Probabllity density: near Gaussian.
Pink noise
Frequency spectrum: $3 \mathrm{~dB} /$ octave decreasing from 2 Hz to 20 kHz . Accuracy: $\pm 0.5 \mathrm{~dB}$ up to $15 \mathrm{kHz} ;+0 \mathrm{~dB}$, -1 dB at 20 kHz .
Crosspoint from white and pink noise frequency spectrum: 2.5 kHz .
Period of nolse pattern: approx, 2 sec . (for external clock: $1048575 \times$ clock period)
Amplizude (open circult): 3.126 V rms or 129.9 dB above $1 \mu \mathrm{~V}$.
Amplitude attenuator: $0.1 ; 1$ and 10 dB steps from 129.9 to 20 dB above $1 \mu \mathrm{~V}$. Overall attenuator accuracy: $\pm 0.5 \mathrm{~dB}$.
Output impedance: 50Ω or $600 \Omega=3 \%$
Zero drift: $< \pm 30 \mathrm{mV}$ from 32° to $122^{\circ} \mathrm{F}$ (0° to $50^{\circ} \mathrm{C}$)
Binary output
Output signal: pseudo-random binary sequence. Clock rate: 520 kHz (or external clock) Sequence length: 1048575 Bit.
Amplitude (open elrcult): $10 \mathrm{~V} \pm 10 \%$.
Output impedance: approx. 600Ω.
Rise, fall time: < 50 nsec.
Trigger output (Positive trigger pulse indicates period of the noise pattern).
Trigger pulse amplitude: approx. 10 V.
Output impedance: approx. 1 ks .
Trigger puise width: $2 \mu \mathrm{sec}$ (or equal to clock period of external clock frequency).
Externa) clock input: only for white noise outpur. (Pink noise should not be used with external clock. Overloading amplifiers distorts outpur).
Postive clock pulses: min. +2 V ; max. +20 V amplitude Sine wave ar least 4 V peak to peak.
Maximum clock rate: 1 MHz .
Minimum pulse width: 15 nsec .
Input impedance: approx. $1 \mathrm{k} \Omega$.
Gate input: -1 V to +2.8 V or connected to ground disables Noise Output. (Gate input connected to ground: Output current approx. 2.5 mA). +4.5 V to 12 V or not connected enables Noise Ourput.

General:

Power: 115 V or $230 \mathrm{~V}+10 \%,-15 \%$, 50 Hz to 400 Hz , 14 VA .
Dimensions: standard HP $1 / 2$ module; $6^{\prime \prime}$ high, $73 / 4^{\prime \prime}$ wide. $11^{\prime \prime}$ deep ($155 \times 190 \times 27 \mathrm{~mm}$) .
Weight: net $61 / 2 \mathrm{lb}(3,25 \mathrm{~kg})$, shipping $8 \mathrm{lb}(4 \mathrm{~kg})$.
Price: $8057 \mathrm{~A}, \$ 775$ ($\$ 675$ at factory on West Germany). Option Ol: without attenuator, subtract $\$ 100$.

GENERAL PURPOSE DIGITAL COMPUTERS

COMPUTERS AND PERIPHERALS

Computers may be divided into two main classes, "digital" and "analog". A digital computer is one that obtains the solution to a problem by operating on information in the form of coded numbers, while the informarion processed by an analog machine is in the form of physical analogs, such as voltages or shaft positions, that represent numbers. Principal advantages of the digital computer are its ability ro stose vast amounts of data and to perform calculations to any required degree of precision, while the analog computer lends itself to direct solution of complicated equations (such as differen. tial equations) through simulation of many variable parameters. In recent years. "hy" brid" computers have been developed which combine aligital computer memory, logic and accuracy with the dynamic simulation and differential equation solving capabilitg' of the analog computer. The hybrid computer is capable of solving problems which lie in both the digital and analog domains, but is necessarily more difficult to use, and more expensive, than a straightforward digital or analog machine.
Digital computers, in rum, may be divided into two classes, general purpose and special pucpose. Specisl-purpose computers are designed to solve only a specific class of problem. One example is a differential data analyzer. a digiral computer cailored to the solution of problems that can be reduced to a ser of differentral equations. Machine cool controllers represent another type of special purpose computer.

General.purpose computers, on the other hand, are not oriented roward specific tasks, but may be programmed to compute and manipulate informarion for many different purposes. However, cercain broad areas of application are better serviced by compurers emphasizing particular hardware chatacterisiics. Thus, the genera! field of general-purpose digital computers breaks down into business data processors, which emphasize large internal memory and external data storage capacits to perform relatively simple cal. culations on very large amounts of data, and scientific computers, which stress computational capability ta solve complex problems, and input/ousput flexibility for ease of interface with instruments.
The Hewlett.Packard family of computers (models 2116B, 2115A and 2114A) are general-purpose digital computers for scien. tific and industrial applications. They may be used (with appropriare daca input and output devices) as laboratory tools for so(ving scientific research and engineering design problems, and can be incorporated into in. strumentation systems to compute data and perform concrol functions while experiments are in progress.

The computer system

A computer system is composed of two parts: hardware and software. The hardware
comprises the compuring machine or 'centrai processor' and peripheral equipment such as paper rape readers, typewriters and tape punches. Saitware consists of the programs or lists of instructions that control operation of the computer; these programs are com. menly recorded on punched cards, punched rape or magnetic tape, and are then read into the computer through one of its input devices.
The computer itself is made up of five elements: input section, output section, arithmetic unit, memory, and control.

Input: The inpur section, in conjunction with appropriate external devices, receives data and instructions from various srorage media (e.g. punched tape or magnetic tape) or via a manual-entry keyboard. The incoming information is stored by the compurer in its memory.
The basic function of the input section is to rranslate the external data into a form in which it can be stored in the conputer memory (e.g. 16 .bit binary words). Input devices used with the Hewlett-Packard computers include punched rape readers, key. boards, magnetic cape and magnetic disc units, card readers, and also digira! voltmeters, counters, and other measuring instruments.

Ourput: The output section of the coms. puter transmits data to output devices such as typewiters. tape punches, magneric tape and magnetic disc units, and printers, performing code translation and formulating as appropriate. The output secion also trans. mits signals for controlling external devices; for example. function commands for instruments such as digital voltmeters and stan. ners. Some peripheral unies can function both as input and output devices. For example, the computer can both read from and record on magnetic tape and magnetic disc units.

Arithmetic: The aritnmetic unit performs calculations (using basic arithmetic operations) and manipulates dara. Multiplication and division are accomplished either by successive additions and subcractions initiated by softoware, or with additional hardrare, usually offered as an option (e.g. Hewletr. Packard Extended Arithmeric Unit). An example of data manipulation is the rearrangement of a string of characters so that they may be recorded by the computer in a desired format.

The arithmetic unit censists of one or more registers or 'accumulators', and associated logic circuitry. The accumulators hold the results of arithmetic and logica! opera. tions performed by instructions, while the logic enables dara in the accumulators to be combined with information transferted from memory. The Hewlett-Packard computers have two accumulators, usable independently for computational fexibility.

Memory: This section is the heart of the computer; all information processed by the computer passes through the memory. Most small computers use a 'core' memory, con-
sisting of an intricate natrix of ferromag. netic cores, each capable of storing one bit of information. The basic memory of the HP 2115A and 2114A Computers can hold 4096 (4 K) words, each consisting of 16 birs of information. This can be expanded to 8 K words. Basic mernory of the HP 2116 B is 8 K , expandable to 32 K words.

Besides word capaciry, the speed with which information can be stored or read from memory is one of the principal charac. teristics defining the performance of the computer. In the HP 2116B the memory cycle time is 1.6 microseconds, which means that information can be writen into or read from memory at a pate of 625,000 words per second. This allows, for example, 312,500 additions to be performed in one second.

Conerol This section controls and coordinates the whole operation of the computer. It directs the cransfer of data between the computer registers and controls the operacions performed. It also interprets the instructions read from memory and sets up the gating functions to carry out their execusion.

Software

Even the simplest tasks involve intricate movernents of numerous binary bits of information within the compucer, such that exhatestively explicit instructions must be given to the compurer to perform each task. Therefore, while it is possible to wrile programs for the computer which are coded in the binary form the computer uses, called "machine language". ir is too time consuming and susceptible to errors to be practical. Various aids have therefore been derised to make programming a computer easier, and consequently more effecive.
Softrare is the general term given to the programs which, when loaded into the computer, utilize the computer itself to perform all the detail work, leaving the programmer free to concentrate on designing a program to solve the problem at hand. The function of soltware is therefare to make the compurer usable. It is usually (but not neces. sarily) designed by the compurer manufaczurer and furnished along with the bardware, in a form ready for reading into the com-puter-punched tape, magnetic tape or punched cards.

Software can be divided loosely into four classes:
a) Translators-programs which cranslate human-oriented languages into machine language.
b) Control systems-programs which take care of all the functions essential to operation of the computer ststert.
c) Uiility routines-program ediors, pro. gram debugging routines, hardware diak. nostics.
d) Applicacions programs-these adapt the computer system for maximum effectiveness in a specific application.

COMPUTERS AND PERIPHERALS

COMPUTERS
For general computation and instrument systems Models 2114A, 2115A, 2116B

The $2114 \mathrm{~A}, 2115 \mathrm{~A}$, and 2116 B are versatile general-purpose digital computers, particularly suited in computational porer and input/outpur flexibility to scientific and industrial measurement applications. Each may be used as a free-standing system for solving scientific and engineeting design problems, or in instrumentation systems, in combination with Hervletr-Packard measuring instruments, or many other devices to provide com. plete solutions in a broad spectrum of measurement tasks.

Each Hewlett-Packard computer is compact, Hexible, and fast. The essential differences between the computers are: maximum memory size and cycle time, the number of priority interrupts, environmental tolerance, and price. Significant features of all three computers are indicated in the table on page 108.

Optional equipment to expand the porer and versatility of each computer is available on a plug in basis. For the 2115 A and 2116 B this includes dise memory, direct memory access, and an extended arithmetic unit which significantly reduces multiply and divide time, and also provides variable length, long shifr and rotate instructions.

Hewlett-Packard computers are completely softevare com. patible and offer a fexible instruction repertoire of 70 basic one-word instructions, with the capability of extensive micro. programming through one-word combinations of register refer. ence instructions. The softrare package includes ASA Basic FORTRAN (Extended) and ALGOL compilers, an assembler, a symbolic editor, a basic control system, and conversational BASIC. Software is also furnished for reconfiguring the basic control systern to accommodate changes in the I/O bardoware system, program debugging, and diagnosing hardware mal. functions. All softrare except the ALGOL compiler and BASIC are fully operable in the minimum hardware configuration, consisting of 4096 word memory and teleprinter I / O. The ALGOL compiler and BASIC require 8 K memory. In addition, a Real-Time Execurive software system for the 2116B, in conjunction with disc memory and other peripherals, provides real-time exccution of core and disc resident programs concurrently wish background programs stored on disc or paper tape.

2114A

The 211-1A is the most compact member of the Hewlett. Packard computer family, yet it contains the same multilevel
prioricy interrupt system and uses the same poxerful instruc. tion set as the larger 2115A and 2116B Computers. Its extremely compact design allows the central processor up to 8 K of memory ($2 \mu \mathrm{~s}$ cycle time), 8 device interíaces, and all power supplies to be housed in a single, small cabinet. The 2114 A also offers a unique multiplexed input/outpur system. This system consists of only one plug-in card and provides easy. to-use interfacing for the connection of up to 36 special or user-designed peripheral devices to the 2114A. Other standard features such as Power Fail Interrupt and lockable porrer switch and panel controls make it idea! for O.E.M. or systems applications.

2115A

The medium sized 2115A Computer allows 4 K or 8 K of memory in the basic mainframe, a memory cycle time of 2 microseconds, and I/O slots for 8 device interfaces (expandable to 40 using an external extender). The computer is packaged in two small instruments: a $121 / 4^{\prime \prime}$ tall processor and a $101 / 2^{\prime \prime}$ tall porier supply. The unir offers both high-speed extended arithmetic and direct memory access (DMA) capabilities. These provide for high-speed computation and throughput rates for more demanding problems, as well as providing for effective use of external equipment such as high-speed recorders and disc memories. The two-channel DMA san be individually switched to any two I/O channels under program control and permits data transfer rates of 250 kHz per channel or 500 kHz using both chanoels. The 2115 A includes other features found only in much larger computers.

2116B

The 2116B is the largest, most powerful Hewletr-Packard compurer. It has a 1.6 -microsecond memory cycle time, memory expandable to 32 K in 8 K modules, and $16 \mathrm{I} / \mathrm{O}$ slows in the mainframe for device interfacing. An additional 32 device interfaces can be accomodated in an optional I/O extender. The 2116 B also makes provision for two program-selectable direct memory access (DMA) channels and an extended arithmetic unit. The high-speed 2116 B memory provides DMA uansfer rates of 312 kHz per channel or 625 kHz using both channels.

A Real.Time Executive software system makes the full potential of the 2116 B realizable. This nultiprogramming capa-
bility allows the running of foreground programs in real-time concurrently with background programs. The programs may be in (real-time) FORTRAN or Assembly language.

Standard systems are produced by Herletr-Packard which contain the 2116 B and reffect its power and versatility. These include: Data Acquisition Systems operating in real-time; a Time-Shared BASIC system which allows 16 users 10 program the 2116B, simultaneously, in the popular BASIC Ianguage; and a Digital Logic Module Tester using the 2116 B for high-speed automatic testing of digital logic modules. Thus, the 2116 B is truly a computer for complex scientific and industrial applications.

Input/Output flexibility

The computers operate through standard plug-in interfaces with all the standard computer $p \in$ ripherals, and virrually all Hewlett-Packard inseruments capable of being programmed and/or providing a digital data outpur. General purpose plug. in interfaces are also available which enable the customer to operate a wide variety of devices of his orn choosing with the computer. Besides the convenience of plug in interface cards, the computers provide, as standard feacures, unique channel identification, an automatic multichannel identificarion and an automatic multichannel priority interrupt system. Prionity levels can be altered simply by interchanging the positions of the interface cards.

Inpur/output channels may be run one at a time under program control, or simultaneously under interrupt control. Peripherals can be added, upgraded, or deleted, and service priorities changed on a plug-in basis-no witing changes are involved. Interface circuicry to run a specinc peripheral is conrained on one or more cards that plug into any I / O slot in the computer or extender. To achieve this, all interface cards have idenúcal pin assignmenrs and the compurer backplane is uniformly wired. Interconnecting cables mate directly with the I/O interface cards (see phoro), reducing the number of mechanical connections in the system and minimizing the possibility of noise injection from the I/O device into the back. plane. All peripherals draw their power directly from the power line; the interface cards are powered from the computer's internal power supply.

Multichannel priority intertupe capability is a standard hardWarc leature in each Hervlerr-Packard compurer; an interrupr channel associated with a unique memory location is provided with each I/O interface. That is, an interrupt request from an 1/O device directly execuces a location in memory uniquely associated with that 1/O channel. This interrupt location will typically contain the entry instruction for a subroutine to service the I/O device. Prionity level is determined by the I/O slot inco which the interface card is installed, so priority levels can be rearranged simply by moving cards into different slots. Peripherals can also be programmed 'in' or 'out' of the interrupt chain under program control (The interrupt system can also be bypassed and all peripherals sun under direct programa control.)

Interrupts are recognized thy the end of the current machine cycle. More important, overall response is (ast. In a multidevice systen, a service request by a higher priority derice causes the first 'useful' instruction which communicates with that device to be executed in less than 7 microseconds for the 2116B. When operating with only one $1 / 0$ device, the response time is less chan 3 microseconds. Times of 8 and $4 \mu 5$, respectively, are required by the 2114A and 2115A. The multichannel interrupt feature and fast response promote efficient operation in a real time environment, as in instrumentation systens.

Machine organization

Each of the Hewlett-Packard compuiers has nine internal r gisters. Eight of these are Rip.flop (inregrated circuit) reg. isters and the ninth consists of switches for manual data entry.

The contents of all but one of the fip-fiop registers are avail. able to the programmer; the 2115 A and 2116 B displays these registers on the front panel. The 211f A displays two 16 bit flip. Hop registers (Memory Data and Memory Address), two 1.bit registers (Extend and Overfow), and the switch register contents.

T register (memory transier): All data transferred into or out of memory is routed through the T register. The T register display indicates the information that went into or out of a memory cell during the preceding memory cycle.

External devices are interfaced by Inserting the appropriate Interface card and connecting the deviee cable.

P reglster (prograni counter): Holds address of next instruction to be fetched from memory (or address of current instruction in the case of a multiphase instruction). The P register increments by one after the execution of each instruction (or by tro if executing a skip instruction). A jump instruction can set the P register to any core location.

M register (memory address) : Holds address of next mem. ory cell to be accessed.

A and B registers (accumulators): The A and B registers execute and hold the results of arithmetic and logical operations performed by programmed instructions. The registers operate independently, allowing the programmer considerable freedom in program design. While they are fip fop registers, they may be addressed by any memory reference instruction as location 00000 and 00001 respectively, thus permitting interregister operations such as "add (B) to (A)," "compare (B) with (A)." etc., using a single-word instruction.

E register (extend): A 1 bit register, used to link A and B registers by rotate instructions or to indicatc a carry from bit 15 of the A or B register by any add or increment instruction (only) which references these registers.
OV register (arithmetic overflow): This 1 bit register indicates if an add or increment instruction referencing the A or B register has caused one of these accumulators to exceed the maximum positive or negative number which can be contained $(+32767$ or -32768 , decimal). The overflor bit is not com . plemented if a second overflow occurs before it is cleared, by program instructions. It is not set by shift of rotate instructions.

I register (instruction): Decodes each of the memory reference instructions, and identifies the register reference and input/ output instruction types. The I register also holds indicators to direct the computer to page zero or remain on the current page, and to denore direct or indirect addressing. (Contents of I register are not displayed.)

S register (switch register): A 16 -bit register which permits manual data entry through 16 switches on the front panel of each computer. The 2115 A and 2116 B contain toggle-cype switches; the 2114A contains proximitytype sense switches. The setting of the switch register may be transferred into the computer in the following ways:

By program: Into A or B register using a load or merge instruction with the switch register's select code.
Manually: May be (1) loaded simultaneouly into the P and M registers, using the load address switch, thus directing the compurer to a specific memory cell; (2) loaded into the memory cell specified by the M register, using the load memory switch, thus permitting the user to change the contents of any memosy cell; (3) loaded into the A or B register, using the load A or load B switch on the 2115A and 2116B Computers.
Note: On the 2114A only, the contents of the A or B register may be output to the suritch register and displayed by a programmed output instruction. Also, the contents of the A or B register may be displayed in the Memory Data register using the load address and display memory switches after clearing the switch register with the clear register switch.

Programming

The Hewlett-Packard computers all have 70 basic one-vord (16 bir) instructions, all executable in one or two machine cycles (plus 1 cycle for each step of indirect addressing). These instructions are grouped in three types:

Memory reference (2 cycle), 14 total
Register reference (1 cycle), 43 total
Input/output (1 cycle), 13 total
The register reference instructions are micro-operations that can be combined to form over 1000 one-word, single-cycle instructions.

Word formats

Memory rafarence instruotions

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Aeqlister releronce instruxtlons

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reg. re!. instruction	A / B	$S R / A S$			Micro-instruclion										

Ingut/outpul Instruations

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$1 / 0$	instruction	A / B		instruction			$1 / 0$	select code							

Full addreass

D/I Direct/Indirect; 2/C Page Zero/Current Page; A/B Register Identifier: SR/AS Shift-Rotate/Alter-Skip Idenititier

Data, flxed polint

15	14	13	12	11	10	9	8	96	5	4	3	2	1	0
Sign					Integer									

Data, floating polnt
(Magnitude, 23 bits \& sign; Expernent, 7 bits \& algn)

15	$14 \ldots \ldots \ldots$			
Mag sign	Magnitude, most sig. bits	Mag, least sig. bits	Ex. ponent	Exp sign

Instruction repertoire

Typo	Mremanto	Descriphion	Machine Cyoles
	AND XOR IOR JSB JMP ISZ ADA/8 CPA/B LDA/B STA/B	'And' (M) to A; result in A Exclusive 'or' (M) to A; result in A laclusive 'or' (M) to A; result in A Jump to subroutine Jump, uncondítionally Increment (M); skip if result zero Add (M) to A or B; result in A or B Compare (M) with A or B; skip if not equal Load (M) into A or 8 Store (A) or (B) into M; A, B unchanged	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 2.25 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$
	NOP CLE SLA/B A/BLS A/BAS RA/BL RABR ERA/B ELA/B A/BLF	No operation Clear E-Register Skip if least significant bit of A / B is zero A or B arithmotic lift shift one bit A or B arithmetic right shift one bit Rotate A or 8 left one bit Rotale A or 8 right one bit A or B left shift one bit (sign cleared) Rotate E right one bit with A or B Rotate ε left one bit with A or B Rotate A or B left four bits	$\begin{aligned} & \text { All } \\ & 1^{*} \end{aligned}$
	CLA/B CMA/B CCA/B CLE CME CCE SEZ SSA/B SLA/B INA/B SZA/B RSS	Clear A or B Complement A or B (ones complament) Clear, then complement A or B (set's A/B to -1) Clear E-Register Complement E-Register Clear, then complement ε-Register (sets E to 1) Skip if E -Register is 2 ero Skip if sign of (A) or (B) is zero (A/B positive). Skip if least significant bit of (A) or (B) is $2 e r o$ Increment (A) or (B) by one Skip if (A) or (B) is 2 ero Reverse skip sense	$\begin{aligned} & \text { All } \\ & 1^{*} \end{aligned}$
	$\begin{aligned} & \text { STO } \\ & \text { CLO } \\ & \text { SOC } \\ & \text { SOS } \end{aligned}$	Set arithmetic overilow Clear arithmetic overflow Skip if arithmetic overilow clear Skip if arithmetic overflow set	${ }_{1}^{\text {All }}$
	HLT STF CLF SFC SFS MIA/B LIA/B OTA/B STC CLC	Halt program Set flag bit of selected channel Clear flag of selected channel Skip if flag clear Skip if flag set Merge contenis of selected channel into A or B (inclusive 'or') Load contents of selected channel into A or 8 Output from A or B to selected channel Set control bit of selected device Clear control bit of selected device	$\begin{gathered} \text { All } \end{gathered}$

"Reglster Reference instructions can be combined to execure in a cy
allows, for example, shlfls and rotations up to 8 places in 1 cycle.
allows for example, sh1
*Coded under $1 / 0$ group.
$(M)=$ Contents of memory Location M.
Memory Reference: Memory addressing of HP computers is based on a 1024 -word page structure, All memory reference instructions address either the current page or the base page, thus up to 2048 words are directiy addressable. The large page size of Hewlett-Packard computers allows compact programs with a minimum of indirect addressing. Also, programs can share a large block of storage in the base page, easing communication between routines using common data. Accumulators
are directly addressable as memory locations 0 and 1 , enabling their contents to be added and compared. You can also load from one accumulator into the other.
Register Reference: Hewlett-Packard's extensive set of register reference instrucrions make it easy to edit character strings. shift data within and between accumulators. test the accumulators for condition (zero/non-zero, positive/negative, odd/ even) and to clear, set, increment and form the one's and two's complement of the accumulator contents.

Software

Hewletr-Packard computers are supported by a full range of software, furnished in the form of punched tape or magnetic tape. The following softrare packages are available:

FORTRAN compiler	Basic Control Systern
ALGOL compiler	Hardware diagnostics
Assembler	Time-shared BASIC Executive
Symbolic editor	Real-Time Executive

Conversational BASIC
With the exception of ALGOL, Conversational BASIC, and the large software executives, the software packages will run in the minimum hardware configuration- 4 K memory and teleprinter input/outpur. ALGOL and Conversational BASIC require 8 K of memory. Programs written in FORTRAN, ALGOL or assembly language are independent of the hardware I/O configuration. All 1/O devices are identified by logical unit numbers which the programmer uses to specify I/O operations.

At execution time the Basic Control System relates these logical unit numbers to physical numbers that correspond to the 1/O slots occupied by the cards for the I/O device in question. The Basic Control System is therefore configured to suit a particular system.

An auxiliary software package, Prepare Control System, is furnished which allows the user to change his Basic Control System to fit different input/output arrangements. A dynamic program debugging package is also supplied.

FORTRAN compiler: Accepts source programs written in American Standards Association Basic FORTRAN. It produces a relocatable machine language object program that can be loaded and executed under control of the Basic Control System. In addition to the ASA Basic FORTRAN language, HewlettPackard's FORTRAN compiler includes a number of features that extend the flexibility of the system.

ALGOL compller: Accepts source programs written in ALGOL. It produces a relocatable machine language object program that can be loaded and executed under control of the basic control system. Operable in 8 K memory,

Assembler: Translates symbolic source language instructions into an objecr program for execution on the computer. The source language provides operation codes, assembly-directing pseudocodes, and symbolic addressing. The assembled program may be absolute or relocatable. The source program may be assembled as a complete entity or it may be divided into several subprograms (or a main program and several sub. routines), each of which may be assembled separately. The loader of the Basic Control System loads and links relocatable programs: the basic binary loader loads absolute programs.

Symbolic editor: Enables the user to edit and update a symbolic file tape that can be an assembler program, a compiler program, or a data file. The editor produces an updated tape from the source tape and change instructions. Individual characters and entire source statements can be inserted, deleted, or replaced. The editor will also provide a listing of a symbolic file (sequentially numbering the statements). Diagnostic messages are produced for errors detected in format of edit control statements.

Basic Control System: Provides an efficient loading, input/ output control and debugging capability for relocatable programs produced by the assembler, FORTRAN compiler, or ALGOL compiler. The system is modular in design and may be constructed or modifed to fit the user's particular hardware configuration. The following modules are provided:

Relocating loader: Loads, links, and initiates the execution of relocatable objecr programs produced by the assembler or compiler.
Input/output control: Provides for general input/output device control and software buffered data transmission between I/O devices and computer memory.
Input/outpur drivers: Provide the instructions necessary to operate specific input/output devices, and serve as an interface between the I/O control system and the peripheral devices.
Two other software packages are associated with the basic control system. These are:
Prepare control system; Combines the basic control system component modules-loader, I/O conirol, and I/O drivers together with equipment tables-to generate a basic control system for a particular hardware configuration.
Debugging package: A relocatable program that interprets and executes machine instructions. Functions to be performed are normally selected by typing in control stace. ments on the teleprinter.
Subroutines: The basic control system loads and links object code library subroutines according to calls generated by assembler or compiler programs. A complete library of mathematical and Input/Outpur subrourines are available.

BASIC Interpreter: Onc of the most useful languages available with Hewlett-Packard computers is "BASIC," developed by Darmouth College. In the design of BASIC, primary emphasis was placed on ease of learning and ease of operation. The result rias a language which could be learned in a fow hours. Because of the easc wirh which it can be Jearned and retained it has become the most widely used language for people in engineering and the sciences.

BASIC is an interpretive language; the program is stored in the computer in a form similar to the original alphanumeric statements which are interpreted by the compiler at execution time. Since the program is stored in essentially its original form, program editing can be accomplished by simply adding new statements or modifying old ones without the need for recompiling the entire program. While this process is slower ar execution time because the computer must generate the appropriate machine code for each statement during execution, the preparation of the program itself is significantly easicr and typically requires only a fraction of the time required for other languages.

BASIC is also a conversational language; the computer re. sponds to the programmer's inputs with English language statements. For example, the compiler checks each statement after it is entered for proper format, and any illegal syntax is immediarely identified for the programmer with a diagnostic message. If errors are encountered during the program execution the computer types a diagnostic message and may halt or continue depending upon the type of error.

The combined features of the interprerive compiler and the conversationality serve to greatly reduce the effort required to prepare and debug programs. The proof of the power of the language as a computational tool is its predominance among the languages used by the non-professional programmers.

A complete description of Hewletr-Packard's Compurers and Software packages is contained in a pocket book titled "A Pocker Guide to Hewlert-Packard Computers." This book is available free upon request. Just send a postcard to Computer Guide, Hewlert-Packard Co., 395 Page Mill Road, Palo Alto. California 94306.

COMPUTERS suntinust
For general computation and instrument systems
Models 2114A, 2115A, 21168

Specifications

	21188	21164	2114A
Mersory Type Word size (bits) Parity Basic configuration size (words) Maximum size In mainframe Maximum size using extender Memoly area prolect Cycle time (us)	Core 16 Optional 8k 16K 32 K Optional 1.6	Core 16 Optional 4K $8 K$ 2.0	Core 16 Optional sk 8 K $-$ 2.0
Instruthon execulion speed (us) Store word Add (fuli word) Multiply (subroutine) Divide (subroutine) Multioly (hardware option) Divide (bardware option)	$\begin{gathered} 3.2 \\ 3.2 \\ 120 \\ 309 \\ 19.2 \\ 20.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 150 \\ & 375 \\ & 24.0 \\ & 26.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 150 \\ & 375 \end{aligned}$
Number of basio Instructions	70	70	70
Aooumulators Number Addressable	$\stackrel{?}{y_{e s}}$	$\begin{gathered} 2 \\ \text { Yes } \end{gathered}$	$\stackrel{2}{Y_{e s}}$
Mulilievel Indireot addressing	Yes	Yes	Yes
Priority interrupl system Number of prewired input/output slots in mainframe Maximum number of 1.0 siots using axtender Number of devices that can be interfaced using multiplexed I/0	$\begin{aligned} & 16 \\ & 48 \\ & - \end{aligned}$	$\begin{aligned} & 8 \\ & 40 \\ & - \end{aligned}$	$\begin{gathered} 8 \\ 8 \\ 56 \end{gathered}$
Direot memery access Direct memory access channels in basic system Míaximam number of access channels available Maximum word leansfer rate $\langle k H z\rangle$ Cycles required to instiate block transier Cycles stolen (from main program) per word transierred Direct memory increment	$\begin{gathered} 0 \\ 2 \\ 625 \\ 13 \\ 1 \\ \text { Yes } \end{gathered}$	$\begin{gathered} 0 \\ 2 \\ 500 \\ 13 \\ 1 \\ \text { Yes } \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ - \\ - \\ \hline- \\ \text { No } \end{gathered}$
SoHware ASA basic-FORTRAN extended compiler ALGOL compiler BASIC interpreter Assembler Real lime executive	Yes Yes Yes Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$
Hardware Circuitry Power failure protection Automatic restart Height Width Depih Environmental temperalure Environmental relateve humidity (at $40^{\circ} \mathrm{C}$)	CTL I.C Yes Optional $311 / 2^{\prime \prime}$ $153 / 4$ " $19 \% 3^{\prime \prime}$ 0° to $55^{\circ} \mathrm{C}$ 95%	$\begin{gathered} \text { CTL. I.C. } \\ \text { Yes } \\ \text { Optional } \\ 1211_{4}^{\prime \prime} \\ 163 / k^{\prime \prime} \\ 243 / 8^{\prime \prime *} \\ 10^{\circ} 1040^{\circ} \mathrm{C} \\ 80 \% \end{gathered}$	$\begin{gathered} \text { CTL/TTL I.C. } \\ \text { Yes } \\ \text { Optional } \\ 121 / /^{\prime \prime} \\ 161 / /^{\mu} \\ 243 / 8^{\prime \prime} \\ 10^{\circ} \mathrm{to} 40^{\circ} \mathrm{C} \\ 80 \% \end{gathered}$
Prices with $4 K$ memory with 8 K memory with 16 K memory**	$\begin{array}{r} - \\ \$ 24,000 \\ 34.000 \end{array}$	$\begin{array}{r} \$ 14,500 \\ 19.500 \end{array}$	$\begin{array}{r} \$ 9,950 \\ 13,950 \end{array}$

[^3]
Input/Output Options

Interface Kits for the following $1 / O$ options include soft ware; I/O Driver tapes are not included in Interface Kits 125518, 12554A, 12555A, 12561A, and 12566A. Orders for I/O options subsequent to original purchase of system must state computer model and serial number, so that proper software is furnished. Computer field service assistance is recom-
mended for installation of I/O options subsequent to original purchase; consult computer sales engineer or factory for service charge involved. (Auxiliary HP 2160A power supply may be needed when using most of the available I/O slots in the 2115A/2116B Computer; consult computer sales engineer or factory.)

- Prices for the following optlons Inciude both Interface Kit and Perlpherlal. When ordering, spacily Interface Kit and Perlpherat-Device numbers, for example: To order a 9-Ghannel Magnetic Tape Input/Output. specify lateriace Kit 12559 A and HP (H01) 3030 G Magnetle Tape Unit.

1/0 OPTION	CAPAEILITY	INTEAFAGE KIT	PEASPHERAL	PRJCE	
				$115 \mathrm{Y}, 80 \mathrm{~Hz}$	$230 \mathrm{~V}, 50 \mathrm{~Hz}$
TELEPRINTER INP价/OUTPUT	System records on typewriler and punched tape and lipuls from keyboard and puoched lape; 10 eharacters/sec. (ASClf code)	125318	MP 2752A Teleorinter (modified Yelelyoe ASR-33)	2,000	2,200
HEAVY-DUTY TELEPRINTER INPUT/OUTPUT	Similar to option above, except heavy-duty Teleprlater is furpishod wilh sprockel-feed platen. Recommendad where use exceeds 5 hrs/day or $30 \mathrm{hrs} / \mathrm{w}$ 郎.	12531B	HP 27548 Taleprinter (modified Telatype ASR-35)	4,600	5.000
HIOH-SPEED PUNCHEO TAPE INPUT	Paper tape input at 300 characters $/ \mathrm{sec}$. (ASCll code)	12532A	HP 2737A Punched Tade Reader (with accessory 12525A Tape Mo'der)	2,100	2,200
HIGH-SPEED PUNCHEO TAPE OUTPUT	Paper tape ousput al 120 characters $/ \mathrm{sec}$. (ASCII cose)	12536A	HP 2753A Tape Punch	4,100	4,150
LOW DENSITY MAGNETIC TAPE INPUT/OUTPUT	Computer records on, and reads fiom, IBMcompalible $1 / 2$ inch 7 -channel NR2l tape. Bit density 200 bp l. Speed 30 ips.	12538**	HP (H26) 2070A Magnelic Tape Urit	12,500	12,700
DUAL DENSITY MAGNETIC TAPE INPUT/OUTPUT	Slmilar lo option above, but Compuler recorts and reads al both 200 and 555 bpl .	12538A*	HP (H25) 2020B Magnetic Tape Unit	15,000	15,200
DISC MEMORY (3.2 MEGABITS)	Provides storasa for 174,080 words in 64-word addressable sectors. Transfar rata 3 megablts/ second. Access lime 33 ms max. Requires DMA.	12561A*	HP 2757A Dise Memory with HP 27564 Disc Mamory Power Supdly.	23,500	23,900
DISC MEMOR: (6.4 MEGABITS)	Similar to option above, but 358, 160 words	12581 ${ }^{\text {* }}$	HP 2757A-0! Disc Mamory with HP 2756 A Disc Memory Powor Supply.	28,500	28,900
9-GHANNEL MAGNETIC TAPE INPUT/OUTPUT	Computer records on, and resds from, 1 BM compaluble $1 / 2$ incin 9 -channel lape. Bll density 800 bpi. Speed 75 los. Requires DMA.	12559 A*	HP (HOI) 3030G Magnotic Tage Unit	18,500	18.700
AUXILIARY POWER	Supplements power supply In 2115A/2116B.	-	HP 2160A Power Supply	2,000	2,000

-Uses $21 / 0$ slots

- Prices for the following optlons are for the Interiace KIt only; order by Intarface Kit number. For example:

To order the Relay Output Reglster, specify interface Kit 125518.

TIME BASE GENERATOR	Gengratos real lime intervals In decade steps from $100 \mu^{5}$ to 1000 soc (derived from crysial oscillator). Used as source of limed interrupts for solfware clock.	12539A	None requlred.	1,000	1.000
DATA PHONE INTERFACE	Interlace computer wilh Bell System Data Phone sorvice.	12540A	Bell System Data Sot 103A.	1,000	Not Ausilable
GENERAL PURPOSE DATA SOURCE INTERFACE	Permits ingul of 32 bits of information from axternal device ́typlcally: 8 BCD characters). Kil includes maling connector.	12604A	Ootermined by usor.	750	750
GENERAL PURPOSE DUPLEX REGISTER	Dusi 16-bit flip-flop register. Permlts bidirec. lional Iransfer ol informalion between Computer and external davicos. (accessory ait inclydes 48-pin mating connacior).	12554A	Determined by user.	750	750
RELAY OUTPUT REGISTER	Provides 16 form-A contacts for operating exlernal devicas. (Accessory kit includes 48-pin maling connector).	12551B	Determinad by user.	600	600
D-A CORVERTER	Provides two D.A conversion channels, 8 bits/ channel.	12555A	Determinad by user.	750	750
MICROCIRCUIT INTEAFACE	Dusi 16-bit illo-flop register, Permits bidiectlonal data lranster belween computer and external device al DTL. TTL vollage levels. (Inter. face Kit includes cable and mating connector.)	12566A	Determined by user.	750	750

COMPUTERS AND PERIPHERALS

Time-shared basic

The HP 2000A Time-Shared "BASIC" System represents a nere philosophy in the design of time-sharing computer systems. Most time-sharing systems have been characterized by their large size, multi-lingual capabiley, comples execurjve pro. grams, and high cost. Experience wish these systems has shown that most users pay a high price for system features they seldom use. Given a choice, most users prefer a simple, conversational language, usually BASIC. Yet the implementation of BASIC represents a relatively small fraction of the cost of a system.
The HP 2000A, on the other hand, doesn't try to do every. thing for everybody. Whar it will do is provide an economical BASIC language time-sharing system capability of efficiently serving up to 16 users simultaneously.

Time Sharing Benefits

In order to understand the utility of time-sharing it is help. ful to list some of the features of time-sharing systems that have made thern the success they are.

1. Time-shariog systems are economical to use: the power of a high speed processor is available to each user at a fraction of the rotal cost.
2. The user can perform his computations when he wants to without waiting for a curn in a batch system queue.
3. Conversational interpretive languages, not economically practical on a single terminal-per-processor basis because of their on line program preparation and slower execution times,
become porerful and practical tools when built into a tinee. sharing system. These languages, which can be learned in hours instead of weeks are perhaps the major factor in the success and groxith of time-sharing.
4. Program debugging is greatly simplified by the combination of on-line, tro-nay communication and lower operating cost, which nakes it possibie for the user to debug a program on-line withour repeated cycles through the batch queuc.
5. In some applications time-shared operation makes it possible for many users to simultaneously access a large common daia bise.

System Hardware

The HP time-sharing system is built around the HP Model 2116B Computer with a 16 bit word length (plus parity) and 16,384 words of magnetic core memory. For time-sharing operation the computer is equipped with the following:
Internal
Direct memory access Memory parity check
Extended arichmetic unit Time base generator
Power fail interrupt Teletype multiplexer
External
Magnetic disc memory Power supply extender
High speed tape reader Heavy duty teleprinter
The first four internal options provide the high speed dara transfer and computation, and the internal checking of power levels and parity errors necessary for best efficiency and reliability. The time base generator provides a time base for determining time of day, for measuring system usage, and for timing the sharing of program exccution tine.

A special teleprinter multiplexer was developed for the system. Occupying a single inpur/ourput channel, it services simultaneously all 16 user channels, one with each bit of the 16-bit word, For maximum reading accuracy, the multiplexer samples each incoming bit eight zimes. Since the teleprinter's bit rate is 110 per second, a multiplexer sampling rate of 880 per second is required.

For bulk high speed memory, the system uses a magnetic disc memory with 348,160 words of storage. The disc is used by the system for storage of current programs (87,000 vords), storage of a file copy of the systern executive program (16,000 words). for storage of system tables, required for the library and accounting system (11,000 words), and for storage of saved user programs (235,000). Dise storage can be expanded by adding up to three more disc units providing over 1,25 million words of program storage. The 16 -millisecond average disc access time, coupled with the executive's optimum timing techniques assure the efficiency required for handling the maximum 16 users at once.

The heavy duty teleprinter serves as the system control console and is connected to the computer through a separare 1/O interface. It is used for operator communication with the system and for logging system information. Using this system control teleprinter, the operator can also control access to the system by assignment of user account numbers and passwords.

User Terminals

The teleprinters used as terminals with the system are the Telerype Models 33-ASR or 35-ASR. Communication with the system at rates up to 10 characters per second is possible through the keyboard. printer, or paper tape reader and punch. For local service. up to one mile, the terminals can be wired directly to the system. For longer distances or for greater operating flexibility, the terminals can be connected to the system through regular voice-grade telephone lines using coupling
equipment such as the Bell System Data Set 103A. Use of the relephone system allows a greater number of terminals to be served by the system; up to sixteen users can be handled simultaneously on a first-call first-served basis.

General Specifications

Operating condltions: ambient temperatures 0° to $55^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $131 \circ \mathrm{~F}$), relative humidity to 95% at $40^{\circ} \mathrm{C}$, except for disc memory, which is limited to ambient temperatures from 10 to $40^{\circ} \mathrm{C}\left(90^{\circ}\right.$ to $\left.105^{\circ} \mathrm{F}\right)$ at relative humidity to 80%.

Equipment furnished

2000A Time-Shared BASIC System (with cabinet), 889,500 consistieg of 2116B-02, 05, 08, 09, 011 Computer 2754B Teleprinter with 12531 B 2737A Punched Tape Reader with 12532A 12539A Time Base Generator 2757A-01 Disc Memory with 2756A \& 12561A 2160 Pon'er Supply 12584A-01 Teletype MuJtiplexer 2992 Dual Bay Cabinet (with doors)

Options

2757A-01 Disc Memory with 2756A \& 12561A	28,500
12984.8006 Data Ser Cables	90
(H01) 3030G Magnetic Tape Unit	18,500
12584A-02 Telephone Auto.Disconnect	1,500

Power: $115 / 230 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}, 1650$ watts.
Cabinet dimensions: $72^{\prime \prime}$ high, $46^{\prime \prime}$ wide, $30^{\prime \prime}$ deep.
Net weight: 990 lb (449 kg)
Shipping welght: $1200 \mathrm{lb}(554,8 \mathrm{~kg})$

Digital magnetic tape units

Both the 2020 and 3030 Series tape units are system oriented. designed as highly reliable, economical peripherals for com. puters and other digital systems.

The 2020 Series are slow to medium speed tape units, offering tape speeds to 45 ips -rack-mountable with the other components of your system (optional cabiner available). 2020's offer the maximum in economy, with prices starting at $\$ 4,500$.

The 3030 Series offer tape speeds to 75 ips, providing data transfer rates in the medium-speed range ($1060,000 \mathrm{cps}$). Each tape unit in the 3030 Series is self-contained in a $30^{\prime \prime}$ wide free-standing castered cabiner. Prices start at $\$ 7,000$.

All Hewlett-Packard Digital Magnetic Tape Units are standardized on the industry.compatible [BM 7 . or 9 -track $1 / 2^{\prime \prime}$ digical tape formats, with NRZI recording.

Hewlett-Packard offers 3 models of Digital Magnetic Tape Units for use in conjunction with Hewlett-Packard computers:
(H26) 2020A, records on and reads from 7 channel tape at 200 bpi . Tape speed: 30 ips .
Price (complete with interface and software) $\$ 12,500^{*}$
(H26) 2020B, similat to the 2020A, but records and reads at 200 and 556 bpi, switch selectable. Tape speed: 30 ips .
Price (complete with interface and software) $\$ 15,000^{*}$
(H01) 3030G, records on and reads from 9-channel tape at 800 bpi. Tape speed: 75 ips. (Due to the speed of data

transfer. an HP computer requires the Direct Memory Ac. cess option for operation with this tape unit.)
Price (including interface and software) $818,500^{*}$

[^4]
COMPUTERS \& PERIPHERALS

OPTICAL MARK READER
For data entry and communication
Models 2760A, 2761A

The 2760A and 2761A Optical Mark Readers are low cost, desk-top, remote data-iransmission terminals which read punched and marked tabulating cards. They are designed for use with standard relephone data sets in communication networks where limited information must be gathered from many sources; or where ir is desirable to use the original document as direct input to the system. rather than punched cards, perforated paper tape, or manual entry of information by keystroke. The 2760A is a manual feed Reader. The 2761A pro. vides the extra convenience of automatic card feed.
The Readers are humanoriented data entry systems thar take advantage of two common and portable data entry do. vices-pencil and paper. The input document is a standard rabulating card, coded by marking lines through pre-printed boxes with a regular soft lead pencil. Le to 80 columns of alpha-numeric information may be marked or punched on a single card.
Since the tab cards are hand-marked, and are read directly as marked, keypunch operations are bypassed. This eliminates the cost, error porential, and noise associated with key-stroke equipment-and speeds delivery of data to the zeceiving rerminal.
In application, immediate dara transmission can speed inpur of orders, payroll charges, inventory entries, shipments, billings, and similar operating data to a central data processor. Becsuse the Readers are low-cost portable units, it is practical to locate them for data entry at many remote points.

Tab Card Specifications

Data entry documents: Standard tabulating cards, printed with reflective ink visible to the eye, but not to the photosensors of the Reader. A row of "clock" marks printed on the cards synchronizes reading with the dara entry marks on the card.

Card design: The information can be arranged in almost any manner, with considerable positional freedom in the horizontal direction. For example, the cards can be divided into data fields: they can include printed instructions for data entry: and space can be provided for handruriten information not to be read by the Readers.

Coding formats: Models of the 2760A/276lA are available to read any one of three formats:

Hollerith Punch Formar: The Readers read holes and marks interchangeably, and both on the same card. Mark positions occupy the punch positions of a standard tab card
Hollerith Mark.Sense Format: Mark positions are higher on the card, located midaray between the rows of Hollerith punch positions.
Dial Code Format: Hewlett-Packard's new "dial" code uses a simple alphabetic coding, arranged in a manner like a familiar dial telephone.
Marking cards: Data is written on the cards by marking diagonal lines in pre-printed boxes enclosing the characters co be read, using a regular soft black lead pencil. Skipping a column enters a space.

Correction of entries: A feature of the optical mark system is easy correction of errors. When undesired marks are erased completely they are not read; new marks entered correctly will be read instead.

Pre-punched cards: Cards can be pre-punched or pre-printed with identifiers and routine information for turn-around applications, reducing the amount of hand-entered data, and assuring correct identification of the turn-around document.

Reader Specifications

Installation: The 2760A/2761A requires only connection to as power and an interface cable between Reader and Data Sec.

Receiver compatibility: The 2760A/276LA Optical Mark Readers transmit at 105 characters/second or 10 characters/ second to receiving terminals equipped to accept data teans. missions from Bell Telephone System ype 202C or 103A Dataphones, or equivalent common carrier dasa transmission equipment. Many receiving terminals are compatible, including AT \& T Dataspeed Type 11 and Telecype Telespeed 1050 Tape Receivers: and Telergpe 33 and 35 Teleprinters. Many digital computers, including Hewletr-Packard's are compatible for direct input, making possible multi-terminal networks, automatic polling, multiplexing, and preliminary processing.

Environment: The $2760 \mathrm{~A} / 2761 \mathrm{~A}$ Readers are rugged, elec-trically-conservative units designed to operate not only in office environments, but also in construction sites, machine shops: marine weather stations, and other locations where dirt, vibra. tion, temperature, and humidity conditions are far from ideal. The Reader operates from 0 to $55^{\circ} \mathrm{C}$; relative humidity to 95% ar $40^{\circ} \mathrm{C}$.
Overall dimensions: 2760A: $123 / 4$ " wide, $67 / 8^{\prime \prime}$ high, $191 / 2^{\prime \prime}$ deep ($330 \times 175 \times 495 \mathrm{~mm}$) ; 2761 A is $91_{4}^{\prime \prime}(235 \mathrm{~mm})$ high. Weight: 2760 A : net $22 \mathrm{lbs}(10,0 \mathrm{~kg}$): shipping 29 lbs $(13,2$ kg) ; 2761A: net $28 \mathrm{lbs}(12,7 \mathrm{~kg})$; shipping $37 \mathrm{lbs}(16,8 \mathrm{~kg})$. Accessories available: HP 12657A Simultaneous Teletype Coupler for dual operation of Teletype and Reader through a single rype 103A Dataphone, $\$ 150$.
Price: HP Model 2760A for Hollerith formats, $\$ 2500$; Model 2761A for Hollerith formats, 52850 : dial code format adds $\$ 50$.

COMPUTERS AND PERIPHERALS

One Package Includes:

D/A Converter
 Storage Capability

Built-in Power Supply and Reference Source
Low Impedance Operational Amplifier output
Isolation Between Input and Output
Adapts To Wide Range of Digital Input Levels

Description

The Model 6933A is a small system in itself, for fast, trouble-free/analog progeamming by a digital system. With a bipolar output that can give a curcent of 10 mA throughout a swing from plus 10 to minus 10 V dc 50,000 times a second, the Model 6933A offers near ideal interface compatibility between a computer and a power supply-or any other analog input instrument.

Standard models accept inputs from either a binary or 8421 BCD format; other inputs are easily accommodated at the time of the order. A plug-in board design gives the fexibility needed to suit the coding and logic levels of most computers.
All Hewlett-Packard power supplies that feature external voltage programming can be programmed by the D / A Inter. face with little or no modifcations.
There is no voltage overshoot during turn-on, turn-off, or sudden power removal, overshoot of any programmed output voltage (across a resistive load) will be less than $0.1 \% \pm 1 \mathrm{~m}$. In addition, short circuits across output terminals will cause no harm to the unit.

Specifications

DC analog output: -10 to +10 V dc (1 mV increments) at 0.10 mA (10 mA sinking).
AC power input: $115 \mathrm{~V} \mathrm{ac} \pm 10 \%, 50.400 \mathrm{~Hz}$.
Load regulation: less than 0.2 mV for a load current change of 10 mA .
Line regulation: less than 0.2 mV for a 10% change in the nominal line voltage.
Ripple and noise: less than 1 mV p.p at any line voltage and load condition within rating.
Translent recovery time: less than 10μ is required for ourput voltage recovery to within 0.1% of the range setting follow.
ing a change in output current equal to the current rating of the supply.
Temperature coetticient: less than $50 \mu \mathrm{~V}$ output change per degree centigrade change in ambient following 30 minutes walm-up.
Accuracy and resolution: 1 mV at $25^{\circ} \mathrm{C} \pm 15^{\circ} \mathrm{C}$.
Programming speed: time required to attain 99.9% of programmed value.
Output voltage: -10 to +10 V or +10 to -10 V in less than $10 \mu \mathrm{~s}$.
Voltage data transfer rate: greater than 50 K words $/ \mathrm{sec}$. Inout/output coding: other codes and levels a yailable.

Input Desoription	LInes	Typloal Levels and Codimy	
		Haph	Low
Voltage magnitude (800 form) (Binary)	$\begin{array}{r} 16 \\ 14 \\ \hline \end{array}$	Logical 0	Logical 1
Vollage polarity	1	+	-
Gate: starts processing of voltage magnitude and polarity data	1	Hold	Read
Total inpul lines	18		
Output Dosorlpition			
Flas: notifies programmer that voltage magnifude and polarity data processing are complete	1	In-Process	Complete

Temperature ranges:
Operatling: 0 to $55^{\circ} \mathrm{C}$.
Storaga: -40 to $+75^{\circ} \mathrm{C}$.
Controls: line switch (on-off)
Rear output terminals: terminals for output, common, and ground. The common output terminal may be connected to ground through a separate ground terminal, or the output can float up to 300 volts off ground. Inputs enter the rear through a so-contact ribbon connector.
Dimensions: $163 / 4^{\prime \prime}$ W $\times 33 / 8^{\prime \prime} \mathrm{H} \times 1314^{\prime \prime} \mathrm{D}(42,5 \mathrm{~cm} \mathrm{~W} \times$ $8,6 \mathrm{~cm} \mathrm{H} \times 33,7 \mathrm{~cm} \mathrm{D})$.
Price: HP Model 6933A, $\$ 1200$.
Optlon 28: 230 V ac $\pm 10 \%$, single phase input. Factory modification consists of reconnecting the multitap input power transformer for 230 volt operation; price, $\$ 10$.

STIMULI • RESPONSE MEASUREMENTS
 Processing data - Recording results DC to 500 MHz - Madel 9500A

The Model 9500A Auromatic Test System is a computer. controlled versatile test system using a family of HewlettPackard programmable instruments for providing output stimuli, response measurement, and processing and recording the resultant test data. The Model 9500A is suited ideally for production or assembly line tesring where high reliability and lictle maintenance is required. It offers a number of options (as shown in the table) to suit most customer test requirements.
Software/Programming. The Model 9500A Auromatic Test System uses a simple computer language called HP BASIC which enabies the operator or programmer to write his programs in English-like statements. By using an interpretive compiler, resident in the System's computer memory at all
times, an operator can become a "programmer" since a pro. gram can be writren by typing instructions directly into the computer on the Teleprinter and then executing the program upon command via the same Teleprinter.
HP BASIC, used with the Model 9500A, consists of the popular BASIC language extended to include instrumentation control statements. This computer test language is so simple that it can be learned in approximately 4 to 8 hours.
The test engineer using the Model 9500A is normally the most qualifed person to write a test program since he is the one most familiar with the tests to be made. After a test program is written it can be checked immedately for inaccuracies and failures. Corrections can be made without time-consuming delays associared with off line compiling.

Hardware. The Model 9500A uses the HP 2116B Computer and other instruments from Hewlett-Packard's expanding family of programmable instruments. The table shows the instruments and components which comprise the Model 9500A.

System Operation. The block diagram shows the System complete with all options. System control is either through manual keyboard entry on the teleprinter or by previously prepared programs via the punched tape reader. The stimuli consists of dc, ac to 100 kHz , and ac to 500 MHz . DC and low frequency ac stimuli are routed through the distribution switch to the uait under test (UUT).

Measurement inpuss consist of dc, ac to 1 GHz , ohms, and frequency. AC measurements above 100 kHz are recorded on the digital voltmerer (DVM) as a de voltage by routing the de outpurs of the respective meters through the measurement scanner to the DVM. The inpur scanner also has signal switching to route ohns, frequency, and ac/dc inputs to the appropriate DVM connéctor for direct measurement.
The System (less options) is supplied with a two-section distribution switch, with one section for switching de stimuli outputs to the UUT and one section to switch de voltages to the DVM for measurement.

HP 9500A automatic test system data

Furation	Kay Speotiloations	"Instrumant
	Standard system equipment	
Computer	8 k memory, $18 \mathrm{l} / 0$ channels	YP 21168
Teleprinter	Inpul typing: 100 words/min punched paper tape output $=10$ char $/ \mathrm{sec}$, printed page oulput: $=10$ char/sec	HP 2752A (modified ASR-33)
Puncied tape reader	300 char/sec, l" paper tape	HP 2737A
DC stimulus	$\pm 50 \mathrm{~V}, 0.01 \mathrm{~V}$ resolution: $\pm 10 \mathrm{~V}, 0.001 \mathrm{~V}$ resolution; 0 to 1 A oulput, curient limit programmable	HP 6130B
DC voitage messurement	$100 \mathrm{mV} 101,000 \vee$ in 5 ranges, 5 full digits +over-range, $1 \mu \mathrm{~V}$ resolution on lowest range, guarded	HP 2402A
Distribution switch	Two relay trees, aach with 1 four-wire ingut +16 four-wire outputs	HP 9400A
	System options	
DC stimulus (additional)	Same as above; 8 total (max.)	HP 8130B
Distribution switch (additional plug. -in modules)	Relay tree, 1 four-wire input and 16 fourwire oulpuls, (HP 9400A holds 4 total, max.)	Switch modules
AC vollage stimulus to 100 kHz	0.1 to $99,900 \mathrm{~Hz}, 0.1 \%$ resolution; 0.00 to $9.98 \mathrm{~V}, 0.01 \mathrm{~V}$ steps; amplifier provides low output impedance	40318 (krohnhite)
AC voltage stimulus to 500 MHz	0.1 Hz to $500 \mathrm{MHz}, 0.1 \mathrm{~Hz}$ resolution; 0 dBm output into 50 ohms	HP 5105A HP 5110B HP 2759A
Attenuator	DC to l GHz, 0 to 132 in I dB steps	HP 355C/D (programmable)

Highlights of HP automatic test systems

High Performance to Cost Ratlo-HP Automatic Test Systems use standard programmable instruments and compurers specifically designed for automated testing. I/O card interfaces are generally standard items. The HP BASIC language used for programming minimizes the cost of application software. Software and hardware training are also included in the price.

Reliability-Instruments and computers used in HP systems are the same proven reliable equipment in use in laboratory production test, and field service environments throughout the world.

Easy to Program-The new HP BASIC language provides easy programming and program change capability. By using an on-line interpretive compiler, each test statement is checked automatically for errors during programming and executed one step at a time. This eliminates off-line compiling and tedious debugging. Test operators familiar with the devices to be tested can do the actual programming with only four to eight hours of instruction in HP BASIC.

Funation	Key speetfications	*instrument
	Optlons (contliused)	
AC measurement to 100 kHz	50 Hz to 100 kHz , IV to 1000 V full-scale ($750 \vee$ peak) (4 ranges); full 5 digit readout with over range; $10 \mu V$ resolution on lowest range	HP 2402A/02
AC msasurement to 10 MHz	1 mV to 100 V full-scale - 10 Hz to 10 MHz	HP 400E (program. mable)
AC and phase measurement 10100 MHz	1 MHz to $1,000 \mathrm{MHz}$ (10 bands) 0.1 mV to 1 V full-scale (9 ranges) $=180^{\circ}$ phase measurement	HP 8405A (programmable)
Measurement scanning	200 thsee-wire channels, random access, 3-wire $\mathrm{ac} / \mathrm{dc}$, 2 -wire freq., 6 -wire ohms measurement	$\begin{aligned} & \mathrm{HP} 2911 \mathrm{~B} \\ & \mathrm{HP} 2911 \mathrm{~A} \\ & \mathrm{M} 23 \end{aligned}$
Frequency measurement	0.1 V to 100 V input, 5 Hz to 199.999 kHz , 1 Hz resolution	HP 2402/05
Resistance measurement	1 k Ω to $10 \mathrm{M} \Omega$ full-scale (5 ranges) 8 -wire measurement, full 5 -digit readout with over-range, 0.01Ω resolution on lowest range	HP 2402A/03
Cabinet	Mounting rails, power strip, caster base, fans, filters	1,2 , or 3 bays as req. All equip. installed
Additional 8k memory	Offars total of 16k memory system	HP 2116B/M5
Heavy duty teleprinter	When equipment usage exceeds 5 hrs/day or $30 \mathrm{hrs} /$ week	HP 2754A (ASR-35) replaces HP 2752A

*Also Includes computer l/O Interiace boards, cables, software driver, instru. ment modifications as required.

Modularity-The interface to instruments is made through standard I/O cards. Therefore, systems can be expanded or reconfigured as a customer's requirements change.
Computer-controlled-Most HP systems are controlled by a general-purpose digital computer along with a powerful language. This permits easy program branching to subroutine for fault isolation and offers an inherent system capability for calculating parameters on the devices under test. It also allows processing of data into test reports and statistical records for engineering or management evaluation.

Custom systems

Custom automatic test systems, similar to the HP 9500A, are being produced for module and component testing, R.F. and microwave testing, calibration of equipment, data acquisition and processing, nuclear instrumentation, and avionics and communications devices. These systems are most useful when large quantities or varieties of items must be tested rapidly and the results made available immediately.

Hewlett-Packard will assume system responsibility for interfacing equipment supplied and any required instrument software drivers.

Instrumentation systems for dara ac. quisition can be categorized into two basic classes: digital and analog. An analog system generally consists of a separate signal conditioning, measuring and recording channel for each input (usually a transducer). The system may include an on-line analog computer, In digital sys. tems, mulriple inputs are sequentially applied to one set of measuring and record. ing equipment; with some transducers, signal conditioning equipnent may also be shared. A digital computer may be included for both on-line computation and system control.

Analog systems are used mainly where only a few channels are involved (roughly, ten or fewer) and where the real-time equation-solving capability of an analog computer can be broughr into play.

Digital systems offer a much greater range of capability in resolution, accuracy and speed, and much lower cost for large numbers of inputs (sometimes as many as 1000 channeis). Information in digital form intrinsically offers enormous fiexibility in storage and manipulation. For these reasons digital systems are able to fill a much broader range of needs than analog systems.

Hewlett-Packard specializes in digiral. data acquisition systems, in two major categories:
a) Low-speed systems, operating at speeds up to 40 channels/second. These systems offer high accuracy and resolution (to 6 digits), common mode and superimposed noise rejection, and the ability to handle ac, resistance and frequency inpurs as well as de voltages. These systems are used for measuring slowly changing phenomena, or sraric analysis.
b) High-speed systems, operating at speeds to 100,000 channels/second (100 kHz), with resolution in the order of 3 to 4 digits. These sys. tems are able to dissect phenomena lasting only seconds, or varying analog signals, taking samples as short as 50 nanoseconds; they are therefore used for dynamic an. alysis.
In the low-speed area. Hewletr-Packard has complete, packaged systems offering a choice of capabilities in speed, accuracy, resolution, and types of inputs that can be measured, to suit the user's particular
applictaion. Benefits of the "standard system" approach are:
a) Better specifications: each system is a thoroughly engineered. tested package, and is completely speci. fied on a data sheet.
b) Greater teliability-through the use of production techniques as applied to standard Hewlett. Packard instruments.
c) Shorter delivery: because systems are composed of standard instru. ments produced in volume.
d) Easy expandability: systems are offered with many standard, data sheet options allowing easy recon. figuration, even after initial pur. chase, to suit changing needs. This also makes it easier, and less expensive, to satisfy special require. ments.

There are four series of slow-speed systems to choose from. All offer the following types of output: printed strip, typewritten sheet, punched tape, mag. netic tape, punched cards. The prinicipal differences lie in the system "front ends".

The 2010 series (pages 124, 125) use the 2401C Integrating Digital Voltmeter as the digitizing element, along with the 2901 A Input Scannes. The 2010 series are characterized by exceptional common mode and superimposed noise rejecrion, selectable integration time, built-in programming capability, and options for measuring ac, ohms, frequency and period.

2014 systems (nor derailed in this cata. \log) are built around the new 3450A Multi-Function Meter, 2014 systems also measure $d c$, ac and resistance inpurs, but can additionally measure $d c$, as and resistance ratios.

2012 systems (pages 126,127) are de. signed principally for applications requis. ing the ability to measure millivolt-level de signals at higher speeds than the 2010. 2014 systems-up to 40 channels/second. 2012 systems are furnished with either the 2911 Crossbar Scanner or 2912 Reed Scanncr, and can measure ac voltage, resistance and frequency inputs as well as de voltages.

Low speed 2300 Series Data Acquisition subsystems (pages 128, 129) combine with a Hewlett-Packard digital compurer. The 2402A or 3450A Digital Voltmeter and 2911 or 2912A Scanner form "front ends" for any one of the
three computers detailed on pages 104 . 109. The computer provides total control of all system operating functions, in real time, along with on line computation of data taken from one or a number of channels. A unique 'executive' sofoware program affords the user direct control of the system through a keyboasd. Unlike many other computerized data acquisition systems, the 2018 allows easy expansion or reconfiguration, because the software is modular as well as the hard. ware.

High-speed 2300 Series Data Acquisition subsystems (pages 128, 129) are similarly composed from standard components, such the HP soloA A-D Converter (pages 122) or HP 1256A A.D Converser (page 119). Because of the very high data rares involved, a Hew'lettPackard computer is used to provide high speed core memory storage, backed up by disc or (digital) magnetic tape bulk storage.

Digital data system elements

Elements making up a digital system may include all or some of those shown in Figure 1. Essential functional operations within a digital system include handling analog signals, making the measurement, handling digital data, and internal programming and control, The function of each of the system modules illustrated is:
Transducer. Translates physical param. eters to electrical signals acceprable by the data acquisition system. Typical parameters include temperature, pressure, acceleration, weight, displacement and velocity. Electrical quantities such as voltage, frequency or resistance also may be measured directly.
Signal Conditioner. Performs complementary functions for transducers, such as reference junction for thermocouples, or excitation, balancing and calibration for strain gages.
Scanner. Accepts muleiple analog inputs and sequentially connects the signals to one measuring instrument. Inpurs may be in the form of millivolt or high level de or ac voltage, resistance, frequency, period. time interval or events occurring in a specified time interval.
Signal Converter. Translates the analog signal to a form acceptable by the analog-to-digital converter. Examples are conversion of ac voltage or resistance inputs to $d c$ voltage equivalents.

Figure 1.

Analog-to-Digital Converter. Converts the analog signal to its equivalent digital form, for direct printout or recording for subsequent processing. A visual display may be included for operator convenience.

Coupler. Receives digital information From the analog-to-digital converter and translates it to the proper form for entry into a digital recorder. This conversion function can be perfocmed by a coupling instrument or by a computer. The capability to record manually-entered information and time-of-day along with the acquired data may also be provided by the coupler (or computer).

Recorder. Records digital information on punched cards, perforated paper tape, magnetic tape, continuous printed paper strips, typewritten pages or combinations of these media.

System Control and Data Manipulation.

 Selects system functions such as channels to be measured, type of measurement, comparison limits, etc. Can be performed by a hardware (e.g. pinboard or punched tape) programmer, or by a digital computer. System operation can be correlated with time-of day by a digital clock, or by the computer, The computer offers un.limited fexibility of system control, but at higher cost.

Data manipulation covers measurement comparison against preset limits, and coraputation ranging from simple scaling or normalizing to solving of eq̣ua. tions such as strain gage rosettes. A comparator may be used if only hi/go/lo comparison capability is required, but if computation is involved a computer should be used, its versatility outclassing the limited capabilities of lower-cost, hard-wired instruments for data manipu. lation.

Input noise

Data acquisition systems are frequently used to measure signals contaminated with noise arising from various calses, all of which end up as periodic or random disturbances on the real sig. nal.

The most obvious noise sources are electromagnetic or electrostatic pickup on the signal leads (referred to as normal mode noise). While this can to some exrent by alleviated by shielding of leads. two principal rechniques are employed in analog-to-digital converters to reduce the effects of superimposed noise: filtering and active integration.

Filters are effective, but have the serious disadvantage that system speed is slowed considerably-typically down to 1 channel per second or less. Integration, as employed in HP digital voltmeters, completely eliminates noise at power line related frequencies (the usual source of ripple) and provides rejection equivalent to that of a flter at other frequencies. And-integration doesn't slow down the system.
Another source of noise, especially prev. alent in transducer systems, is common mode noise, which is noise appearing at the digitizer input terminals as a result of circulating ground currents between the system and signal source ground poines. This effect can be so severe that a signal of a few millivolts, such as from a thermocouple, may be totally obscured by a common mode input of several volts. The problem is insidious because the user never knows to what extent it is present.

Using a heavy ground buss or shield usually will not reduce common mode pickup appreciably and may even increase it, due to magnetic pickup from the ground loop formed. A conventional floating input can reduce common mode noise, but is limited in effectiveness by the capacitance between the measuring circuit and chassis (Figure 2a).

There are two methods to circumvent common mode noise: use of a differential input and guarding. A differential input is used, for example, in the 2212 A Volt-age-to. Frequency Converter and 2470A Data Amplifer. Guarding is used in all the HP integrating digital voltmeters. It consists of a guard shield which com. pletely isolates the voltmeter measuring circuit from the chassis, breaking the common mode ground loop (Figure 2b). Guarding provides an absolute solution to the problem of common mode pickup from grounded signal sources. This is especially valuable in sysrems applica. tions where the alternative solution, floating the signal sources, would be extremely troublesome.

Input scanners

2912A Reed Scanner, a high-speed, multi-function scanner. Transfers guarded 3 -wire inputs at speeds 1040 channels per second. Interchangeable modules plug into the mainframe:

10 channels of low level dc with the 2921A
10 channels of high level de and ac with the 2922A
9 channels of frequency with the 2923 A

2912A

$2911 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$,

Up to four modules can be installed; further input expansion is through 2920A Scanner Extenders which hold up to 10 modules each. As many as 10 extenders can be controlled by a 2912 A , for 1000 channel scanning capacity.

Integrity of millivolt level signals, such as those from strain gage bridges or themocouples, is preserved through the scanner.

System programming capability is a built-in feature of the 2912A. Diode pinboards, conveniently located behind the front panel, provide easy control of all DVM functions. Additionally, channels may be individually selected for measurement or skip-over by front panel switch selection. Groups of 10 channels may be handled in the same manner. Upper/ lower scan limits select the first and last channel address, and operating modes include single and continuous scan, manual scan and signal channel monitor.

Optional incerface for H-P digital computer is available to provide the greatest amount of scanner flexibility. Panel height of 2912 A or $2920 \mathrm{~A} 51 / 4^{\prime \prime}(113 \mathrm{~mm})$. Prices: 2912 A Scanner, \$3500; 2921A Low-Level DC Module, \$600; 2922A DC-AC Module, \$600; 2923A Frequency Module, \$600; 2920A Extender, $\$ 1500$.

2911 Guarded Crossbar Scanner offers user choice of 600 1 -wire, 3002 -wire, 2003 -wire, or 1006 -wire inputs. Permits guarded 2 -wire voltage or 4 wire resistance measurements. Lower and upper scan limits selectable at front panel, with random access to any channel. Channel being monitored is indicated by in line visual display and $4 \cdot 2^{\prime}-2 \cdot 1 \mathrm{BCD}$ (optionally 8-4-2.1) output. Roller-mounted switch withdraws from sear for easy cabling. Maximum scanning rate is 30 channels/second. Interface for HP computers available. Panel height $14^{\prime \prime}$ (355 mm). Price $2911, \$ 5100$.

2901 A Input Scanner/Programmer as used in the 2010 series, scans 253 -wire inputs and programs all functions of associated system. May be expanded to 100 channels with 2902 Slave Units. Easy system set-up with individual quickrelease input connectors and pushbutton selection of charrnels to be scanned. System functions and measurement delay are programmed individually for each channel with built-in pinboard. Maximum scanning rate is 12 channels/second. Panel height $7^{\prime \prime}(177 \mathrm{~m})$. Prices: 2901A Master, $\$ 2375$; 2902 Slaves (25 channels each), $\$ 1975$.

Signal converters

2410B AC/Ohms Converter (page 246) is used in conjunction with 2401 C Digital Voltmeter for measurement of ac voltages and resistances. Converter features floated, guarded input compatible with the voltmeter. Combined common mode rejection is 110 dB ar 60 Hz .2410 B is fully programmable for systems use. Converter function and range information included in voltmeter display and recording outputs. Panel height 7 " (177 mm). Price: HP 2410B, $\$ 2350$.

2411 A Guarded Data Amplifier (page 246). This flored and guarded amplifer provides the 2401 C Integrating Digital Voltmeter with a full-scale inpur of $\pm 10 \mathrm{mV}$, overranging to $\pm 30 \mathrm{mV}$. Ideal for measurements of thermocouples, strain gage bridges and other low-level signal sources. Input
impedance is greater than 10^{20} ohms. Combined common mode rejection with 2401 C is 134 dB . 2411 A features very low noise and zero drift, short settling time for fast data sampling. Panei height $31 / 2^{\prime \prime}(88 \mathrm{~mm})$. Price: HP 241 l , $\$ 1250$.

Analog-to-digital converters

2401 C Integrating Digital Voltmeter (page 246). Fea. tures floated and guarded input and is average-reading, yielding an effective common mode noise rejection better than 140 dB at all frequencies, including dc . All operating functions may be controlled manually or by external contact closures to ground, enabling it to be used on the bench or in systems. BCD outputs provided. Panel height 7" (177 mm). Price: $2401 \mathrm{C}, \$ 4100$.

2402A Integrating Digital Voltmeter (page 244) combines 40 samples per second measuring speed with 5 digit resolution. Get low-level measurements without preamplification. Common mode noise rejection $>120 \mathrm{~dB}$ is provided by guarding and integration. Optional plug-in circuit cards for ac, resistance and frequency measurements yield a multimeter useful for both bench and system applications. Panel height 51/4" (133 mm). Price: 2402A, $\$ 4800$.

3450A Digital Multi-Function Meter (page 241) is basically a five-digit intergrating DVM with five do voltage ranges from 100 mV to 1000 V . Guarding and integration provide 140 dBCMR at $\mathrm{dc}, 120 \mathrm{~dB}$ at 60 Hz , at speeds to 15 measurements per second. Isolated four terminal dc voltage ratio measurements are standard; options expand instrument to ac and ac ratio (true mas response), ohms and ohms ratio, hi-go-lo comparison on all functions including ratios. Panel height $31 / 2^{\prime \prime}$ (88 mm). Price from $\$ 3150$.

5601 A High-Speed A to D Converter (page 122) for measurements at rates to 100 kHz of signals to $\pm 1 \mathrm{~V}$ full scale (oprionally $\pm 2.5 \mathrm{~V}, \pm 10 \mathrm{~V}$). Used in data systems employing a digital computer. Resolution is 9 bits plus sign and aperture time with sample and hold is 50 ns . Multiplexer capability available for 1,8 or 16 channels with 100 kHz throughout rate. Panel height 51/4" (133 mm). Price: $\$ 2000$.

12564A High-Speed A to D Converter is a plug-in circuit card for use with HP 2116B, 2115A and 2114A Digital Computers. Makes 10 V or 1 V (switch selectable) full scale single-ended measurements at sates to 50 kHz . Resolution is 9 bits plus sign, and aperture time is $17.6 \mu \mathrm{~s}$ with $2116 \mathrm{~B}, 22 \mu \mathrm{~s}$ with 2115 A or 2114 A . Price, $12564 \mathrm{~A}, \$ 1100$.

Auxiliary equipment, programmers

2539A Digital Comparator compares BCD information against single or dual preset limits, providing Hi/Go/Lo lamp indications and electrical outputs. Comparisons take $<3 \mathrm{~ms}$. Instrument can be operated either manually or by external signals. The 2539A provides for 12 different comparison conditions, handles any combination of limit relative magnitudes and signs likely to be encountered in practical measurement situations. All solid state, features data storage for fast system operation. Panel height $31 / 2^{\prime \prime}$ (88 mm). Price: $2539 \mathrm{~A}, \$ 2650$ for 6 -digit comparison plus sign.

5610A

2911 C Programmer operates with the 2911 Guarded Crossbar Scanner. It offers a convenient means of storing and selecting, by channel groups, the system measurement function (e.g., ac/dc voltage, resistance, frequency) and DVM range, and also enables channels to be skipped in. dividually. Programming is accomplished by inserting diode pins into internal program boards which are easily accessible from the front panel while the instrument is installed in position. 2911 C is all solid-state. Panel height $51 / 4^{\prime \prime}$ (133 mm). Price: HP 2911C, \$372s.

2560A Programmer reads instructions punched on paper tape and governs all aspects of system operation. Programmer selects measurement functions, scanner input channel on a specific channel or group-channel basis, and controls data recording. Also programs system comparator and governs data recording in accordance with comparison result. Operation of the entire system can be changed simply by changing programming tape. 2560 A is all solid-state. Panel height $51 / 4^{\prime \prime}(133 \mathrm{~mm})$, tape reader, $7^{\prime \prime}(177 \mathrm{~mm})$. Price: 2560 A $\$ 4270$ including 2737 A tape reader.
$2114 A, 2115 A$ or $2116 B$ Digital Compurers (page 104) provide methods for flexible, sophisticated system control. Timing and sequencing of the input scanner, measuring and recording functions is controlled by the computer. It can also perform limit comparison, code conversion and output for. matting otherwise accomplished by separate instruments. Data manipulation such as solving multiple vaciable equations on stored data or measured inputs from one or more channels is easy when the system includes one of these devices.

In high speed system applicarions, the computer serves additionally as a data buffer storage unit to permit accumulation of data at rates beyond that of the fastest recording devices. Convenience of operation and system programming and input;output fexibility are paramount in the design of these system elements. Price: 2114A with 4096 word memory, $\$ 9950$; 2115A with 4056 word memory, $\$ 14,500$; 2116 B with 8192 word memory, $\$ 24,000$.

Output coupler, recorders

2547A Coupler operates with a variety of input and output devices. As a data acquisition system element, it translates BCD information from a digital voltmeter into the correct code and format for the following digital recorders.

Kennedy 1406 or 1506 Incremental Magnetic Tape Transport. Records on $1 / 2$ inch mag tape, IBM compatible format at 500 characters per second, 200 or 556 BPI density.

HP 2753A Tape Punch. Records on 1 inch paper tape in IBM 8 -level code at 120 characters per second.

HP 2752A and 2754A Teleprinter (modified ASR-33, ASR.35). Records on typewriter and punches tape in ASCII at 10 characters per second.

Typewriter (modified IBM Model B). Records at 10 characters per second.

Flexowriter (modified Friden model 2303). Records on typewriter and punches tape in IBM 8-level code at 12 characters per second.

Card Puach. Junction panel with shoe connector provided to drive IBM 526 Summary punch, in Hollerith code at 17 characters per second.

Interchangeable circuit card construction makes it possible to change output recorders in minutes. Plug-in versatility also applies to interconnection with input devices.

When used in data systems, the 2547A can optionally be equipped to provide input scanner channel identification data to the recorders. A thumbwheel-switch panel for manual entry of numerical data may be installed in the instrument front panel. A digital clock may be similarly installed to provide visual display and electrical cecording outputs. Time is recorded in response to an input scannec command or on manual command.

Digital scanners

Aside from data acquisition applications, the 2547 A Coupler can be used to scan dara output from up to six digital measuring instruments such as electronic counters, digital voltmeters, nuclear scalers and quartz thermometers. Input devices can be of mixed types providing they have similar output coding and votlage swings. Up to 10 characters per instrument can be processed.

Since data inputs to the coupler are through individual plug-in printed circuit cards, system expansion is easy. Cables to the input sources plug into the front of the coupler and are accessible even when the coupler is rack mounted. Scanning priority is determined by the location of the circuit card within the coupler.

Scanning of data sources is automatic. Data from freerunning or externally triggered instruments is recorded at random as it becomes available. Panel height $101 / 2^{\prime \prime}$ (266 mm.) Price: 2547A Magnetic Tape output, $\$ 8125$ to $\$ 9472$; 2547A Punched Tape output, $\$ 5675$; 2547A Teleprinter output, $\$ 4150$ to $\$ 6850 ; 2547 \mathrm{~A}$ Typewriter output, $\$ 4900$; 2547A Flexowriter output, $\$ 8125 ; 2547$ A Card punch compatible, $\$ 3600$; Manual data input, $\$ 1000$; Digital clock $\$ 1500$ to $\$ 2100$.

2515A Digital Scanner transmits digital data from multiple digital measuring instruments to a single recording device at a transfer rate up to 10 sources per ms. The 2515A provides for scanning, in programmable sequence, of electronic counters, nuclear scalers, digital voltmeters or complete digital systems. It couples their outputs into a single recording device such as a digital recorder, card or tape punch or magnetic tape recorder.

The basic 2515 A accepts up to 12 digits of BCD data (10 data digits, 2 source ID digits) from up to 3 sources. Modifications expand this to 6 sources. By bussing scanner output lines, data from more soucces can be transferred to a single recorder. The $2515 A$ interrogares all selected dara sources in programmed sequence and transmits this data directly to recorder by solid-state switch. It accommodates a variety of input levels and provides uniform input to recocder. Panel height 51/4" (133 mm). Price 2515A, $\$ 4475$.

2547A showing interface cards

DATA ACQUISITION

High speed, general purpose ADC
Model 5610A

Analog-to-digital converter Model 5610A

The Model 5610A Analog-to-Digital Converter is a general purpose ADC that offers the following features: 100 kHz throughput rate for a 10 -bit word (including sign); a sample-and-hold amplifer that provides an extremely short (50 nanosecond) aperture time; a 1,8 or 16 -channel ca. pacity; a choice of input levels (the standard ± 1 volt level for full scale at 100 megohms input impedance or the optional ± 2.5 or ± 10 volt levels for full scale at 25 K ohms input impedance) and either sequential or random access.

The Model 5610A can operate in an internally sequenced mode, an externally sequenced mode, of a random access mode, either with or without an encode command required. The encode command is requested and the operating modes are determined by a seven-bit command word from the associated computer. The converter samples the analog signal on each of the input channels and converts it to a binary number to be read into computer memory. After a channel is sampled in the internal sequencing mode, the converter automatically samples the next channel. The external sequencing mode permits one channel to be sampled as many times as desired; the converter only transfers to the next channel when an "external sequence pulse" is provided. For either mode, the converter can be wired on site to recycle after any number of channels. The random access mode allows any channel to be sampled by supplying the appropriate channel number in binary code as part of the command word. In any mode, an encode command is required for each conversion unless the command word specifies a free running condition. If free running is specified, a conversion is made every 10 microseconds with no requirement for an encode command.

Digital outputs include the ten data bits, four bits for channel identification, a flag bit that specifies when the data is ready, and one line with clock pulses from the internal 8 MHz clock.

When the 5610 A is used with any Hewlett-Packard computer, an interface kit is available, consisting of the interface printed circuit card and cable, as well as a Basic Control System (BCS) driver program and a test program. The BCS driver makes it easy to program the 5610A in FORTRAN or ALGOL. The test program provides an easy, efficient means to check out the performance of the converter. An extremely accurate internal calibration voltage facilitates either manual or automatic checking of converter electrical accuracy.

Specifications

Input

Input range: $\pm 1 \mathrm{~V}$ full scale ($\pm 2.5 \mathrm{~V}$ or $\pm 10 \mathrm{~V}$ optional).
Resolution: 9 bits plus sign.
Accuracy: for calibration at $25^{\circ} \mathrm{C}, \pm 2.75 \mathrm{mV}, 10$ to $40^{\circ} \mathrm{C}$. worst case.

Crosstalk with 16 -channel multipiexer: -80 dB at 1000 Hz .
Aperture time: instrument aperture cime is less than 50 nanoseconds.
Input impadance: 10 megohms standard (25 K ohms on ± 2.5 V or $\pm 10 \mathrm{~V}$ range, optional).
Channel capacity: 1, 8, or 16 channels.
Maximum Input voltage: 5 times full scale, $\pm \mathrm{SV}$ with $\pm 1 \mathrm{~V}$ full scale, $\pm 50 \mathrm{~V}$ with $\pm 10 \mathrm{~V}$ full scale.
Logle interface
Levels: logic Ievels are Transistor-Transistor Logic. A binary " 1 " is +2.4 V to +5.0 V . A binary " 0 " is 0.0 V to +0.4 V .
Output drive capablity: A "1" outpue can supply up to 400 μa and remains above 2.4 V. A " 0 " output can sink up 2016 ma and remains below 0.4 V .
Commands
Encode: a transition from " 1 " to " 0 " is required. This starts the internal clock and initiates sample and hoid. Sampling begins $2.0 \mu \mathrm{sec}$ after the encode is received. Hold occurs 3.0 usec after encode.
Command word: the command word is 7 bits long. Bits $0,1,2$ and 3 are the random access address. Bit 4 is random access enable. Bit 5 is free run enable. And bit σ is internal or external sequence enable. The Exrernal Sequence pulse line is not part of the command word.
Operating modes:

Funotion	Command word			Enrode Requitred
Bit number	6	543	210	
Random Access	Y	00 X	XXX	YgS
Internal Sequence	1			Yes
Free run, int. seq*	1			No
External sequence	0			Yes
Free run, ext. seq	0			No
Free run, random access	Y	10X	XXX	No

Where $X X X X$. Selects the desired channel.
Y-Indicates the bit doesn'l matter.

- Note that tits is the case for no connection also.

Outputs

Data outputs: 10 parallel lines at logic interface. Negative numbers are represented by the binary two's complement of the positive number.
Flag or data ready: a transition from " 0 " to " 1 " is provided. (A" 1 " 10 " 0 " is a hard-wired option.) The flag is automatically cleared in free run mode and is otherwise cleared by the encode command.
Channel ID: 4 paralle! lines at logic incerface.
Clock standard: $8.000 \mathrm{MHz} \pm 0.006$ percent, $0.59^{\circ} \mathrm{C}$. Clock standard is capable of delivering 1.2 na at $>2.4 \mathrm{~V}$ and sinking 48 ma at $<0.4 \mathrm{~V}$.
General
Internal callbration: $\mathrm{A}-.998 \mathrm{~V}=.2 \mathrm{mV}$ at $25^{\circ} \mathrm{C}$ internal calibration is provided. TC is $\pm 5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Provision is made for internally connecting two input channels to the zero and cal signals for calibration under computer command.
Operating temperature range: $0.55^{\circ} \mathrm{C}$.
Slze: Hewlett-Packard full module, $51 / 4^{\prime \prime}$ high, $11 / 4^{\prime \prime}$ deep. $163 / 4^{\prime \prime}$ wide ($135 \times 290 \times 432 \mathrm{~mm}$)
Welght: Approximately 16 pounds ($7,3 \mathrm{~kg}$).
Power: $115 / 230 \mathrm{~V} \pm 10$ percent, $50 / 60 \mathrm{~Hz}, 90$ watts.
Connectors: two 36 -pin rear panel printed circuit connectors are used-one for analog input and one for digical input/outpus.
Price: HP Model 5610A A 10 D Converter including power cable and two mating connectors for analog input and digital inpur/ output cabies. $\$ 2000$. Option 01: Multiplexer sequencer, required when using one or any combination of two of the following options, $\$ 300$. Option 02: Eight channels of ± 1 volt full scale input, $\$ 200$. Option 03: Eight channels of ± 2.5 rolt full scale input, $\$ 300$. Option 04: Eight channels of ± 10 rolt full scale inpuc, $\$ 300$.
Model 12600A: Interface Kit consists of an interface card, interconnecting cable, BCS Driver and Test program, $\$ 1000$,

The HP 2060A Digital Logic Module Test System is a computer-controlled automacic system engineered to be easy to put to work and efficient to use. The fast test capabilities of this system will help you to: cut test costs, break produc. tion test bottlenecks and improve product reliability.

The system employs a comparison technique in which the responses of 'test' modules are checked against responses of a known-good 'refecence' module. The same test inputs are applied to both modules in a programmed sequence, and responses at all module pins are compared simultaneously, at rates to 10,000 tests per second. As shown in the block diagram, the system controller is the HP 2116B Digital Computer, (page 104), with driver-comparator registers forming the heart of the system. The output signals from the two modules are tested to see if there is an error that is outside the programmable tolerance of the comparator. Results, based on success or failure of comparison on a pin-by-pin, test-by-test basis, are logged by the system on a teleprinter for reporting of module faults. The comparison technique does not require test responses to be specified in the test pro. gram-a significant shortening of test programming time.

Test conditions are program specified. High and low logic levels, positive and negative current limits, and test tolerances are generated according to test program instructions. Thus, the 2060A System can test a wide variety of logic circuits without special adaptation. The system can be equipped to generate up to four separate sets of test conditions simultaneously, for testing different types of logic (DTL, CTL, TTL, RTY, ECL, etc.) on the same module.

The system operates in accordance with programming instructions written in a new, test-oriented software language -AuTest-, which takes advantage of the benefts of comparison testing. The language minimizes the tione spent leaming programming, and maximizes the number and scope of tests performed. These features resulc in savings to the user in startup and operation costs, and minimum disruption of the users normal production line functions.

AuTest speaks the language of digital design engineers and technicians. Less than one day of instruction is necessary to learn the statements needed to write usable test procedures. To effectively program the system, the programmer

does not have to know the function of the board for which he is writing a program; he only need be familiar with the functions of digital logic.

Actual time spent programming is a function of the complexity of the module to be tested. With experience, even the most complex modules can be programmed in a couple of days time.

The language is powerful. Permute statements permit a few program statements to produce thousands of individual tests, a powerful multiplication of the programmers time.

The 2060A is capable of two modes of operation. A 'run' mode is used for quickly sorting modules on a production run basis. Each module to be tested is plugged into a test fixture, and the system is commanded on the Teleprinter to run the test. At the end of each test, the system prints out the module defects, detailed down to the connector pins which represent the faulty circuit. At this point, the system can be used in a 'conversational' mode to help debug module faults. The operator can modify test conditions, specify additional tests, and set up special sequences to provide repetitive waveforms for oscilloscope display.

The 2060A system is flexible. In its minimum configuration, it tests up to 16 module connector pins; it can be easily expanded to 256 pin capacity in 8 -pin increments for checkout of the most complex modules. Interchangeable plug-in module test Gxtures and fast read-in of test programs convert the system easily and rapidly to changing module configurations, making it economical to test small batches of modules.

DATA ACQUISITION SYSTEMS
 Accurate measurement of many noisy signals Models 2010K, 2010L

2010 Data Acquisition Systems measure multiple analog inputs and display and record the measurement results. A wide choice of output recorders is offered. For direct reading, a printout on paper tape or typed page is available. Data to be entered into a computer may be recorded on punched tape, punched cards, or digital magnetic tape.

Typical inputs are de and ac voltages, frequencies, resistances and physical parameters that are convertible by transducers to these analog forms.

Optional additions to the system allow measurements to be compared against preset upper and lower limits; time-ofday correlation of data recordings and timed triggering of system opecation; and manual entry of run identification or other numerical information with systems recording on mag. netic tape, punched tape, punched cards, or typewritten page.

The digital techniques achieve high measurement resolution and accuracy, high sampling speeds, and the ability to transfer the measurement results easily to a wide variety of digital recording devices. In particular, the HP 2010 series of data acquisition systems utilize the HP 2401 C Integrating Digital Volmeter (page 246) as the A to D Converter. This instrument features a floated and guarded input, permitting accurate low-level measurement in the presence of severe common mode noise-a frequent problem with grounded transducers.

Noise rejection. A high degree of noise rejection is provided through two features of the HP 2401C Integrating DVM. First, the voltoneter is average-reading, thereby greatly reducing the effects of noise superimposed on the signal. Second, errors due to common mode pickup (ground loop

2010K
currents, usually at power line frequencies) are reduced to negligible proportions by guarding. The guard completely isolates the HP 2401C measurement circuit from the chassis, breaking the common mode loop. The guard connection is carried through the input scanner to the signal source.

Averaging and guarding together provide an effective common mode rejection of 105 dB minimum for any noise frequency. In practical terms, 1 volt of common mode noise at any frequency will cause less than 6 microvolts error in reading. The system may be used in electrically noisy environments, with no restrictions in regard to grounding of the signal sources.

Input scanning: The system uses a 2901A Input Scanner/ Programmer (page 118) to accommodate up to 25 signal sources. Input capacity can be increased at any time to 50 , 75 or 100 channels by adding slave scanners.

Each input channel consists of a floated signal pair and shield: Individual quick-release connectors are provided for each input channel. Since the voltage measurement circuit is floated, data sources at potentials up to 500 V with respect to ground can be connected. Input channels are preselected for measurement by front panel pushbutton switches, individually numbered for each channel. A digital display indicates the channel number being monitored.
System programming. The systems include the capability to select the appropriate type of measurement, sample period, and settling delay for each channel. Programming is accomplished by inserting diode pins in a pinboard within the scanner. The scanner front panel swings down for convenient access to the program board.

Output recording. Six types of output recorders are available. The HP 2010 K outputs only on printed paper tape. The HP 2010L outputs on either typed log, punched cards, punched tape, and magnetic tape. All of the 2010L systems are optionally capable of recording on printed paper tape as well as their principal medium.

Systems optlans. The HP 2010 K and 2010 L Data Acquisition Systems measure and record multiple input signals which may be low or high level de voltages and frequencies. AC voltages and resistances may be measured with optional additions to the basic system.
Measurement results can optionally be compared digitally against a 6 digit preset limit to obtain a $\mathrm{HI},=$, of LO out. put, or against a pair of limits to obtain a HI, GO, or LO output. This is accomplished by an HP 2539A Digital Comparator (page 119). The comparison result is signalled by front panel lamps, and is included in the data recording. The comparator includes a contact closure output for operation of external warning circuits.
Manual data entry is available in 2010 l systems. This option consists of 12 thumbwheel switches on the 2547 A Coupler (page 120). Manual data may be recorded under pushbutton control, or automatically at the start of each scan. In 2010 L systems, an optional digital clock can be installed in the 2547 A Coupler; time-of-day is recorded automatically at the start of each scan.

Specifications, 2010 series

DC voltage measurements

Nolse rejection:

Overall effective common mode rejection (ratio of common mode signal to its effect on readings): 105 dB at all fre. quencies, 100 dB at de; (0.1 sec sample period); amplifier option reduces CMR by less than 6 dB .
Common mode rejecrion (eatio between common mode signal and voltage it superimposes on source): 85 dB at 60 Hz , 100 dB at dc with 1000 ohms between ground and low side of input (resistances up to 10 k).
Superimposed noise rejection (ratio of superimposed noise to its effect on readings): Combined amplitude of signal and superimposed noise can equal ± 3 times full scale for any signal amplitude.
Voltage ranges: five ranges from 0.1 V to 1000 V full scale; polarity sensed and indicated automatically; ampiifier (option) provides 10 mV full scale; auto ranging avaidable.
Overranging: to 300% of full scale except on 1000 V range; input attenuator switched to 1000 V range if overload exceeds 310%.
Input impedance: 10° ohms on $10,100,1000 \mathrm{~V}$ ranges; 1 megohm on 1 V range; 100 k on 0.1 V range; 10^{9} ohms with amplifier option for inputs up to 3 V
Resolution; depends on sample period, maximum of $0.1 \mu \mathrm{~V}$.
Sample periods; $0.02,0.1$ and 1 sec.
Internal calibration standard: provided for self-calibration; voltage reference is derived from a specially aged and stabilized reference diode; can be used to maintain specified accuracy for 6 months.
Absolute accuracy: (specifications hold for $\pm 10 \%$ line voluage variation and 6 months operation, assuming daily calibration against internal standard).
Basic accuracy: $\pm 0.01 \%$ reading ± 0.01 full scale ± 1 count (0.1 V range): $\pm 0.01 \%$ reading $\pm 0.005 \%$ full scale ± 1 count ($1 / 10 / 100 / 1000 \mathrm{~V}$ range).
Temperature affect: $\pm 0.0015 \%$ reading per ${ }^{\circ} \mathrm{C}, 10$ to $50^{\circ} \mathrm{C}$, when calibrated against internal standard at operating temperat. ture; $\pm 0.002 \%$ reading $\pm 0.0005 \%$ full scale per ${ }^{\circ} \mathrm{C}(0.1 \mathrm{~V}$ range) : $\pm 0.002 \%$ reading $\pm 0.0002 \%$ full scale per ${ }^{\circ} \mathrm{C}$ (1) $10 / 100 / 1000 \mathrm{~V}$ ranges), when not calibrated at operating temperature, over range 10 to $50^{\circ} \mathrm{C}$.

Frequency measurements

Range: 5 Hz to 300 kHz .
Resolution: for $2,0.1,0.01$ sec sample periods, has $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$, 100 Hz resolution respectively.
Accuracy: ± 1 count \pm rime base stability (2 PPM per week) over 20° to $30^{\circ} \mathrm{C}$ iemperature range, $\pm 100 \mathrm{ppm}$ over 10° to $50^{\circ} \mathrm{C}$.
Input amplitude range: 0.1 to 100 V rms.
Input dynamic range: $100: 1$ at any atcenuator setting.
Impedance: 10^{6} ohms shunted by 1000 pF . Each slave scanner adds 250 pF .

Perlod measurements (optlonal)

Range: 5 Hz to 10 kHz .
Resolution: for 100,10 and 1 periods averaged, has $1 \mu s e c$, $10 \mu \mathrm{sec}$ and $100 \mu \mathrm{sec}$ resolution respectively.
Input: same as frequency measurements.
Accuracy: ± 1 count \pm time base stability \pm trigger error divided by number of periods averaged.
Trigger error: 0.3% maximum for 0.1 V rms sine wave with 40 dB signal-to noise ratio, decreasing with increasing signal ampilicude and frequency.
AC voltage measurements (optional)

Noise rejection:

Comon made rejection: 75 dB at 60 Hz ; decreasing 6 dB per octave for noise frequencies above 60 Hz , with 1000 ohms between ground point of source and low side of system input.
Voltage ranges: $0.1,1,10,100,1000 \mathrm{~V}$ full scale; maximum input, 750 V peak, 530 V rms.
Frequency range: 50 Hz to 100 kHz .
lnput impedance: 10^{5} ohms on all ranges, shunted by 1000 pF .

Accuracy: 50 Hz to $1 \mathrm{kHz} \pm 0.05 \%$ full scale $\pm 0.1 \%$ of reading; $10 \mathrm{kHz} \pm 0.05 \%$ full scale $\pm 0.1 \%$ of reading. 100 kHz $\pm 0.1 \%$ full scale $\pm 0.3 \%$ of reading. Temp. effect $0.02 \% /$ ${ }^{\circ} \mathrm{C}$ maximum.
Response and ripple effects: normal response (frequencies below 400 Hz) output settles $10 \pm 0.2 \%$ of final value in 500 ms ; fast response (frequencies above 400 Hz): output settles to $\pm 0.2 \%$ of final value in 200 ms .

Resistance measurements (optional)

Noise rejection: resistance measurement circuit is guarded which minimizes the effect of common mode noise on resistance measurements when guard is connected to low side of test resistance
Ranges: six ranges from 0.1 k to 10 M ohm full scale.
Overranging: to 300% of full scale on all ranges except 10 megohra.
Resistance measurement accuracy: (specificacions hold for $\pm 10 \%$ line voltage change, 6 months operation, assume daily calibracion against internal standard).

FAREE	MEASUAEMENT CURRENT	AGGURACY AT $25^{\circ} \mathrm{C}$			
		70\% HOMIİITY		86\% HUBIDITY	
		= \% rda	- \% ${ }_{\text {\% }}$	-\% rdy	± 818
0.14	10 mA	. 02	. 51	. 02	.51
1 K	1 mk	. 02	. 06	. 02	. 06
10 k	$100 \mu \mathrm{~A}$. 02	. 01	. 03	. 01
100 k	$10 \mu \mathrm{~A}$. 02		. 12	
1 M	$1 \mu \mathrm{~A}$. 09		1.0	
10 M	$l \mu A$. 12		10	

Temperature effect $.005 \%$ cog $\pm .001 \%$ is. per ${ }^{\circ} \mathrm{C}$ difference of amblent from $25^{\circ} \mathrm{C}$.

Output recorder, system speed

2010K: H006-5050A Digital Recorder produccs printed strip, 12 -character word length 6.3 channel/second max. speed. Price, $\$ 8980$.
Note: The 2010L incorporates a 2547A Coupler (page 120)
which accepts any one of six fully-interchangeable ousput sets, providing a selection of six recorders as follows:
2010L with magnetic tape output: drives a Kennedy 1406 or 1506 incremental Magnetic Tape Recorder at 400 or 500 char. acter per second rate; records on $1 / 2^{\prime \prime}$ magnetic tape in 7 channel NRZI IBM.comparible formar. System speed: 9 channels per second. Price with $1406, \$ 14,925$.
2010L with high speed punched tape output: drives an HP 2753A Tape Punch at 120 characters per second; records on $1^{\prime \prime}$ paper tape in IBM 8 -level code. System speed: 9 channels per second. Price, $\$ 12,475$.
2010L with Teleprinter output: drives an HP 2752A or 2754 A Teleprinter at 10 characters per second; records on 1 "punched paper tape in ASCII 8 -level code and on typewritten sheets. System speed: 90 channels per minute. Price with 2752A, $\$ 10,950$.
2010 with electric typewriter output: drives IBM Model B Outpur Writer at 10 characters per second. System speed 50 channels per minute. Price, $\$ 11,700$.
20101 with Flexowriter output: drives Friden Model 2393 Flexowriter; records on 1" paper tape in IBMI 8 -level code and on typewritten sheets at 12 characters per second. System speed: 1 channel per sec. Price, \$14,925.
2010 L with gunched card output: drives IBM 526 Summary Punch; records at 17 characters per second on tab cards in 10 - line output code with overpunching necessary to produce special characrers. Syscem speed: 1.6 channels per second. Price, excluding card punch, $\$ 10,400$.
Simultaneous recording on a Hewlett. Packard Ho06-5050A Digi. tal Recorder is available. Recording speed: up to 9 words/ second.

General

Display: 6-digit in-line readout; polarity, decimal point measurement units, and overload; scanner accepts 25 channels standard: expands to 50,75 or 100 ; provides indication of channe! being monitored.

DATA ACQUISITION

Application of the 2012 Data Acquisition Systems is similar to that of the 2010 Series discussed on page 124. Operations performed by the systems include scanning of multiple inputs, digitizing and measuring the signal with a 2402 A Integrating Digital Voltmeter (page 244) and recording the output on a wide variery of devices. Recording media includes magnetic or punched paper tape, printed strip, typewritren sheet with or withour simultaneous punched tape, teleprinter and punched card.

The 2402A IDVM provides floared and guarded input circuitry in combination with integration. It uses techniques which permit measuring rates to 43 samples per second while providing noise rejection. The result is a system which can measure low level signals rapidly and accurately-even in the presence of large noise signals, without requiring preamplifier modules or filters.

All DVM operating functions are programmable, and programming does not affect the system's excellent noise rejection properties. An oprional autoranger is available to relieve range programming.

Input scanners

A choice of input scanners is available to match system speed and number of input channels to user requirements. A 2911 Guarded Crossbar Scanner (page 118) is used in the 2012A and B systems to measure large numbers of channels at speeds to 18 channels per second. The 2912A Reed Scanner (page 118) normally measures tewer channels at higher speeds-io 40 channels per second.

Expanslon

Standard options permit system expansion from a basic de measuring system to one accepting ac voltage, resistance and frequency-easily and economically. Circuit cards plug into the integrating digital voltmeter to add measuring capability withour increasing system size or operating complexity. Noise rejection is retained with these additions. Circuit cards may be added by the user at any time without system modification.

Additional standard optional equipment includes digital hi-go-lo comparison equipment, pinboard or paper tape system programmers, digital clock and manual data entry. The latter two derices plug into the 2547A Coupler (page 122) and

2012A
add to system capability without adding to size. The digital clock provides visual display and electrical outputs for recording time along with measured data. It also provides the capa. bility to start the system data-gathering sequence at prederermined time intervals.

Specifications, 2012 Series

DC volkage measuraments

Noise rejection: overall effective common mode rejection (ratio of common mode signal to its effect on digital display) : $2012 \mathrm{~A}, \mathrm{~B}: 120 \mathrm{~dB}$ at $\mathrm{d} \mathrm{c}, 110 \mathrm{~dB}$ for all frequencies above $30 \mathrm{~Hz} ; 2012 \mathrm{C}, \mathrm{D}: 110 \mathrm{~dB}$, dc to 500 Hz . Common mode rejection (ratio between common mode signal and voltage it superimposes on source) : 2012A, B: 130 dB at $\mathrm{dc}, 104 \mathrm{~dB}$ at $60 \mathrm{~Hz} ; 2012 \mathrm{C}, \mathrm{D}: 110 \mathrm{~dB}$ at dc . 94 dB at 60 Hz , borh with 1000 ohms between ground and low side of input. Superimposed noise rejection (ratio of superimposed noise to its effect on display) : $>48 \mathrm{~dB}$ for 60 Hz noise frequencies.
Voltage ranges: five ranges from 0.1 V to 1000 V full scale: polarity indicated automatically, autoranging available.
Overranging: to 130% of full scale except on 1000 V range; protected from overload if input exceeds 136%.
input impedance: 10° ohms $\pm .1 \%$ on $100 \mathrm{~V}, 1000 \mathrm{~V}$ ranges; 10^{10} ohms on $.1 \mathrm{~V}, 1 \mathrm{~V}, 10 \mathrm{~V}$ ranges.
Resolution: 1 parr in 130,000 on 6 digit display. 100 mV range displays readings to $1 \mu \mathrm{~V}$.
Internal callbration standard: provided for self-calibration derived from a specially aged and stabilized reference diode operating in a constant remperature oven, can be used to maintain specified accuracy for 6 months.
Overall de accuracy for 2012 Systems: (specifications hold for $\pm 10 \%$ line voltage change and 6 months operation).

Range	100 mV (1)	IV, $10 \mathrm{~V}, 500 \mathrm{~V}, 1000 \mathrm{~V}$
ACCURACY (2) (at $25 \pm 1^{\circ} \mathrm{C}$)	$.01 \% \mathrm{Idg} \pm .006 \%$ is or $.016 \%$ rdg in overrange	$.01 \% \mathrm{rdg} \pm .003 \%$ is or $.013 \%$ rds in overrange
(1) Accuracy from 01030 mV is $4 \mu \mathrm{~V}=.015 \%$ rdg; above 30 mV , accuracy is as stated above. (2) When 2402 A is calibrated at other than $25 \pm 1^{\circ} \mathrm{C}$, add 0006% rdg $\pm .0001 \%$ is per ${ }^{\circ} \mathrm{C}$ difference from $25^{\circ} \mathrm{C}$. For temperature change after calibration, ses TEMPERATURE EFFECT below.		
TEMP EFFECT	Per ${ }^{\circ} \mathrm{C}$ change from calibrate temperature	
15 to $40^{\circ} \mathrm{C}$ 10 to $15^{\circ} \mathrm{C}$ or 40 to $50^{\circ} \mathrm{C}$	$\begin{aligned} & .0015 \% \mathrm{rdg} \pm .0006 \% \text { is } \\ & .002 \% \mathrm{rdg}=.0006 \% \text { is } \end{aligned}$	$.0015 \%$ rog t $\mathbf{t} .00015 \%$ is $.002 \% \mathrm{rdg}=.00015 \%$ is

Frequency measurements (optional)

Range: 5 Hz to 199.999 kHz .
Resolution: 1 Hz .
Accuracy: ± 1 count \pm time base stability; time base aging rave: 2 ppm per week over temperature tange $20^{\circ}+1030^{\circ} \mathrm{C}$; remperature effect, $\pm 100 \mathrm{Ppm}$ over 10° to $50^{\circ} \mathrm{C}$ range.
Input amplitude range: $2012 \mathrm{~A}, \mathrm{~B}: 0.1$ to 100 V rms; 2012 $C_{1} \mathrm{D}: 0.51070 \mathrm{~V} \mathrm{rms}$.
Impedance: $2012 \mathrm{~A}, \mathrm{~B}: 10^{6}$ ohms shunted by $250 \mathrm{pF} ; 2012$ C_{1} D: 10° ohms shunted by 230 pF with 9 -channel inpur, plus 25 pF for each additional 9 -channel module.
AC voltage measurements (optlonal)
Common mode relection: $2012 \mathrm{~A}, \mathrm{~B}: 120 \mathrm{~dB}$ at $\mathrm{dc}, 104 \mathrm{~dB}$ at $60 \mathrm{~Hz} ; 2012 \mathrm{C}, \mathrm{D}: 110 \mathrm{~dB}$ at $\mathrm{dc}, 94 \mathrm{~dB}$ at 60 Hz , with

1000 ohms between lon side of source and lory side of input.
Voltage ranges: $1,10,100,1000 \mathrm{~V}$ max input, 750 V peak. input impedance: $909 \times 10^{\circ}$ ohms all ranges, $2012 \mathrm{~A}, \mathrm{~B}: 490$ pF shunt; $2012 \mathrm{C}, \mathrm{D}: 390 \mathrm{pF}$ shunt.
Resolution: 1 part in 130,000 on standard 6-digit display, $10 \mu \mathrm{~V}$ on 1 V range.
$A C$ accuracy

$\begin{aligned} & \text { SIONAL } \\ & \text { FREQUENOY } \end{aligned}$	50 HL		100 Hz		10 KHz		30 kHe		100 kHz	
	\%\%dg	\%/8	\% ${ }^{\text {cosin }}$	\%	\%odp	\% 11	\%rde	\%	\%rdg	\% ${ }_{8}$
$\begin{aligned} & \text { ACCURACY } \\ & \text { (al } 25 \pm 1^{\circ} \mathrm{C} \end{aligned}$. 09	. 05	. 05	. 03	. 05	. 03	. 09	. 05	. 14	. 09
RIPPLE ERROR(3)	. 03	-	. 02	-	\bullet	-	-	-	-	-
TEMPERATURE EFFECT ($\mathrm{Per}{ }^{\circ} \mathrm{C}$ change in ambiant from $25^{\circ} \mathrm{C}$, over 10 to $50^{\circ} \mathrm{C}$ range)	. 004	. 003	. 004	. 003	. 004	. 003	. 007	. 003	. 013	003

(1) Straight line intergolation bolds for irequencies between Doints.
(2) Does nol ficiudo . 02% pras maximurn response error, applicable only to step input (received (rom data system signal scanner); also sea response time and measurament spead, below.
(3) Ripple error decresses 1868 per octave above 85 Hz , is zero at 60 Hz because of
(3) Assumes callbration of 2402 A agalinst internal standard al $25^{\circ} \mathrm{C}$ ambient. Callbration of 2402 A al operaling temperature decreases $\%$ rdg lemperâture elfect 0.0009%.
Transient error: output settles to $\pm 0.02 \%$ of final value in 500 ms .

Resistance measurements (optional on 2012 A, B only)

Nolse rejection: resistance measurement circuit is guarded, which minimizes the effect of common mode pickup on resistance measurements when guard is connected to lor. side of test resistance.
Ranges: five ranges from 10^{3} to 10^{\prime} ohms full scale.
Overranglng: to 130% of full scale; self protected against up to 50 V applied across leads.
Resolution: 1 part in 130,000 on standard 6 -digit display, 0.01 ohm on 1 K ohm range.

Resistance measurement accuracy: (specifications hold for $\pm 10 \%$ line voltage change, 6 months operation. Assume daily calibration against internal standard.

Range	Measurrament aursent	Acouracy at $25^{\circ} \mathrm{C}$			
		70\% Humidity		95\% Humldity	
		$\pm \% \mathrm{rds}$	$\pm \%$ /s	$\pm \% \mathrm{rdg}$	$=\%$ is
1 k ,	1 mA	. 01	. 01	. 01	. 01
$10 \mathrm{k} \Omega$	1 mA	01	. 005	. 02	. 005
100 kS	$100 \mu \mathrm{~A}$. 01		. 10	
1 Mn	$10 \mu \mathrm{~A}$	02		1.0	
10 Ma	$1 \mu \mathrm{~A}$. 12		10.0	

Temperature affecta. 004% rag $=.002 \%$ f.s. per ${ }^{6} \mathrm{C}$, diffarence of amblent with respact to $25^{\circ} \mathrm{C}$ over 10 to $50^{\circ} \mathrm{C}$ range

General

Display; 6 -digit in-line readour; polarity, decimal point measurement units, and overload; scanner provides in-line digital indication of channel being monitored.

	2012A			201	28			$2012 C$			201	2D		
Number of Input channels	Guardod crossbar scanner: up 102003 -wire inputs. Also 1006 -wlie, $3002 \cdot \mathrm{w}$ ife inputs.							Read zanteri, expands from 10101000 channals in 10 channel increments. 3 wire channels.						
Programming	Plobozrd or punched ispe programme: may be added to handle mixed slgnal lypes and levels.							Self-progeamming permits measurements of mixed typos and levels of signals.						
Elfective common mode rejection	120 dB							110 dB						
Measurementspead (max de valls)	$\stackrel{9}{\text { chanisec }}$	18 chan/sec	$\begin{gathered} 10 \\ \text { chan/sec } \end{gathered}$	$\begin{gathered} 50 \\ \mathrm{chan} / \mathrm{m} / \mathrm{m} \end{gathered}$	$\begin{gathered} 50 \\ \text { chan/min } \end{gathered}$	$\stackrel{1}{\text { chan } / \mathrm{sec}}$	1.4 chan'sec	10 char/sec	$\begin{gathered} 40 \\ \text { chân/sect } \end{gathered}$	$\frac{10}{\operatorname{chan} / 5 \theta c}$	$\begin{gathered} 50 \\ \text { cnas/min } \end{gathered}$	50 chan/min	$\stackrel{!}{\text { chan/sec }}$	$\begin{gathered} 1.5 \\ \text { chan/sec } \end{gathered}$
Outout	Digital prinies	Magnotlc tape	Punched tapo	Fela. orinter	Type. wriler	flexo. writer	Punched card	Dieglal printer	Mognetic tape	Punched tape	Tele. prinler	Type. writer	Flexo. wriler	Punched cald
Price	\$12,280	518,350	\$15.900	\$14,375	\$15,125	\$18,350	\$13.875	\$11,405	\$17,350	\$14,900	\$13,375	\$14.125	\$17,350	\$12.825
Oplions														

COMPUTER SYSTEMS
 For data acquisition and control
 2300 series subsystems

Computer-controlled systems for low and high speed data acquisition, and for control of external equipment, may be configured from the modules diagrammed below. One or more analog subsystems can be combined with a high.speed digital computer and appropriate input/output peripherals to suit the specific measurement and control application.

The major benefits of computerized systems are:
a) Raw data is processed as it is taken, yielding meaningful information on-the-spot. Besides shortening overall times to complete projects, this immedjacy of feedback allows equipment set-ups to be changed if necessary during critical tests, while conditions still prevail.
b) Total fexibility is provided in data gathering. Under computer control, sampling rates for various inputs to the systern can be automatically adjusted to follow the rates at which input values may change. Data from several sources can be correlated and the sequence and nature of measurements and computations changed accordingly, in the course of a test.
c) Much greater versatility in data input/outputting is possible. Data can be entered, recorded and displayed concurrently in many different forms.
For signal multiplexing and analog-to-digital conversion, a choice of three analog "front-end" subsystems are offered in the low speed range-up to 40 channels per second. Multiplexing is performed by a mechanical (crossbar switch or reed relay) scanner, and analog-to-digital conversion by an integrat-ing-type digital voltmeter. Models 2321A and 2322A accept up to 200 inputs of $\mathrm{dc} / \mathrm{ac}$ voltage, resistance and frequency. Maximum sampling rate is 15 channels/second for de inputs
(rates for other inputs are lower). Channel capacity for Model 2323 A is expansible from 10 to 1000 channels using 10 -channel plug-in modules. Sampling rate is 40 channels/second for de inputs. All three subsystems provide 5 -digit resolution, averaging of superimposed noise, and rejection of common mode noise by guarding.
For measurement of dynamic parameters there are five high. speed analog subsystems to choose from, with multiplexed sampling rates ranging to 100 kHz . Model 2310 A consists of a successive-approximation analog-to-digital converter (ADC) available in 14 -bit and 12 -bit (including sign) versions, with conversion rates of 19 kHz and 64 kHz respectively. Aperture time is 50 nanoseconds. Model 2310 B includes multiplexing capability to 64 channels, in 8 -channel increments. Throughput rates are $18 \mathrm{4Hz}$ and 50 kHz , respectively, for the 14 -bit and 12-bit versions. Model 2310 C is a lower cost multiplexed ADC offering 12 -bit (including sign) resolution, 100 nanosecond aperture, and 35 kHz throughput rate.
Model 2311A is a successive-approximation ADC with optional 8 -channel or 16 -channel multiplexer. It is available with $\pm 1 \mathrm{~V}$ full scale input, compared with $\pm 10 \mathrm{~V}$ for models 2310A/B/C above. Resolution is 10 bits (including sign), sper. ture time is 100 nanoseconds, throughput rare 100 kHz . Mode! 12564 A is a single-channel, successive-approximation ADC contained on one card that plugs into the computer I/O system. The 12564 A provides 10 -bit (including sign) resolution in a conversion time of 17.6 or 22 microseconds, depending on the model of computer with which it is used. Selectable sensitivity is $\pm 1 \mathrm{~V}$ or $\pm 10 \mathrm{~V}$ full scale. For precise timing of samples, a 2718A Pacer may be used with these high-speed analog subsystems.

Peripherals for data input/output include low and high speed paper tape readers and punches, 7 . and 9.channel mag. netic tape units, fast-access fixed head dise memories and, in addition to printout available from the teleprinter, there is a 20 lines/second strip printer and a 300 lines/minute line printer. Graphical presentations may be obtained with a CRT display and, for a permanent record, a drum type X.Yrecorder. All these devices are interfaced with the computer simply through standard plug-in cards, installed either in the computer or an optional I/O extender.
For interfacing user-furnished equipment, a dual 16 bit register may be used for bidirectional data transter. Two versions are available, to mate with transistor and micro-circuit equipment respectively. For control of external equipment, there is a hard-contact 16 -bit relay output register, Modular software drivers for all these peripherals allow easy expansion or reconfiguration of the software operating system; source programs are nor burdened with the minutiae of driving these peripherals. Multilevel priority interrupt is standard; service priorities are changed simply by transposing the corresponding interface cards.
Any one of the Hewlett. Packard digital computers-Model $2114 \mathrm{~A}, 2115 \mathrm{~A}$ or 2116 B (page 104) - may be used as a system controiler. Selection of the appropriate model will be based on 1/O capacity, memory size and speed capability (usually in that order), with consideracion for probable furure expansion,
The 2114 A and 2115 B are available with 4 K or 8 K internal memory; cycle time is 2 microseconds. The larger 2116 B is available with 8 K or 16 K memory, externally expandable to 32 K ; cycle time is 1.6 microseconds. Main frame I/O capacities are: 8 channels for the $2114 A, 2115 A$, and 16 channels for the 2116 B . A 32 -channel extender can be used with the 2115 A and 2116B. Plug in options for the 2115A and 2116B include an Extended Arithmetic Unit for high-speed multiply/ divide and long shift/rotate instructions-recommended for applications involving substantial on-line computation, and Direct Memory Access, required for high-speed data acquisition.

All are 16 -bit machines, sharing the same word structure, instruction repertoire and software. Assuming the equivalent memory configuration and mainframe options are used, programs are interchangeable from one model to another.
System Software: The data acquisition process is completely under computer control, along with data reduction, logging and control of external equipment. Source programs to solve given data acquisition problems may be written by the user in standard ASA Basic FORTRAN, in which he controls instruments through simple read/write statements. Convenient extensions to the standard language include free-feld input, which allows information to be entered via the keyboard or punched tape without regard for character spacing or decimal positioning.
In addition to the basic software for the computer (detailed on page 104) a Data Acquisition Executive is available which simplifies the preparation and checkout of source programs. The Executive enables the operator to change signals to be measured, frequency of sampling, computation constants, etc,, by entering new values through the teleprinter keyboard, instead of modifying and recompiling his original program.
For applications where maximum simplicity of programming is desired. BASIC language is offered as an alternate to FORTRAN. Drivers for many Hewlett-Packard measuring instruments (including analog subsystems) and input/outpur peripherals are available. (When not available they can be fur.

nished on a contract basis.) BASIC allows the user to exercise his system in "conversational" mode, debugging and modify. ing his program as he develops it. While BASIC is intrinsically not a real time system, some control of system timing is af. forded in Hewlett-Packard BASIC through a "wait" statement, which allows the user to specify delays between execution of his instrument commands.

The full power of the computer-controlled system is realized with the Hewletr-Packard Real Time Executive software sys-tem-usable on the 2116 B Computer with 16 K core memory and 3.2 megabit disc memory. The Real Time Executive permits real time execution of core and disc residenc programs concur. rently with background programs stored on disc or punched tape. Programs may be in real time FORTRAN or Assembly language. Multipriority scheduling of all progyams and disc swapping of real-time programs make this an extremely flexible system. Re-entrant library routines and I/O drivers add to system efficiency.

COMPUTING CALCULATOR
 Scientific and engineering problem-solver Model 9100A

Uses

Statistical and economic analysis
Coordinate geometry calculations
Solution of rranscendental equations
Numerical integration
Vector and complex atithmeric
Network analysis
Solution of differential equations
Description
The 9100 A is a programmable, electronic calculator which performs operations commonly encountered in scientific and engineering problems. Its \log and trig functions are each performed with a single key stroke, providing fast, convenient solutions to intricate equations. Computer-like memory enables the caiculator to store instructions and constants for iterative solutions. The easily-readable cathode ray tube instantly dis. plays entries, ansivers and, when desired, intermediate results.

Operations

Direct keyboard operations tnclude

Arithmetic: addirion, subtraction, multiplication, division and square-rook.
Logarithmic: $\log x, \ln x$ and e^{x}.
Trigonometric: $\sin x, \cos x$, tan $x, \sin ^{-1} x, \cos ^{-1} x$ and $\tan ^{-1} \mathrm{x}$ (covers all quadrants and any size angle in degrees or radians).
Hyperbolic: $\sinh x, \cosh x, \tanh x, \sinh ^{-1} x, \cosh ^{-1} x$, and $\tanh ^{-1} x$.
Coordinate transtormation: polar-to-rectangular, recrangu-lar-to-polar, cumulative addition and subtraction of vectors.
Miscellaneous: other single-key operations include taking the absolute value of a number, extracting the integer part of a number, and entering the value of π. Keys are also provided for positioning and storage operations.

Decimal point

Selectable fixed-point or floating-point notation for display of entries and answers.
Fixed-point display: typical display 1234.567890
Up to 10 significant digits with automatic decimal placement and alignment.

Decimal wheel selects 0.9 decimal places, with automatic rounding to the number of places selected.
Left overflow automatically forces display to foating.point notation to allow completion of calculation with no loss of information.
Floating-point display: typical display

$\begin{array}{llll}1.234 & 567 & 890 & 03\end{array}$

(interpreted as $1.234567890 \times 10^{\circ}$ or as 1234.567890 .)
Dynamic range: accommodates numbers over the range, 10^{-03} to 10^{∞}.
Up to 10 significant digits with automatic decimal placement and alignment.

Numerical entry

Fixed-point: digits of number are entered from left to right; keying decimal point in its proper position.
Foating-point: significant digits are entered from left to right, exponent of 10 is entered separately.

Memory

Magnetic core memory contains 19 registers:
3 display registers (keyboard, accumulator, temporary). 16 storage registers, with store/retrieve controls.
Total of 2,208 bits in core memory.
Registers: may be used to store 16 constants, or 196 program steps plus 2 constants, or a combination of constants and program steps.
Capaciky: register accommodates floating-point oumber with 12 significant digits (including 2 undisplayed guard digits) plus 2-digit exponent. Alternately, register accommodates 14 program steps.
Read-only memory: contains over 32,000 bits of fixed information for keyboard routines.

Speed

Maximum times for total performance of typical operations, Including decimal-polnt placement:
Add, subtract: 2 midliseconds.
Multiply: 22 milliseconds.
Divite: 27 milliseconds.
Square-root: 30 milliseconds.
Sin, cos, tan: 330 milliseconds.
In x: 70 milliseconds.
e^{x} : 130 milliseconds.
Coordinate transformatlon: 280 milliseconds.
These times include core access of 1.6 microseconds.

Programming

The program mode allows entry of program instructions, via the keyboard, into program memory. Programming consists of pressing keys in the proper sequence, and any key on the keyboard, except step program, is available as a program step. Program capacity is 196 steps. No language or codeconversions are required.
A self-contained magnetic card reader/recorder records programs for program memory onto wallet-size magnetic cards for storage. It also reads programs from cards into program memory for reperitive use. Two programs of 196 steps each may be recorded on every reusable card. Cards may be cascaded for longer programs.

Program Instructions

Conditlonal brandbing: "If" statements make the compari-sons-less-than, equal-to-, greater-than-and can be programmed to branch to any of the 196 program addresses.
Unconditional branching: GO.TO statement can be programmed to branch to any of the 196 program addresses. (Also used for manual addressiag and correction of individual program steps.)
Flag: provides conditional branching dependent on manual or programmed setting of flag.
Stop: halts program for data entry or display.
Pause: brief display of interim results in computation.
Step program: operator may step through program for visual verifcation of instructions.

Program library

The program library furnished with the 9100 A includes programmed solutions to practical problems in a wide range of scientific and engineering fields. It serves both as an illustration of programming techniques and as a source of ready-to-use programs. Program libzary holders also receive the Hewlett-Packard Keyboard, a periodic publication which provides updating information and a forum for the exchange of programs by 9100A users. Progcam categories include:

Business	Life Sciences	Statistics
Chemistry	Mathematics	Structures
Electronics	Mechanics	Surveying
Fluid Mechanics	Physics	Thermodynamics
	General	

Weight: nec, $40 \mathrm{fbs}(18,1 \mathrm{~kg})$; shipping, $65 \mathrm{lbs}(29,5 \mathrm{~kg})$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$ (slide-switch). 50 to $60 \mathrm{~Hz}, 400$ $\mathrm{Hz}, 70$ watts.

D(mensfons: $81 / 4^{\prime \prime}$ high, $16^{\prime \prime}$ wide, $19^{\prime \prime}$ deep ($210 \times 406 \times 483$ $\mathrm{mm})$.

Accessorles furnished at no charge:

09100.90001 Operating and Programming manual, \$2.50.*

09100-90002 Program library binder containing sample programs, \$30.*
5060.5919 Box of 10 magnetic program cards, $\$ 10$.*

09100-90003 Pad of 100 prograrn sheets, $\$ 2.50$.*
09100-90004 Magnetic card with pre-recorded diagnostic progeam, \$2.50.*
9320-1157 Pull-out instruction card mounted in calculator, \$3.*
4040-0350 Plastic dust cover, $\$ 2.50$.*
Additional accessories avaltable:
5000-9884 Single magnetic card, $\$ 2$.
$09100-90000$ Box of 5 program pads, $\$ 10$.
Price: HP 9100A, $\$ 4900$. Option 001 : Pull-out instruction card in French. Option 002: Pull-out instruction card in German. Option 003: Pull-out instruction card in Italian.
*If ordered separately.

Peripherals

Model 9120A Printer: attaches to the rop of the calculator and can be added at any time. Prints contents of display registers X, Y, Z, singly or in any combination, upon manual or programmed command. Also lists program upoo command. Uses electrostatic principle for silent operation. Available, fall of 1969 .

Model 9125A Plotter: plugs into rear connector on calculator and can be added at any time. Plots upon manual or programmed command, employing calculator's RMT (format) key, $11^{\prime \prime} \times 17^{\prime \prime}$ page size. Available mid-1969.

DIGITAL RECORDERS AND ACCESSORIES

Digital recorders

It frequently is expedient or necessary to obtain permanent records of rapidly changing phenomena measured by elecronic councers, digital voltmeters or other digital devices. Often it is desirable to relate this permanent data record to time or reanslate it to analog form. Hen. letr-Packard digital recorders and accessories are designed for this purpose.

Howlett-Packard digital recorders are electro-mechanical devices which provide printed records of digital information from clectronic counters, digital voltmeters, scaler-imers, etc. The two major HP digital recorder caregories are the 20 line/s Model 5050B and the 5 line/s Models 561B. 562A and 565A. The common characteristics of all HP digital recorders are (1) parallel entry (i.e., the input data for all digits must be present at the since printing is commanded): (2) a manual paper advance aids observation of last printour: (3) paper is $3^{\prime \prime}$ wide fan-folded tape (561B, 562 A and 565 A also use roll paper) and is easily changed; (4) holdoff signals from the recorders (except 565A) prevent external equipment from changing input data while print wheels are being positioned, and a print command pulse is required from the data source to initiate a recorder print cycle; (s) standby, momentary and print-on-command operation is manually selectable; (6) the recorders are designed for continuous unattended operation; the printing mechanisms are designed for simplicity, durability, and trouble.free operation with litele maintenance re. quired.

An analog outpuk, suitable for driving either potentiometer or galvanometer recorders is oprional for those 563A's with either $5 \cdot 2 \cdot 2.1$ or 8.4.2-1 BCD column boards installed. Analog ourput is very useful for continuous analog plors of data variations such as oscillator drift where the important information is in the printed record's last few digits. HP can also supply separate digital-to-analog converters (Models 580A and 581A).

20 line/s Model 5050 B

This recorder prints up to 18 columns at 20 lines/second. It can accept a toral of 20 columns of 4 bit BCD dara fron 1 or 2 sources.
The user can easily change the code base of his recorder to use the $4 \cdot 2 \cdot 2 \cdot 1$ " 1 " state positive or 8.4 .2 .1 " 1 " state positive or negative codes. The Model 5050 B is a simple code comparator which
uses an inexpensive, substitutable code disc as a reference. The same column boards are used with all code discs.

The user can easily substitute different print wheels to use mixed codes, that is, to have a different code base and/or character ser in each column.

The Model 5050B has two, general purpose character suppression features which have many uses. A typical use is to suppress the printing of leading zeros. By arranging plug-in diodes, the user can suppress the printing of any one of the 16 possible characters in any column (a different character can be suppressed in each column). The other feature (using plug-in jumper wires) makes the suppression of a character conditionalu-the character is suppressed only if it is a leading character (an insignificant "zero" for example).

The 5050B operates very reliably, due mainly to the simplicity of its design. By being based on an optical code compara. ror scheme, the 5050B is electrically simple and has very fear moving parts. Data storage and built-in digital clock are optional.

5050B printing mechanism

5 line/s printers

(Models 562A, 561 B and 565A)
These printers record up to 11 columns of data (12 on special order) and all utilize the same basic printing mechanism. Model choice is usually based upon the fexibility required, input codes. and
the cost of equipping the instrument to operate with the printer. A wide variery of special print wheels is available.

Model 562A

This printes requires a paraliel-entry, 4-line. binary coded-decimal input (or 10 - line decimal; see aptions on 562 A catalog page). The 562A (utilizing plugin column board input circuitry) is extremeiy flexible, allowing operation from two unsynchronized sources. Interchange. ability of column boards allows complete mixing of the available codes among the columns. A storage feature in the 562 A permits the driving source to transfer BCD data into the 562 A binaries in 2 milliseconds, thus freeing the source to initiate a new measurement.

Model 561B

The 561B requires a " 10 -line" input for each column of information from the data source; thus, each print wheel position is controlled by a separate line. Digital recorder kits for feld installation in HP counters are a vailable o permit operation with the 561B: for S2ID and 521E counters, kit s21D-95B, \$15; for 523C, kit 523C-95B, 565; for 524C, kit 524C-95B, \$165.

Model 565A

The HP Model 565A is the basic printer mechanism used in the 562 A and 561 B digital recorders. Data entry is paraliel, and one line is needed for each position on each print wheel. Control cables and driving electronics must be fabricated for each 565A application. Front panel appearance of the 565A is similar to the right-hand half of the S61B, and is $93 / 4^{\prime \prime}$ deep behind the front panel.

Digital clocks

For providing time-of-day reference to recorded data, the 5050B, 561B and 562A can have a digital clock instalied. The 571B Digital Clock is used with the 561B Recorder, the H03.571 B is used with the 562A Recorder, Option 55 clock is for the s0s0B Recorder, All time digits areavail. able for printing. The location and number of time digits on the printed record are determined by connector arrangements on the rear of the digital recorders. Clocks also issue timing signals.

Advantages:

Inexpensive mixed codes column by column
Versatilicy of quick-change code discs
Few moving pares
Quier operation
Data storage and digital clock optional
This recorder is compatible with HP solid state and integrated circuit instruments, and its versarile circuitry adapts it for use with a wide variety of other equipment and data systems. It prints up to 18 columns of 4 line BCD data from one or two sources up to 20 lines/s.

The user can easily change the code base to $8421+, 8421-$, or 4221 + by an inexpensive substitutable code disc. In addition, the user can change print oheels to have a different code base and/or character set in each column.

Character suppression allows the user to determine which character is suppressed in each column and whether or not only leading characters are suppressed; rypical use is to suppress leading zeros.
A reduction in moving parts leads to reliable operation. Par. ticular attention has been paid to ensuring quiec operation.

Dara storage options reduce data loading time from 50 ms to 0.1 ms and decrease input voltage requirements. A build in digital clock is also optional.

Specifications

Accuracy: identical to input device used.
Printing rate: 20 lines per second, maximum (asynchronous).
Column capacity: to 18 columns.
Print wheels: 16 positions, numerals 0 through $9,-, 4, A, V, \Omega$, *; other symbols available.
input requirements-without data storage
Data input: parallel entry, BCD (8421, 4221), "1" stare must differ from " 0 " state by at least 4.5 V but by no more than 75 V.
Reference voitages: BCD codes require both " 0 " and " 1 " state references: refesence voltages may not exceed $\pm 150 \mathrm{~V}$ to chassis; " 0 " and " l " reference voltage must differ by at least 4.5 V; amplitude of each ref. voltage must not exceed its likepolaricy data input level by more than 0.5 V .
Hold-off voltage: both polarities are available simultaneously for BCD codes and are diode-coupled; 10 mA maximum load ± 15 V open circuit from 1 ks source.

Print command: + or - pulse, 4.5 to 20 V amplitude, $1 \mathrm{~V} / \mu \mathrm{s}$ minimum rise time, $20 \mu \mathrm{~s}$ or greater in width, ac coupled. Input impedance is approximately 1500Ω.

Input requirements-with data storage options

Data Input: parallel entry, $B C D$. " 1 " state must differ from " 0 " state by at least 1.3 V but by no soore than 35 V . Input drive $\geq 100 \mu \mathrm{~A}$. Data must be on lines when print command occurs and remain until release of hold-off ($85 \mu \mathrm{~s}$ after print command).
Reference voltages: the data sousce must provide reference voltages, either both levels (High and Low) or one level (Low). If both levels are provided, maximum reference voltage may not exceed $\pm 50 \mathrm{~V}$ to chassis. Load between the reference Iines: 20 $\mathrm{k} \Omega$. Internal control can vary $B C D$ trigger level within reference voltages. If Low reference voltage only is provided, maximum reference voltage may not exceed $\pm 20 \mathrm{~V}$ to chassis. The reference line must be able to supply up to 20 mA . The minimum BCD High volrage is approximately 2.1 V above the reference voltage. The maximum BCD Low voltage is approximately 0.8 V above the reference voltage.
Hold-off voltage: both polarities are available simuitaneously for $B C D$ codes and are diode coupled: 10 mA max load $n=19 \mathrm{~V}$ open circuit from $i k \Omega$ source.
Print command: + or - pulse, 2 to 20 V amplitude, $1 \mathrm{~V} / \mu \mathrm{s}$ minimum rise time, $\sigma \mu \mathrm{s}$ or greater in width, ac coupled.
Transfer time: 50 ms without storage, 0.1 ms with.
LJne spacing: adjustable, 3.5 to 4.5 lines/inch.
Inking: ink roller or pressure sensitive paper. Pressure-sensitive paper should be used where the SOSOB is idling more than prineing, or for temperature extremes. Conversion between ink and pressure sensitive operation can typically be performed in five minutes.
Operating temperature: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ with pressure sensitive paper, $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ with ink roller.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 60 Hz , approx. 100 W idle, 190 W at 20 lines $/ \mathrm{sec}$. 50 Hz model with 20 prints $/ \mathrm{sec}$ available.
Dimenslons: cabinet: $163 / 4^{\prime \prime}$ wide, $81 / 2^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ($426 \times$ $226 \times 467 \mathrm{~mm}$).
Weight: ner, $40 \mathrm{lbs}(18 \mathrm{~kg}$); shipping, $53 \mathrm{lbs}(24 \mathrm{~kg})$.
Accessorias furnished: one pack fan fold paper, one pack folded pressure sensitive paper, ink roller. rack mount kit.

Price: HP 5050B, $\$ 1900$: Option 01, 02, or 03 must be specified at time of order (no charge). Column boards (one required for each two columas to be operated), $\$ 100$ each.

Accessories avaitable: fan fold paper HP 9281.0386, \$1.50; Pressure sensitive paper HP 9281.0387 , \$4.00; (15,000 prints per pack). Ink roller (black) HP $9260.0071, \$ 10.00$. Input cables, $\$ \$ 0$ (accommodates 10 input columns from HP solid-state instruments). Inpur cable for IC counters, $\$ 6 \mathrm{~s}$.

Options: 01-8421 "1" state positive code disc.
02.8421 " 1 " state negative code disc.

03-4211 "1" state positive code disc.
All three code dists are supplied with each 5050 B at no charge. However, one of the above options musr be specified so 5050 B can be delivered with desired disc installed. 10. 50 Hz operation, add $\$ 15$.

50 - Storage for 20 columns, add $\$ 400$.
51 . Starage for 10 columns, add $\$ 200$.
(Onty 10 columas can then be operated.)
55 . Digiral clock, instalied at time of manufacture, $\$ 930$. Also a a ailable as field instailation kit.

DIGITAL RECORDERS

DIGITAL CLOCKS

Time recording and print-rate control Model 571B; Option 55 for Model 50508

Option 55 for 50508 recorder

Option 35 Clock, for use with the HP 5050B Digital Recorder, provides a convenient method for recording time while also serving as a programmer for the measuring-recording system. Integrated circuits and transistors perform all timing and logic functions. Column boards required for 5050B operation are built into the clock.
Easy-to-read display tubes indicate time to 23 hours, 39 minutes. 59 seconds. In the printout there is a seventh digit available for indicating tenths of a second. The BCD output code of the ciock is selectable to be either $+8 \cdot 4 \cdot 2 \cdot 1$ or $-8 \cdot 4 \cdot 2 \cdot 1$, but information is easily adaptable to any other code used on the recorder.
As a programmer, the clock is extcemely versatile. Print intervals of 1 second, 10 seconds, 1 minute, 10 minures, or 1 hour are chosen by a front panel switch. Rates as high as 20 prints per second, determined by an externa! signal, are acceptable.
The clock is available in kit form for model s050A or may be installed at the factory in new 50508 Recorders.

Specifications, Option 55

Time base: selectable to be $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ or external. External requires 10 Pps negative pulse.
Print interval:
internal: selectable to be $1 \mathrm{~s}, 10 \mathrm{~s}, 1$ min., 10 min , or 1 hour between prints.
External: rates up to 20 ptints per second.
Tlme-of-measurement accuracy: time recorded may be 0.15 less than correct time \pm line accuracy.
Visual indicatlon: 6 in-line digital display tubes indicare to 23 hours, 59 minutes, 59 seconds.
Printed output: seven digits indicate to 23 hours, $59 \mathrm{~min}, 59.9 \mathrm{~s}$.
BCD output code: $+8 \cdot 4 \cdot 2 \cdot 1$ or $-8 \cdot 4 \cdot 2 \cdot 1$ selectable. Output adaptable to other recorder codes.
Print format; time frintable in any recorder columns.
Clock set: \& switches electronically ser clock to desired initial time.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$. 50 Hz or 60 Hz .
Weight; net, $3 \mathrm{lbs}(1,4 \mathrm{~kg})$.
Price: HP Option 59 (factory installed), $\$ 950.00$. Price of kit for field installation available on request.

571 B clock

The 5718 Digital Clock, which mounts in the left side of the 5618 Digital Recorder provides time-of-day information and controls the rate at which measurements are made. Time is indicated in hours, minutes, and seconds on a 24 hour basis.
The display is available for printing alongside other data. Location and number of time digits on the printed record are determined by connector arrangements on the rear panel of the digital recorder.

The rate at which sampling and printing occur can be conrrolled by the clock or by an external device. The clock provides five rates selectable by a front panel switch.

A modifed 571B (H 03.5718) is available for use with the HP 562A Digital Recorder.

Specifications, 571B

Pnelcation: 6 display tubes to 23 hours, $59 \mathrm{~min}, 59 \mathrm{~s} ; 12$ hour format on special order.
Time base: front-panel switch selects: (1) $60 \mathrm{~Hz}(50 \mathrm{~Hz}$ on special order), (2) counter ($1 \mathrm{PPs}, \mathrm{HP}$ vacuum tube counters), external (s V positive pulses, $200 \mu \mathrm{~s}$ long, 1 pps ; input impedance approx. 5008).
Time-of-measurement accuracy: time recorded may be up to 1 s less than correct time.
Print control: print rate controlied by clock or by external device. Intermally generated zates are 1 per second, 6 per minute. 1 per minute, 6 per hour, and 1 per hour.
Time prlat format:
In 561B: six time digits recorded in right-hand columns of recorder with clock connected to J 101 ; with clock connected to J102, time recorded in 5 left-hand columns without tens of hours.
In 562A: recording format (all columns) is set up by plug-in connectors and column boards in 562A.
Weight: net $20 \mathrm{lbs}(9 \mathrm{~kg})$; shipping $26 \mathrm{lbs}(12 \mathrm{~kg})$
Power: ac and dc supplied by digital recorder; approximately 1s watts.
Price: Model 571B, $\$ 1100.00$.
Because of the many options available for the 571 B clock, piease contact your HP sales office when ordering.

Option 55 with 50508

571B with 561BR

DIGITAL RECORDER Flexible data input with information storage

HP Model 562A Digital Recorder is a solid-state electromechanical device providing a printed record of digital data from any of a number of sources. Parallel data entry and low. inertia moving parts allow printing rates as high as 5 lines per second, each line containing up to 11 digits. Twelve-digit capacity is available on special order.
$\mathrm{D}_{\text {ata }}$ enter the unit through rear-mounted 50 -pin connectors. Internal plug-in connectors route the information to any desired sequence of print wreeels. A separate storage binary unit is associated with each individual print wheel for 4 -line BCD input codes.

Model 562A may be equipped to translate 4.2.2-1 BCD, other 4 -line codes or 10 -line code by substituting plug-in column boards and input connector and cable assemblies.

Specifications

Accuracy: identical to input device used.
Printing rate: s lines per second, maximum.
Column capacity: to 11 columns (12 available on special order).
Prlnt wheels: 12 positions, numerals 0 through 9, a minus sign and a blank; other symbols availabie.

Input requirements

Data input: parallel enryy, BCD (4-2.2.1, 8-4-2.1, 2-4.2-1) or 10-line, see Options; " 1 " state must differ from " 0 " state by at least 4 Volts but by no more than 75 Volls.

Reference voltages: $B C D$ codes require both " 0 " and " 1 " state references; 10-line codes require reference voltage for " 0 " state; reference voltages may not exceed $\pm 150 \mathrm{~V}$ to chassis: input impedance is approximately 270 k ohms.

Hold-off slgnals: both polarities are available simultaneously for BCD codes and are diode-coupled; 10 mA maximum load +15 V open circuit from 1 k source, -5 V open circuit from 2.2 k source (160 msec hold-off is provided for 10 -line codes).

Print command: + or - pulse, 4.5 to 20 volts amplitude, $1 \mathrm{~V} / \mu \mathrm{s}$ minimum rise time, $20 \mu \mathrm{~s}$ or greater in width, ac coupled.

Analog output (optional): (from 4-2-2-1 or 8-4.2-1 boards) ac. curacy is $\pm 0.5 \%$ of full scale or better; 100 nV for potentioneter recorder; 50 k ofm minimum load resistance; 1 mA into 1.5 k ohm maximum for galvanometer recorder.

Transfer time: 2 ms for BCD codes.
Paper required: HP folded paper tape (15,000 prints per packet rith single spacing) HP Stock No. $560 \mathrm{~A}-13 \mathrm{~A}$ or standard 3 -inch roll tape. 24 packet carton, $\$ 21.00$.

Line spacing: single or double.
Power: 115 o: $230 \mathrm{~V} \pm 10 \%$. 50 to 60 Hz , approx. 130 W . (4 prints/s at 50 Hz : 50 Hz model with 5 prints/s available.)
Dimenslons: cabinet: $203 / 4^{\prime \prime}$ wide, $121 / 2^{\prime \prime}$ high, $181 / 2^{\prime \prime}$ deep ($527 x$ $318 \times 470 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $10-15 / 32^{\prime \prime}$ high, $161 / 2^{\prime \prime}$ deep $(483 \times 266 \times 419 \mathrm{~mm})$.
Welght: net 35 lbs (16 kg), shipping 80 lbs (36 kg) (cabinet); net 30 lbs (13 kg), shipping 63 lbs (31 kg) (rack mount).
Price: HP 562A, \$1185 (cabiner); HP S62AR, \$1160 (rack mount); basic unit with 11 -colunin capacity; column boards, input connector assemblies and cables required for operation are not included, see Options.

Options, Group 1

(Completely cquips 562A for operation with Hewletr-Packard and Dymec instruments.)
Option 11. For 6 -column operation from 4.2.2-1 " 1 " state positive code, add 5553,00 .
Option 12. For 9 -column operation (rom 4-2-2.1 " 1 " state posiuve code. add $\$ 780$.
Option 13. For 11-column operation from 4.2.2.1 "1" state pasitive code, add $\$ 1023$.
Option 14. For operation with 5245L; 10-column operation; prints measurement unit and indicates decimal position - e.g., 16942.496 kHz would be printed as 3 kHz 16942496 ; the first digit show's how far to move the decimal to the left; add $\$ 880$.
Options, Group 2, column boards
Option 21. 4.2.2-1 "1" state posiuve. \$75 each.
Option 22. 8-4-2-1 " 1 " state positive, $\$ 75$ each.
Option 23. 8.4.2.1 " 1 " state negarive, 575 each.
Option 24. 4.2.2.1 " 1 " srate negative, $\$ 75$ each,
Option 25. 10-line "il" state positive (no storage), $\$ 50$ each.
Option 26. 10-line " 1 " state negative ($n o$ storage), $\$ 50$ each.
Option 27. 2-4-2-1 " 1 " state negative, $\$ 75$ each.
NOTE: Input connector assemblies and input cables (Group 3 options) are required for use with Group 2 column boards.
Options, Group 3, connector assemblies
Option 30. BCD input connector assembly for up to 9 columns, 555.

Option 31. BCD input connector assembly for up to 6 columns, $\$ 43$.
Option 32. Input cable, for up to 10 BCD columns or three 10 . line columns, $\$ 50$.
Option 33. 10-line inpur connector assenbly for up to 3 columns, \$3s.
Option 34. BCD input connector assembly for up to 10 columns, sio.
Option js: Input cable 10513A for IC councers, \$65.
NOTE: More than one input connector assembly and input cable are required for: 1 . more than nine BCD columns; 2. operation from two sources; 3. more than three 10 line columns.
Options, Group 4
Option 41. Analog output (from 4-2-2.1 boards) . $\$ 175$.
Option 42. Analog output (from 8-4.2-1 boards). \$175.

DIGITAL RECORDERS
 Print 10-line data at 5 lines/sec
 Models 561B, 565A

The 561B Digital Recorder accepts only 10 -line decimal code inputs, but is otherwise similar in operation to the HP 562A. The HP 565A Printer Mechanism, mechanically similar to the mechanism in the 561 B and 962 A , is available for use in custom systems.

Specifications, 561B

Column espacity: 11 columns (12 available on special order).
Print rate: 5 lines per second.
Print wheels: 12 positions having numerals 0 through 2, a minus sign and a blank; other symbols are available on special order.
Input: decimal code, 10 lines plus 2 lines for blank and minus sign for each column.
Driving sources: HP electronic counters (\$21D, 521E, \$23C) with recorder kits, 405 CR Digital Voitmeter, stepping switches, relays, beam switching tubes, contact closures, or -15 to -100 volts connected to appropriate input wire.
Print command signal: ± 15 volts peak, 10μ s or greater in width, $1 \quad V / \mu s$ minimum slope; manual control with mo. mencary-conlact switch.
Line spacing: zero, single or double: in "zero" does not print, paper does not advance.
Paper requlred: 560A-131A foided paper tape or standard 3" roll; tape sufficient for 15,000 single-spaced lines.
Power: 115 or 230 volts $\pm 10 \%$ approximately $75 \mathrm{~W}, 50$ to 60 Hz (4 prints/s maximum at 50 Hz): 50 Hz model available which rerains 5 print/s capability.
Dimenslons: $203 / 4^{\prime \prime}$ wide. $123 / 4^{\prime \prime}$ high, $181 / 2^{\prime \prime}$ deep ($527 \times 324 \times$ 470 mm) (cabinet): $19^{\prime \prime}$ wide, $10-15 / 32^{\prime \prime}$ high, $161 / 2^{\prime \prime}$ deep ($483 \times 266 \times 419 \mathrm{~mm}$) (rack mount).
Welght: 961 B , net $42 \mathrm{lbs}(19,7 \mathrm{~kg})$, shipping $70 \mathrm{lbs}(31,5 \mathrm{~kg})$ (cabinet mounted); 561 BR , net $30 \mathrm{lbs}(18 \mathrm{~kg}$), shipping 65 lbs ($29,2 \mathrm{~kg}$) (rack mounted)
Accessories furnished: 9281.0018 folded paper tape, one packet, 9283.0002 inked ribbon, 560A-95N Digital Recorder Service Kit; 561B-16A Cable, accommodates 6 columns, con. nects to Oprion 02.-equipped vacuum tube counters.

Price: HP 561B, $\$ 1250$ (cabinet); HP S618R, $\$ 1235$ (rack mount).
Accessorles avallable: 560A-131A folded paper tape, 24 -packet carton \$19.50. Inked ribbon 9283-0002, \$3.50. 561-B-16A Cable, 6 ft., 6 columns, $\$ 100,561 \mathrm{~B} .95 \mathrm{D}$ Connectors (mates with J101 or J102), 88.50

Specifications, 565A

Number of columns: 11 (12 available on special order).
Data entry: parallel entry to all columns; one line required for each position of each print wheel to be operated.
Maximum print rate: 5 lines per second.
Standard characters: 0 through 9, minus sign and blank (others available on special order); dimensions: approximately $0.085^{\prime \prime}$ wide, $0.1^{\prime \prime}$ high.
Column spacing: $1 / 4^{\prime \prime}$.
Line spacing: $5 / 32^{\prime \prime}$ single space; $5 / 16^{\prime \prime}$ double space.
Power
Motor: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~W}, 50$ to 60 Hz (50 Hz provides 4 prines/s max.).
Clutch solenoid: 240 to 260 V dc, 75 mA (operates for approx. 15 ms to start printing cycle); coil designed for vacuum tube switching networks; lower voltage coils are recommended and available on special order for transistor switching.
Pawl magnets: 60 to 70 V dc , is mA (operate when needed during printing cycle); coils designed for varuum tube switching networks; lower voltage coils are recommended and available on special order for transistor switching
Dimensions: $93 / 4^{\prime \prime}$ high, $83 /$ / $^{\prime \prime}$ wide, $93 / 4^{\prime \prime}$ deep ($248 \times 213 \times$ 248 mm).
Welght: net 15 lbs (7 kg); shipping $28 \mathrm{lbs}(12,7 \mathrm{~kg}$).
Price: HP 565A (with high-voltage ciutch and pawl coils for vacuum tube drive), 8800 ; for $115 \mathrm{~V}, 50 \mathrm{~Hz}$ operation with s prints/s capability specify H27-565A, \$835; for 230 V 50 Hz operacion with 5 prints/s capability specify H24-565A. $\$ 825$.

565A

5618

DIGITAL TO ANALOG CONVERTERS
For high resolution recording
Models 580A, 581A

RECORDERS

Digital-to-Analog Converters make possible automatic, high-precision analog records from electronic counters, digital voltoneters and other devices providing the proper 4 -line BCD output code. These converters operate directly with HP Quartz Thermometers, HP Nuclear Scalers and most HP solid-state counters; output kits are available for HP vacuem tube counters. Since the digital-to-analog converters tolerate a wide range of input voltages, they are suitable for use with other tube and solid-state devices.

Output signals for strip-chart or $x-y$ recorders of both the potentiometer and galvanometer types are available, and controls for recorder calibration and zero adjustment are provided. A 50 -pin connector accepts 4 -line data from a maximum of nine decade counting units. This information is transferred to storage binary units upon receipt of a command pulse from the counting source. The stored data are then translated and weighted to provide the proper analog output voltage or current.

Any three successive digits (or the right-hand two) of the input may be chosen for analog output. By selecting the two or three least significant digits, analog records of high resolution and accuracy may be obtained with conventional strip chart and $\mathrm{X}-\mathrm{Y}$ recorders. For example, recording the three right-hand digits of eight- or nine-column data can provide an analog record with resolution of 1 part in 10^{8}.

Since the data in three successive columns can range only from 000 to 999 , automatic zero-shifting is inherent in the output, keeping the record "on scale" at all times. As an example, consider successive readings of: $000,120,257,496$, $732,998,1024$. Except for the last reading, the analog record would proceed up-scale to 998 (99.8% of full scale). Recording of the 1024 value would be made at 024 (2.4\% of full scale). The quick transition of the pen from 998 to 024 would serve to indicate that the range has been shifted up by 1000. Down-scale shifts of zero are similarly indicated.

Specifications, 580A, 581A

Accuracy: 0.5% of full scale or better.
Potentioneter output: 100 mV full scale; minimum load resistance 20 K ; calibrate control; dual banana plugs front and rear; typical smV residual output at " 000 "
Galvanometer output: 1 mA full scale into 1500 ohms; zero and calibrate controls; phone jack front and tear.
Driving source: parallel entry 4 -line BCD 4-2.2-1 (9) digits maximum); " 1 " state +4 to +75 voles with reference to " 0 " stare.
Reference voltages: reference voltages required for both the " 0 " and " 1 " state, reference voltages not to exceed $\pm 150 \mathrm{~V}$ to chassis.
Command pulse: positive or negative pulse, 20μ s or greater in width, 6 to 20 volts amplitude.
Trarsfer time: 1 millisecond.
Power: Ils or 230 volts $\pm 10 \%$, 50 to $1000 \mathrm{~Hz}, 11 \mathrm{~W}$.
Options: please specify one of the following input code options (Option 01, 02, or 03):
01: 1.2.2-4 BCD code " 1 " state positive: " 1 " state +4 to + 75 V with reference to " 0 " state. No additional cost.
02: 1-2-4-8 BCD code " 1 " state positive (voltages same as above). No additional cost.
03: 2.2.4.8 BCD code " 1 " state negative; " 0 " state +4 to

+ 75 V with reference to " 1 " state. No additional cost.
04: Special input cable 10513 A for HP integrated circuit counters (e.g., 5221B, 5216A, 5331A/B, 5332A/B, 5325A) in lieu of 562A.16C input cable normally supplied. Add $\$ 15.00$.
Dimensions:
580A (rack mount): 163/4" wide, 3-15/32" high, $111 / 4^{\prime \prime}$ deep ($425 \times 88 \times 286 \mathrm{~mm}$).
581A: 7.25/32" wide, $6.3 / 32^{\prime \prime}$ high, $8^{\prime \prime}$ deep ($198 \times 155 \times$ 203 mm).
Weight:
580A: net: $13 \mathrm{lbs}(6 \mathrm{~kg})$ shipping: $16 \mathrm{lbs}(7,2 \mathrm{~kg})$
S8LA: net: $8 \mathrm{lbs}(3.5 \mathrm{~kg})$ shipping: $13 \mathrm{lbs}(6 \mathrm{~kg})$.
Accessory furnished: $362 \mathrm{~A}-16 \mathrm{C}$ Cable, 6^{\prime} (1830 mm) long with an Amphenol 57.30500 connector at each end. See also Option 04.

Price:

Model 580A, $\$ 575.00$
Model 581A, \$575.00.

5814 with 680 Recorder

The Cartesian coordinate graph is one of the most effective methods for presenting related data clearly. As a result, X.Y recorders have found wide application in areas from general purpose laboratory use to a specialized system readouc. Ploting E is 1 at the lab bench, or plotting the output of a Multichannel Pulse Height Analyzer, such as the HP Model 5400A, are typical of these applications. Recorder usage is extremely of. fective where precise X.Y plots are needed, either to obtain accurate data or to allow rapid interpretation of data. An X.Y recorder automaticaily and conveniently plots the value of an independent variable versus a dependent variable, directly on conventional graph paper, working from readily derived electrical signals.

Over is years of experience in pioneering and manufacturing X-Y recorders has made Hewlett-Packard recorders the most useful of their kind.

Basic operation of X-Y recorders

The X-Y recorder uses closed loop servo systems to produce a pair of crossed motions, moving a pen to write precise $\mathrm{X}-\mathrm{Y}$ plots. It consists of basic balancing circuits, plus auxiliary elements to make the instrument versatile.

Common controls and circuits used to provide versatility are:

1. A stepped attenuator for each axis so thas input voltages from the microvale range to 500 volts may be handled directly.
2. A variable attenuator which provides concinuous adjustment to allow a trans. ducer's oupput so directly correspond to the paper's coordinates in the desired units of measurement (psi, ${ }^{\circ} \mathrm{C}$, ecc.).
3. A zero control which allows the plotting origin to be placed anywhere on the paper or suppressed electrically off the paper.
4. A time base is of cen incosporased since it is frequently desirable to ploc a function against time.

Main features

Long Life Slidewires. All Hewletr-Packard $X \cdot Y$ recorders use accurate, stable wirewound slidewires which, through a proprietary manufacturing and cleaning process, eliminate the common problem of "dirty" slidewires. The sliderires are linear and open (with dust cover) potentiometers tocated adjacent to the pen tip affording the best possible linearity and miniroum hys. teresis.

Paper Holddown. Paper holddown for X.Y recorders must accomplish two basic functions: 1) Hold a reasonable size of
standard graph paper, and 2) Hold the paper securely so that it cannot accidentally be moved while making nores, etc. HewlettPackard's proprietary electric paper holddown (Autogrip) holds any size paper securely through a combined electrostatic and electrodynamic effect. Aurogrip is completely silent, maintenaricefree, and does not require special paper.

Rellabllity, Hewletr-Packard recorders incorporate the results of conservative mechanical and electrical design plas thorough life and envifonmental restirg. All critical parts, including slidewires and motors, are designed and manufactured in-house, resulting in optimum performance, quality, and reliability, Reliability is assured through: 1) Maintenance-free elecìric paper holddown, 2) Long life slidemires, 3) HewletrPackard environmental testing, and 4) Hew. lert-Packard Qualiry Control.

Accessories/Options. Flexibility and useful life are assured through the arail. ability of numerous accessories and options compatible with each recorder model. Examples are the 17108A Time Base which attaches to the low cost 7035 B X.Y Recorder, and the 17005A Chatt Advance which converts 11" x 17 "X.Y Recorders to $10^{\prime \prime}$ Strip-Chart Recorders.

Selecting an X-Y recorder

Hewletr-Packard X.Y Recorders may be selected among models in three basic chart sizes, and chree basic levels of performance. The basic chart sizes are $81 / 2^{\prime \prime} \times 11,11^{\prime \prime} \times$ $17^{\prime \prime}$, and $30^{\prime \prime} \times 30^{\prime \prime}$. The basic levels are general purpose, high sensitivity, and bigh performance.

The general purpose recorders are intended for average laboratory use where neither high sensitivity nor high dynamic performance are required. This group is comprised of a low cose type (Models 7005 B , 7035 B), a general purpose with time base (Models 135, 135A), two-pen (Mrodels 2FA, 136A), and large display (Model 7).

The high sensitivity type is intended for applications requiring the direct plotring of very low level signals (microvolt range) as well as for general purpose usage. This group is comprised of the Models 7000 A , 7001 A , and 7030A.
The high performance type is incended for applications requiring fast pen response in addition to general purpose usage. This fast response is effected through the use of a very low inertia drive system providing high slewing speed and extremely high accelera. tion. These units also incorporate input plug-in modules which provide versatility, allowing inexpensive plug-ins to be purchased to accommodare changing applications. This group is comprised of the Miodels 7004A and 7034A.

To further increase the versatility of these recorders, various accessories and options are available.

Accessories and options

The available accessories include curve follower, roll chart adapter, incremental chart advance, printers for high speed point plotting, logarithmic conversers, kegboard control for ploting tabular dara, and a self. contained external time base.

Options include rack mounting (standard on most models), metric calibration and scaling, retransmitting potentiometers, event markers, special input characteristics, rear input connectors and others. The sange of accessories is constantly being augmented.

Hewlett-Packard X-Y Recorders

Portormandes Level	Modal	chert 834	Pag8	Max. 8enativily (mV/h)	O1hes	Prios
General Performance	$\begin{aligned} & 70058 \\ & 7035 \mathrm{~B} \\ & 135 \mathrm{~A} \\ & 7 \\ & 2 F \mathrm{~A} \\ & 136 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 11 \times 17 \\ & 8 \cdot 1 / 2 \times 11 \\ & 8-1 / 2 \times 11 \\ & 30 \times 30 \\ & 11 \times 17 \\ & 8.1 / 2 \times 11 \end{aligned}$	$\begin{aligned} & 139 \\ & 139 \\ & 140 \\ & 140 \\ & 141 \\ & 141 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	Time Base	$\begin{aligned} & \$ 1195 \\ & \$ 995 \\ & \$ 1850 \\ & \$ 4450 \\ & \$ 4335 \\ & \$ 2650 \\ & \$ 2650 \end{aligned}$
High Sensitlvity	$\begin{aligned} & \hline 7000 \mathrm{~A} \\ & 7001 \mathrm{~A} \\ & 7030 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 11 \times 17 \\ & 18 \times 17 \\ & 8.1 / 2 \times 11 \end{aligned}$	$\begin{aligned} & 142 \\ & 142 \\ & 142 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \text { AC/DC Convertor } \\ & \text { and Timbe Bast } \\ & \text { Time Base } \\ & \text { Time Bass } \end{aligned}$	$\begin{aligned} & \$ 2495 \\ & \$ 2175 \\ & \$ 1895 \end{aligned}$
$\begin{aligned} & \text { High } \\ & \text { Partormance } \end{aligned}$	$\begin{aligned} & 7004 \mathrm{~A} \\ & 7034 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 11: \times 17 \\ & 8 \cdot 1 / 2 \times 11 \end{aligned}$	$\begin{aligned} & 143 \\ & \text { thru } \\ & \text { the } \end{aligned}$	$\begin{aligned} & 0.5(3) \\ & 0.5(1) \end{aligned}$	Very last response Input plug-in modules	$\begin{aligned} & \$ 1295(3) \\ & \$ 1195(3) \end{aligned}$

[^5]
GENERAL PURPOSE
 Low cost
 Models 7005B and 7035B

$X-Y$ RECORDERS

The Models 7005B ($11^{\prime \prime} \times 17^{\prime \prime}$) and 7035B ($81 / 2^{\prime \prime} \times 11^{\prime \prime}$) are low cost, solid-state X.Y Recorders for general purpose applications. Each axis has an independent secvo system with no interaction between channels. The recorders will draw a graph of two related fuactions from two dc signals represent. ing each of these functions. The ultra-compack design is convertible to rack mounting with only the addition of two wing brackets which are supplied. Metric scaling and calibration are optional.
The input terminals accept either open wires or plug-type connectors. Pive calibrated ranges from $1 \mathrm{mV} / \mathrm{in}$ to $10 \mathrm{~V} / \mathrm{in}$ are available in each axis. A variable range control allow's any voltage, within the recorder limits, to be adjusted for full scale deflection. Standard features include high input impedance of one megohm (all but the first two ranges), floating and
guarded input, 0.2% accuracy, Autogrip electric paper hold. down, electric pen lift, adjustable zero set, lockable zero and variable range controls, and rear input connector. A plug.in time base (Model 17108A) is available and operates on either axis to provide five sweep speeds from 0.5 to $50 \mathrm{~s} / \mathrm{in}$.

Each closed loop servo system employs a high gain solidstate servo amplifier, Hewlett-Packard manufactured servo motor, long life balance porentiometer, photochopper, low pass filter, guarded inputs, precision atmenuator and balance circuit. Both models are designed for easy maintenance with most components mounted on a printed circuit board and accessible by cemoving only the rear cover. Both balance potentiometers are accessible for inspection or cleaning by simply removing a trim strip requiring no tools. Also included are snap.on side panels and maintenance.free Autogrip paper holddown.

7075B $81 / 2^{\prime \prime} \times 11^{\prime \prime}$

7005B 11" $\times 17^{\prime \prime}$

Specifications

Input ranges: English: $1,10,100 \mathrm{mV} / \mathrm{in} ; 1$ and $10 \mathrm{~V} / \mathrm{in}$; Metric: $0.4,4,40,400 \mathrm{mV} / \mathrm{cm}$ and $4 \mathrm{~V} / \mathrm{cm}$. Continuous adjustment between ranges with vernier controls.
Type of inputs: floating diffecential. Terminals may be placed 500 V dc from ground. Critical circuit areas are guarded with guard terminal on front panel. Rear inpur connector.
Input reslistance:

Aanp	Ifpul rmbotana
$1 \mathrm{mV} / \mathrm{in}(.4 \mathrm{mV} / \mathrm{cm})$ variatle	Potentiometric (assentially infinile at aull)
$10 \mathrm{mV} / \mathrm{in}(4 \mathrm{mV} / \mathrm{cm})$ Variable	$\begin{aligned} & 100 k \\ & \hline 006 \end{aligned}$
$\begin{aligned} & 100 \mathrm{MV} / \mathrm{in}(40 \mathrm{mV} / \mathrm{cm}) \\ & \text { variable } \end{aligned}$	1 meg 1 med
$1 \mathrm{MV} / \mathrm{in}(\$ 00 \mathrm{mV} / \mathrm{cm})$ variable	1 meg 1 meg
$\begin{aligned} & 10 \mathrm{~V} / \ln (4 \mathrm{~V} / \mathrm{cm}) \\ & \text { variable } \end{aligned}$	$\begin{aligned} & 1 \mathrm{meg} \\ & 1 \mathrm{meg} \\ & \hline \end{aligned}$

Input filter: $>30 \mathrm{~dB}$ at $60 \mathrm{~Hz} ; 18 \mathrm{~dB} / o c t a v e$ above 60 Hz .
Maximum allowable source impedance: no restrictioos except on fixed $1 \mathrm{mV} / \mathrm{in}(.4 \mathrm{mV} / \mathrm{cm})$ range. Up to 20 k ohm source impedance will not alter recordec's performance.
Accuracy: $\pm 0.2 \%$ of full scale.
Linearity: $\pm 0.1 \%$ of full scale.
Resettablity: $=0.1 \%$ of full scale.
Standardzation: continuous electronic Zener reference with temperature stability better than $0.002 \% /{ }^{\circ} \mathrm{C}$.
Zero set: adjustable zero may be up to one full scale in any direction from zero index. Lockable zero controls.
Slewlng speed: $20 \mathrm{in} / \mathrm{s}, 50 \mathrm{~cm} / \mathrm{sec}$. nominal at 115 V .
Paper holddown: Autogrip electric paper holddown grips any size charts up to maximum size of platen ($81 / 2^{\prime \prime} \times 11^{\prime \prime}$, or $11^{\prime \prime} \times 17^{\prime \prime}$).

Pen lift: electric pen lift capable of being remotely controlled. Interference rejection: conditions for the following data is line frequency with up to 1 k ohm between the negative input and the point where the guard is connected. Maximum ac common mode voltage is 500 volts peak. Maximum de common mode voltage is 500 volts.

Rang		DC(CAR)	AC (CMF)
$\begin{gathered} \text { English } \\ \mathrm{mV} / \mathrm{n} . \end{gathered}$	Melric $0.4 \mathrm{mV} / \mathrm{cm}$	130 dB	100 dB
$10 \mathrm{mV} / \mathrm{in}$.	$4 \mathrm{mV} / \mathrm{cm}$	110 dB	80 dB
$100 \mathrm{mV} / \mathrm{ln}$.	$40 \mathrm{mV} / \mathrm{cm}$	90] d8	60 dB
$1 \mathrm{y} / \mathrm{ln}$.	$400 \mathrm{mV} / \mathrm{cm}$	70 de	40 dB
$10 \mathrm{~V} / \mathrm{in}$.	$4 \mathrm{~V} / \mathrm{cm}$	50 dB	2008

Dimenstons: 7005 B: $171 / 2^{\prime \prime}$ (445 mm) high, $171 / 2^{\prime \prime}$ (445 mm) wide, $4.5 / 16^{\prime \prime}$ (110 mm) deep. 7035B: $10.15 / 32^{\prime \prime}$ (266 mm) high, $171 / 2^{\prime \prime}\left(445 \mathrm{~mm}\right.$) wide, $43 / 4^{\prime \prime}(121 \mathrm{~mm})$ deep.
Weight: approximately 18 lbs . (8 kg) net; shipping 24 lbs . ($10,9 \mathrm{~kg}$).
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 60 Hz , approximately 45 VA.
Time base accessory: Model 17108A self-contained external time base has five sweep speeds.

Price \$175
Price:

$$
\text { Model 7005B }-11^{\prime \prime} \times 17^{\prime \prime} \text { Chart Size } \$ 119 \mathrm{~S}
$$

Model 7035B - 81/2" $\times 11^{\prime \prime}$ Chart Size $\$ 985$
Options:

1. Metric calibration N/C
2. Retransmitting potentiometer on X -axis, $5 \mathrm{k} \pm 3 \%$
\$ 75
3. Disposable pen tips N/C
4. Cartridge ink supply N/C

The Models 135 and 135A X-Y recorders are adaptable to almost any laboratory, field or system application. The 135 and the 135 M (merric) feature 16 dc input voltage ranges on each axis with a minimum input resistance of 200,000 ohms $/ V$ full scale. The 135 A and 135 AM (merric) feature 11 calibrated voltage ranges with $1-$ megohm resistance at null.

Standard features include transistor circuitry, calibrated time base on the X -axis, zero set and zero suppression, split potentiometric inpur mode, scale factor vernier and Autogrip electric paper holddown which holds any chart up to $8 \frac{1}{2}$ " $\times 11^{\prime \prime}$.

Specifications

Input ranges:
Model 135: (English) $0.5,1,2,5,10,20,50 \mathrm{mV} / \mathrm{in}, 0.1,0.2$, $0.5,1,2,5,10,20,50 \mathrm{~V} / \mathrm{in}$.
Model 135M: (Merric) $0.2,0.5,1,2,5,10.20,50,100 \mathrm{mV} / \mathrm{cm}$: $0.2,0.5,1,2,5,10,20 \mathrm{~V} / \mathrm{cm}$.
Model 135A: (English) $0.5,1,5,10,50 \mathrm{mV} / \mathrm{in}, 0.1,0.5,1,5$, 10, $50 \mathrm{~V} / \mathrm{in}$.
Model 135AM: (Metric) $0.2,0.5,2,5,20,50 \mathrm{mV} / \mathrm{cm} ; 0.2$. $0.5,2,5,20 \mathrm{~V} / \mathrm{om}$.
All models: vernier control permits arbitrary full scale range setting. Poteotiometric mode on Y-axis, obtainable on X-axis on most sensitive range of 135 and four most sensitive ranges of 135A.
Type of inputs: floading up 10500 V dc above ground.

Input resistance:
Model 135: 200,000 ohms/V full scale through $1 \mathrm{~V} / \mathrm{in}$ range; 2 megohms on all higher ranges.
Model 135M: 200,000 ohms/V full scale through $0.5 \mathrm{~V} / \mathrm{cm}$ range; 2.5 megohms on all bigher ranges.
Models 135A/135AM: one megotrm at null on all fixed ranges. Variable range control mode. 100,000 ohms on four most sensitive ranges and one megohra on all other ranges.
Maximum allowable source impedance
Model 135/135M: no restrictions on calibrated ranges; up to 1,000 ohms on most sensitive range (potentiomerric input).
Model 135A/135AM: up to 10,000 ohms an four mosr sensitive ranges; no restrictions on higher ranges.
Slewing speed: $20 \mathrm{in} / \mathrm{s}$, maximum, each axis for $60 \mathrm{~Hz} ; 16 \mathrm{in} / \mathrm{s}$. maximum for 50 Hz .
Accuracy: 0.2% of full scale.
Linearity: 0.1% of full scale.
Resettability: 0.1% of full scale.
Zero offsat: adjustable zero may be set up to one full scale in any direction from the zero index.
Standardization: Zener diode controlled temperature stability better than $0.002 \% /{ }^{\circ} \mathrm{C}$.
Time sweeps: (X-axis only) Model 135: 0.5, 1, 2, 5, 10, 20 , $50 \mathrm{~s} / \mathrm{in}$. Model 135M: $0.2,0.5,1,2,5,10,20 \mathrm{~s} / \mathrm{cm}$. Model 135A: $0.5,1,5,10,50 \mathrm{~s} / \mathrm{in}$. Model $135 \mathrm{AM}: 0.2,0.5,2,5,20 \mathrm{~s} / \mathrm{cm}$. Accuracy 5% of full scale.
Paper holddown: Autogrip electric paper holddown grips charts $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ or smaller.
Pen lift: local and remote pen lift.
Power: 115 or $230 \mathrm{~V}, 50$ to 60 Hz , approximatels 120 VA .
Dimensions: (bench) 17\%" (454 mm) wide, $10-15 / 32^{\prime \prime}$ (265 mm) high. $43 / 4^{\prime \prime}$ (121 mm) deep. (Rack) $19^{\prime \prime}$ (483 mm) wide, 10.15/32" (266 mm) high, $41 / 2^{\prime \prime}$ (114 mm) deep.

Waight: $20 \mathrm{lbs}(9 \mathrm{~kg})$; shipping $32 \mathrm{lbs}(13,6 \mathrm{~kg})$.
Prices
Models 135/135M/135A/135AM \$1650
Options:
02 Rear input connectors (with mating connector) \$ 15
04 Cartridge ink supply N/C
05 sk retransmitting potentiomerer (X-axis) $\$ 100$
063.5 k retransmitting potentiometer (Y -axis) $\$ 100$

07 Retransmitting potentiometer (both axes) $\$ 200$
08 Disposable pen tips N/C

LARGE DISPLAY X-Y RECORDER $30^{\prime \prime} \times 30^{\prime \prime}$ Model 7

The Model 7 is an X-Y recorder especially designed for large systems display in console, wall or special floor srand mountings. The Model 7 is ideal for display of data plotred with digital to analog conversion equipmenc. It incorporaces tachometer damping, adjustable on the front panel, which allows the user to optimize the writing characteristics to meet his own demands.

Specifications

Input ranges: $1,2,5,10,20,50 \mathrm{mV} / \mathrm{in} ; 0.1,0.2,0.5,1,2,5,10$ V / in. Variable range control; potentionetric input on most sensirive rarge.
Input resistance: 200,000 ohms $/ \mathrm{V}$, full scale up to $0.5 \mathrm{~V} / \mathrm{in}$; 3 megohms on all higher ranges.
Slewing speed: $20 \mathrm{in} / \mathrm{s}$ maximum pen speed, each axis.
Accuracy: better than 0.1% of full scale, resetcability better than 0.05% of full scale.
Power: $115 \mathrm{~V}, 60 \mathrm{~Hz}$, approx. 185 VA .
Dimensions: $403 / 8^{\prime \prime}$ (1026 mm) wide, $7-1 / 16^{\prime \prime}(180 \mathrm{~mm})$ deep, $37.5 / 16^{\prime \prime}$ (948 mm) high.
Paper size: standard $32^{\prime \prime} \times 32^{\prime \prime}$ graph paper with $30^{\prime \prime} \times 30^{\prime \prime}$ ($762 \times$ 762 mm) plotting area; vacuum holddown.
Weight: net $90 \mathrm{lbs}(40,5 \mathrm{~kg})$; shipping $180 \mathrm{lbs}(81 \mathrm{~kg})$.
Price:
Model 7
$\$ 4450$
Option:
01230 volt operation

TWO PEN X-Y $\mathbf{Y}_{1}, \mathbf{Y}_{2}$ Simultaneous plotting of three parameters Models 2FA and 136A

The 2FA ($11^{\prime \prime} \times 17^{\prime \prime}$) and 136A ($812^{\prime \prime} \times 11^{\prime \prime}$) are two-pen X. Y_{1}, Y_{2} graphic recorders available with English or Merric scaling and for bench or rack mounting. Standard features include a built-in time base on the X axis with S calibrated sweeps; 11 input voltage ranges with a continuous vernier that fits arbitrary maximum voltages within the recording limits of the paper; a full scalc zero set and suppression; local and remote elecrric pen lift and potentionetric inputs. The two pen capability makes these reconders extremely useful for plotting 3 parameters simultancousty.

The two pens traverse the full X axis with no more than 0.1 inch horizontal separation. The servo drives are independent and free of electrical ground. The servo ampifiers and power supplies are combined in a single compact modular unit. A simplified self-balancing system using linear slidewires and a continuous zener-controlled reference provides for non-inreracting and accurare recording versatility. Exclusive Autogrip electric paper holddown capability provides a positive hold of chart paper up to the maximum size of the plazen. Operation is silent with no moving parts and is maintenance free.

Specifications

Input ranges: $0.5,1,5,10,50 \mathrm{mV} / \mathrm{in} ; 0.1,0.5,1,5,10,50$ V / ia. Metric models: $0.2,0.5,2,5,20,50 \mathrm{mV} / \mathrm{cm} ; 0.2$, $0.5,2,5,20 \mathrm{~V} / \mathrm{cm}$. Variable range mode all positions. On the Model 2FA, potentiometric input is available on the four most sensitive ranges of cach axis by removing an internal buss on the attenuators. On the Model 136A, potentiometric input is available on the four most sensitive ranges of the X-axis by remoyal of an internal attenuator buss and on both Y axes by a front panel switch.
Type of inputs: dc floating up to 500 V above ground.
Input resistance: one megohm at null on all fixed ranges. Variable range mode, 100,000 ohms on four most sensitive ranges and one megohm on all others. Potentiometric input operation draws essentially zero current at null.

Maximum altowable source impedance: up to 10 k ohm source impedance will not alter recorder's performance on the four lowest ranges. No source impedance restrictions are on ranges above $10 \mathrm{mV} / \mathrm{in}$.

Slewing speed

2FA series: 60 Hz operation: $10 \mathrm{in} / \mathrm{s}(25 \mathrm{~cm} / \mathrm{s})$ on the X-axis; $20 \mathrm{in} / \mathrm{s}(50 \mathrm{~cm} / \mathrm{s})$ on Y_{1} and Y_{2} axes maximum. 50 Hz operation: $8 \mathrm{in} / \mathrm{s}(20 \mathrm{~cm} / \mathrm{s})$ on the X -axis; $16 \mathrm{in} / \mathrm{s}$ $(40 \mathrm{~cm} / \mathrm{s})$ on Y_{1} and Y_{2} axes maximum.
136A/AM: 60 Hz operation: $20 \mathrm{in} / \mathrm{s}(50 \mathrm{~cm} / \mathrm{s})$ on the X -axis; $15 \mathrm{in} / \mathrm{s}(38 \mathrm{~cm} / \mathrm{s})$ on Y_{1} and Y_{2} axes maximum. 50 Hz operation: $16 \mathrm{in} / \mathrm{s}(40 \mathrm{~cm} / \mathrm{s})$ on the X - 2 xis; $12 \mathrm{in} / \mathrm{s}$ ($30 \mathrm{~cm} / \mathrm{s}$) on the Y_{1} and Y_{3} axes, maximum.
Accuracy: 0.2% of full scale.
Linearity: 0.1% of full scale.
Resottability: 0.1% of full scale on all ranges.
Standardization: Zener diode controlled. Temperature stability better than $0.002 \% /{ }^{\circ} \mathrm{C}$.

Tlme sweeps: on X axis only: $0.5,1,5,10,50 \mathrm{~s} / \mathrm{in}$; metric: $0.2,0.5,2,5,20 \mathrm{~s} / \mathrm{cm}$. Accuracy 5% of full scale.
Paper holddown: Autogrip papet holddown electronically grips charts of any size up to maximum size of platen.
Pen lift: local and remore.
Power: 115 or $230 \mathrm{~V}, 50$ or $60 \mathrm{~Hz}, 130 \mathrm{VA}$.
Dimensions: 2FA/2FAM (bench) : $181 / 4^{\prime \prime}(464 \mathrm{~mm})$ deep, $171 / 2^{\prime \prime}\left(4 \frac{1}{3} \mathrm{~mm}\right)$ wide, $81 / 8^{\prime \prime}(206 \mathrm{~mm})$ high; 2FRA/ 2ERAM (rack) : $8^{\prime \prime}(203 \mathrm{~mm})$ deep, $19^{\prime \prime}(483 \mathrm{~mm})$ wide, 19.7/32" (488 mm) high; 136 A/M (bench): $14^{\prime \prime}$ (355 mm) high, $177 / 8^{\prime \prime}(494 \mathrm{~mm})$ wide, $6.3 / 16^{\prime \prime}(157 \mathrm{~mm})$ deep; (rack) $14^{\prime \prime}(355 \mathrm{~mm})$ high, $19^{\prime \prime}(483 \mathrm{~mm})$ wide, $6.3 / 16^{\prime \prime}$ (157 mm) deep.

Weight: 2 FA series net $42 \mathrm{lbs}(18,9 \mathrm{~kg}) ; 55 \mathrm{lbs}(24,75 \mathrm{~kg})$ gross. 136A/AM ner $34 \mathrm{lbs}(15,45 \mathrm{~kg})$, shipping 47 lbs $(21,3 \mathrm{~kg})$.
Price: 2FA/2ERA (English), 2FAM/2FRAM (Metric) $\$ 3375$ 136A/136AR (English), 136AM/136AMR (Metric) $\$ 2650$
Optlons:

$2 F A$ Opiton Numbar	1364 Option Number	Desoripitan	Priog
01	02	Rear input connectors (Both sets supplied with mating connectors)	\$15
02	-	Event marker	\$100
-	03	5 k ohm retransmitting polentio. meter-X axis	\$100
03	04	Disposable pen tips	N/C

HIGH SENSITIVITY
 $100 \mu \mathrm{~V}$ /inch

Models 7000A, 7001A and 7030A

The 7000A $11^{\prime \prime} \times 17^{\prime \prime} \mathrm{X}-\mathrm{Y}$ recorder has high sensitívity, high common mode rejection and accepts either ac or de sig. nals on either or boit axes. The 7001A is identical to the 7000A except for the omission of ac input ranges. The 7030A is similar to the 7001 A except for the chart size ($81 / 2^{\prime \prime} \times 11^{\prime \prime}$). Specially guarded and shielded circuitry provides one megohm input resistance at null on all ranges. Units are available for bench or rack mounting and with metric or English scaling.

Any chart is held smoothly and firmly by the Autogrip electric platen which is silent in operation and maintenance-free. Flexibility is built into the electronic time base which may be switched to operate in either axis. Sweep features include automatic reset, adjustable sweep length, and automatic recycling.

Zero offset for each axis may be preset, in s-inch calibrated steps, up to 4 full scale lengths in Y and 3 full scale lengths in X with continuous adjustability between steps, A de accuracy of 0.2% of full scale holds when switching between ranges. making recalibration unnecessary during operation. All models display extremely good retrace characteristics.

Ac sensitivity up to $5 \mathrm{mV} /$ in $(2.5 \mathrm{mV} / \mathrm{cm})$ on the Model 7000 A is a convenience when using Hewlett-Packard Model 1110A and 456A ac clip-on current probes for plotting currents without additional amplification.

Specifications

DC input: (English) $0.1,0.2,0.5,1,2,5,10,20,50 \mathrm{mV} / \mathrm{in}$; $0.1,0.2,0.5,1,2,5,10,20 \mathrm{~V} /$ in. (Metric) $0.05,0.1,0.25$, $0.5,1,2.5,5,10,25 \mathrm{mV} / \mathrm{cm} ; 0.05,0.1,0.25,0.5,1,2.5,5$, $10 \mathrm{~V} / \mathrm{cm}$. Continuously adjustable between ranges wifh vernier control.
AC Input: (7000 A only) $5,10,20,50 \mathrm{mV} / \mathrm{in} ; 0.1,0.2,0.5,1$, 2. 5, $10,20 \mathrm{~V} /$ in. (Merric) $2.5,5,10.25 \mathrm{mV} / \mathrm{cm} ; 0.05,0.1$, $0.25,0.5,1,2.5,5,10 \mathrm{~V} / \mathrm{cm}$.
Type of inputs; dc floating up to 500 V above ground; guarded and shielded. Ac input (7000A only) is single-ended, capacitor coupled.
DC input reslstance: one megohm at null on all calibrated and variable de ranges. Potentiometric input on 6 most sensitive
ranges by disconnecting an internal buss wire (front panel switch optional).
AC Input impedance: (7000 A only) one megohm on all calibrated ac ranges.
Maximem allowable source impedance: up to 10 k ohm source impedance will not alter recorder's performance on the first six ranges. Higher source impedances will cause an increase in dead zone and a decrease in pen speed. No source im. pedance restrictions on ranges above $5 \mathrm{mV} / \mathrm{in}$.
interference rejection: dc common mode rejection 140 dB on 3 moss sensitive ranges; 120 dB at power line frequency on 2 most sensitive ranges.
Slewing speed: $20 \mathrm{in} / \mathrm{s}$, maximum, each axis for $60 \mathrm{~Hz} ; 16$ in / s. maximum for 50 Hz .
Accuracy: dc - 0.2% of full scale; ac - 0.5% of full scale. 20 to $100,000 \mathrm{~Hz}$.
Llnearity: do - 0.1% of full scale: ac - 0.2% of full scale; time sweep - 1% of full scale.
Resettablity: 0.1% of full scale on all ranges.
Standardization: continuous elecrionic reference, zener diode controlled. Temperarure stability better than $0.005 \% /{ }^{\circ} \mathrm{C}$.
Time sweeps: may be applied to either axis: $0.5,1,2,5,10$, 20. 50, $100 \mathrm{~s} / \mathrm{in}$. Metric models; $0.25,0.5,1,2.5,5,10,25$, $50 \mathrm{~s} / \mathrm{cm}$.
Time base accuracy: 2% of full scale.
Zero set (de range only); continuously adjustable with s" (10 cm) calibrared steps for up to 3 full scale lengths on X and 4 on Y. Zero check push button switches on each axis.
Power: 115 or $230 \mathrm{~V}, 50$ to 60 Hz , approximately 120 VA .
Dimensions: 7000A/AM, 7001A/AM (bench): 61/2" (165 mm) high, $171 / 2^{\prime \prime}(445 \mathrm{~mm})$ wide, $17^{\prime \prime}(432 \mathrm{~mm})$ deep. 7000AR/AMR, 7001 AR/AMR (rack) : $17.7 / 16^{\prime \prime}$ (443 mm) high, $173 / 4$ " (451 mm) wide inside rack clearances, $53 / 8^{\prime \prime}$ (136 mm) deep.
7030A/AM: (bench) 12.1/16" (306 mm) high, 17 T/8" (454 mm) wide, $43 / 4^{\prime \prime}(121 \mathrm{~mm})$ deep. (Rack) $43 / 4^{\prime \prime}$ (121 mm) deep, $10-15 / 32^{\prime \prime}(265 \mathrm{~mm})$ high, $19^{\prime \prime}(483 \mathrm{~mm})$ wide.
Welght: $7000 \mathrm{~A} / 7001 \mathrm{~A}$ series: net $38 \mathrm{lbs}(17,2 \mathrm{~kg}$): shipping $46 \mathrm{lbs}(20.9 \mathrm{~kg}) .7030 \mathrm{~A}$ series: net $27 \mathrm{lbs}(12,2 \mathrm{~kg})$; ship. ping $33 \mathrm{lbs}(15 \mathrm{~kg})$.
Prices: 7000A/AR (Englist). 7000AM/AMR (Metric) $11^{\prime \prime} \times 17^{\prime \prime}$ chart size
$\$ 2495$
$7001 \mathrm{~A} / \mathrm{AR}$ (English), 7001 AM/AMR (Metric) $11^{\prime \prime} \times 17^{\prime \prime}$ chart size
$\$ 2175$
7030A (English), 7030AM (Metric) $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ chart size
$\$ 1895$
Optlons:

Oplian Number		Desorlption	Additional Price	
$\begin{aligned} & 7000 \mathrm{~A} / \\ & 7001 \mathrm{~A} \\ & \text { Sorles } \end{aligned}$	7030A		$\begin{aligned} & 7000 \mathrm{~A} / \\ & \text { 7001A } \\ & \text { Serles } \end{aligned}$	7030A
01	01	Polentiometric switch for 6 most sensilive ranges	\$55	\$55
04	05	5 K ohm retransmitting potentiometer on X-axis	\$75	\$150
05	$\begin{aligned} & 06 \\ & 07 \end{aligned}$	Rear inout tarminals 3.5 K okm retransmitting potentiometer on Y -axis	\$50	$\$ 50$ $\$ 150$
06		5 K ohm retransmitting potenliometer on Y -axis	$\$ 75$	
07	08	Retransmitting potentiometers on both axes	\$150	\$300
09		Event macker (X-axis)	\$100	
10	09 10	Remote sweep capability Disposable pen tips	Standard	$\$ 75$ N / C

HIGH PERFORMANCE Plug-in versatility and fast response
 Models 7004A and 7034A

$X-Y$ RECORDERS

The 7004A ($11^{\prime \prime} \times 17^{\prime \prime}$) and the 7034A ($81 / 2^{\prime \prime} \times 11^{\prime \prime}$) are designed with flexibility for the constantly changing requirements of laboratory measurements. Plug-in modules plus a variety of accessories provide a versatile X-Y Recorder with high dynamic performance. Electronic circuitry common to all plug-in modules (power supplies, interfacing, etc.) is located in the main frame. This allows the user to purchase additional low cost plug ins at a later date to expand the measurement capabilities of the system. The plug-in approach also allow's the user to initially purchase only the capabilities required.

The high dynamic performance is best illustrated by the high slewing speed and rapid acceleration. With an acceleration of better than $1200 \mathrm{in} / \mathrm{s}^{2}$, and slewing speed of $30 \mathrm{in} / \mathrm{s}$, the 7004 A and 7034 A record more phenomena than previously possible with an X.Y Recorder.

The recorders are designed with the most advanced tech-
nology and integrated circuits available. They use all silicon circuitry and the proven Autogrip electrostatic paper holddown.

In order to fully utilize the superior performance, guarded circuits are provided. Guarding eliminates the effects of unwanted ac and dc common mode voltages which can be troublesome in some types of recordings and applications. Common mode voltages are particularly troublesome when recording from thermocouples, strain gages and any similar low voltage sources.

The availability of plug-in modules provides a versatile X-Y Recorder for a variety of applications. If your applica. tion changes, in many cases measurement capability is available by the simple addition of an inexpensive plug-in. In addition to the plug-in advantages, the high dynamic performance allows the recorder to be used in practically any X-Y Recorder application with complete satisfaction.

Specifications

Number of plug-Ins: frame will accept the equivalent of four single width plug-ins, two per axis.
Type of input: floating and guarded signal pair. Available at the front panel or at the rear connector. Input may be operated up to $\pm 500 \mathrm{~V} \mathrm{dc}$ with respect to chassis ground.
Standardization: Zener reference with temperature stability better than $0.002 \% /{ }^{\circ} \mathrm{C}$.
Zero set: zero may be placed up to 1 full scale from zero index.
Zero check swltches: a push button zero check switch in each axis allows verification of recorder's zero position without removal or shorting of the input signal.
Range vernler: lockable sensitivity control for up to 2.5 times range setting.
Slewing speed: greater than $30^{\prime \prime} / \mathrm{s}(75 \mathrm{~cm} / \mathrm{s})$ independent of line voltage and frequency.
Peak acceleration: greater than $1200^{\prime \prime} / \mathrm{s}^{2}\left(3000 \mathrm{~cm} / \mathrm{s}^{\mathrm{n}}\right)$.
Stability: better than $0.003 \% /{ }^{\circ} \mathrm{C}$.
Terminal linearity: $\pm 0.1 \%$ of full scale.
Resettablity: $\pm 0.05 \%$ of full scale.

Paper hoiddown: Autogrip paper holddown electrically grips charts of any size up to maximum size of platen.
Pen Ift: local and remote control.
Dimensions
7004A: 171/2" (445 mm) wide, 171/2" (445 mm) high, $43 / 4^{\prime \prime}(121 \mathrm{~mm})$ deep;
7034A: 171/2" (445 mm) wide, $101 / 2^{\prime \prime}$ (267 mm) high, $43 / 4^{\prime \prime}(121 \mathrm{~mm})$ deep.

Welght

7004A: $24 \mathrm{lbs}(10,9 \mathrm{~kg}$) net, $32 \mathrm{lbs}(14,5 \mathrm{~kg}$) gross; $7034 \mathrm{~A}: 16 \mathrm{lbs}(7,3 \mathrm{~kg})$ net, $22 \mathrm{lbs}(10 \mathrm{~kg})$ gross.
Power: 115 or 230 volts ac $\pm 10 \%, 50$ to 400 Hz , approximately 85 VA depending on the plug-ins used.
Price
Model 7004A-11" x $17^{\prime \prime}$ Chart Size $\$ 1295$
Model 7034A—81/2" x $11^{\prime \prime}$ Chart Size $\$ 1195$
Options
01: Metrically scaled and calibrated (7004A only) N/C
02: X-axis retransmitting potentiometer,
5 k ohms, $\pm 0.1 \%$ linearity (7004 A only)
$\$ 75$
04: Power Supply for 17005A-04 Incremental Chart Advance (7004A only)
001: Metrically scaled and calibrated (7034A only) N / C

DC Coupler Model 17170A

The DC Coupler provides direct coupling of the input signal to the recorder main frame. The input signal range of 100 $\mathrm{mV} /$ in ($50 \mathrm{mV} / \mathrm{cm}$) may be adjusted to $250 \mathrm{mV} / \mathrm{in}$ (125 $\mathrm{mV} / \mathrm{cm}$) with a vernier control on the recorder front panel.

Specifications

Input range: a single fixed calibrated range of $100 \mathrm{mV} / \mathrm{in}$ (50 $\mathrm{mV} / \mathrm{on}$).
Input resistance: constant 1 megohm.
Common mode rejection: 120 dB at de and 70 dB al 50 Hz and above with 100 ohms between low side and poine where the guard is connected. Applies to 10 K or less source impedance.
Price: Model 17170A

DC Pre-amplifier Model 17171A

The DC Preamplifier is a stable. low noise, do amplificr. The 14 calibrated input ranges are supplemented by a vernicr control on the recorder font panel to provide a continuously variable range from $0.5 \mathrm{mV} / \mathrm{in}(0.25 \mathrm{mV} / \mathrm{cm})$ ro $25 \mathrm{~V} /$ in (12.5 V / cm).

Specifications

Input ranges
English-0.5, 1, 2, 5, $10.20,50 \mathrm{mV} / \mathrm{in}, 0.1,0.2,0.5,1,2,5$, $10 \mathrm{~V} / \mathrm{ia}$.
Metric- $0.25,0.5,1,2.5,5,10,25, \mathrm{mV} / \mathrm{cm} 0.05,0.1,0.25,0.5$, $1,2.5,5 \mathrm{~V} / \mathrm{cm}$.
Input rasistance: 1 megohm.
Maximum allowable source Impedance:

Ranga	Mexlmum Souros Roolstanos
$0.5 \mathrm{mV} / \mathrm{in}(0.25 \mathrm{mV} / \mathrm{cm})$	10 K ohm
$1 \mathrm{mV} / \mathrm{in}(0.5 \mathrm{mV} / \mathrm{cm})$	20 K ohm
$2 \mathrm{mV} / \mathrm{in}(1.0 \mathrm{mV} / \mathrm{cm})$	40 K ohm
$5 \mathrm{mV} / \mathrm{m}(2.5 \mathrm{mV} / \mathrm{cm})$	100 Kohm
$10 \mathrm{mV} / \mathrm{in}(5.0 \mathrm{mV} / \mathrm{cm})$	200 K ohm
$20 \mathrm{mV} / \mathrm{in}(10.0 \mathrm{mV} / \mathrm{cm})$	400 K ohm
$50 \mathrm{mV} / \mathrm{in}(25 \mathrm{mV} / \mathrm{cm})$ and up	1 megohm

Warmup: approximately g minutes.
Price: Model 17171A $\$ 250$
Option: 01 metrically scaled N/C

Time Base Model 17172A

The Time Base plug-in makes X-T or Y-T recordings possible. It employs all silicon solid stare construction including the latest integrated circuits. Standard Fearures include cight speeds, automatic reset and pen lift at completion of saeep, and remote start control. A resnies control on the recorder front panel extends the sweep speed thru $250 \mathrm{~s} / \mathrm{in}(125 \mathrm{~s} / \mathrm{cm})$.

Specificatlons

Sweep speeds: English- $0.5,1,2,5,10,20,50,100 \mathrm{~s} / \mathrm{in}$; Metric$0.25,0.3,1,2.5,5,20,25,50 \mathrm{~s} / \mathrm{cm}$.
System accuracy: $\pm 1 \%$ of full sale on the six fasecst ranges. $\pm 2.5 \%$ on the remaining two ranges.
Terminal based Ilnearity: $\pm 0.5 \%$ of full scale.
Price: Model 17172A
$\$ 200$.
Optlon: 01 metrically scaled N/C

Null Detector Model 17173A

The Null Detector plug-in provides closed loop plotting of data in point form, at up to 50 pps. Plotting is accomplished with the Model 17012 B Point Plotter. The 17012 B eable plugs into a jack on the 17173A panel and the plotting bead is sub. stituted for the recorder pen. (See page 145.)

Upon receipt of a seek signal and after the recorder reaches balance the Null Detector commands the 17012B Point Plotter to plot and initiates a plor complete pulse.

The Null Detector may also be free run, independent of a seek signal, to allow point plotting of slowiy varying signals.

Specifications*

Plot rate: up to 50 plots/s.
Enable-disable: required disable voltage +3 volts minimum to +20 volts maximum. Required enable voltage: 0 V do or no connection. Other roltage combinations available upon request.
Muting: local or remote.
Plottling accuracy: $\pm 0.29 \%$ of full scale minimum.
Input: all inputs, except analog inputs, are available through rear input connectors in the module. Analog inputs are applied to the inpur terminals of the main frame. Maring connector supplied
Prica: Madel 17173A
Optlons: $01:+3$ to +20 V enable, 0 V disable
529.
$\$ 25$.
02: -3 to -20 V disable, 0 V enable
03: -3 to -20 V enable, 0 V disable
\$ 23.
For use only with 7004 A .

Time Base 17172A

Null Detector 17173A

PLUG-IN MODULES For recorder Models 7004A and 7034A

$X-Y$ RECORDERS

DC Offset Model 17174A

The DC Ofset plug-in provides the recorder with the capabilities of recording small signals superimposed on a steady state de voltage. The offset plug in suppresses the steady state de voltage allowing the recorder sensitivity to be increased.

Specifications

Offset: 1 mV to 1 volt.
Controls: tro lockable ten-turn high resolution controls (less than 1 mV to approximately 10 mV and less than 1 mV to approximately 1 V). An offset polatity switch allows upscale or downscale zero offset.
Offset voltage stabillty: greater than $0.005 \% /{ }^{\circ} \mathrm{C}$.
Insertlon loss: less than 0.05%.
Price: Model 17174A

Filter Model I7175A

The Filter plug-in rejects ac input signal components above 90 Hz . Insertion of the 1717SA prior to any signal conditioning input module will improve normal mode rejection.

Specifications

Input voltage range: -5 to +50 V ds, 10 V ac maximum peak. to-peak.
Maximum source impedance: $1 k$ ohm, higher impedance decreases filter response.
Rejection: greater than $55 d B$ at 50 Hz and higher ($1 / 4$ s rise time) or greater than 70 dB at 50 Hz and higher (1 s rise (ime). Front panel selectable.
Insertion loss: 1\%, flet may be switched out with no change in insertion lass.
Price: Model 17175A

Scanner Model 17176A

The Scanner plug-in electrically scans between two inputs, similar to the chopped mode on an oscilloscope, and provides the capability of plotring two dependent variables vs. one independent variable. The Scanner plug-in, utilizing the Model 17012B high speed point plotter, can scan two selectable inputs (module or main frame) in two scan modes (multiplexing boch inputs or singularly). The scan rate is adjustable from $0.1 \mathrm{~s} / \mathrm{scan}$ to $10 \mathrm{~s} / \mathrm{scan}$.

Speciflcations*

Input: module input; front panel BNC connector isolated from ground (high and low only). Main frame input; utilizes existing input connectors on main frame.
Attenuator: fixed attenuator in decade steps from X1 to X.001. Variable attenuator provides continuous coverage. Maximum input 100 V.
Input impedance: 100 k .
Accuracy: 0.2% of full scale.
Scan rate; adjustable from 0.1 to $10 \mathrm{~s} / \mathrm{scan}$.
Price: Model 17176A

DC Attenuator Model 17178A

The DC Attenuator, offers a stable, passive attenuator with eighr ranges. A vernier control on the recorder control panel allows continuously variable settings between fixed ranges of the 17178A.

Speciflcations

Input ranges; English- $0.1,0.2,0.5,1,2,5,10,20 \mathrm{~V} / \mathrm{in}$; Merric$0.05,0.1,0.25,0.5,1,2.5,5,10 \mathrm{~V} / \mathrm{cm}$.
Input resistance: 1 megohm.
Common mode rejection: 120 dB at dc and 70 dB at 50 Hz and above with 100 ohms between low side and point where the guard is connected (at $100 \mathrm{mV} / \mathrm{in}$ or $50 \mathrm{mV} / \mathrm{cm}$). On other ranges CMR decreases 20 dB per decade step in attenuation.
System aecuracy: $\pm 0.2 \%$ of full scale.
Price: Model 17178A

Point Plotter Model 17012B

The 7004A when equipped with the 17173A Null Detector plug-in and 17012 B Point Plotter, is capable of high speed plocting up to 50 points/second. High dynamic response and rapid point plotting are necessary for applications such as a high speed readour for a multichannel pulse height analyzer. Plorting is controlled by the null detector.

Speciflcations*

Ploting rate is up to so points per second; power is supplied from the recorder.
Price: Niodel 17012B
For use with 7004 A only.

DC Offset 17174A

Filter 17175A

Scanner
17176A

DC Attenuator 17178A

$X-Y$ RECORDERS

LOGARITHMIC CONVERTERS
Convert ac or dc signals to logarithmic scaling
Models 7560A and 7561A

Models 7560A (two channel) and 7561A (one channel) are self-contained instruments, designed to produce de output voltages in logasithmic relationship to ds input voltages or to the peak or average amplitude of ac input voltages over a 1000 to 1 amplitude range. Standard or metric calibration is available.
The output signal of one channel may be applied to one axis of an X-Y recorder to produce curves representing logarithmic values as a function of an independent variable applied to the second axis. Since the logarithmic scale compresses the high amplitudes with respect to the lower ones, the presentation has
the advantage of plotting over wide amplitude ranges with constant accuracy of reading at all levels. The dual channel model 7560A may be used for \log-log plotting with one channel for each axis of the recorder.

Typical applications are: plotting the frequency character. istics of filters, transformers, amplifiers, networks, and similar devices; vibration testing; pulse height analyzer zeadouts; computers; and any application requiring wide dynamic range or logarithmic relationships.

Specificafions, 7560A and 7561A
Inout ranges:

Input atienualion	AC Input range ($\$$ ne wave, rms)	DC Input range
0	0.001 to 1.0 V	0.00316 to 3.16 V
-10	0.00316 to 3.16	0.01 to 10.0
-20	0.01 to 10.0	0.0316 to 31.6
-30	0.03161031 .6	0.10 to 100.0
-40	0.10 to 100.0	0.316 to 316.0

Frequency range: 20 to $100,000 \mathrm{~Hz}$.
Dynamic range: 60 dB (1000 to 1), ac or dc.
Output range: 5,10 , or 20 dB /in into 20,000 ohm load; metric unit: $2,5,10 \mathrm{~dB} / \mathrm{cm}$ into 10,000 ohm load.

Amblent temperature range: 10° to $35^{\circ} \mathrm{C}$.
Response speed: 1 second or less for input change of 20 dB .
Callbration stability: $\pm 0.5 \mathrm{~dB}$ (better than $\pm 0.2 \mathrm{~dB}$ over any 24 hour period).
Input impedance: approximately 2 megohms, 35 pF .
Accuracy: $\pm 0.5 \mathrm{~dB}$ up to 50 kHz ; and $\pm 1.0 \mathrm{~dB}$ up to 100 kHz .
Power: 115 or $230 \mathrm{~V}, 50$ to $60 \mathrm{~Hz}, 7560 \mathrm{~A}$-approximately 40 VA; 7561A-approximately 25 VA .
Dimensions: $163 / 4^{\prime \prime}(425 \mathrm{~mm})$ wide. $131 / 4^{\prime \prime}(336 \mathrm{~mm})$ deep, 3-27/32" (98 mm) high.
Weight: $13 \mathrm{lbs}(5,9 \mathrm{~kg})$ net; $20 \mathrm{lbs}(9,1 \mathrm{~kg})$ shipping.
Price
Dual channel: 7560A (English) 7560AM (metric) $\$ 975$.
Single channel: 7561A (English) 7561AM (metric) $\$ 595$.

Impedance Matching Networks

The 7560A and 7561A Logarithmic Converters and the 40D Keyboard must work into a known load impedance to maintain calibration. Impedance Matching Networks are available for
most recorder models. The chart below indicates compatibility and specifies the proper network.
Price:

4000022000300				RECOR	MODELS		
		$\begin{aligned} & \hline 202 \mathrm{~A} \\ & 2 \mathrm{FA} A^{*} \\ & 136 \mathrm{~A}^{*} \\ & 135 \mathrm{~A}^{*} \\ & 7000 \mathrm{~A} \\ & 7001 \mathrm{~A}^{2} \\ & 7030 \mathrm{~A}^{*} \\ & 17171 \mathrm{~A}^{*} \end{aligned}$	$\begin{aligned} & \text { 202AM } \\ & 2 F A M^{*} \\ & 136 A M^{*} \\ & 135 A M^{*} \end{aligned}$	$\begin{aligned} & \text { 7000AM } \\ & \text { 7001AM } \\ & 7030 \text { AM }^{*} \\ & 17171 A-01 \end{aligned}$	$\begin{aligned} & 70058 \\ & 70358 \end{aligned}$	$\begin{aligned} & 7005 \mathrm{~B}-0 \mathrm{~L} \\ & 7035 \mathrm{~B}-01 \end{aligned}$	$\begin{aligned} & 17501 \mathrm{~A} \\ & 17500 \mathrm{~A} \end{aligned}$
	$\begin{gathered} 500 \\ \text { Keyboard } \end{gathered}$	$\begin{gathered} 17102 \mathrm{~A} \\ \left(a_{0} 0.5 \mathrm{mV} / \mathrm{n}\right) \end{gathered}$	-	-	-	-	-
	40DM Metric Keyboard	-	$\begin{gathered} 17102 \mathrm{~A} \\ (\Leftrightarrow 0.2 \mathrm{mV} / \mathrm{cm}) \end{gathered}$	$\begin{gathered} 17103 \mathrm{~A} \\ \text { (@ } 0.1 \mathrm{mV} / \mathrm{cm}) \\ \hline \end{gathered}$	-	-	\square
	$\begin{gathered} 7560 \mathrm{~A} \\ 7561 \mathrm{~A} \\ \text { Log Converters } \\ \hline \end{gathered}$	17100A (@10 mV/in)	-	-	17109A (@) $10 \mathrm{mV} / \mathrm{in}$)	-	17100A (a. 100 mV)
	7560A 7561A Metric Log Converter	-	17104A (03 $2 \mathrm{mV} / \mathrm{cm}$)	17105A (@1 mV/cm)	-	17110A (@) $0.4 \mathrm{mV} / \mathrm{cm}$)	17104A (@ 50 mV)
	- Kayboard (Madel 400/400 M) not compatible - Dashes indicate not compatible						

The Model 7562A is a wide range, single channel logarithmic converter designed to produce de output voliages in a logarithmic relationship to de input volages of the true RMS value of an at input voltage. With a 10,000 to $1(80 \mathrm{~dB}$) amplitude range it is extremely useful for applications requiring the logarithmic compression of a voltage range. The 7562A contains a true RMS detector which inherently is not dependent on pure sinusoidal signals to achieve measurement accuracy, A self-contained meter is calibrated in volts and $d B$ giving the 7562 A added capability as an accurate voltmeter. A constant amplitude oscilloscope output, avail. able at the rear panel, independent of volcage changes as the inpur, makes the converter compatible with a variety of oscilloscope readout and phase meter applications.

Specifications

AC and de modes

Input:
Dynamic ranga: 80 dB .
Voltage range: 1 mV to 10 V or 10 mV to 100 V selectable by front paneí switch. Accepts either ac or positive de signals.
Output:
Voltage: 0 to 800 mV dc corresponding to $10 \mathrm{mV} / \mathrm{dB}$. Output impedance: 100 ohms.
DC mode
Accuracy: $\pm 0.25 \mathrm{~dB}$ at $25^{\circ} \mathrm{C}$.
Input impedance: 100 k ohms. Shunted by less than 100 pF . Single ended.
Temperature coetficlent: $\pm 0.02 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ maximum.
Zero stabillty: $\pm 0.25 \mathrm{~dB}$.

AC mode

Input impedance: 1 megohm. Shunted by less than 100 pF . Single ended.
Accuracy and frequency response: (at $25^{\circ} \mathrm{C}$).

0.5Hz	\#1dB	± 0.5018			41
$\mathrm{SHz}^{\text {d }}$		± 148	$\pm 0.60 \mathrm{~dB}$		± 1 48
50 Hz			$\pm 1 \mathrm{~dB}$	± 0.560	㕲

Temperature coefficlent: $\pm 0.04 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ maximum.
Stewing speed:

Range setting	Mlamum slewlind speed
0.5 Hz	$1 \mathrm{~dB} / \mathrm{s}$
5 Hz	$10 \mathrm{~dB} / \mathrm{s}$
50 Hz	$60 \mathrm{~dB} / \mathrm{s}$

Oscilloscope output: approximately 0.5 V RMS regardless of input.
Crest factor: 5 to 1 except where limited by maximum input voltage.
General
Maximum peak input voltage: $\pm 25 \mathrm{~V}$ on 1 mV to 10 V range; $\pm 240 \mathrm{~V}$ on 10 mV to 100 V range.
Operating temperature: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Warm-up tlme: 20 minutes nominal.
Connection faclities: front and rear-input and output-BNC connectors.
Powar requirements: $115 / 230 \mathrm{~V} a c, 50$ to $400 \mathrm{~Hz}, 40 \mathrm{VA}$.

Physical dimenslons: $3.7 / 16^{\prime \prime}(88 \mathrm{~mm})$ high, $73 / 4^{\prime \prime}$ (197 mm) wide, $11 \frac{1 / 2^{\prime \prime}}{}$ (292 mm) deep.
Weight: 8 lbs ($3,6 \mathrm{~kg}$) net; $12 \mathrm{lbs}(5,4 \mathrm{~kg})$ gross.
Price: Model 7562A $\$ 995$.

Model 7563A
The Model 7563A logarithmic amplifier is a low cost, single channel, do logarithmic amplifier with a very high dynamic range (110 dB or 316,228 to one) designed to produce a logarithmic related de outpur voltage for a very wide range of de or slowly varying input voltages. A single input range of $316 \mu \mathrm{~V}$ to 100 V is coupled with an input polarity switch for ease and versatility of operation. A high (100K ohm) input impedance and low (100 ohm) output impedance allows the 7563 A to be used in systems or on the bench. A front panel meter calibrated in $d B$ and $m V$ is included for an instantaneous visual indication of operating levels. Applications include: the \log scaling of recorder axes, pulse height analyzers, scope displays, and almost any circumstance where \log scaling and compression of varying de voltage ranges are required. Utilizing the calibrated meter (dB and voles) the 7563 A has added versatility as an accurate voltmeter. Dual or single cack mounting capability is afforded by a field installable rack mounting adapter. utilizing a minimum of rack space.

Specifications

input
Dynamle range: 110 dB .
Voltege range: $316 \mu \mathrm{~V}$ to 100 V . Accepts either positive or negative signals, selectable by front panel switch.
Output
Voltage; 0 to 1.1 V de corresponding to $10 \mathrm{mV} / \mathrm{dB}$.
Output impedance: 100 ohms.
Meter accuracy: reading accurate to $\pm 1.5 \mathrm{~dB}$, referred to outpur. Input impedance: 100 K ohms, Shunted by less than 100 pF . single ended.
Accuracy: at $25^{\circ} \mathrm{C}$.

$3: 6 \mu \mathrm{~V}$	1 mV	10 V	10, V
$\pm 1.5 \mathrm{~dB}$	± 0.2588	$\pm 1.5 \mathrm{~dB}$	

Temperature coefflelent: $\pm 0.02 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ maximum and $\pm 3 \mathrm{\mu V} /$
${ }^{\circ} \mathrm{C}$ referred to input.
Zero stability: $\pm 0.25 \mathrm{~dB}$ al constank cemperature.
Rlse time:

	Maximum Rlsa Tims
signal Laval	$1 \mathrm{mV}-10 \mathrm{~V}$ Range
$316 \mu \mathrm{~V}-1 \mathrm{mV}$	$2000 \mu \mathrm{~s}$
$1 \mathrm{mV}-10 \mathrm{mV}$	$400 \mu \mathrm{~s}$
$10 \mathrm{mV}-100 \mathrm{mV}$	$40 \mu \mathrm{~s}$
$100 \mathrm{mV}-1 \mathrm{~V}$	$4 \mu \mathrm{~s}$
$1 \mathrm{~V}-100 \mathrm{~V}$	$2 \mu \mathrm{~s}$

Operating temperature: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Warm-up tlme: 20 minotes nominal.
Power requirements: $115 / 230 \mathrm{~V} \mathrm{ac}, 5010400 \mathrm{~Hz}, 40 \mathrm{VA}$.
Physical dimensions: $3.7 / 16^{\prime \prime}(88 \mathrm{~mm})$ high, $73 / \mathrm{m}^{\prime \prime}(197 \mathrm{~mm})$ wide, $111 / 2^{\prime \prime}(292 \mathrm{~mm})$ deep.
Connection facilitles; front and rear.input and output-BNC connectors.
Weight: $8 \mathrm{lbs}(3,6 \mathrm{~kg}$) net; $12 \mathrm{los}(5,4 \mathrm{~kg}$) gross.
Price: Model 7563A

RECORDER ACCESSORIES
 Expanded $X-Y$ recording capability

17005A Incremental Chart Advance

Model 17005A is an extremely versatile accessory compatible with most Hewlet. Packard 11" $\times 17^{\prime \prime}$ bench recorders, It has basically two modes of operation, incremental chart advance and continuous chart advance. The 17005A converts compatible recorders to operation as a strip chart recoider.

Specificatlons

Compatible recorders: 7000A, 7001A, 7004A-04 and the HO6. 7005 B .
Incremental advance mode
Plot denslty/rate:
Plot denslty: 200, 100, 50, 20, 10 plots/in. Merric: $80,40,20$, 8, 4 plots $/ \mathrm{cm}$.
Max. advance rate: 100, 90, 50, 20, 10 plors $/ \mathrm{s}$.
Time base mode
Speeds: 1, 5, 10, 50, $100 \mathrm{~s} / \mathrm{in}$. Metric: $0.4,2,4,20,40 \mathrm{~s} / \mathrm{cm}$.
Accuracy: $\pm 2 \%$.

Frame advance mode

Advance distance: $24^{\prime \prime}(60 \mathrm{~cm})$.
Accuracy: $\pm 0.005^{\prime \prime}(0,0125 \mathrm{~cm})$ noncumulative.
Advance time: less than 20 s .
Major division advance
Advance distance: selectable major divisions are in $3^{\prime \prime}(7,5 \mathrm{~cm})$ increments.
Accuracy: $\pm 0.00 s^{\prime \prime}(0,0123 \mathrm{cra})$ noncumulative.
Advance time: (maximum) 2.5 s .
Weight: $11 \mathrm{lbs}(5 \mathrm{~kg})$ net $16 \mathrm{lbs}(7,3 \mathrm{~kg})$ gross.
Price: Model 17005A
Options;
01: Fan Foid adapter
$\$ 125$
02: Merric calibration N/C
03: Cable connetcor compatible wirh 7590A(C) units prior to sezial prefx 729 requires modification.

N/C
04: Compatibility with 7004A-04

17006A Manual Chart Advance

Model 17006A permits manual chart advance by operating a hand crank. A crank handle also is provided on the suppiy reel for rewinding chart. Tear-off wire is included for chatt "pull-through, tear-off." Price: Model 17006
\$125

G-2B Null Detector

The G-2B Null Detector is an accessory device designed for use with the 7000 A and 7001 A X-Y recorders. It controls the operation of the recorder in any one of five modes during the plotting of continuous, discontinuous or point function data. The source may be any analog signal producing system or digital system with conversion accessories. The G. 2 B is housed in a modular cabiner with a cable and plug for external connection to the recorder.

Specifications

Plot rate

Polnt mode: 6 plots/s, maximum, using the Model 17009 B Character Printer.
Line mode: 7 points/s, maximum, when points are displaced an average of 0.05 in . and using a regular recorder pen.
Sensitivity: better than 0.4% of full scale.
Price: Model G.2B

17009B Character Printer

The Model 170098 Characier Printer is specially designed to replace the pen on the 7000A and 7001A to identify points or curves when plotting families of digital information.
The points are identified with a charater. Ten different characters are available, six of which are supplied with the 17009 B .

Specifications

Plot rate: up to 6 plors per second (with G-2 Null Detector).
Compatible recorders: 7000A and 7001A.
Power source: supplied from the recorder.
Actuating source: external contact ciosure, or manually operated penlift concrol of recorder,
Price: Model 17009 B
Option 01: extra symbols (see data sheet)
$\$ 1$ each

F.3B Line Follower System

The F.3B Line Follower, available for the 7000A and 7001 A X.Y Recorders, regenerates original data directly from previously recorded curves. Any line prepared with pencil or pigment-tppe ink wrill be followed automatically by means of an optical photo-electric sensing element.

Spacifications

Displacement analog output: an external voltage may be applied to an existing slídewire.
Stralght-line accuracy: $\pm 0.03^{\prime \prime}, 0^{\circ}$ to 45° and time sweeps through $0.5 \mathrm{~s} / \mathrm{in}$; angular ranges from 0° up to 85° up to $5 \mathrm{~s} / \mathrm{in}$; square waves or spike functions of $0.1^{\prime \prime}$ maximum amplitude will remain within the scanned area at time swreeps up to $10 \mathrm{~s} / \mathrm{in}$.
Scanned area: $0.1^{\prime \prime}$ on either side of its center line and $0.05^{\prime \prime}$ slong its center line.
Power: 115 or 230 volts, 50 to 60 Hz , single phase; approximately 3 VA.
Price: Model F.3B
$\$ 895$

40D Keyboard

The Model 40D is a full keyboard-type accessory for use with compatible Hewletr-Packard X.Y Recorders to plot tabular data in point-graph form. Keyboard includes polarity, hold, clear and calibrate keys. Panel selectors control circuits for zero suppression, points/in or cm calibration and logarithmic ploting.

Specifications

Compatible recorders: 7000A, 7001A, 2FA and the 7004A (on special order at time of ordering the keyboard).
Keyboard: two 3 -column, nine-row arrays and unit "1000" keys. Numbers from 0 to $=1999$ on each axis: function keys provide X hold, Y hold, calibrate, clear and main clear.
Output attenuator (IInear mode): 5 fixed steps at 10, 20, 50, 100, $200 \mathrm{pts} / \mathrm{in}$ ($\mathrm{s}, 10,25,50,100 \mathrm{pts} / \mathrm{cm}$ on metric model); provision for variable attenuation between steps up to $500 \mathrm{pts} / \mathrm{in}$ ($200 \mathrm{pts} / \mathrm{cm}$ on merric model).
impedance match: refer to impedance adaptors on page 146.
Accuracy: $\pm 0.1 \%$ of digital to analog conversion.
Power: 115 or 230 V , 50 to 60 Hz , single phase, approximately 12 VA (derived from associated recorder)
Dimenslons: $93 / s^{\prime \prime}(244 \mathrm{~mm})$ wid $\epsilon, 5-3 / 16^{\prime \prime}(132 \mathrm{~mm})$ high, 13-11/16" (348 mm) decp.
Weight: ner $16 \mathrm{lbs}(7,2 \mathrm{~kg}$); shipping $30 \mathrm{lbs}(13.5 \mathrm{~kg}$).
Price: Model 40 D or 400 M (metric)
$\$ 1275$
Specify model and serial number of existing recorder,

RECORDING TIME-RELATED PHENOMENAE

Strip-chart recorders

Much of the instrumentation which ex. tends, refines or supplements human perception produces information in the form of electrical analog signals. Records of such data are, of course, necessary. Electrical data acquired in serial fashion, comprising a chain of meaningful changes in a signal, record naturally on continuous instruments such as stripchart recorders. The character of the sig. nal will determine the appropriate recording instrument. Permanent records of slowly changing analog values are conveniently made by Hewletr-Packard servo driven strip-chart recorders.

Laboratory and industrial type recorders are a vailable and produce records in rectilinear coordinates with considerable accuracy-rypically 0.2%. Two-pen models permit both channels to realize the full resolution of the chart wideh simultaneously, since the pens can over. lap on the same chart without interference. Active development of strip-chart recorders has yielded high reliability, im. proved writing systems and other advances. Important features are: solid. state circuitry, electric writing, optical sliderwires, modular construction, and versatile multi-range performance for laboratory applications.

Basic operation

Each Hewlett-Packard servo driven strip-chart recorder uses an individual elecrrical servo system for each channel employed. All servos are similar. Each consists of a basic balancing circuit, plus auxiliary elements for instrument versa. tility.

A basic potentiometric servo recorder is shown in Figure 1. The illustration shows a single range recorder in its simplest form. V_{10} is the input signa! voltage to the recorder and is applied to the input of the amplifier causing the motor to be driven. The motor rotates, causing an electrical tap at V_{b} to be adjusted to a point where V_{b} equals $V_{t r}$. At this point, the input voltage to the amplifier is zero, and the motor stops. This is considered a balanced condition and the degree of balance attained is largely a function of the amplifier's gain. If the input voltage ($V_{i n}$) changes, the balancing action is repeated.

Common controls and circuits used to provide versarility are:

1. Stepped attenuazor for each axis so that input voltages from the microvolt range to 500 volts may be handled directly.
2. Variable attenuator provides continyous adjustment to allow a trans. ducer's output ro directly correspond to the paper's coordinates in the desired units of measurement ($\mathrm{psi},{ }^{\circ} \mathrm{C}$, erc.).
3. Zero control allows the plotting origin to be placed anywhere on the paper or suppressed electrically off the paper.

Types of writing systems

Hewlett-Packard strip-chart recorders provide two types of writing systems: ink and electric writing.

Ink recording is standard. HewlertPackard recorders employ the capillary ink feed system in which the ink supply is a cartridge. Uniform how is maintained by the capillary process. Disposable pen rips are also available to minimize maintenance problems and to optimize the writing characteristics These disposable pen tips consist of two basic types, high speed and low speed.

The low speed tip operates basically the same as the standard pen. Its advantage is the capability of changing pen tips when the application changes and allowing quick and inexpensive replace. ment of worn or clogged pen tips.

The high speed pen tip is designed for high speed recording. It is composed of nylon fibers, which create many ink passages to insure a sufficient ink fow for high speed writing.

Elecric writing is also available on strip-chart recorders. With the elimination of ink refilling, long term unattended recording with maximum reliability is possible. Electric writing features crisp. clean, permanent records with the advantage of instant start-up. It is not sensitive to light or pressure, eliminating special handing; it is permanent, without processing.

Options and accessories

A variety of options and accessories is available to customize the recorder for individual applications. Options include event markers, retransmitting potentiometers, remote electric pen lift, remote chart drive switch, dise integrator, limit switches, etc.

Also optionally a vailable for the Model 680 is the photo slidewire. This unique balance slidewire employs optical coupling to eliminate mechanical contacts, thus reducing wear and noise and in. creasing reliability.

Available accessories include input filters, logarithmic converters, BNC adap. ters, etc.

Hewlett-Packard Strip Chart Recorders

Modsl	Ust	Writing Wlath	Pago	$\begin{gathered} \text { Mex. } \\ \text { stinillivity } \\ \text { mV Fuli 8pan } \end{gathered}$	Chart Spesda	$\begin{gathered} \text { Number } \\ \text { almm } \end{gathered}$	Plug-1as	$\left(\begin{array}{c} \text { Prioe } \\ \text { Lins } \\ \text { Plusins } \end{array}\right)$
680	Laboratory and systom	$5{ }^{\prime \prime}$	152	5.0 (1)	8	Onm		\$ 750
71008	Latoralory	10^{*}	150	1.0 (1)	12	Two	x	\$1300
71018	Laboratory	$10^{\prime \prime}$	150	1.0 (1)	12	One	X	\$1000
7127A	Laboestory and system	$10^{\prime \prime}$	150	1.0 (3)	4	One	X	\$850
7128A	Laboratory and systém	10^{*}	150	1.0 (1)	4	Two	x	\$1150

HIgher sensititity optlonally ava liable
(2) Depends on plug-in stlectad

7100B

7127A

The $10^{\prime \prime}$ strip chact recorders can be used in a wide range of laboratory and industrial applications. They feature high perfor. mance, low cost, and solid state consuuction for reliability, compactness, and light weight. Models 7100B and 7128A have two independent servo pen drives and require two input modules. The 7101 B and 7127A are single pen units and take one input module. Ordering information should specify basic frame and exact input module or modules required.

Each main frame is equipped with instantly selected chart specds (4 for $7127 \mathrm{~A}, 7128 \mathrm{~A} ; 12$ for $7100 \mathrm{~B}, 7101 \mathrm{~B}$) and a modular chart magazine. The chart magazine will swing out at a 10° or 30° angle for convenient note writing. An optional integraror for simulia. neously and accurarely computing the area under the char curve is also available.

Specifications

Recording mechanism

Ink: servo actuated ink pen drive.
Electrle: similar to ink mechanism except a styius, electrosensitive paper and the associated eleceronics are furnished in place of the ink pen.

Response time: maximum 0.5 s (50 Hz operation 0.6 s).
Chart capacity: (ink writing) 120^{\prime} chart rolls, $11^{\prime \prime}$ wide with $10^{\prime \prime}$ (250 mm) calibrated writing width. (Elecric writing) 100^{\prime} chart rolls, 11 " wide with $10^{\prime \prime}$ (250 mm) calibrated writing width.

Chart speeds

7100B/7101B (English) - $1,2 \mathrm{in} / \mathrm{hr}: 0.1,0.2,0.5,1,2 \mathrm{in} / \mathrm{min}$; $0.1,0.2,0.5,1,2 \mathrm{in} / \mathrm{s}$.
$7100 \mathrm{BM} / 7101 \mathrm{BM}$ (Metric)-2.5, $5,15,30 \mathrm{~cm} / \mathrm{hr}, 1.25,2.5$, $5,15,30 \mathrm{~cm} / \mathrm{min} ; 1.25,2.5,5 \mathrm{~cm} / \mathrm{s}$.
7127A/7128A (English)-1/4, 1/2, 1, 2 in/min.
$\mathrm{HO1.7127A} / \mathrm{HO} .7128 \mathrm{~A}-6,12,24$, $48 \mathrm{in} / \mathrm{hr}$.
$\mathrm{HO} 2.7127 \mathrm{~A} / \mathrm{HO} 2.7128 \mathrm{~A}-1 / 2,3,6,12 \mathrm{in} / \mathrm{hr}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 65 \mathrm{VA}$ for 7100 B and 7128 A . 42 VA for Models 7101 B and 7127 A . 115 or 230 V .50 Hz models availabie as an option.

10" PLUG-IN RECORDERS

Ink or electric writing

Models 7100B, 7101B, 7127A, 7128A

Dlmensions

7100B/7101B series (cabinet) : $11-31 / 32^{\prime \prime}$ (304 mm) high, $171 / 2^{\prime \prime}$ (445 mm) wide, $81 / 4^{\prime \prime}$ (210 mm) deep.
7100BR/7101BR (rack): 8.23/32" (222 mm) high, $19^{\prime \prime}$ (483 mm) wide, $81 / 4^{\prime \prime}(210 \mathrm{~mm})$ deep.
$7127 \mathrm{~A} / 7128 \mathrm{~A}$ series: (cabinet) $9 \cdot 3 / 32^{\prime \prime}$ (231 mm) high, $163 / 4^{\prime \prime}$ (425 mm) wide, $81 / 4$ " (210 mm) deep; (rack; brackers sup. plied) $8.23 / 32^{\prime \prime}\left(222 \mathrm{~mm}\right.$) high, $19^{\prime \prime}$ (483 mm wide, $81 / 4^{\prime \prime}$ (210 mm) deep.

Welght

7100 B series: net $28 \mathrm{lbs}(12,7 \mathrm{~kg})$; shipping $39 \mathrm{lbs}(17.7 \mathrm{~kg})$.
7101 B series: net $28 \mathrm{lbs}(12,7 \mathrm{~kg})$; shipping $33 \mathrm{lbs}(17,3 \mathrm{~kg})$.
7127 A series: net 25 lbs ($11,4 \mathrm{~kg}$); shipping 35 lbs (15.9 kg).
7128 A series: net $28 \mathrm{lbs}(12,7 \mathrm{~kg})$; shipping $38 \mathrm{lbs}(17,3 \mathrm{~kg}$)
Prices
Dual channel;

$$
\text { 7100B/BR (English), 7100BM/BMR (metric) } \$ 1300
$$

7128A/HO1-7128A/HO2.7128A (Engiish only) \$1150
Single channel:
$7101 \mathrm{~B} / \mathrm{BR}$ (English), $7101 \mathrm{BM} / \mathrm{BMR}$ (metric) $\$ 1000$
$7127 \mathrm{~A} / \mathrm{HOL} \cdot 7127 \mathrm{~A} / \mathrm{HO} 2 \cdot 7128 \mathrm{~A}$ (English only) $\$ 850$
Options:

$\begin{aligned} & 71008 \\ & 71018 \end{aligned}$	$\begin{aligned} & 7127 \mathrm{~A} \\ & 7288 \end{aligned}$	Desporlption	Additional Price	
			$\begin{aligned} & 700 \mathrm{COP} \\ & 7101 \mathrm{~B} \end{aligned}$	$\begin{array}{\|l\|l} \hline 7127 A \\ 7128 \mathrm{~A} \end{array}$
02	-	10 to 1 remote speed reducer	\$85	-
04	14	5 k retransmitting potentiometer (channel 1)	50	\$50
05	01	High-low limit switches (channel 1)	50	50
06	08	Remote control of electric pen lift	50	50
07	02	Remote on-off chast control	25	25
10	03	50 Hz operation	N/C	N/C
11	13	Locking glass doot	50	50
12	04	Event marker (ink) left side	35	35
14	06	Event markers (ink) both sides	70	70
15	07	Integrator (7127A, 7101B series or channel 2 of 7128A, 71008 series)	685	685
16	15	5 k retransmitting potentiometer (channel 2)	50	50
17	09	High-low limit switches (channel 2)	50	50
18	10	High-low limit switches (both chennels)	100	100
19	17	Elactric writhng	75	75
20	20	Scale with " 0 " right side	N/C	N/C
21	21	Gray control panel	N/C	N/C
22	22	Event marker (elec) left sido	35	35
23	23	Event markers (elec) both sides	70	70
24	24	Disposable pen tips (servo pens only)	N/C	N/L
25	25	Soft zero right side	N/C	N/C
-	11	Carrying handle	supplied	25
-	16	Retransmitting potantiometer (both channels)	-	100

NOTE; 7100B, 7101 B
Option 15 is not compatible with options 14, 16, 19, 22, or 23.
Options 15, 19, and 25 require special paper.
7127A, 7128A
Options $06,15,16,17,22$, or 23 cannot be installed when instrument is equipped with Option 07.
Oprions 07, 17, and 25 require special paper.
Electric and ink writing systems are nor compatible. Event markers must be of same type as the main writing system.

PLUG-IN MODULES
 For the Model 7100B, 7101B, 7127A, and 7128A

17500A/17501A Multiple Span Input Modules

The Models 17500 A (5 mV full scale) and 17501 A (1 mV full seale) Muktiple Span plug.ins offer high input resistance and a continuously variable spac control. The inputs are floating up 10500 V above ground, have high common mode rejection and an input impedance of one megohm at null on all calibrated spans.

Specifications

Voltage spans: $17500 \mathrm{~A}: 5,10,50,100,500 \mathrm{mV}: 1,5,10,50$, 100 V full scale. $17501 \mathrm{~A}: i, 2,5,10,20,50,100,200 \mathrm{mV} ; 0.5$, $1,2,5,10,20,50,100 \mathrm{~V}$ full stale.
Accuracy: $\pm 0.2 \%$ of full scale.
Linearlty: terminal based: 0.1% of full scale.
Resettability: 0.1% of full scale.
Inout resistance: 1 megohm at null on all fixed calibrated and variable spans except 100,000 ohms in the variable mode on the four most sensitive spans on the 17500A only. Potentiometrig operarion is available to the 17500A on the four most sensitive spans and to the 17501A on the six most sensitive spans by the removal of an internal buss wire.
Interference rejectlon: dc common mode; 120 dB on the four most sensitive spans of the 17500 A and the three most sensitive spans of the 17501 A ; line frequenç, 100 dB on the four most sensitive spans of the 17500 A and the three most sensitive spans of the 17501A.
Zero-set: adjustable full scale, plus one full seale of suppression.
Maximum source impedance: up to 10 k ohen source impedance will not alter the recorder's performance on the four most sensitive spans of the 17500A and the six most sensitive of the 17501A. No source impedance restrictions on spans above 100 mV fall scale.
Reference suppiy: Zener diade controlled.
Waight: 2 lbs ($0,9 \mathrm{~kg}$) net, $5 \mathrm{lbs}(2,2 \mathrm{~kg})$ gross.
Price
Mrociel 17500A $\$ 250$
Model 17501A
Options
01: Five scale zero suppression (17501A only)
02: Calibrated for $8^{\prime \prime}$ (ravel (full scale)
04: Gray concrol panel

17502A Temperature Input Module

The Model 17502A Temperature Measuring Input Module has a single span selectable to match almost any commonly used thermo. couple. A wide variety of ranges are available. Thermocouple refer. ence corrections for changes in ambient temperacure are made within the module thus eliminating requiremenrs for a remote compensation junction. The non-linear thermocouple oueput is converted within the module to a linear function of temperature which allows the use of standard ruled graph paper.

Specifications

Voltage spans: single span to match cold-junction thermocouples of types and ranges as listed on the dara sheet.
Accuracy: $\pm 0.5 \%$ or $\pm 1^{\circ} \mathrm{C}$ (whicherer is greater). refer to NBS CIR S61, dated 1955.

Input resistance: posentiomerric.
Reference supply: Zener diode controlled.
interference rejection: dc common mode, 120 dB ; line frequency, 100 dB .
Weight; 4 ibs ($1,8 \mathrm{~kg}$) net, 7 lbs $(3,2 \mathrm{~kg})$ gross.
Price: Model 17502A
$\$ 250$. Option 04: gray control panel $\quad \mathrm{N} / \mathrm{C}$

17503A/17504A Single Span !nput Modules

The Model 17303A plugin, designed specifically for use with gas chromarography systems, is equipped with a single span of ore millivolt full scale and potentiometric input. The Model 17504 plug.in may be ordered with any single span from a range of 5 mV to 100 V full scale. Potentiometric input is availab!e, on the four most sensitive range cards, by removing an internal buss wire in the 17504A. The inputs of the $17503 \mathrm{~A} / 17504 \mathrm{~A}$ tan be floated up to 500 volts above ground and have a high common mode rejection. The zero may be positioned full scale or suppressed up to one full scale.

Specifications

Voltage spans: 17503A: 1 mV full scale. 17504A: 10 range cards available, which allow any span from 5 mV to 100 V full scale. (See data sheer.)
Accuracy: $\pm 0.2 \%$ of full scale.
Linearlty: terminal based: 0.1% of full scale.
Dead band: 0.1% of full scale.
Input resistance: 17503A: potentiomerric. 17504A: ane megohm at null.
Interference rejection: (17503A) de common mode, 120 dB . line frequency common mode, 100 dB . Normal mode, grearer than 60 dB at line frequency. (17504 A) de common mode, 120 dB nn four most sensitive range cards; ac (line freg.) common mode, 100 dB on four most sensitive range cards. Normal mode greater than 60 dB at line frequency.
Zero-set: continuously adjustable over full scale, plus one full scale of zero suppression.
Maximum source impedsace: up to $5 k$ ohm with the 17503A and 10 k ohm on the 17504 A will not alert the recorder's per. formance.
Frequency: 60 Hz (line erequency) 50 Hz operation optional.
Weight: 2 lbs ($0,9 \mathrm{~kg}$) net. $5 \mathrm{lbs}(2,2 \mathrm{~kg}$) gross.

Price

Model 17503A
$\$ 250$
Model 17504 (with one specified range card)
$\$ 200$
Additional range cards
S 25
Option:

17603A	17604 A	Desoriglars	
01	-	Detector selector switch	N/C
02	01	50 Hz operation	N/C
03		1 mV (for $8^{\text {N }}$ travaif) for use with integrator	N/C
04	04	Gray control panel	N / C

17500A

17501A

17502A

17503A

17504A

5" COMPACT RECORDER

STRIP CHART RECORDERS

Ink or electric writing
Model 680

The Models 680 and $680 \mathrm{M}, 5^{\prime \prime}$ strip-chart recorders provide a wide range of performance for general or specialized use. The 680 is equipped with multi-range input, multispeed chart transport, fuil-range zero set, and electric pen lift: features essential for general purpose applications. The instrument is available with standard (English) or metric scaling (680 M) and extra cost options such as electric writing, retransmitting potentiometer, event marker, limit switches, and dual rack adapter for rack mounting. It is useful as a monitor for instrumentation with dc outputs and for digital devices utilizing D-A converters such as the HP 581A.
The recorder features modular construction with all transistor circuitry, high accuracy, fast response, synchronous motor chart drive, and full view tilting chart magazine. Standard facilities include instant chart speed transfer, local and remote pen lift control, tear-off or chart roll storage, and cartridge-fed ink pen. Optional electric writing provides crisp, clean, permanent records for long-term unatrended recording capability.

Specifications

Recording mechanism:

Ink: servo actuated ink pen drive.
Electro sensitiva; similar to ink mechanism except a stylus for electrosensitive paper and the associated electronics are furnished in place of the ink pen.
Chart requirements:
Ink: $6^{\prime \prime}$ by 100^{\prime} roll charts, $5^{\prime \prime}(12 \mathrm{~cm})$ writing width. Approximately $4^{\prime \prime}$ by $6^{\prime \prime}$ visible chart area during operation.
Electrosensitive: $6^{\prime \prime}$ by 80^{\prime} roll charts, $5^{\prime \prime}(12 \mathrm{~cm}$) writing width.
Response time: one-half second or less for fulif scale.
Chart speeds: eight-spnchronous motor controlied speeds at $1,2,4,8 \mathrm{in} / \mathrm{min} ; 1,2,4,8 \mathrm{in} / \mathrm{h}$. Metric model: 2.5, 5 , $10,20 \mathrm{~cm} / \mathrm{min} ; 2.5,5,10,20 \mathrm{~cm} / \mathrm{h}$. Speeds in a ratio of 16 to 1 may be supplied at additional cost.
Spans: ten calibrated spans of $5,10,50,100$, and 500 $\mathrm{mV} ; 1,5,10,50$, and 100 V full scale. Metric model
has spans of $6,12,60,120$, and $600 \mathrm{mV} ; 1,2,6,12$, 60 , and 120 V . An extra span of 1 mV , full scale, is available at extra cost (1.2 mV on metric model).
Input: floating with respect to ground up to a maximum of 500 volts. Input resistance is 200,000 ohms per volt (166,666 ohms/volt on metric models) full scale, through 10 volt span; 2 megohms on all others. Potentiometric input on most sensitive span permits operation with essentially zero current drain at null. Constant $100,000 \mathrm{ohm}$ input resistance on all spans available at extra cost on both models.
Standardization: continuous electronic reference from zener diode controlled power supply.
Zaro set: continuously adjustable over full recorder span.
Accuracy: better than 0.2% of full scale.
Resettability: 0.1% of full scale.
Intarference rejection: dc common mode rejection better than 100,000 to 1 on the most sensitive range.
Pen lift: local and remote.
Power requiremants: $115 / 230 \mathrm{~V}, 60 \mathrm{~Hz}, 22 \mathrm{VA} .50 \mathrm{~Hz}$ models available at no extra cost, (Option 10).
Physical dimanslons: $61 / 2^{\prime \prime}$ (165 mm) high, $88 / 8^{\prime \prime}$ (219 mm) deep, $73 / 4^{\prime \prime}$ (197 mm) wide. Rack mounting requires $7^{\prime \prime}$ (178 mm) of vertical space.
Weight: net approximately 11 lbs . (5 kg); shipping 17 lbs . ($7,6 \mathrm{~kg}$).
Accessory kit supplled: spare pen, ink filling syringe, remote pen lift mating connector, pen cleaning wire, slidewire cleaner and fubricant, 8 ink cartridges (4 red and 4 blue), and a roll of appropriate chart paper.
Prices:
Models 680 (standard) or 680 M (metric): $\$ 750$
Model Hol-680 or $\mathrm{H} 01-680 \mathrm{M}$ (with added span of 1 mV on H 01.680 or 1.2 mV on H 01.680 M): $\$ 800$
Model H02-680 or H02-680M (with 100,000 ohms input resistance on all spans):
$\$ 825$
Options:
-ol With installed $5 k, 0.1 \%$ linearity retransmitting potentiometer:
add \$ 50
—02 With installed event marker (ink) add \$ 25
-03 With installed high-low limit switches: add $\$ 90$
-08 With 16 to 1 instead of 60 to 1 speed reducer:
add $\$ 25$
—09 With remote chart drive switch: add \$ 25
-10 For 50 Hz operation:
-11 With special scale markings (specify): add \$10
-13 For operation with Logarithmic Converter:
add \$ 25
_14 Glass door with lock: add \$45
-15 Electric Writing (special paper required) add \$75

- 16 Electric writing event marker: add \$ 35
-17 Photoslidewire (not available for Models H01.680 and H01.680M) add $\$ 100$
- 18 Disposable pen tips $\quad \mathrm{n} / \mathrm{c}$

Note: Ink and electric systems are not compatible. Event markers must be the same type as the main writing system. Option 12 replaced by Option 15.

TREND RECORDERS Reliable long term unattended recording

RECORDERS

7597A

The Model 7597A Trend Recorder is an analog sampling Y-T re. corder with 8 -channel capacity, allowing up to eight different physical or physiological variabies to be plotted on an $8 \frac{1}{2^{\prime \prime}} \times 11^{\prime \prime}$ cinart. The variables are plotted along the Yaxis against time on the X . axis. The 7597A is supplied with a nine hour full scale time axis: however, optional time axis durations are available of 5 hours, 13 hours, or 25 hours full scale. The scanning rate of the 7597 A is nine channels per minute except on the optional 25 hour time axis where it is nine channels every three minutes. The eight variable Yaxis inputs are available through a ribbon connector located on the rear of the recorder. Besides the eight channels of information presenca. tion on the chart, a ninth or "check" position is provided 10 give visual assurance of the recorder's performance and calibration.

The plotting system utilizes electro-sensitive paper and the exclusive Aurogrip electrostatic paper hold-down. It provides permanent. smudge-free records that may be easily stored in notebook form fos fast retrieval.

Specifications

Input impedance: 102 K ohms $\pm 3 \%$.
Sensitivity: adjustable from $0.5 \mathrm{v} /$ inch to $3 \mathrm{v} /$ inch.
Baseline adjustment: ± 0.7 inches from the nominal base line zero position for each channel.
Channels: 8 input channels. Single-anded foating circuit command. Rear input conneztors.
Scanming: sequential scanning through each channel. Any one or combination of channels can be programmed to be by-passed in the scanning sequence.
Scanning rate: (time for complete scan ofle, 9 channels) 1 minure for 9,9 and 13 hour recorder. Three minutes for 25 hour recorder.
Writing system: electric writing on $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ elecrrosensitive paper, $7^{\prime \prime} \times 95 / 8^{\prime \prime}$ recording area.
Y -axis accuracy: ± 0.014 inch at $0.55^{\circ} \mathrm{C}$.
Tlme axls rate: standard: 9 hours Gull scale, Option 003: 5 hours full scale, Option 004:13 hours full scale, Option 003: 25 hours full scale.
Price: HP Model 7597A (black paint), \$1125.
Option 001: white paint, no additional charge.
Option 002: gray paint, no additional charge.
Option 003: 3 hour time base, no additional charge.
Option 004: 13 hour time base, no additional charge.
Option 005: 25 hour time base, no additional charge.
Option 006: miniature phone jack rear input connectors; 1 per channel, no additional charge.
Option 007: s hour time base, 50 Hz , no addicional charge. Option 008: 9 hour time base, 50 Hz , no additional charge. Option 009: 13 hour time base, 50 Hz, no additional charge. Option 010: 25 hour time base, 50 Hz , no additional charge.

7825A

The 7825A Trend Recorder is a compact, light weight instrument capable of recording up to four slowly changing physical or physiological variables, 24 hours a day, for 63 days (50 foot roll). With an input sensitivity of ± 2.5 volts, it is electrically comparible with HP 8800 Series Signal Conditioners.

A single time shared electrostatic siylus and a galvanometer. mounted feedback system provide analog or bar graph recording with 1% linearity in each of the four independent channels. Each channel is recorded in sequential order. Repetition rate is based on the number of channels in operation and the rype of recording. With all four channels turned on, the scanning rate for bar graph recording is 30 seconds for a complete scan cycle (4 channels). For analog recording, the rate is 15 seconds for a complete scan cycle.

Standard chare speed is $1 \mathrm{~cm} /$ hr (approx $91 / 2$ inches in 24 hours). The chart paper has a full scale width of 12 con and is marked in hours along each centimeter of length. The record is permanent, smudge free. easily reproduced, and well suited for mounting or fling.

Specifications

Input impedance: is K to 20 K depending on sensitivity setting.
Linearity: 1% of full scale.
Sensitivity: adjustabie from no reaction to an input signal to fuli scale for either ± 2.5 rolks.

Input signal: 0 to 50 voles maximum. Positive signal corresponds to right-hand scale deflection.

Pen position: anywhere on the paper for any sensitivity adjustment. All eight positions (4 input and 4 bar graph base lines) are in. dependent.

Pen repetitlon ratei all eight positions, less than 30 seconds.
Chart speed: standard $1 \mathrm{~cm} / \mathrm{hr}$. Other speeds available on special order up to $8 \mathrm{~cm} / \mathrm{min}$ for single channel operation.
Input: 14-pin micro ribbon connectors or phone plugs.
Paper: electrosensitive type, 12 cm (60 div) wide chart, margins perforated. Hours indicated at each centimeter mark.
Weight: 13 pounds ($5,9 \mathrm{~kg}$).
Dimenslons: $612^{\prime \prime}$ high $\times 73 / 4^{\prime \prime}$ wide $\times 11^{\prime \prime}$ deep ($165 \times 197 \times 279$ man).
Power: 115 or 230 volts ($\pm 10 \%$), $60 \mathrm{~Hz}, 50$ watts, Option 08 Recorders: 115 or 230 volts ($\pm 10 \%$), $50 \mathrm{~Hz}, 30$ watts.
Price: HP Model 7825A Trend Recorder (white paint), s92s. Option 01: Gray paint - no additional charge. Option 08: 50 Hz uperation, add $\$ 2 \mathrm{~s}$.

7825A

7597A

OSCILLOGRAPHIC AECORDERS

THERMAL \& INK RECORDERS
 Summary of HP systems for permanent, graphic records of measurements

8801A

8802A

8803A

8805A

8806A

8807A

8808A

8809A

Individual plug-in preamplifiers

The 8800 Series Plug-in Preamplifiers are used as signal conditioners for the 7700 Thermal Series and the 7800 Ink Series of HP oscillographic recording systems. Preamplifiers include low gain dc, medium
gain $\mathrm{d} c$, ac , $\mathrm{d} c$ convertec, phase sensitive demodulator, carrier, genecal purpose de and logarithmic units. See pages $165-168$ for thermal systems and pages 170-171 for ink systems using these preamplifiers.

Identical-channel amplifiers

The Model 8820A Low Gain and Model 8821A Medium Gain de amplifiers combine eight independent channels of amplification into one front panel unit for maximum operating convenience and economy. Identical sets of contcols for all channels simplify operation. Rated sensitivities are $50 \mathrm{mV} / \mathrm{div}$ (8820 A)
and $1.0 \mathrm{mV} /$ div (8821 A). Both amplifier units are widely used in HP systems applications in telemetry, computer readout, multi-variable analysis, etc. See page 164 for amplifier information. See page 169 for thermal sysrems using these amplifiers; pages 170-171 for ink systems.

1-channel, general purpose portable recorders
The 299A and 301 are briefcase-sized, single-channel recorders, ideal for field and laboratory tests. Each weighs about 22 lbs and occupies less than $1 / 2$ cubic foot. The units operate in any position and are avail. able as $10 \mathrm{mV} /$ div or universal carries systems.

77068
77088

The 770 Series of thermal recorders includes 1 -, 2-, 4 -, 6. and 8 -channel systems. The 6 and 8 -channel recorders are available in horizontal and vertical models. All units use any combination of the versatile 8800 Series Preamplifiers.

7727A
7729A

7858B
The 7858 B is an 8 -channel ink recorder using the versatile 8800 Series Plug.in Preamplifiers. Records are made on Z-fold packs or paper rolls. Fourteen chart speeds are provided.

The 7727A/29A, 7731A (vertical recorders) and the $7737 \mathrm{~A} / 39 \mathrm{~A}$ (horizontal recorders) are 6 -, 8 - and 16 . channel thermal recording systems using either of the $8820 \mathrm{~A} / 21 \mathrm{~A}$ multichannel amplifiers. All five systerns have 18 electrically controlled chart speeds.

The 7878A is an 8-channel ink recorder using either the 8820 A Low Gain or the 8821A Medium Gain dc multichannel amplifier.

2-channel portable, dc and carrier recorders

These three portable, 2-channel recording systems operate in any position and record two variables permanently and simultaneously. Sensitivies of 0.5 $\mathrm{mV} / \mathrm{div}$ (dc), 10 mV ; div (dc) and $10 \mu \mathrm{~V} / \mathrm{div}$ (on 2400 Hz carrier wave) are available.

Thermal writing oscillographic recorders and systems

A pride need exists in data recording for continuous, highly visible records of analog signals with maximum reliability and instant record availability. These requirements are well filled by HerdettPackard thermal writing oscillographic recorders, which use the heated stylus technique to produce truly rectilinear chart traces on hear sensitive Perma. paper ${ }^{1}$. Significant advantages include: an absolutely reliable writing method, a resolution of a cycles per mm of paper travel even at smal! amplisudes and unattended operation for greatly extended time periods with an optional 1000 -foor paper supply.

Hewlett-Packard Thermal Recorders are a vailable with $1,2,4,6,8$ and 16 channels and are compatible with stan. dard Hewlete-Packard recording pream. plifiers. All recorders and preamplifiers are a vailable as systems in upright cabinets, less cabinet for mounting in standard RETMA equipment enclosures or in portable cases for field or laboratory use.

Ink writing oscillographic recorders and systems

The ink writing oscillographic record. er used in the 7858B and 7878A systems is a compact, all solid state, 8 -channel recorder that produces rectilinear traces on either Hewlett-Packard Z-fold or roll chart paper. The Z-fold charr paper permits instant access to any part of the recording. The recording fuid, a permanent blue ink that dries rapidly on contact with the paper, permits high resolution copying of recorded data, with the capability of photographically including or deleting the charr coordinates. Position feedback from a contactiess, capacitive pickup near the pen tip means long-lived recording accuracy. An ink supply system using a modulated, low pressure technique ensures uniform traces ar all chart speeds, and over all points of the waveform. This technique controls the ink at the pen tip at all times, prevents spattering. and permits use of a Z-fold chart paper for instant dara retrieval. The plug-in, disposable ink cartridge is cleanly replaced from the front of the system in less than 10 seconds, without stopping the recorder. The ink recorder provides a ratio of $8000: 1$ from the lowest chart speed of $0.025 \mathrm{~mm} / \mathrm{sec}$ to the highest, $200 \mathrm{~mm} / \mathrm{sec}$, to give the best possible data resolution by matching the chare speed with the recorded waveform. All
mechanical subassemblies are modular for fast "on-line" maintenance.

Hewlett-Packard ink recording systems feature a frequency response of dc to $150 \mathrm{~Hz}(-3 \mathrm{~dB})$ at 10 divisions PP deflection and dc to 58 Hz (max) for rull scaie deffection. Linearity is 0.5% at ful! scale.

Ink recording systems such as the 7858 B and 7878 A are ideal for scientific and industrial research, production and environmental testing, quality control, relemetry, process control and analog computer monitoring. In the medical field, ink systems such as the 7868A are used in cardio-pulmonary and catheteri. zation laboratories, and in a wide range of research, clinical and teaching applications.

Optical oscillographic recorders and systems

Hewlett-Packard optical oscillographic recorders are capable of recording up to 2s channels of high frequency transients. coded pulses or other data from de to 5 $\mathrm{kHz}(-3 \mathrm{~dB})$ at 4 inches pp. The ultraviolet optical recording systems 4508B and 4535 B write with high intensity ultravioler light to produce visible traces that require no chemical development. HP 4500 Series optical systems, which use the 658 Series amplifiers, are typically used to monitor: computer and high frequency power supply outputs, fast. changing nuclear reactions, high rates of change in pressure or temperature (particularly in fluids or metals), vibration, production testing and control applica. tions. They are also used in high fre. quency telemetry and oceanographic studies.

Trend recorder

The HP 7825A Trend Recorder is a compact, light weight, rime sharing in. strument capabie of recording up to four slowly changing physical or physiological variables on a 12 cm wide chart channel. With an input sensitivity of ± 2.5 volts. the instrument is electrically compatible with HP 8800 Series Preamplifers.

A single. time shared electric writing pen and a galvanometer-mounted feedback system provide analog or bar graph recording with 1% linearity in each of four independent channels, When physical variables are under study, the bar graph reference point can be set for a normal value and the deviation from normal can be plorted. Standard chart speed is one centimeter per hour (about 9.5
inches in 24 hours). The recorder produces crisp, clear, permanent records with the advantages of instant start up and maximum reliability for long term, unattended recording-over two months with the standard 50 -foot chart.

Amplifiers and signal conditioners

Hewlett-Packard amplifiers and signal conditioners (see pages 154.155) cover an extremely wide range of measurement applications, matching the recording sys. tem to the signal source. The source can be an electrical signal from an external circuit or from a transducer that measures a physical variable such as pressure, force, flow, velocity or temperature. A wide choice of amplifiers and signal condicioners is provided for the thermal and ink systems and the 7825A Trend Re. corder, including the interchangeable, single-channel 8800 Series Plug-in Preamplifiers and the multichannel 8820A and 8821 A Amplifiers, which provide up to eight identical channels of amplification on a common front panel. The 658 Series multichannel amplifiers are used exclusively with the 4500 Series ultra. violet optical systems.

Analog-to-digital converter

The Model 5610A Analog.to-Digital Converter is a general purpose ADC that offers the following features: a 100 kHz throughput rate for a 10 -bit word (including sign), a sample-and-hold amplifier with 50 nanoseconds aperture time, a maltiplexer with 16 channel capacity, and low level, ± 1 volt full scale input with optional ± 2.5 volt and ± 10 volt fuil scale input ranges available.

An interface kit that is available as an accessory includes a printed circuit card that electrically matches the converter to Hewlett-Packard computers, an interconnecting cable, and a Basic Control System (BCS) driver program and verification test software. The Model s610A comes complete with selicontained power supply and case.

Recording chart papers

Recording chart papers are available for all Hewlett-Packard recording systems. Excellent recording characteristics are assured by matching the paper to the recorder and by rigid quality control. Paper comes in Z-fold packs for the ink recorder and in standard roil lengths for all recorders, with green grid for medical use, black for industrial use, rianslucent orange for diazo duplication, and brown for the ink secorder.

OSCILLOGRAPHIC RECORDERS

1.Channel portables*

The 299A and 301 are single-channel, all solid-state, 22 lb . recorders, useful for field and laboratory equipment checkout and servicing. The 299A is a general purpose recorder, designed for broad de coverage. Model 301 with built-in 2400 Hz carrier wave (carrier voltage 4.5 to 5.5 V ctos, not adjustabie), is designed for carrier inputs from inductive
transducers, strain gages, resistance bridges and other ac transducers. Both units produce high resolution traces on a 3.2 cm (40 div) wide channel and possess most of the features found in larger systems. Four inches of chart are displayed at all times for study and marking. Each unit occupies less than $1 / 2$ cubic foot and operates in any position.

301

2.Channel portables*

Models 320, 321 and 322 A are complete recording systerns widely used in the field when two similar variables must be simultaneously analyzed and permanently recorded. They operate in any position, record signals on two 5 cm (50 div) channels, have electrical limiting to protect recorder styli and current feedback circuits to reduce drift. Model 320 has guarded and floating inputs designed for broad $d c$ and $a c$
signals even with excess ground loop noise. Model 322A has two general purpose direct-coupled amplifier channels for single-ended or balanced inputs. Calibrated zero suppression is available as Option 02. Model 321, with builtin 2400 Hz carcier excitation source, is designed to measure signals from resistance bridges, variable reluctance devices, differential transformers and other ac transducers.

- For additional Information, see pages 158 and 159.

Specifications, Single-channel Portables*

Rooordor Madal	Model 298A	Modal 301
Maximum sensitivity	$10 \mathrm{mVrms} / \mathrm{div}$ (each div $=1 / 32^{\prime \prime}$)	$10 \mu \mathrm{Vrms} / \mathrm{div}$ (each div $=1 / 32^{\prime \prime}$)
Sensitivily range (altenuation)	10,20,50, $100,200,500 \mathrm{mV} / \mathrm{div} ; 1,2,5,10 \mathrm{~V} / \mathrm{div}$; attenuator accuracy $\pm 2 \%$	XI, 2, 5, 10, 20, 50, 100, 200 attenuation factors; attenuator accurscy $=2 \%$ max
Input circuit	$5 \mathrm{M} \Omega$ each side, balanced to ground	$6 \mathrm{~K} \Omega$ min resistance, 13 K min reactance, moasured with full zero suppression and $\mathrm{R} \& \mathrm{C}$ bal; 7 K resistance, 13 K reactance, with $R \& C$ bal control centered and zero suppression out; transducer impedance, $100 \Omega \mathrm{~min}$.
Common mode rejection	50: on most sensitive ranges; $25: 1$ on other ranges	quadrature rejection ratio is greater than 100:I
Common mode tolerance	$=2.5 \mathrm{~V}$ max on most sensitive range, higher on other ranges to $=500 \vee$ max	quadrature rejection is within specification if input amplitude does not exceed 2 X imphase signal which causes stylus deflection from chart center to edge
Zero suppression	$\pm 2 \mathrm{~V}$ max in series with output of input attenuator; used for single-ended and balanced inputs	5 -step switch, center out, two posilions (for positive and negative signal)
Frequancy response (-3 dB max at 10 div pp) - 308 max al full scale)	de to 100 Hz de to 50 Hz	$\begin{aligned} & \text { dc to } 100 \mathrm{~Hz} \\ & \text { dc to } 50 \mathrm{~Hz} \end{aligned}$
Zero drift Temperature, 0 to $50^{\circ} \mathrm{C}$ Line voltage, 103 to 127 V Time	$\begin{aligned} & 0.5 \mathrm{div} / 10^{\circ} \mathrm{C} \\ & 0.25 \mathrm{div} \\ & 0.5 \mathrm{div} / \mathrm{hr}, 2 \mathrm{div} / 24 \mathrm{hrs}, \mathrm{max} \end{aligned}$	$\begin{aligned} & 0.25 \mathrm{div} / 10^{\circ} \mathrm{C} \\ & 0.1 \mathrm{div} \end{aligned}$
Noise (pp max)	0.1 div	0.25 div
Internal calibration	$0.2 \mathrm{~V},=1 \%$	$40 \mu \mathrm{~V} /$ excitation volt, $\pm 1 \%(200 \mu \mathrm{~V} / 20$ div derlection)

Specifications, Dual-channel Portables ${ }^{{ }^{n}}$

Ratarder model	Model 320	Model 32za	Model 321
Max sensitivity	$0.5 \mathrm{mv} / \mathrm{div}$ (each div $=1 \mathrm{~mm}$)	$10 \mathrm{mV} /$ div (each div $=1 \mathrm{~mm}$)	$10 \mu \mathrm{~V} / \mathrm{div}$ (each div $=1 \mathrm{~mm}$)
Altenuation range	$0.5,1,2,5,10.20 \mathrm{mV} /$ div and V/10 div; attenuaztor accuracy $+2 \%$ max	$10,20,50,100,200,500 \mathrm{mV} / \mathrm{div} ; 1,2,5$, $10 \mathrm{~V} / \mathrm{div}$; attenuator accuracy $=2 \%$ max	$\mathrm{XI}, 2,5,10,20,50,100,200$ attenuation factors; attenuator accuracy $=2 \%$ max
Inout circuit	$0.5 \mathrm{M} \Omega$ on $\mathrm{mV} / \mathrm{div}$; $1 \mathrm{M} \Omega$ on $\mathrm{V} / 10$ div; floating and guarded	$5 \mathrm{M} \Omega$ each side, balanced to ground	$6 \mathrm{~K} \Omega \mathrm{~min}$ resistance, 13 K min reactance, measured with full zero suppression and R \& C bal; 7 K resistance, 13 K reactance with A \& C bal control centered and 2 zaro suppression out; transducer impedance, $100 \Omega \mathrm{~min}$
Common mode rejection	160 dB max dc; 120 dB min, 60 Hz with no input unbsl; 100 dB min, 60 Hz with 5 K	50:) on most senslitive range, $25: 1$ on other ranges	Quadrature rejection ratio is greater than 100:1
Common mode tolerance	$=500 \mathrm{~V}$ max	$\pm 2.5 \mathrm{~V}$ max on most sensitive ranges; higher on other ranges to $=500 \mathrm{~V}$ max	Quadrature rejection is in specification if input amplifude does not exceed $2 x$ inphase signal which causes stylus deflection from chart center to edge
Zero suppression	None	Order option 02 5siep switch, center out, positions for positive and negative signals	5 -step switch, center out, Iwo positions (for positive and negstive signals)
$\begin{aligned} & \text { Zero drift } \\ & 01050^{\circ} \mathrm{C} \\ & \text { 103 to } 12 \mathrm{~V} \\ & \text { Time } \end{aligned}$	$\begin{aligned} & 0.25 \mathrm{div} / 10^{\circ} \mathrm{C} \\ & 0.1 \mathrm{div} \\ & - \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{div} / 10^{\circ} \mathrm{C} \\ & 1.0 \mathrm{div} \\ & 0.5 \mathrm{div} / \mathrm{hr}, 2 \mathrm{div} / 24 \mathrm{~h} s \mathrm{~s}, \max \end{aligned}$	$\begin{aligned} & 0.25 \mathrm{div} / 10^{\circ} \mathrm{C} \\ & 0.1 \mathrm{div} \end{aligned}$
Noise (pp max)	0.25 div	0.1 div	0.25 div
Internal cal	$10 \mathrm{mV},=2 \%$	$0.2 \mathrm{~V}, \pm 1 \%$	$40{ }_{\mu} \mathrm{V} / \mathrm{exc}$ itation volt, $\pm 1 \%$ (200 $\mu \mathrm{V} / 20$ div deflection)

-See pages 157 and 159 for additionsl intormation.

Specifications (1-2-channel portables)

Gain stabllity: better than $i \%$ up $1050^{\circ} \mathrm{C}$ on all models: better than 1% for line voltage variation from 103 to 127 Vac , all models.

Non-finearity: 0.25 dir max with respect to straight line through centerline and calibration point 20 div from chart center, all models.

Frequency response: 299A, 301 : de to $100 \mathrm{~Hz},-3 \mathrm{~dB}$ at 10 dis pp, dc to $50 \mathrm{~Hz},-3 \mathrm{~dB}$ at full scale; $320,321,322 \mathrm{~A}$: de to 125 $\mathrm{Hz},-3 \mathrm{~dB}$ as 10 div pp , de to $50 \mathrm{~Hz},-3 \mathrm{~dB}$ at full scale.

Response time: s msec. 10% to 90% with 4% or less overshoot. over center 10 div .

Paper speeds: 299A, 301 : wo speeds (5 and $50 \mathrm{~mm} / \mathrm{sec}$); 320. 321, 322A: four speeds ($1,5,20$ and $100 \mathrm{~mm} / \mathrm{sec}$); other speeds available on any model by option.

Channel width: 299A, 301: 3.2 cm (40 div); 320, $321,322 \mathrm{~A}$: 5 cm (50 div)

Timer-markeri single-channel models have separace stylus for edge marking (60 Hz excitation): dual-channel models have $!\mathrm{sec}$ timers internal and extra evens marker can be added on spesial order: jacks are provided on all models for remate operation of marker coil by contact closure.

Input connectors: single-channel, 3-pin contact male connector on fron: panel: dualchannel models in portable cases have 3 -pin contacr male front panel connectors, rear connectors when rack mounted (optional binding post adapters available).

Monitor output connectors: miniature phone jack on front panels provides approx $40 \mathrm{mV} / \mathrm{div}$ across min exrernal load of 100 K ohms.

Electrical limiting: single-channel. approx 125% of full scale: dual. channel, approx 115% of full scale.

Power requirements: single-channel, $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 45$ watts; dual channel, $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 100$ watts; $115 / 230$ V. 50 Hz available in all models as options.

Dimenslons: single channel models: $7^{\prime \prime}$ high, $12^{\prime \prime}$ mide, $10 \frac{1}{2 \prime \prime}$ deep ($178 \times 305 \times 267 \mathrm{~mm}$); dual-channel models in pertable cases: $133 / 4^{\prime \prime}$ high, $141 / 4^{\prime \prime}$ wide, $91 / 2^{\prime \prime}$ deep ($340 \times 361 \times 241 \mathrm{~mm}$) ; rack mounts: $14^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $16^{\prime \prime}$ detp ($396 \times 483 \times 406 \mathrm{~mm}$): paper rake-up 320.300 for dual-channel portables: $13 / 4{ }^{\prime \prime}$ high. $141 / 2^{\prime \prime}$ wide, $91 / 2^{\prime \prime}$ deep $(121 \times 370 \times 241 \mathrm{~mm})$: paper take-up rack mounted adds $51 / 4^{\prime \prime}$ (133 mm) to recorder height.

Weight; (approx): single-channel models, net 22 lbs (10 kg), shipping $25 \mathrm{lbs}(11,3 \mathrm{~kg})$: dual-channel models; ner 55 lbs (24 kg). shipping $66 \mathrm{lbs}(29,7 \mathrm{~kg})$.

Accessories: \{consult local HP sales office for quancity prices\}: single-channel: 651.202 Permapaper ${ }^{6}$, 3.2 cm wide (40 dic). 125 ft roll, $\$ 4,60$; 403A Analog Srylus, $\$ 6.65$: 411.1 Marker Stylus, S6.65: dual-channel: 651.52 Permapaper $\begin{aligned} & \text { B, } 5 \mathrm{~cm} \text { (} 50 \mathrm{div} \text {) }) ~\end{aligned}$ 200 ft roll, $512.50 ; 398$ Analog Stylus, $\$ 7.15$; 411.10 Marker Stylus, \$6.65.

Optional accessory equipment: paper take-up 299.300 for single. channel models, \$60; paper take-up $320-300$ for dual.channel models (in portable cases), $\$ 150 ; 320 \mathrm{R}-300$ for dual-channel models (rack mounted). Si75: binding post adapter (to aid in connection of banana plugs, spade lugs, clip leads, bare wires, etc.) : 299-200.C10 for 299A and 322A: \$10: 301-200.C1l for 301 and 321. \$9; 1251-1888 for 320, \$11; extra marker (center margin for dual-channel models), $\$ 76$.

Prices: 299A Single-channel dc recorder,
 $\$ 800$. 301 Single-channel carrier recorder, $\$ 850$

Options:

02: (301 only), add harmonic filter kit, required with 267 and 268 Series transducers
no charge
08: $115 / 230 \mathrm{~V}$ switch, 50 Hz ,
12: 60 Hz speeds, $2.5,25 \mathrm{~mm} / \mathrm{sec}$,
13: 50 Hz speeds, $2.5,25 \mathrm{~mm} / \mathrm{sec}$,
16: 60 Hz speed kit $1: 2$ increase, $10,100 \mathrm{~mm} / \mathrm{sec}$,
17: 50 Hz speed kit $1: 2$ increase, $10,100 \mathrm{~mm} / \mathrm{sec}$,
18: 60 Hz speed kit $5: 1$ reducrion, $1,10 \mathrm{~mm} / \mathrm{sec}$,
19: 50 Hz speed kit $5: 1$ reduction, $1.10 \mathrm{~mm} / \mathrm{sec}$,
20: 60 Hz speed kit $10: 1$ reduction, $0.5 .5 \mathrm{~mm} / \mathrm{sec}$.
21: 50 Hz speed kit $10: 1$ reduction, $0.5 .5 \mathrm{~mm} / \mathrm{sec}$,
22: 60 Hz speed kit $60: 1$ reduction, $5.50 \mathrm{~mm} / \mathrm{min}$,
$\begin{array}{rlr}\text { Prices: } & 320 \text { Two-channej de amplifier-recorder, } & \$ 1950, \\ \text { 321 Two-channel carrier amplifier-recorder, } & \$ 1950 . \\ & \text { 322A Two-channel de coupling recorder. } & \$ 1750 .\end{array}$

Options:

01: (321 only) add harmonic fileer kit, required with 267 and 268 Series transducers,
03: (322A only) zefo suppression,
03: rack mount,
08: 115/230 V switch, 50 Hz ,
12: 60 Hz medical speeds, $2,5,5,25,60 \mathrm{~mm} / 5 e c$.
13: 50 Hz medical speeds, $2.5,5,25,50 \mathrm{~mm} / \mathrm{sec}$,
15: 462-189 extra marker.
16: 60 Hz speed kit $1: 2$ increase, $2,10,40$. $200 \mathrm{~mm} / \mathrm{sec}$,
no charge add $\$ 100$. add $\$ 150$ add $S 2 s$ no charge no charge add $\$ 76$ add $\$ 125$
17: 50 Hz speed kit $1: 2$ increase, 2. 10, 40, $200 \mathrm{~mm} / \mathrm{sec}$.
18: 60 Hz speed kit $2: 1$ reduction, $0.5,2.5,10$. $50 \mathrm{~mm} / \mathrm{sec}$,
19: 50 Hz speed kit 2:1 reduction, 0.5. 2.5. 10. $50 \mathrm{~mm} / \mathrm{sec}$,
20: 60 Hz speed kit $10: 1$ reduction $0.1,0.5,2$, $10 \mathrm{~mm} / \mathrm{sec}$,
21: 50 Hz speed kit $10: 1$ reduction, $0.1,0.9,2$, $10 \mathrm{~mm} / \mathrm{sec}$,
22: 60 Hz speed kit $60: 1$ reduction, 1, 5, 20, $100 \mathrm{~mm} / \mathrm{sec}$,
add $\$ 175$. add $\$ 175$ add $\$ 17 s$ add 5195 add $\$ 195$ add $\$ 175$
23: 50 Hz speed kii 60:1 seduction, 1, 5, 20 $100 \mathrm{~mm} / \mathrm{sec}$,
add 525
add $\$ 50$
add $\$ 50$
add $\$ 150$
add \$1so
add $\$ 13 \$$
add $\$ 135$
add \$135
add \$135.
add $\$ 150$

PREAMPLIFIERS
 Plug-in signal conditioners for recording 8800 Series

8801A low gain dc preamplifier

The 8801 A features calibrated zero suppression canges of ± 10 and ± 100 V with 0.1% resolution, differential inputs and an internal calibration source ($100 \mathrm{mV}, \pm 1 \%$). At a maximum sensitivity of $5 \mathrm{mV} / \mathrm{div}$, it provides stable and precise amplification at any frequency from $d c$ to 10 kHz ; if the output signal is recorded, the response may be limited by the recorder bandwidth. Typical applications include: linear velocity measurements using Hewlett-Packard LVsyn ${ }^{\text {B }}$ transducers; linear displacement measurements with Hewlett-Packard DCDT transducers, analog computer output amplification.

Specifications

Sensitivjty: $5,10,20,50,100,200 \mathrm{mV} /$ div: $0.5,1,2,5 \mathrm{~V} / \mathrm{div}$.

Maximum full scale input: 250 V .
Common mode rejection and tolerance; 48 dB min dc to $150 \mathrm{~Hz} \pm 50 \mathrm{~V}$ on 5 , $10,20 \mathrm{mV} /$ div ranges; $\pm 500 \mathrm{~V}$ max on other ranges for less than $\pm 1 \%$ change in differential sensitivity.

Frequency response (10 dlv to -3 dB): 7701B: dc to 30 Hz . 7702B, 7704B, 7706B: dc co $125 \mathrm{~Hz}, 7708 \mathrm{~B}, 7858 \mathrm{~B}$: dc to 150 Hz .

Rise time ($10 \mathrm{dlv}, 10 \%$ to $90 \%, 4 \%$ ovarshoot): 7701B: 20 msce. 7702 B , 7704B, 7706B: $5 \mathrm{msec} .7708 \mathrm{~B}: 4 \mathrm{msec}$. 7858 B : 3 msec.

Output linearlty (less trace width): All systems: 0.25 div, mechanical zero of stylus within ± 1 div of chart center and calibrated for zero error at center scale and +20 div .

Output nolse (max, less trace width): all systems: $0.2 \mathrm{div} \mathrm{p}-\mathrm{p}$.

Gain stabllity $\left(20^{\circ}\right.$ to $40^{\circ} \mathrm{C}, 103$ to 127 V): $7701 \mathrm{~B}, 7702 \mathrm{~B}: 0.35 \% / 10^{\circ} \mathrm{C}$ 0.6% line. All orher systems: 0.2%, $10^{\circ} \mathrm{C} ; 0.25 \%$ line.

Zero drlft (fess trace width): temperature $\left(20^{\circ}\right.$ to $40^{\circ} \mathrm{C}$) , $7706 \mathrm{~B}, 7708 \mathrm{~B}$: $1.05 \mathrm{div} /$ $10^{\circ} \mathrm{C}$, $0.5 \mathrm{div} / 8 \mathrm{hr}$ constant ambient. All other systems: 1.25 div $10^{\circ} \mathrm{C}, 0.5$ div/ 8 hr , constant ambiens. Line voltage (103 to 127). 7701B: 0.35 div. 7702B: 0.2 div.

s: HP Model 8801A, $\$ 275$.

on 01: bench-iop unit with power ly and portable case, add $\$ 415$.

8802A medlum gain dc preamplifier

The 8802A has a gain five times greater than the 8801 A , and zero suppression ranges of ± 2 and $\pm 20 \mathrm{~V}$ with 0.1% resolution. Except for the common mode tolerance, which is smaller by a factor of five on the high sensitivity positions, the choice between the $8801 A$ and 8802 A depends directly on signal input requirements.

Typical applications include: linear velocity measurements with Hewlett. Packard LVsyn ${ }^{\text {an }}$ and linear displace. ment with Hewlet-Packard DCDT transducers, analog computer output
$7704 \mathrm{~B}, 7706 \mathrm{~B}: \mathrm{dc}$ to $125 \mathrm{~Hz}, 7708 \mathrm{~B}$, 7858B: dc to 150 Hz .
Rise time (10 div, to 10 to $90 \%, 4 \%$ overshoot): $7701 \mathrm{~B}: 20 \mathrm{msec} .7702 \mathrm{~B}$, $7704 \mathrm{~B}, 7706 \mathrm{~B}: 5 \mathrm{msec} .7708 \mathrm{~B}$: 4 msec . 7858 B : 3 msec .
Output Ilnearity (less trace widkh): all systems: 0.25 div; mechanical zero of srylus within 1 div of chast center and calibrated for zero error at center scale and +20 div.
Output noise (max, less trace width): all systems: 0.2 div p.p.

Gain stablity $\left(20^{\circ}\right.$ to $40^{\circ} \mathrm{C}, 103$ to 127 V): 7701B, 7702B: $0.35 \% / 10^{\circ} \mathrm{C}$, 0.6% for line, $7704 \mathrm{~B}, 7706 \mathrm{~B}, 7708 \mathrm{~B}$, 7858B: $0.25 \% / 10^{\circ} \mathrm{C}, 0.23 \%$ for line.

amplification, and motor speed analysis with dc tachometers.

Specifications

Maximum sensitivity; $1 \mathrm{mV} / \mathrm{div}$ (gain 100).

Maximum full scale Input: so V.
Sensltulty ranges: $1,2,5,10,20,50,100$, 200, $500,1000 \mathrm{mV} / \mathrm{div}$.

Input circult: 180 K ohms $(\pm 1 \%)$ re. sistance, cach side balarced to ground, shunted by approx 100 pF .
Common mode rejection and tolerance: 48 dB min dc to $60 \mathrm{~Hz}, 1000 \mathrm{mV} /$ div range; 48 dB min dc to 150 Hz all other ranges; $\pm 12.5 \mathrm{~V}$ on $1,2,5 \mathrm{mV} / \mathrm{div}$ ranges; $\pm 125 \mathrm{~V}$ on $10,20,50 \mathrm{mV} / \mathrm{div}$ ranges; $\pm 500 \mathrm{~V}$ max on other ranges.
Input frequency range: $d c$ to 10 kHz .
Output frequency response (10 div, to -3 dB): $7701 \mathrm{~B}: \mathrm{dc}$ to 30 Hz .7702 B ,

Zero drift (less trace width): temperature (20° to $40^{\circ} \mathrm{C}$) , 7706B, 7708B: $1.05 \mathrm{div} /$ $10^{\circ} \mathrm{C}, 0.5 \mathrm{div} / 8 \mathrm{hrs}$, constant ambient. All other systems: $1.25 \mathrm{div} / 10^{\circ} \mathrm{C}_{3} 0.5$ div/8 hrs, constant ambient. Line voltage (103 to 127 V). 7701B; 0.35 div. 7702B: 0.20 div .

Callbration: $20 \mathrm{mV} \pm 1 \%$, internal.
Price: HP Model 8802A, $\$ 325$.
Option OI: bench.top unit with power supply and portable case, add $\$ 4$ ts.

8803A low level preamplifier

The 8803 A , with a maximum sensitivity of $1 \mu \mathrm{~V} / \mathrm{div}$ (at a gain of 100 ,000), accommodates a much wider range of signal amplitudes than the 8801 A or 8802 A . The 8803 A features a fully guarded input circuit, operating in conjunction with the floating input
capability for a common mode rejection as high as 100 dB at dc. In addition, the input circuit will tolerate a common mode voltage as high as ± 300 V de at any position of the range control. Twelve calibrated zero suppression ranges, each with 0.1% resolution, provide full scale suppression of ± 1 ± 10 and $\pm 100 \mathrm{mV}$ when attenuator is in $\mu \mathrm{V}$ ranges and volts when attenuator is in mV ranges.

Typical uses of the 8803 A include: dc strain gage measurements, analysis of small variations in a large $\mathrm{d} c$ signal, such as the output of a regulated power supply.

Rise tlme ($10 \mathrm{div}, 10 \%$ to 90%): 7701B: $20 \mathrm{rasec}(4 \%$ overshoot). $7702 \mathrm{~B}, 7704 \mathrm{~B}$, 7706B: 7 msec (5% overshoot). 77088: 6.4 msec (approx 6% overshoot). 7858 B : approx 5.5 msec (4% overshoor).

Output llnearity (less trace width): all systems: $1 \mu \mathrm{~V}$ range, 0.35 div; other ranges 0.25 div, mechanical zero of stylus within $=1$ div of chart center and calibrated for zero error at center seale and +20 div.

Output nolse (max, less trace width): all systems: 0.1 div P-P min gain.

Gain stability: temperature (20° to $40^{\circ} \mathrm{C}$). $7701 \mathrm{~B}, 7702 \mathrm{~B}: ~ 0.35 \% / 10^{\circ} \mathrm{C}$. All other systems: $0.2 \% / 10^{\circ} \mathrm{C}$. Line voltage (103 to 127 V). $7701 \mathrm{~B}, 7702 \mathrm{~B}: 0.75 \%$, 1 to

Specifications

Sensltivity ranges: $1,2,5,10,20,50,100$, $200,500,1000,2000,5000 \mu \mathrm{~V} /$ div; 10 , $20,50,100,200,500,1000,2000,5000$ $\mathrm{mV} / \mathrm{div}$; max error $\pm 2 \%$.
Maxlmum full scale input: 250 V .
Input circult: 1 M ohm min on $\mu \mathrm{V}$ ranges; independent of gain; s M ohm on mV ranges; floating and guarded.
Common mode rejection and tolerance: $\mu \vee$ range, max source unbal of 1 X ohms; 160 dB min at $\mathrm{dc}, 120 \mathrm{~dB}$ min at 60 Hz ; mV range, max source unbal of 500 K ohms: 100 dB min at $\mathrm{dc}, 60 \mathrm{~dB}$ at 60 Hz de; 300 V peak; $60 \mathrm{~Hz} ; 1 \mu \mathrm{~V} / \mathrm{div}, 10$ V rms: $2 \mu \mathrm{~V} / \mathrm{dir}, 20 \mathrm{~V} \mathrm{rms}$; $\mathrm{s} \mu \mathrm{V} / \mathrm{div}$, 50 V rms; $10 \mu \mathrm{~V} / \mathrm{div}$ and $10 \mathrm{mV} /$ div, $100 \mathrm{~V} \mathrm{rms} ; 20 \mu \mathrm{~V}$ to $5000 \mu \mathrm{~V} / \mathrm{div}$ and 20 mV to $5000 \mathrm{mV} / \mathrm{div}, 220 \mathrm{~V} \mathrm{~ms}$.
Input frequency range: de to 110 Hz .
Output frequency ($10 \mathrm{div}, \mathrm{dc}$ to -3 dB): $7701 \mathrm{~B}: 30 \mathrm{~Hz} .7702 \mathrm{~B}, 7704 \mathrm{~B}, 7706 \mathrm{~B}$: $90 \mathrm{~Hz}, 7708 \mathrm{~B}, 7858 \mathrm{~B}: 100 \mathrm{~Hz}$.
$5 \mathrm{mV} / \mathrm{div}$; 0.35% all other ranges. All other systems: 0.4% on 1 to $5 \mathrm{mV} / \mathrm{div}$ zanges, 0.2% on all other ranges.
Zero drlitt (less trace width): temperature (20° to $40^{\circ} \mathrm{C}$). $7701 \mathrm{~B}, 7702 \mathrm{~B}, 7704 \mathrm{~B}$: $\mu \mathrm{V}$ range: $1 \mu \mathrm{~V} / 10^{\circ} \mathrm{C}$ referred to input. $\pm 0.63 \mathrm{div} / 10^{\circ} \mathrm{C}$ for foll seale output. $77068,7708 \mathrm{~B}, 78588: \mu \mathrm{V}$ range: $1 \mu \mathrm{~V} /$ $10^{\circ} \mathrm{C}$ referred to input, $\pm 0.45 \mathrm{div} / 10^{\circ} \mathrm{C}$ for fall scale outpur.
Callbration: $200 \mu \mathrm{~V} \pm 1 \%$ internal on $\mu \mathrm{V} /$ div range; $200 \mathrm{mV} \pm 1 \%$ on $\mathrm{mV} / \mathrm{div}$ range; referred to input.
Price: HP Model 8803A, $\$ 695$.
Option 01: bench top unit with power suppiy and portable case, add $\$ 505$.

8805A carrier preamplifier

The 8805 A measures any physical variable that can be coupled to suitable carrier excited transducers, i.e., strain gage bridges, differential transformer transducers, and resistance or reactance
transducers. Typical applications include measuring linear displacement with Hewlett-Packard Linearsyn ${ }^{(3)}$ transducers, force with Hewlett-Packard FTA transducers, temperature with thermistors, or pressures in liquids or gases (HP 267, 268, 270, 1280 and 1281 Series Transducers). An oscillator in the recording system provides an excitation voltage for the external transducer, eliminating the need for external excitation circuitry. Calibrated zero suppression permits analyzing small signals when large static loads are present on the transducer. An internal switch is provided for full or half bridge use.

Specifications

Maximum sensitivity: $10 \mu \mathrm{~V} \mathrm{~ms} /$ div (gain, 10,000 rms ac to dc).
Maximum full scale Input: 100 mV rms.
Sensitivity range: $X 1,2,5,10,20,50,100$ and 200 ; accuracy $\pm 2 \%$.
Inout circult: approx 10 K ohms; erans. ducer load impedance connected to excita. tion terminals 100 ohms min; (ransducer impedance connected to signal input terminals $; \mathrm{K}$ ohms max.

Quadrature rejection and tolerance: greater than 40 dB ; tolerance: efror less than $\pm 2 \%$ full scale when quadrature voltage is equal to twice inphase signal required for full scale output.

Zero suppression: 0 to 100% of transducer full load rating.
Excltation frequency: 2400 Hz carries is standard; frequencies from 440 to 4800 Hz available on request.
Output frequency response (10 dlv , to -3 dB): 7701 B : de to 30 Hz .7702 B , $7704 \mathrm{~B}, 7706 \mathrm{~B}$: de to $110 \mathrm{~Hz}, 7708 \mathrm{~B}: \mathrm{dc}$ $10120 \mathrm{~Hz}, 7898 \mathrm{~B}$: dc to greater than 110 Hz .
Rise time (10 div, $10.90 \%, 4 \%$ over. shoot): 7701B: $20 \mathrm{msec}, 7702 \mathrm{~B}, 7704 \mathrm{~B}$, 7706B: $5.6 \mathrm{msec} .7708 \mathrm{~B}: 4.75 \mathrm{msec}$. 78988: approx 4 msec.
Output Itnearity (less trace width): all systems: 0.4 div, mechanical zero of stylus within ± 1 div of chart center and cali. brated for zero error at center scale and +20 div.
Output noise (max, less trace width): all systems: approx 0.25 div.

Gain stabisity $\left(20^{\circ}\right.$ to $40^{\circ} \mathrm{C}, 103$ to 127 V): $7701 \mathrm{~B}, 7702 \mathrm{~B}: 0.45 \% / 10^{\circ} \mathrm{C}$; 0.75% line. All other systems: $0.3 \% /$ $10^{\circ} \mathrm{C} ; 0.4 \%$ line.

Zero drift (less trace width): 7701B, $7702 \mathrm{~B}: 0.45$ div $/ 10^{\circ} \mathrm{C}$; 0.35 div, 7704 B : $0.45 \mathrm{div} / 10^{\circ} \mathrm{C}: 0.25 \mathrm{div}$.
Calibration; $2 \% \pm 0.02 \%$ of transducer full scale output.

Price: HP Model 8805A. \$400.
Option O1: bench-top unit with power supply and portable case, add $\$ 485$.
Option 02: harmonic filter kit (required with 267 or 268 transducers), add $\$ 30$.

8806 B phase sensitive demodulator

The 8806 B provides a do output proportional to the mms value of the input signal that is in phase or 180° out of phase with respect to a reference voltage. For maximum fexibility, the phase of the reference voltage is varied by calibrated plug-in phase shift networks for $60 \mathrm{~Hz}, 400 \mathrm{~Hz}$, or 5000 Hz operation. An additional plug-in covers 6 frequency bands from 50 Hz to 40 kHz with continuous uncalibrated 0° to 360° phase shift. Other features include transformer isolation of both sig. nal and reference voltage input circuits, and a maximum calibrated sensitivity of $0.5 \mathrm{mV} \mathrm{cms} / \mathrm{div}$, corresponding to a gain of 200 rms ac to dc .

Typical applications include: error signal measurements; servo, synchro, gyro and resolver system response; and amplitude and phase response.

Specifications

Sensitivity ranges: $0.5,1,2,5,10,20,50$, 100,200 and 500 mV rms/div. Reference roltage: 3.133 V ms in two overlapping ranges, internal range swith.
Maximum full scale Input: 25 V ims.
Input circults: signal input: cransformer isolated, floating and guarded. resistance approx 1 M ohm. Reference input: differential, transformer coupied; resistance approx 300 K ohms each side to ground: may be used single-ended.
Common mode rejection and tolerance: greater than 40 dB up to 10 kHz ; 500 V rms, max. Quadrature tolerance: equal to amplitude of a full scale inphase signal.
Reference frequency range: 50 Hz to 40 kHz in six bands with rariable frequency plug.in; fixed frequency calibrated plug. ins $60 \mathrm{~Hz}, 400 \mathrm{~Hz}, 5 \mathrm{kHz}$.
Output frequency response and rise time (10 dlv , to $-3 \mathrm{~dB} ; 10$ to $80 \%, 4 \%$ overshoot with fixed frequency plug. lns):

7701B: $\mathrm{f}_{\mathrm{c}}=60 \mathrm{~Hz},-3 \mathrm{~dB}$ at $10 \mathrm{~Hz}, 54$ msec; $\mathfrak{f}_{c}=400 \mathrm{~Hz}, 27 \mathrm{~Hz}, 23$ nisec; $\mathrm{f}_{\mathrm{c}}=5 \mathrm{kHz}, 30 \mathrm{~Hz}, 20$ msec.
$7702 \mathrm{~B}, 7704 \mathrm{~B}, 7706 \mathrm{~B}: \mathrm{K}_{\mathrm{c}}=60 \mathrm{~Hz} .-3$ $d B$ at $12 \mathrm{~Hz}, 50 \mathrm{msec}: \mathrm{F}_{\mathrm{G}}=400 \mathrm{~Hz}, 65$ $\mathrm{Hz}, 9$ msec; $f_{6}=5 \mathrm{kHz}, 125 \mathrm{~Hz}, 5$ msec.
7708B: $\mathrm{f}_{4}=60 \mathrm{~Hz},-3 \mathrm{~dB}$ at $12 \mathrm{~Hz}, 50$ $\mathrm{msec} ; \mathrm{f}_{\mathrm{c}}=400 \mathrm{~Hz}, 70 \mathrm{~Hz} .85 \mathrm{msec}$; $\mathrm{f}_{\mathrm{c}}=5 \mathrm{kHz}, 150 \mathrm{~Hz}, 4 \mathrm{msec}$.
7858B: $\mathrm{f},=60 \mathrm{~Hz},-3 \mathrm{~dB}$ at $12 \mathrm{~Hz}, 50$ msec; $f_{c}=-100 \mathrm{~Hz}, 71 \mathrm{~Hz}, 8 \mathrm{msec}:$ $f_{c}=5 \mathrm{kHz} 160 \mathrm{~Hz}, 3 \mathrm{msec}$.
Output linearity (less trace width): all systems: 0.4 div, mechanical zero of srylus within ± 1 div of chati center and calibrated for zero error at center scale and +20 div.
Galn stability $\left(20^{\circ}\right.$ to $40^{\circ} \mathrm{C}, 103$ to $127 \mathrm{~V}): 7701 \mathrm{~B}, 7702 \mathrm{~B}: 0.5 \% / 10^{\circ} \mathrm{C}$ i
put proportional to the average value of a full wave rectified ac input signal. Range sensitivity is calibrated in terms of ems for sinusoidal waveforms. The input circuit is transformer coupled, floating and guarded for high common mode rejection, allowing measurements over a wide range of input signal con. ditions. Calibrated zero suppression and variable scale expansion permit clear analysis of small excursions in large input signals.
Typical applications inclucle: single and polyphase line voltage and current monitoring, motor starting current analysis, and fading analysis on short wave

0.6% line volis. All other systems: $0.3 \% /$ $10^{\circ} \mathrm{C} ; 0.25 \%$ line volts.
Zero drift (20° to $40^{\circ} \mathrm{C}, 103$ to 127 V): $7701 \mathrm{~B}, 7702 \mathrm{~B}: 0.5 \mathrm{div} / 10 \mathrm{C} ; 0.3 \mathrm{div}$. 77048; 0.5 div $10^{\circ} \mathrm{C}, 0.25$ div. All other systems: $0.3 \mathrm{div} / 10^{\circ} \mathrm{C} ; 0.25 \mathrm{div}$.
Callbration: 1 V rims internal at carrier fre quency, referred to input; $\pm 1 \%, 50 \mathrm{~Hz}$ to $10 \mathrm{kHz} ; \pm 2 \%, 10$ to $20 \mathrm{kHz} ; \pm 3 \%$, 20 to 40 kHz .

Price: HP Model 8806B, \$495.
Option 01: bench-top unit with power supply and portable case, add $\$ 415$.
Option 02: uncalibrated phase shifter plug-in, 50 Hz to 40 kHz , add $\$ 175$.
Option 03: calibrated phase shifter plug. in, 60 Hz , add $\$ 125$.
Option 04: calibrated phase shifter, plugin, 400 Hz , add $\$ 125$.
Option 05; calibrated phase shifer. 5 kHz , add $\$ 125$.

8807A ac-dc converter

The 8807 A provides a dc voltage out-
communication links using heterodyne
frequency converters.

Specifications

Maximum calibrated sensitivily: 1 mV rms/div with X 20 scale expansion; corresponds to rms ac-to-de gain of 100 .
Sensitivity ranges: $0.02,0.05,0.1,0.2$, $0.5,1,2,5,10 \mathrm{Vms} / \mathrm{div}$.
Maximum full scale input: 500 V rms.
Input circuit: approx i M ohm resistance shonted by 10 pF and suray cable capacitance; foating and guarded.
Common mode rejection and tolerance: 60 dB min at 60 Hz ; 40 dB min at 400 Hz , up to 10 K source unbalance; ± 900 V peak.
Zero suppression: up to 100% of full scale on any range.
Input frequency range: standard model: 330 Hz to 100 kHz ; Option 01: 50 Hz to 100 kHz .
Output frequency response (10 div, to $-3 \mathrm{~dB})$: $7701 \mathrm{~B}: 27 \mathrm{~Hz}$; Option 01:?

Hz. All other systems: 54 Hz ; Option 01: 9 Hz .
Rise time (10 div to 90%, approx 10% with overshoot): 7701B: 22 msec. 7702B, $7704 \mathrm{~B}, 7706 \mathrm{~B}, 7858 \mathrm{~B}: 11.2 \mathrm{msec} .7708 \mathrm{~B}:$ 10.8 msec .

Output linearity (less trace width): all systems: 0.55 div +0.05 div x scale expansion 60 Izz to 5 kHz , mechanical zero of stylus within ± 1 div of chart center and calibrated for zero error at lower and upper ends of printed coordinates.
Galn stability $\left(20^{\circ}\right.$ to $40^{\circ} \mathrm{C}, 103$ to 127 V): 7701B, 7702B: $0.2 \% / 10^{\circ} \mathrm{C} \times$ scale expansion $+0.45 \% / 10^{\circ} \mathrm{C}$: line volts $0.24 \% \times$ scale expansion $+0.75 \%$. All other systerns: $0.2 \% / 10^{\circ} \mathrm{C} \times$ scale expansion $+0.3 \% / 10^{\circ} \mathrm{C}$; line volts 0.24% x scale expansion $+0.4 \%$.

1 V ras sine wave input voltage. Features a 100 dB span range, also a 50 dB span for greater signal resolution. Full span preamplifier output is either $\pm 2.5 \mathrm{~V}$ or 0 to +5 V .

Typical applications include: analysis of wide ranges of signal amplitude on 100 dB linear scale (5 Hz to 100 kHz), analysis of RF and sonar radiation patterns, and use with wide band vibration and acoustic transducers.

Specifications

Maximum calibrated sensltivity: $100 \mu \mathrm{~V}$ rms sine wave corresponds to bottom scale output; -80 dB below 1 V .
Maximum fuil scale input: 320 V ms.

Zero drift (less trace width): temperature $\left(20^{\circ}\right.$ to $\left.40^{\circ} \mathrm{C}\right) .7701 \mathrm{~B}, 7702 \mathrm{~B}, 7704 \mathrm{~B}$: $0.3 \mathrm{div} / 10^{\circ} \mathrm{C} x$ scale expansion +0.15 div $/ 10^{\circ} \mathrm{C}$. All other systems: $0.03 \mathrm{div} /$ $10^{\circ} \mathrm{C}$ x scale expansion $+0.15 \mathrm{div} / 10^{\circ} \mathrm{C}$. Line volts (103 to 127 V), 7701B, 7702B: 0.005 div x scale expansion +0.3 div. All other systems: 0.005 div x seale expansion +0.1 div.
Price: HP Model 8807A, $\$ 700$.
Option 01: 60 Hz filter for 30 Hz to 100 kHz signal frequencies, no charge when substituted.
Option 02: de plugin, no charge when substiruted.
Optlon 03: bench top unit with powes supply and portable case, add $\$ 415$.

8808 A log level preamplifier

The 8808A compression and full wave detection circuits express the amplitude of an ac input signal in terms of decibels, with zeco $d B$ taken as a

Senslitivity ranges: so dB span: bottom scale at $-80,-70,-60,-50,-40,-30$, $-20,-10$, and 0 dB below i V. 100 dB span: bottom scale at $\sim 80,-70,-60$, and -50 dB below 1 V .
Input circuit: single-ended, 1 M ohm min resistance.
Input frequancy ranga: 5 Hz to 100 kHz for less than -3 dB from midband level on slow response range; 900 Hz to 100 kHz on fast range.
Output; departure from log characteristics (less trace widh): 7701B: $50 \mathrm{~dB}: 1.25$ div; $100 \mathrm{~dB}: 1.0 \mathrm{div}$, mechanical zero of stylus within ± 1 div of chart center and calibrated for zero error at lower and upper ends of printed coordinates. 7702B, 7704B: $50 \mathrm{~dB}: 1.2$ div; 100 dB : same as 7701B. All other systems: $50 \mathrm{~dB}: 1.5 \mathrm{div}$; 100 dB : same as 7701 B .
Rise time ($10 \mathrm{div}, 10$ to $90 \%, 4 \%$ over. shoot): 7701B: fast: 28 msec ; slow: 2 sec . All other systems: fast: 20.5 msec ; slow: 2 sec.

Gain stablity $\left(20^{\circ}\right.$ to $40^{\circ} \mathrm{C}, 103$ to 127 V : $7701 \mathrm{~B}, 7702 \mathrm{~B}: 50 \mathrm{~dB}: 2.13 \mathrm{~dB} /$ $10^{\circ} \mathrm{C}, 0.75 \mathrm{~dB} ; 100 \mathrm{~dB}: 2.25 \mathrm{~dB} / 10^{\circ} \mathrm{C}$, 1.0 dB . All other systems: $50 \mathrm{~dB}: 2.05$ $\mathrm{dB} / 10^{\circ} \mathrm{C}, 0.58 \mathrm{~dB}$ from 103 to 127 V : $100 \mathrm{~dB}: 2.1 \mathrm{~dB} / 10^{a} \mathrm{C}, 0.65 \mathrm{~dB}$ from 103 to 127 V .
Calibration: internal $-80,-30$ and +20 dB V ; referced to 1 V .
Price: HP Model 8808A, $\$ 625$.
Option 01: bench-top unit with porver supply and portable case, add \$41s.

8809A signal coupler

The 8809 A is a solid state preamplifier with switch-selected high or low input impedance and variable gain for signal coupling to the driver amplifier input of Hewlett-Packard direct writing (thermal or ink) recorders in single or multichannel systems.

Specifications

Maximum calibrated sensitivity: $30 \mathrm{mV} /$ div (gain, 3.33).
Sensitluity ranges: continuously adjustable from 20 to $50 \mathrm{mV} / \mathrm{div}$.

Maximum full scale input: 0 to $\pm 2.5 \mathrm{~V}$.
input clreuit: switch selected 1.5 K ohms $\pm 2 \%$ or 100 K ohms min, incremental; single-ended (floating in 7701B only).
Common mode rejection and tolerance: 50,000:1 ar $d c ;+50 \mathrm{~V}$ max (7701 B only).
Input frequency range: dc to 5 kHz .
Output IInearlty (less trace width): all systems: 0.4 div, mechanical zero of srylus within ± 1 div of chart center and calibrated for zero error at center scale and +20 div.

Rise tima ($10 \mathrm{dlv}, 10-90 \%, 4 \%$ ovar5hoot): 77018: $20 \mathrm{msec} .7702 \mathrm{~B}, 7704 \mathrm{~B}$, 7706B: $5 \mathrm{msec} .7708 \mathrm{~B}: 4 \mathrm{msec} .7858 \mathrm{~B}:$; msec.
Gain stablity $\left(20^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}, 103$ to 127 V : $7701 \mathrm{~B}, 7702 \mathrm{~B}: 0.75 \% / 10^{\circ} \mathrm{C}$; line volis 1%. All other systems: 0.6 ; $10^{\circ} \mathrm{C}$; line volts 0.65%.
Zero drift (20° to $40^{\circ} \mathrm{C}, 103$ to 127 V): $7701 \mathrm{~B}, 7702 \mathrm{~B}: 0.4 \mathrm{div} / 10^{\circ} \mathrm{C}$ a: $30 \mathrm{mV} /$ div; 0.5 div. $7704 \mathrm{~B}: 0.4 \mathrm{div} / 10^{\circ} \mathrm{C}$ at 30 $\mathrm{mV} /$ div; 0.5 div. All other systems: 0.2 $\mathrm{div} / 10^{\circ} \mathrm{C}$ at $30 \mathrm{mV} / \mathrm{div} ; 0.3$ div.

Calibration: $600 \mathrm{mV} \pm 2 \%$, insernal, referred to input.
Price: HP Model 8809A, $\$ 1 \mathrm{~L} 0$.
Option 01: bench top unit with power supply and portable case, add \$41s.

Low gain 8-channel DC amplifier

The excellent gain stability and low drift of the 8820 A permit a wide range of de measurements. The eight independent channels of amplification on one common fronr panel add convenience and economy.
The amplifiec accepts single-ended in. puts only (a common input ground may be isolated from the chassis when the recorder does not provide chassis return).
Each amplifier channel contains a nine position attenuator switch with: seven sensitivity range positions, an OFF position to check the base line while an input signal is connected and a CAL position to provide individual channel calibration test voltages. (A common CAL switch provides a base line test and a calibra. tion test voltage for all channels simultaneously.)
Each channel also has: a polarity reversal switch for upscale deflection with an input signal of either polarity, a sensitivity control (varies sensirivity from approximately 0.5 to 1.5 times value marked on panel) and a position control

to place the baseline at any location on the recording channel.
Price: HP Model 8820A, $\$ 1150$.
Option 02: Unit channel reduction, de. ducr $\$ 15$.

Medium gain 8-channel DC amplifier

The Model 8821A is a direct coupled, differential amplifier using active guard. ing techniques to yield excellent common mode rejection. No external dc path between the ground reference of the input
signal and the 8821 A output is required. This is an advantage normally associated only with amplifers having a truly foating input.

Matched dual FET transistors in the input stage provide low thermal drift and permit use with signal sources having very high internal impedance. The input circuit is protected against overloads of up to 250 volts even on the most sensitive range.
Price: HP Model 8821A, $\$ 2500$.
Option 02: Unit channel reduction, deduct $\$ 100$.

Recording system specifications using 8820A, 8821A Multichannel Amplifiers

4t20d Low diln mutuchannel emplifer			Bazia Madium gals multiohannof amplifiar	
Byztora	77214, 7729A, 7878A	77818	7727A, 7728A, 78182	73814
Sensilivity	$005 \mathrm{~V} / \mathrm{J}$ (8820A gain 2)	0.1 V/div (8820 A galn spprox 2)	$\begin{aligned} & \operatorname{Jin} / \mathrm{dly} \\ & (982: \mathrm{A} \operatorname{ga\|n} 100) \end{aligned}$	$\begin{aligned} & 2 \mathrm{mV} / \mathrm{div} \\ & \left\langle 882 \mathrm{~S}_{\mathrm{A}} \text { ssin sposiox } 100\right. \text {) } \end{aligned}$
Sensitulty ranges	.05. 0.1. 0.2. 05, 1.2, 5 vallis div	$\begin{aligned} & 0,1,0,2,0,4,1,2,4 \\ & 10 \text { vails/d, } \end{aligned}$	1.2,5,10. 20, 50, 100, 200, 500, 1000, 2000, 5000 mV idiv	$002, .004, .01, .02, .04,0.1,0.2$ $0.4,1,2,4,10 \mathrm{volts} / \mathrm{div}$
$\begin{aligned} & \text { Zero dridt (max) } \\ & \text { Temp } \left.200^{\circ}-40^{\circ} \mathrm{C}\right) \\ & \text { Line voltaje (115 volls } \\ & =10 \%, 60 \mathrm{~Hz}) \end{aligned}$	Less than $0.5 \% / 10^{\circ} \mathrm{C}$ Less than $\pm 02 \mathrm{div}$ (103 to 127V)	Less than 0.25 div $/ 10^{\circ} \mathrm{C}$ (0 to $10^{\circ} \mathrm{C}$) Less than 0.1 div (103 to 127 V)	Less lhan $0.5 \% / 10^{\circ} \mathrm{C}$ Less then $=0.2 \mathrm{div}$ (103 to 127 V)	$\begin{aligned} & \text { Less than } 0.25 \text { div } / 10^{\circ} \mathrm{C} \\ & \left(00^{0} 40^{\circ} \mathrm{C}\right) \\ & \text { bess than of div } \\ & (103 \text { to } 1.27 \mathrm{~V}) \end{aligned}$
Gain stabllity Temo ($20^{\circ} .40^{\circ} \mathrm{C}$) Line vallage (115 volts $=10 \% .60 \mathrm{H}_{2}$	Less than $0.5 \% \cdot 10^{\circ} \mathrm{C}$ Less than w 0.15% (103 to 127 V)	$\begin{aligned} & \text { Less Ihan } 0.5 \% / 10^{\circ} \mathrm{C} \\ & \left(0 \mathrm{O} 40^{\circ} \mathrm{C}\right) \\ & \text { Less hhan } 0.25 \% \\ & (103 \text { to } 127 \mathrm{~V}) \end{aligned}$	Less then $0.5 \% / 10^{\circ} \mathrm{C}$ Less than mo.15\% (103 to 127 V)	$\begin{aligned} & \text { Less than } 0.5 \% / 10^{\circ} \mathrm{C} \\ & \left(01040^{\circ} \mathrm{C}\right) \\ & (\text { ess } 7 \mathrm{man} 0.25 \% \\ & (103 \text { to } 127 \mathrm{~V}) \end{aligned}$
Output Linearily	= 0.25 divafler calibratling at chast cenler and +20 div	$m 0.2$ diu typically $=1$ divafler eslibraling al charl center and +10 d .v	$=025$ divaflor calioraling at chart cenisr and +20 div	$\begin{aligned} & =0.2 \text { olv; typically } \pm 0.1 \text { div, altea } \\ & \text { calibraling it chare center and } \\ & +10 \text { div } \end{aligned}$
Internal calibralion circuit	dual calibration, IV relerence in each channel. plus a IV cammon relarence ior a ll channeis. Csl accuracy $=1 \%$	dual calibralion: 1 V relerence in asch channal. plus a 1 V common reference for all chanmels. Cal accuacy $=1 \%$.	$=0,02 \vee=10$ on $51 x$ mosl sensilive ranges, $+2.0 \mathrm{~V}=2$ on six last semsitive ranges	$=0.02 \mathrm{~V}=1 \%$ on six most sensitlue ranges $+2.0 \mathrm{~V}=2 \%$ on six lase sensitive sanges
Frequency response ($10 \mathrm{~d} \mathrm{lv} \mathrm{pp}, \mathrm{dt}$ to -3 dB)	$\begin{aligned} & 7727 \mathrm{~A}: 125 \mathrm{~Hz} \\ & 7729 \mathrm{~A}: 150 \mathrm{~Hz} \\ & 7878 \mathrm{~A}: 150 \mathrm{~Hz} \end{aligned}$	125 Hy	$\begin{aligned} & \text { 7127A: }\left\{\begin{array}{l} 25 \mathrm{~Hz} \\ 7729 \mathrm{~A}: \\ 150 \mathrm{~Hz} \\ 7878 \mathrm{~A}: \\ 150 \mathrm{~Hz} \end{array}\right. \end{aligned}$	125 Hz
Fise time (10 div, 10% 1090%) 4% overshool	7227A, 5 msec 7729A: 4 msec 7878A- 3 msec	4 m8ec	$\begin{aligned} & 7727 \mathrm{~A}: 5 \mathrm{msec} \\ & 7729 \mathrm{~A}: 4 \mathrm{msec} \\ & 7898 \mathrm{~A}: 3 \mathrm{msec} \end{aligned}$	4 msec
Input circuil	Single ended to ground. I M ohm =5\% allianges shunted by approx 150 pF	Single ended to ground. 1 Mohm =5\% all ranges shunled by approx 150 D	9 IM ohms froaled and guarded, 1 to $50 \mathrm{mv} /$ div ranges: 4.5 M ohms each side to ground (differenlial), 100 to 5000 mv /div ranges; may be used single-anded on all ranges	9 M ohms floated and guarded 1 to $50 \mathrm{mV} / \mathrm{diy}$ ranges; 4.5 m ohms each side to ground (difierentlal). 100 to $5000 \mathrm{mv} /$ div ranges; may be used singla-anded on all ranges
Common mode rejection intio			100 dB at $60 \mathrm{~Hz}, \mathrm{imV} / \mathrm{div}$ sensitivity, 1 K ohm sourte unbalance: 68 dB a! $60 \mathrm{~Hz}, 50105000 \mathrm{mV} / \mathrm{div} .1 \mathrm{Kohm}$ source unbalance	100 o B al 60 mz , $1 \mathrm{mV} /$ div sensitivity. 1 K ohm source untalance: 66 dB at $60 \mathrm{~Hz}, 50$ to $5000 \mathrm{mv} / \mathrm{div}, 1 \mathrm{Kohm}$ source unbalance

Model 7701B is a single-channel, all solid-state, portable recorder that accepts any one of the versatile, interchangeable 8800 Series Plug-in Preamplifiers. Frequency response is dc to less than 3 dB down at 30 Hz , independent of amplitude. Featuring a 100 mm wide recording channel, the 7701 B provides over twice the resolution offered by standard 50 mm wide channel recorders.

A high torque, low impedance galvanometer with velocity
feedback moves the stylus over a knife-edge platen producing true rectilinear traces which can be correlated with timing marks in the chart margin. Trace accuracy is achieved by electrical galvanometer damping; thermal drift is minimized by current feedback. Adjustable electrical limiting protects the stylus and prevents overload. Over 2000 hours of continuous recording at $0.5 \mathrm{~mm} / \mathrm{min}$ is possible without changing the chart roll.

Specifications

(See pages 160-163 for available 8800 Series Plug.in Preamplifers.)

Chart speeds: four speeds standard ($0.5,2.5,10$ and $50 \mathrm{~mm} / \mathrm{sec}$), mechanically shifted and selected by (ront panel pushbutions; four additional speeds ($0.5,2.5,10$ and $50 \mathrm{~mm} / \mathrm{min}$) can be added as Option 03 for a total of 8 speeds.
Event marker: right margin, manually operated from front panel; 1 sec or 1 min plug-in timer and one additional event marker optional.

Front panel controls: styius hear adjust, pushbution speed selectors, local-remote switch, cimer-off-marker switch, $\mathrm{mm} / \mathrm{sec} \cdot \mathrm{mm} / \mathrm{min}$ switch, power switch and galvanometer damping (screwdriver ad. just).
Paper: 200 ft coll of 10 cm wide Permapaper* (651.217); time lines every 5 mm , amplitude lines etery 2 mm (50 div full scale).
Paper take-up: automatic paper take-up standard (concealed in recorder).
Powar: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 105$ warts; $115 / 230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$, 100 watts; (Option 08).
Dimensions: 7701B, in carrying case: $133 / 4^{\prime \prime}$ high, $91 / 4^{\prime \prime}$ wide, $181 / 2^{\prime \prime}$ deep $(349 \times 247 \times 460 \mathrm{~mm})$; without case: $101 / 2^{\prime \prime}$ high, $811 / 10^{\prime \prime}$ wide, $171 / 2^{\prime \prime}$ deep ($269 \times 221 \times 445 \mathrm{~mm}$) ; rack mounting adapter (mounts 2 recorders) : $14^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $171 / 2^{\prime \prime}$ deep (396 x $483 \times 445 \mathrm{~mm}$).

Welght: 7701 B in carrying case, including typical 8800 Series Preamplifer weight: net $321 / 2 \mathrm{lbs}(14,5 \mathrm{~kg}$), shipping $42 \mathrm{lbs}(18,9$ kg) ; rack mounting adapter: $n \in t 20 \mathrm{lbs}(9,1 \mathrm{~kg})$, shipping 30 lbs (13.5 kg)

Accessories: consult local Hewlett-Packard sales office for quantiry prices; 1 -channel, 10 cm (50 div) 200 ft roll Permapaper ${ }^{(8)}$ (651-217), \$14; 412-4 Analog Stylus, S15; 411.9 Marker Stylus. $\$ 9$.
Prlces: Model 7701B, less preamplifier, $\$ 1490$; Option $01: 440 \mathrm{~Hz}$ oscillator card required with 8803A Preampiifier, (allors use of any 8800 Series Preamplifer except 8805 A), add $\$ 60$; Option 02 : 2400 Hz oscillator card required with 8805 A , (allows use of any 8800 Series Preamplifer except $880 j$ A), add $\$ 60$; (Note: Op. tions 01 and 02 cannot be taken on same instrument.) Option 03: $\mathrm{mm} / \mathrm{min}$ Speed Reduction Kit $(60: 1,60 \mathrm{~Hz})$, add $\$ 110$; Option 04: Left Erent Marker, add \$45; Option 05: one minute timer, add $\$ 30$; Option 06: one second timer, add $\$ 20$: Option 07: less Portable Case, deduct $\$ 90$; Option 08: $115 / 230 \mathrm{~V}$ switch, 50 Hz operation, add s50: Option 15: one minute timer, 50 Hz unit, add \$30; Option 16: one second timar, 50 Hz unit, add $\$ 25$.

Note: add price of preamplifier to the above basic assembly prices for complete sustem cost. See pages 160.163 for specifications and prices.

OSCILLOGAAPHIC RECORDERS

DUAL-CHANNEL RECORDER
 Mount in cart, cabinet or portable case Model 7702B

Model 77028 is a 2 -channel thermal recorder using any pair of the eight versatile 8800 Preamplifiers as signal conditioners. Preamplifier units include: low, medium and high gain dc; ac-dc converter; phase sensitive demodulator; carrier; general purpose dc; and a logarithmic unit. For accurate chart time correlation, a marker for one second is standard with a one minute timer added as an option. Remote marking, which may be used for information coding, is standard. The reliable heated stylus recording technique provides
sharp, high resolution images that will not fade or smudge on plastic-coated Permapaper ${ }^{(1)}$. Frequency response is de to less than 3 dB down at 125 Hz for a 10 div pp chart deflection. Response time (damping set for 4% overshoot) is less than 5 msec for 10% to 90% of a 10 div pp square wave. The power amplifier features adjustable electrical limiting over a span from ± 12 div to beyond the edge of the chart coordinates to prevent overload and to protect the styli.

Specifications

(See pages $160-163$ for performance specifications with 8800 Series Plug-in Preampligiers.)

Chart speeds: four speeds standard ($1,5,20$ and $100 \mathrm{~mm} / \mathrm{sec}$) mechanically shifted and selected by front panel pushbuttons; other speed combinations available as options; provision is made for optional remote control of chare drive from suitable 115 V ac source.
Timer-off-marker: separate stylus marks edge of chare with 1 sec pulses in TIME position or with line Irequency pulses in MARK position; remote marking provision at rear connector by simple contact closure (115 V ac)
Front panel controis: individual stylus heat controls; pushbuttons for power, timer, marker and speed selection; individual galvanometer damping adjustments (screwdriver adjust).
Paper: standard 200 ft rolls of 5 cm wide, 2 -channel Permapaper ${ }^{\text {定 }}$ (651.52), easily loaded from the recorder front panel; l-channel Permapapert (691.51), may be used if only one channel is operated; orange, translucent Permapaper ${ }^{-1}$ (651.182), is available for making multiple copies of recording on contact copier (ozalid).
Paper take-up: automatic paper take-up standard equipment.
Power: $115 / 230 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$, approx. $200 \mathrm{~W} ; 115 / 230 \mathrm{~V}$ $\pm 10 \%, 30 \mathrm{~Hz}$, available in Option 08.
Dimenslons: rack mounted: $83 / 4^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $17^{\prime \prime}$ deep (222 $\times 483 \times 432 \mathrm{~mm}$) ; portable case (Option 02): $10^{7} / \mathrm{hc}^{\prime \prime}$ high, $207 / 8^{\prime \prime}$ wide, $2118 / 20^{" 1}$ deep ($265 \times 530 \times 576 \mathrm{~mm}$) ; mobile cart (Option 05) : $391 / 4^{\prime \prime}$ high, $263 / 4$ " wide, $201 / 2^{\prime \prime}$ deep (997×680 $\times 521 \mathrm{~mm}$).
Welght (approx): typical with 2 preamplifiers, rack mounted: net, $60 \mathrm{lbs}(\underline{2} 7,2 \mathrm{~kg})$, shipping $89 \mathrm{lbs}(40,4 \mathrm{~kg})$; portable case
(Option 02): net, 89 lbs ($40,4 \mathrm{~kg}$), shipping $135 \mathrm{lbs}(60,8 \mathrm{~kg}$) mobile cart (Option 05) : net, $130 \mathrm{lbs}(59 \mathrm{~kg}$), shipping 172 lbs ($77,4 \mathrm{~kg}$).
Accessorles: (consult local Hewlett-Packard sales office for quantity prices); 2 -channel, each 5 cm wide (50 div), 200 fi Perma. paperili roll (651-52), green coordinates on white, $\$ 12.50$: 1 channel, 5 cm (50 div), 200 ft Permapaper ${ }^{(8)}$ roll ($651-51$), green lines on white, $\$ 6.90 ; 398$, analog stylus, $\$ 7.15 ; 411-10$, marker stylus, $\$ 6.65 \mathrm{ea}$.
Prices: Model 7702B, less preamplifers, $\$ 1675$; Option 02: in portable case, add $\$ 195$: Option 03 : single channel operation, deduct $\$ 75$; Option 05: in mobile cart, add $\$ 195$; Option 08 : 50 Hz operation, add $\$ 50$; Option 10: chart speeds of $2.5,5,25$ and $50 \mathrm{~mm} / \mathrm{sec}$ (specify 50 or 60 Hz), no extra charge; Option 11: $60: 1$ speed reduction, 60 Hz , add $\$ 1.50$; Option 12: 60:1 speed reduction, 50 Hz , add $\$ 150$; Option 13: one minute timer, 60 Hz (available only when Option 11 is taken), add $\$ 34$; Option 14: one minute timer, 50 Hz (available only when Option 12 is taken), add $\$ 34$; Option 15: extra marker, add \$76; Option 16: 60 Hz speed kit (1:2 increase), speeds of 2, 10, 40 and $200 \mathrm{~mm} / \mathrm{sec}$, add $\$ 125$; Option 17: 50 Hz speed kit ($1: 2$ increase), speeds of $2,10,40$ and $200 \mathrm{~mm} / \mathrm{sec}$, add \$125; Option 18: 60 Hz speed kit ($2: 1$ reduction), speeds of $0.5,2.5,10$ and $50 \mathrm{~mm} / \mathrm{sec}$, add $\$ 175$: Option 19: 50 Hz speed kit (2:1 reduction), speeds of 0.5, $2.5,10$ and $50 \mathrm{~mm} / \mathrm{sec}$. add $\$ 175$.
Note 1: add price of preamplifiers to the above basic assembly prices for complete system cost; see pages $160-163$ for specification and prices.

4-CHANNEL RECORDER Pullout tabletop facilitates chart noting Model 7704B

g
 OSCILLOGRAPHIC RECORDERS

The Model 7704 B is a $4 \cdot$ channel thermal recording system featuring nine paper speeds, horizontal paper flow for marking ease and a marker (either one sec pulses or external event contact closure) for accurate time correlation. Any combination (up to four) of the eight versatile 8800 Series Preamplifers may be used as signal conditioners. The knifeedge recording technique provides recordings on true rectangular coordinates and gives a sharp, high resolution trace on Permapaper ${ }^{\text {Br }}$. Frequency response is dc to less than $3 d B$ down at 125 Hz for chart deflection of 10 div PP, damping set for 4% overshoot on a 10 div square wave. Individual power amplifiers have adjustable electrical limiting over span from ± 12 div (referenced from channel centerline) to beyond edge of chart coordinates to protect the galvanometer and stylus.

Specifications

Chart speeds: $0.25,0.5,1,2.5,5,10,25,50 \mathrm{and} 100 \mathrm{~mm} / \mathrm{sec}$ standard, mechanically shifted. Remote operation of chart drise and stare-stop functions.

Markers: right side marker standard; second marker mounted between channels 1 and 2 (Option 15). In MARK position, marker puises at line frequency. In TIME position, marker pulses at line frequency for a few sycles every second.

Front panel controis: individual stylus heat controls, speed selector handle, motor starting switch, timer-ofl-marker switch, remote control connector for motor and marker.

Paper type: 4-channel green (or orange for copy making) Permapaper雨, 10 in . $(25.4 \mathrm{~cm}$) wide, 5 cm (50 div) per channel, amplitude lines every 1 mm , cime lines every 1 mm . Front panel paper loading and take-up. Two-channe! paper may be used for economy when recording either one or two variables.

Papar footege indicator: indicates paper footage remaining on the supply roll; located on right side of recorder.

Power: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$, approx 180 watts (less preamplifiers) ; $115 \mathrm{~V} \pm 10 \%$, 50 Hz , specify Option $08 ; 230 \mathrm{~V} \pm 10 \%$, 50 Hz , specify Option 09.

Cooling: convection, cabinet vented top and bottom. External ambient temperature should not exceed $40^{\circ} \mathrm{C}$.

Dimensions: mobile cabinet: $72 \frac{1}{2} 2^{\prime \prime}$ high, $24^{\prime \prime}$ wide, $26^{\prime \prime}$ deep exclud. ing base ($1841 \times 610 \times 660 \mathrm{~mm}$), $361 / 2^{\prime \prime}$ deep with base (927 mm) ; rack mount (Option 01): $28^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $203 / 4^{\prime \prime}$ deep $\max (711 \times 483 \times 527 \mathrm{~mm}$). Option 02 (portable cases) : consule Geld office.

Weight (approx): 4-channel recorder with four amplifiers, less preamplifiers, in cabinet: nes 408 lbs (185 kg), shipping 504 lbs (228 kg); rack mount (Option 01): net 200 lbs (91 kg), shipping $275 \mathrm{lbs}(125 \mathrm{~kg})$

Accessories: consule local Hewlett-Packard sales office for quanticy prices; 4 -channel, 5 cm per chamel (50 div), green coordinates on white, 200 ft Permapaper roll ($651-54$), $\$ 18.20$; 4 .channel

orange translucent for contact reproductions, 200 ft roll (651-184), $\$ 29.10 ; 398$ Analog Stplus, $\$ 7.15$; 411-10 Marker Stylus, $\$ 6.65$.

Optional accessory equipment: 608-100-C11 extra Event Matker, $\$ 70 ; 14040$ A Marker Amplifier (produces over 1 mm marker defection with $\pm 1.5 \mathrm{~V}, 0.5 \mathrm{~mA}$ signal input), $\$ 110$.

Prices: Model 7704B, less preamplifiers, $\$ 4020$. Option 01: less cabinet, deduct $\$ 375$; Option 02: portable cases, consult field of fice: Option 08: $115 \mathrm{~V}, 50 \mathrm{~Hz}$ operation, add $\$ 50$; Option 09: 230 V operation, add $\$ 100$; Option 12 : unit channel activity de. crease, deduct $\$ 75$ per channel; Option 15: extra marker placed between cnannels 1 and 2 (specify other location), add $\$ 70$.

Note 1: add price of preamplifers to the above assembly prices for complate system cost; see pages $160 \cdot 163$ for specifications and prices.

OSCILLOGRAPHIC RECORDERS

6- AND 8-CHANNEL SYSTEMS
 Record 6 or 8 variables simultaneously 7706B/7708B/7736A/7738A

The Models 7706B, 7736A and 7708B, 7738A are 6 and 8 -channel thermal systems that offer the measurement versatility of the 8800 Series interchangeable, individual channel preamplifers. All four systems are identical except for re. corder type: the 7706 B and 7708 B use space saving vertical recorders; the 7736A and 7738A feature horizontal type recorders that facilitate chart notation.

Transistorized power amplifers incorporate galvanometer damping circuits to ensure recorder accuracy, current feedback to reduce drift and adjustable electrical limiting to prevent overloading and to protect the styli. Frequency response is dc to 125 Hz for the 6 -channel system; dc to 150 Hz for the 8 -channel system.

Four and six channel paper may be used for economy when recording less than the maximum number of channels. Permapaper ${ }^{8}$ in opaque or translucent (for copying) forms is available.

Systems are available in RETMA standard mobile cabinets, less cabinet for mounting in RETMA standard equipment racks or in portable cases (7706B, 7708B only).

Specifications

(See pages 160 to 163 for 8800 Series Preamplifier specifications and prices.)
Paper speeds: standard recorders are supplied with 9 speeds: 0.25 , $0.5,1,2.5,5,10,25,50$, and $100 \mathrm{~mm} / \mathrm{sec}$, electrically shifted and selected by front panel pushbuttons; optional "D" version recorders have 9 additional speeds: $0.25,0.5,1,2.5,5,10,25,50$ and $100 \mathrm{~mm} / \mathrm{min}$; provision is made for remote operation of paper speeds and paper drive.

Event marker: right margin; built-in timer provides 1 ser timing marks; provision for manual or remote event merking from external contact closure; " D " version recorders provide 1 sec and 1 min timing markers (Option 11); one optional extra event marker (Option 15) can be installed between channels 1 and 2 and actuated by external contack closure; DC Marker Driver Amplifier 14040 A is available for dc event marking (produces greater than 1 mm event marker deflection with ± 1.5 volts, 0.5 mA signal input).

Front panel controls: individual stylus hear controls; pushbutton speed selectors; motor starting switch, timer-off-marker switch.
Paper footage indleator: front paoel indicator shows number of feet remaining on the supply roll.
Paper supplles (optlonal): 1000 foot paper supply or horizontal writing table with concealed 200 foot paper take-up available as accessories.
Power: recorder: 115 volts $\pm 10 \%, 60 \mathrm{~Hz}, 230$ watts; 115 or 230 volts, 50 Hz available on special order; systems:
$7706 \mathrm{~B} 115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 330$ watts approx
$7708 \mathrm{~B} 119 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 550$ watts approx
$7736 \mathrm{~A} 115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 330$ watts approx
$7738 \mathrm{~A} 115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 550$ watts approx
Welght: (less preamplifers in cabinet mount) : 7706B: net 458 lbs (214 kg), shipping $582 \mathrm{Ibs}(264 \mathrm{~kg}$) ; 7708B: nee $515 \mathrm{lbs}(232$ kg), shipping $617 \mathrm{lbs}(280 \mathrm{~kg}) ; 7736 \mathrm{~A}:$ ner $412 \mathrm{lbs}(187 \mathrm{~kg})$, shipping $560 \mathrm{lbs}(254 \mathrm{~kg}) ; 7738 \mathrm{~A}:$ net $476 \mathrm{lbs}(216 \mathrm{~kg})$, shipping 600 lbs (272 kg); portable cases Option 02: 7706B: recorder in case, net $200 \mathrm{lbs}(91 \mathrm{~kg}$), shipping $228 \mathrm{lbs}(103 \mathrm{~kg}$) : 7708 B : recorder in case, net $232 \mathrm{lbs}(105 \mathrm{~kg}$), shipping 322 lbs (146 kg): 7706B, 7708B: power supply and preamplifers in case (typical), net $103 \mathrm{lbs}(46 \mathrm{~kg}$), shipping $190 \mathrm{lbs}(86 \mathrm{~kg}$).
Dimenslons: (all systems) mobile cabinet mount: $721 / 2^{" ~ h i g h, ~} 24^{\prime \prime}$ wide, $26^{\prime \prime}$ deep excluding base ($1842 \times 610 \times 660 \mathrm{~mm}$), $361 / 2^{\prime \prime}$ deep with base (927 mm); (all systems) rack mount Option 01: (recorder) $171 / 2^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $241 / 8^{\prime \prime}$ deep ($445 \times 483 \times 613$ mm) : (typical 8800 Preamplifer) $7^{\prime \prime}$ high, 2.1/6" wide (178 x 52 mm); portable cases Option 02: (recorder case) $193 / 4^{\prime \prime}$ high, $21^{\prime \prime}$ wide, $211 / 2^{\prime \prime}$ deep ($502 \times 533 \times 546 \mathrm{~mm}$), (amplifier case) $7.9 / 16^{\prime \prime}$ high, $22^{\prime \prime}$ wide, $211 / 2^{\prime \prime}$ deep ($200 \times 570 \times 546 \mathrm{~mm}$).
Accessories: 8 -channel, 4 cm (50 div), 200 ft Permapaper $\$$ roll 651.58, $\$ 23.50 ; 6$-channel, 3 sm (50 div) 651.56, $\$ 18.90$; (consult local Hewlett-Packerd sales office for 1000 fi rolls and price for quantity purchases of 200 (t rolls); 399 Analog Writing Arm (8 -channel), $56.65 ; 398$ Analog Writing Arm (6-channel), \$7.15; 411.3 Marker Stylus (8-channel), \$6.65; 411-10 Marker Stylus (6 -channel), $\$ 6.65$.
Optional accessory equlpment: 358-800-1 Concealed Paper Takeup, $\$ 475$; 1069-05A 1000 ft Supply Adapter, $\$ 178 ; 608$-100.C11 Extra Event Marker, $\$ 70$; 14040 A Marker Driver Anplifier ($=1.5 \mathrm{~V}$ de input), $\$ 110$; 358-1400 Recorder Carrying Case, \$450; Preamplifier Carrying Case 858-1400, \$250.
Prices: (see Note 1): Model 7706B (Guchannel cabinet assembly, less preamplifiers) $\$ 4820$; Model 7708 B (8-channel cabinet assembly, less preamplifiers) \$S495; Model 7736A (6.channel cabinet assembly, less preamplifers) $\$ \$ 800^{\circ}$; Model 7738 A (8channel cabinet assembly, less preamplifers) $\$ 6475$.
Option 01: (all models) less cabinet: 7706B Option 01, $\$ 4425$; 7708B Option 01, \$5100; Model 7736A Option 01, \$5375; Model 7738A Option 01, $\$ 6050$.
Option 02: less cabinet, mounted in portable cases: 7706B Option 02, $\$ 4970$; 7708B Option 02, $\$ 5645$.
Option 08: (all models) : 50 Hz operation, add $\$ 50$.
Option 09: (all models): 230 V operation, add $\$ 100$.
Option 11: $(7706 \mathrm{~B}, 7708 \mathrm{~B}): \mathrm{mm} / \mathrm{min}$ speeds, add $\$ 230$.
Option 12: (all models) : unit channel decrease, deduct $\$ 75$.
Option 15 : (all models) : exira marker between channels 1 and 2 , specify other location, add $\$ 70$.
Note 1: Add price of preamplifiers to above prices for toral system cost; see pages 160 to 163 for specifications and prices.

6-, 8- AND 16-CHANNEL SYSTEMS Record 6, 8, or 16 variables simultaneously

電 OSCILLOGRAPHIC RECORDERS

7727A, 7729A, 7731A, 7737A, 7739A

Hewlett-Packard 6,8 and 16-channel basic assemblies offer complete versatility for making accurare, permanent records of multiple variables. These basic assemblies accept multichannel 8820A and 8821A Amplifiers designed to condition and control simple or complex signals. Variables appear as sharp, clean, permanent traces on Permapaper ${ }^{\text {8 }}$ charts opaque or translucent (for copying). Traces from dc to $150 \mathrm{~Hz}, 3 \mathrm{~d} 8$ down, 10 div PP can be recorded with exceptional clarity on the 8 -channel systems and dc to 125 Hz , 10 div PP on 6 and 16 -channel systems. The following table summarizes the differences between the 6,8 and 16 -channel thermal recording systems.

Sydam	Channeli	Reoseder Typs	Amplilier
7727A	6	vertical	8820A/8821A
7729 A	8	verticat	8820A/8821A
7131A	16	verticsl	8820*/8821 ${ }^{*}$
7737A	6	horizantal	8820A/8821A
7739A	8	horizontal	8820A/8821A

${ }^{-}$Two required.

Specifications

(See page 164 for 8820 A 8821A Amplifier specifications and prices.)
Paper speeds: standard recorders are supplied with 9 speeds: 0.25, $0.5,1,2.5,5,10,25,50$ and $100 \mathrm{~mm} / \mathrm{sec}$, electrically shifted and selected by front panel bushbuttons: optional "D" version recorders have 9 additional speeds: $0.25,0.9,1,2.5,5,10,25,50$ and $100 \mathrm{~mm} / \mathrm{min}$; provision is made for remote operation of paper speeds and paper drive.
Event marker: right margin: built-in timer provides 1 sec timing marks; provision for manual or remote event marking from ex-

marker (Option 15) can be installed between channels 1 and 2 and actuated by external contace closure; DC Marker Driver Am. plifier 14040 A is arailable for de event marking (produces greater than 1 mm event marker deflection with ± 1.5 volts, 0.5 mA signal input).
Front panel controls: individual stylus heat controls; pashbutton speed selectors; motor starting switch, timer-off-marker switch.
Paper footege Indicator: front panel indicator show's number of feet remaining on the supply roll.
Paper supplies (optlonal): 1000 foor paper supply or horizontal writing table with concealed 200 foor paper take.up available as accessories.
Power: recorder; 115 volts $\pm 10 \%, 60 \mathrm{~Hz}, 230$ watts; 115 or 230 volts, 50 Hz arailable on special order; systems:
$7727 \mathrm{~A} 115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 330$ wates approx
$7729 \mathrm{~A} 115 \mathrm{~V}=10 \% .60 \mathrm{~Hz}, 330$ watts approx
$7731 \mathrm{~A} 115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 590$ watts approx
$7737 \mathrm{~A} 115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 350$ watts approx
$7739 \mathrm{~A} 115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 350$ watts approx
Welght: (less preamplifiers in cabiner mount): 7727A: net 432 lbs (196 kg), shipping $530 \mathrm{lbs}(229 \mathrm{~kg}) ; 7729 \mathrm{~A}:$ net 436 lbs (188 kg), shipping $538 \mathrm{lbs}(232 \mathrm{~kg}$); $7731 \mathrm{~A}:$ nes 317 lbs (223 kg), shipping $680 \mathrm{lbs}(294 \mathrm{~kg}$); $7737 \mathrm{~A}:$ net $390 \mathrm{lbs}(168 \mathrm{~kg}$), shipping $500 \mathrm{lbs}(216 \mathrm{~kg})$; 7739A: net 450 ibs (174 kg), ship. ping $375 \mathrm{lbs}(248 \mathrm{~kg}$); portable cases Option 02: 7727A: recorder in case, net $200 \mathrm{lbs}(86 \mathrm{~kg})$, shipping $228 \mathrm{lbs}(103 \mathrm{~kg})$: 7729A: recorder in case. net 232 lbs (105 kg), shipping 322 lbs (146 kg): 8820A/21A Amplifiers: net $17 \mathrm{lbs}(8 \mathrm{~kg}$), shipping 20 lbs (9 kg).
Dimenslons: (all systems) mobile cabiner mount: $721 / 2^{\prime \prime}$ high, $24^{\prime \prime}$ wide, $26^{\prime \prime}$ deep excluding base ($1842 \times 610 \times 660 \mathrm{~mm}$), $361 / 2^{\prime \prime}$ deep with base (927 mm); (all systems) rack moung Option 0i: (recorder) $171 / 2^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $241 / 8^{\prime \prime}$ deep ($445 \times 483 \times 613$ mm) : (amplifier) $5.7 / 32^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $131 / 4^{\prime \prime}$ deep (133 x $483 \times 337 \mathrm{~mm})$; ($7727 \mathrm{~A}, 7729 \mathrm{~A}$) portable case Option 02: (recorder) 193/4" high, 20" wide, 201/2" deep ($502 \times 508 \times 521$ mm), (amplifer) $5-7 / 32^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $131 / 4^{\prime \prime}$ deep (133 x $425 \times 337 \mathrm{~mm}$).
Accessories: 8 -channel, $4 \mathrm{~cm}(50 \mathrm{div}), 200$ in Permapaper ${ }^{(19)}$ roll 651-58, \$23.50; 6-channel, 5 cm (50 div) 651.56, \$18.90; (consult local Hewlett-Packard sales office for 1000 ft rolls and price for quancity purchases of 200 ft rolls): 399 Analog Writing Arm (8-channel), 56.65 ; 398 Analog W'riting Arm ($6 \cdot$ channel), \$7.15; 411.3 Marker Stylus (8-channel), $\$ 6.65$; 411.10 Marker Srylus (6-channel), \$6.65.
Optlonal accessory equlpment: 398-300-1 Concealed Paper Take. up, \$475; 1069-05A 1000 ft Supply Adapter, \$178; 608•100-C11 Extra Event Marker, $\$ 70 ; 14040$ A Marker Driver Amplifier ($\pm 1.9 \mathrm{~V}$ dc input), $\$ 110 ; 358-1400$ Recorder Carrying Case. \$430.
Prices: (See Note 1) : Model 7727A (6-channel cabinet assembly, less amplifers), \$4030: Model 7729A (8-channel cabinet as. sembly, less amplifiers), $\$ 4705 ;$ Model 7731A (16 channel cabinet assembly, less amplifers), $\$ 8000$: Model 7737A (6 -channel cabinet assembly, less amplifiers), $\$ 4750$: Model 7739A (8-channel cabinet assembly, less amplifiers), $\$ 5425$.
Optlon 01: (all models) less cabinet: 7727A Option 01, $\$ 3605$; 7729A Option 01, \$4280; 7731A Option 01, $\$ 7575$; 7737A Option 01 \$4325; 7739A Option 01, \$3,000.
Option 02: less cabinet, movoted in portable cases: 7727A Op. tion 02, consult local Hewletr-Packard office. 7729A Option 02. consult local Hewlets-Packard office.
Option 08: (all models): 30 Hz operation, add $\$ 50$.
Option 09: (all models): 230 V operation, add $\$ 100$.
Option 11: (7727A, 7729A): adds nine mm/min speeds, add $\$ 250$.
Option 15: (all systems except 7731A): extra marker between channels 1 and 2 , specify other location, add $\$ 70$.
Note 1: Add price of amplifiers to above prices for total system cost: sae page lef for specifications and prices.

New system records on Z-fold paper or rolls
 Models 7858B, 7878A

Features:

8 channels using plug-in signal conditioners
Sharp, high resolution, consistent width trace from dc to 150 Hz
Easily seproduced by inexpensive means
Recorded on numbered Z-fold chart or paper rolls
Disposable plug-in recording ink supply

Uses:

Computer readout
Quality control records
Multiple design test measurements
Telemetry recording
Multi-station observations

The 7858 B and 7878 A are 8 -channel rectilinear ink recording systems featuring position feedback from a contactless capacitive pickup near the pen tip. The recorder used in both systems has a self-contained power supply and modulartype solid state driver amplifiers. The chart viewing area is $155 / 8^{\prime \prime}$ wide and $10^{\prime \prime}$ high. The chart moves from top to bottom from an internal Z-fold paper supply to a take-up drawer, or from an internal supply roll to a take-up roll. The system is mounted in a standard mobile cabinet, rack mount (Option 01) or portable carrying cases (Option 02).

The 7858 B uses any combination of the eight 8800 Series Preamplifers: compact, solid state modules which plug into the system from the front to mate with the preamplifier power supply, which is an integral part of the 7858 B system. AC excitation voltages are supplied, as needed, from plug-in oscillator circuit cards in the power supply. Preamplifiers include: low gain dc, medium gain dc, high gain dc , ac/dc converter, phase sensitive demodulator, carrier, general purpose do and logarithmic units. Characteristics and prices for the preamplifiers are given on pages 160-163.

The 7878A uses either the 8820A Low Gain or the 8821 A Medium Gain Multichannel Amplifier. Each combines eight independent channels of amplifcation into one front-panel unit, with all operating power, including ac excitation voltages, generated within the amplifier. Amplifier specifications are given on page 164.

System characteristics

Power: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$, approx 600 watts. 50 Hz available as Option 08; 230 V operation on Option 12.

Weight (approx): 7858B in cabinet with preamplifiers, 550 lbs (249 kg); 7878A in cabinet with amplifier, 495 lbs (225 kg) ; recorder only, $170 \mathrm{lbs}(77,2 \mathrm{~kg}$).

Dimensions: in cabinet, $72 \frac{1 / 2^{\prime \prime}}{}$ high, $24^{\prime \prime}$ wide, $26^{\prime \prime}$ deep excluding base ($1842 \times 610 \times 660 \mathrm{~mm}$), $361 / 2^{\prime \prime}$ deep with base (927 mm); cecorder: $17^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $23^{\prime \prime}$ deep ($444 \times 482 \times 585 \mathrm{~mm}$).

Coosing: cabinet vented top and bottom for natural convection cooling. Maximum external ambient temperature, $40^{\circ} \mathrm{C}$.

Remote operatlon: connector provided for remote operation of chart drive, chart speed selector and timer/marker. Provides a voltage to indicate remote readiness.

Recorder description

The recorder features include: 14 electrically controlled chart speeds selected by front panel pushbuttons; built-in roll paper take-up; plug-in ink supply cartridge that may be
replaced while recorder is operating; and simple paper loading from front. The take-up drawer for Z -fold paper is standard. The recorder also has enclosed, individual, moving coil pen motors with adjustable electrical damping and limiting; contactless pen tip position feedback; a connector is provided for remote control of paper drive, paper speeds and markers; low ink supply indicated on front panel and at remote location.

Recorder Specifications

Frequency response: dc to 150 Hz for 10 div pp deflection; 58 Hz maximum for full scale deflection.

Response time: from 10% to 90% amplitude-

Total Deflection	Response Time
10 div	3 msec
25 div	4 msec
50 div	6 msec

Drift: (driver input shorted, and after one hour warmup): Temperature: less than 0.1 div, $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
LIne voltage: less than 0.1 div, $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$.
Paper drift: less than 0.5 div.
GaIn stablilty: (after one hour warmup) :
Temperature: less than $0.1 \% / 10^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
LIne voltage: less than $\pm 0.1 \%, 115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$.
Sensitivity: $\pm 2.5 \mathrm{~V}$ nominal, for full recording chact width deflection (4 cm).

Linearity

Method I: after calibrating for zero error at center scale and +20 div, less than $\pm 0.25 \mathrm{div}$, including hysteresis.
Method 2: after calibrating for zero error at lower and upper end of printed coordinates, less than ± 0.5 div, including hysteresis.

Limiting: electrical limiting from ± 12 div (referenced from channel centerline) to bejond channel edge.
Nolse: less than 0.1 div Pp with driver input shorted.

Ink system: low pressure, permanent blue ink, modulated to match recording pen velocity and chart speed. Dries rapidly on contact with paper. Disposable, plug-in cartridge can be replaced while operating system; $1 / 2$ hour reserve.

Chart: $155 / 8^{\prime \prime}$ wide ($4 \mathrm{~cm}, 50$ div channels), rectilinear co. ordinates on 500 ft roll or 500 sheet folded, numbered pack $11-9 / 10^{\prime \prime} \times 155 / 8^{\prime \prime}$.

Chart speed: 14 speeds selected by seven speed pushbuttons plus 1 X and 100 X multiplier pushbuttons ($0.025,0.05$, $0.1,0.25,0.5,1.0,2.0,2.5,5,10,25,50,100$ and 200 $\mathrm{mm} / \mathrm{sec}$.)

Paper take-up: internal roll accessible by pivoting writing table down from top. Z-fold take-up is below recorder.

Tlmer/marker: left margin marker provides timing pulse every second or minute. Right side marker provides event marking by local or remote switch or simple contact closure.

Accessorles: (consult your local Hewlett-Packard sales office for quantity price): $9280-0066$ roll recording chart, $155 / 8^{\prime \prime} \times 500^{\prime}(397 \mathrm{~mm} \times 154 \mathrm{~m})$, 8-channel translucent, $\$ 30 ; 9280-0067$ Z.fold recording chart, $155 / 8^{\prime \prime} \times 11.9 / 10^{\prime \prime}$ $\times 500$ pages, translucent, $\$ 35 ; 07858-67260$ ink cartridge, $402, \$ 12 ; 07850-61400$ pen kit, $\$ 26$.

System prices:
Model 7858B, less preamplifiers, $\$ 9750$. Model 7878 A , less amplifier, $\$ 8700$. Option 01: less cabinet, deduct $\$ 425$. Option 02: portable cabinet, no additional charge. Option 08: 50 Hz operation, add $\$ 50$. Option 09: 230 V operation, add $\$ 100$.
Option 12: unit channel activity decrease, deduct $\$ 200$ per channel.

Note 1: add price of plug-in preamplifiers (for 7858 B) or multichannel amplifier (for 7878A) to above prices for total system cost. See pages 160 to 163 for preamplifier specifications and prices; page 164 for amplifiers.

OSCILLOGRAPHIC RECORDERS

OPTICAL RECORDER
For high frequency, high speed applications
Models 4508B, 4524B

4524日

Advantages:

UP to 25 channels
One basic galvanometer for all Erequencies
Individual internal calibration
Galvanometer protected by current limiting
Individual multi-position attenuator in each channel
Trace positioned electrically anywhere on chart Uses:

Telemetry recording
Power measurements at 400 Hz
Transient measurements
Data measurements sampled at high pulse rates
The HP 4500 Optical Recorder is a completely integrated system for high speed, permanent recording of multiple variables from dc to 5 kHz . Recordings are made at any of nine speeds (0.25 to $100 \mathrm{in} . / \mathrm{sec}$) on ultraviolet sensitive paper, and promptly developed under an attached development lamp. Time and amplitude lines recorded with data provide a high order of recording accuracy and convenience. Systerns may use 650 Series Amplifiers or 8800 Secies Amplifiers (special order) or combinations. The 650 Series Amplifiers are available with maximum sensitivities of $2.5,50$ and $625 \mathrm{mV} / \mathrm{in}$., with and without zero suppression. Each 650 Series Amplifier consists of eight identical modular channels of electronics, with a common power supply. Twenty-four channel systems are driven by three 8 -channel amplifiers. A 25th channel galvanometer can be driven directly or by an external amplifier.

Additional features include: full width timing lines (0.01 and 0.1 sec), amplitude lines (removable over part or all of the recording), sequential light beam interruption for trace identification, event marker, lamp power control and meter, and a paper footage meter. Special frequency boost and compensation circuits extend the frequency response of the 2 kHz galvanometers to 5 kHz range ($-3 \mathrm{~dB}, 4^{\prime \prime} \mathrm{pp}$ defection). Current feedback in the matching network between amplifier and galvanometer stabilizes frequency response.
Dimensions: in mobile cabinet, $721 / 2^{\prime \prime}$ high, $24^{\prime \prime}$ wide, $26^{\prime \prime}$ deep, excluding base ($1842 \times 610 \times 660 \mathrm{~mm}$), $361 / 2^{\prime \prime}$ deep with base (927 mm).
Welght: 4508 B in cabiner, net $554 \mathrm{lbs}(247,5 \mathrm{~kg}$), shipping
650 lbs ($292,5 \mathrm{~kg}$); 4524 B in cabinet, net 579 lbs (262
kg), shipping $675 \mathrm{lbs}(306 \mathrm{~kg}$).
Prices:
4508 B UV Recording System, 8 channels, $115 \mathrm{~V}, 60 \mathrm{~Hz}$, for 650 Amplifers; less amps., galvanometers, $\$ 4200$.
4524 B UV Recording System 24 channels, $115 \mathrm{~V}, 60 \mathrm{~Hz}$, for 650 Series Amplifiers; less amplifiers, galvanometers, $\$ 4400$.
Option 01: (both models) less cabinet, deduct $\$ 475$.
Option 02: (both models) portable case, deduct $\$ 240$.
Option 08: (both models) 50 Hz operation. Available with time lines every 1 or 0.1 sec only. No charge.
Option 09: (bath models) 230 V operation, add $\$ 100$.
Note 1: add price of amplifiers and galvanometers (1120$1296, \$ 126$ ea.) to above prices for total system cost; see page 173 for amplifier specifications and prices.

MULTICHANNEL AMPLIFIERS
Solid state amplifier/driver
658 Series for 4500 Optical Recording Systems

658.2000

ANALOG MAGNETIC TAPE RECORDERS

INSTRUMENTATION MAGNETIC TAPE RECORDING

Magnetic tape racording is used in all walks of life, to record and reproduce information of various kinds. In the case of the familiar audio home tape recorder and business dictating machine, that information is voice and music, converted to electrical form by a microphone. Another type, the video tape recorder, finds daily use in roday's relevision programming. Your bank account is most likely recorded on a digital tape unit. used extensively with computer systems for the mass storage of digitized data (see page 108). All of the above are considered sperial purpose in that each is designed for a specific application.

The lnstrumentation recorder is, on the other hand, a general-purpose instrament, used in any scientific field where there is a need to preserve analog data for later evaluation. The data may al. ready be in electrical form (from do to 1.5 MHz) or may be one of an almost unlimised variety of physical or scien. tific phenomena that are convertible to electrical form by a transducer.

Standards for instrumentation recording were established within the field of telemetry by the Inter-Range Instrumentation Group (IRIG). These standards are rigidly adhered to throughout the instrumentation magnetic tape recording industry. Compatibility and exchange of recorded data between various magnetic recording systems demand such stan. dardization, regardless of the specific area of application. "IRIG Telemerry Standards," Document No. 106.66 dated March 1966, sepresents the latest publication of these standards and is referenced throughout the industry.
(Copies are obtained from the Defense Documentation Center for Scientific and Technical Information, Cameron Station, Alexandria, Virginia 22314.)

Three categories of instrumentation recorders were established by IRIG: low-band, intermediare-band and arideband. Each of these provides for increas. ingly greater recording bandwidths, to 1.5 MHz.

Three recording methods have been specified to meet various requirements: Direct vecording. Frequency Modulation recording. and Pulse recording. Direct and FM recording meet the needs of the majority of applications; Pulse recording is used for more specialized purposes.

Standardized tape speeds are 1%, $33 / 4,71 / 2,15,30,60$, and 120 inches per
second. Naturally, the higher tape speeds are used for recording greater bandwidths; the slower tape speeds for the maximum in recording time.

Direct recording provides the greatest bandwidth available from a magnetic tape recorder, and requires only relatively simple, moderately priced electronics.

With this recording merhod, the intensity of magnetization on tape is made proportional to the instantaneous ampli. tude of the input signal.

In the reproduce process, however, a signal is induced from tape to heads only in response to thanges in flux on the recorded lape; the direct record process cannot, therefore, extend down to dc.

This direct recording method is also characterized by some amplitude insta. bility, caused primarily by random sur. face inhomogeneities in the tape. These variations are normally a few percent at the lower recording frequencies, and can exceed as much as 10% near upper band. width limits. Occasional momentary sig. nal decreases of over 50% may occur; these are commonly referred to as "drop. outs."

Uses for direct recording, then, have a common requirement: economy, with a maximum bandwidth, in applications where amplicude variation errors are not critical. Typical applications include audio recording, where the human ear averages any amplitude variation errors, or recordings where the signal's frequency, not amplitude, is of primary imporiance.

Frequancy modulation recording (FM) overcomes some of the basic limitations of the direct recording process, but at the expense of high frequency bandwidth; response does, however, extend down to de. This recording eechnique significantly improves the signal amplitude stability, since it is now proportional to carrier deviation, rather than the intensity of magnetization on tape.

In the FM recording method, a carrier oscillator is frequency-modulated by the input signal. The oscillator's center frequency corresponds to a zero-leve! input, with deviation from that center frequency being proportional to the amplitude of the input signal; the polarity of the input signal determines the direction of deviation.

FM recording is used primarily when the de component of the input signal is to be preserved, or when the amplitude variations of the direct recording method cannot be tolerated. Accuracy of the reproduced signal is another factor in favor of FM recording, being in the order of 1% vs 5% for the direct recording process.

For more information on magnetic recording, request a copy of Hewlert-Packard Application Note No. 89, "Magnetic Tape Recording Handbook."

Advantages of magnetic recording

Recording on magnetic tape is an economical, time-saving method of preserving almost any type of information for later analysis. Once converted to electrical form and recorded, it is available indefnitely. It can be easily compared or studied alone by means of $\mathrm{X}-\mathrm{Y}$ or strip-chart recorders, oscilloscopes, wave analyzers, digitizing systems, and the like. Since the information can be reliably played over and over again, it is readily analyzed in several different ways.

Time compression or expansion technlques (record at one tape speed; play back at another) offer unique opportunities for data analysis on measuring instruments of your choice. For example: slowly varying phenomena, too slow for oscilloscope viewing, may be recorded at a slow tape speed, then reproduced at tape speeds up to 32 times faster . . now acceptable for oscilloscope viewing. Conversely, high frequency information can be recorded at high tape speeds, then reproduced at a slower tape speed with a concurrent downeard frequency-translation: 200 KHz recorded at 60 ips is translated to $6.250 \mathrm{~Hz}(200 \mathrm{KHz} \div 32)$ when reproduced at $17 / 8 \mathrm{ips}$. At this lower speed. low-frequency test equipment is readily used for analysis of a relatively high frequency signal.

Continuous monitoring is anorher of the more important advantages of mag. netic tape recording. Unexpected and/or unpredictable events are preserved; if no significant phenomenon occurs, the tape is simply erased and reused. Continuous monitoring can, threfore, record such irreplaceable data as power-line transients. seismic tremors, the effects of atomic blasts, etc.

Time relationshlps among several rapidly occurring events are readily evaluated, each event being simultaneously recorded on one of up to 14 data chan. nels. Later analysis finds this capability extremely important in establishing cause and effect relationships among the recorded phenomena.
Recorded information is immediately available for reproduction; there is no delay for processing of any kind. On the other hand, tapes can be stored for long periods without degradation of the recorded material; thus, events separated widely in time can be compared easily.

Predetection recording of telemetered data exemplifies another important advantage of magnetic tape recording. As the name implies, data is preserved in its transmitted form, then the best method of detection is determined after the fart with a minimum possible loss of information.

Since the carrier and all irs sidebands are present in the recording, repeated analyses can be made using different detection equipment to achieve the best possible signal recovery.

Applications

Instrumentation magnetic tape recording finds wide application in all helds of scientific endeavor ... wherever there is a need to preserve data for later evaluation. The need for magnetic tape recording occurs in the fields of medicine, industria! measurement, nuclear and geological investigations, oceanography, and acrospace telemetry.

These applications are but a few: the cotal number is constantly expanding. The Hewlett-Packard magneric tape recording systems described on the follow. ing pages are dependably and relíably meeting these needs.

HP magnetic tape recording systems

Instrumentation magnetic tape record. ing systems consist of three basic parts: (1) the tape transport, (2) the magnetic head assemblies, and (3) the record/ reproduce electronics. In addition, the magnetic tape, itself, while not an inte. gral part of the system, is an extremely important factor in overall system opera. tion. In some instances, it is the rape that imposes the limitations of performance; care in selecting tape to match recording requirements is well justified.

The tape transport moves the tape past the head assemblies at a precise and constant speed.

HP transports do this with low wow and flutter, using a rugged, uncomplicated mechanism. By using a high de. gree of mechanical filtering in the form of viscous damped Aywheels, and con. trolled fricrion elements, each element along the tape path contributes toward uniform tape movement past the mag. netic head assemblies.

The magnetic tape is reeled in a man. ner thar insures no loss of valuable data from tape stretching, tearing, or ower accidents. Fail-safe brake design, with optimum braking torque on each real regardless of the direction of tape motion. assures fast, smooth starts and stops. Even during a power failure, there's no danger of tape spillage or stretching.

Any of six tape speeds are selected simply by depressing the appropriate pushbutton; no capstan or belt changes are required. Smap-on reel hub design allows one-handed mounting of tape reels; tape threading is quick thru the simple, uncluttered tape path.

The rape foorage counter has consisteatly enabled users to locate specific dara on tape with accuracies equivalent to 0.05%, even after repeated high-speed end-toend shuttlings of a reel of tape.

No maintenance is required other than the normal cleaning of the heads and tape guides to remove tape oxide dust; even this is accomplished in a matter of seconds. The rugged cast aluminum transport frame, precision finished on numerically-controlled machine tools, assures proper alignment and interchangeability of all parts in the tape drive sys. tem; complex alignment or adjustments have been eliminated.

Magnetic head assembiles have both jecord and reproduce sections, one impressing the input data onto che tape as variations in magnetization, the other converting these variations back into electrical signals.
Instrumentation recorders use magnetic bead assemblies with four head stacks: two for recording, tro for reproducing. The tape first passes the head stack where the odd-numbered data channels are recorded, then past the next stack for secording the evien-numbered chan. nels. Likewise, the two following stacks reproduce the respective daca tracks. It is this IRIG compatible head-stack confguration that keeps interchannel cross. ralk to a minimum; spacing between individua! heads in each stack is maximized, while still secording 7 data channels on $1 / 2$-inch tape, or 14 on 1 -inch tape.

Hewletr-Packard designed and manufactured magnetic heads are uniquely coupled to current-sensing preamplifiers; it is this combination that offers users of HP tape systems an unprecedented signal-to-noise ratio at frequencies up to 1.5 MHz . All four head sracks are mounted on a single precision baseplate and prealigned for easy replacement in the field. Precision machining of all mating parts has eliminared the need for adjustments. (On the wideband, 1.5 MHz assemblies, minor azimuth adjustments of the reproduce heads assure optimum performance.)

Conversion from $1 / 2$ - to 1 -inch tape width (ro 14 channels) is straightiorward and easily made at any time after original purchase. Only the head assembly, tape guides, pinch roller, and reel hubs need be changed. Kirs are available for field conversion, thus, a system orig. inally equipped for 7 -channel operation is readily expanded to fourteen merely by installing the appropriate conversion kit and adding anorber 7 channels of record/ reproduce electronics.
The record and reproduce electronics within a recording system applies the inpuk data to the record heads and recovers the data from the reproduce heads. Direct, FM, and pulse electronics are used in present-day applications.

Record electronles presents a nominally high impedance to the data source to minimize loading; it also shapes the frequency response appropriarely to assure a constant-fux recording characteristic over the required bandridth. Record level meters are provided for data chan nel monitoring.

Reproduce electronics raises the mi-crovalt-level signals from the reproduce heads to a usable output signal. Since these low-level signals are subject to noise pickup, the outstanding signal-to-noise ratio of the HP reproduce electronics becomes an even tnore important facror in the reliable reproduction of low level in. put signals.

Two types of electronles are used in Hewlett-Packard magnetic tape record. ing systems:

1) Interchangeable electronics, in the low cose $3907 \mathrm{~B}, ~ 3914 \mathrm{~B}, 3917 \mathrm{~B}$, and 3924 B systems.
2) Nanmally suitchable electronics, in the more versatile, low-noise 3950 and 3955 Series systems.

For additional information on these, refer to the following pages.

MAGNETIC TAPE SYSTEMS
IRIG-compatible instrumentation recording
Series 3900, 3950, 3955

The primary features of the Hewlett-Packard line of instrumentation magnetic recording systems are briefly highlighted on this page. The table below summarizes the basic capabilities of each system, with reference to specifics on the following pages.

All IRIG-compatible bandwidths are covered by HP systems, as shown above. The 3917 B and 39248 systems pages 177-178) offer low-cost intermediate-band recording for medical, chemical and industrial applications.

Features:

Simple tape-threading, for operator convenience
Tape-path cleaned in a matter of seconds
A truly accurate tape-footage councer allows precise location of previously recorded data
All operational controls are front panel accessible
IRIG-compatible recording, for reproducing data on or from other tape systems
Basic design concept: rugged construction for reliable operation; easy to service
No cooling required by solid state electronics
Field convertible from $1 / 2^{\prime \prime}$ to $1^{\prime \prime}$ tape (factory provi-
sion required) ; provides for future 14 -channel operation
Wide-band (1.5 MHz) direct recording with phase equalization, for optimum fidelity of reproduced signal
Two types of record/reproduce electronics are used in Hewlett-Packard magnetic tape recording systems:
(1) Low-cost electronics, with record and reproduce circuitry for each in data channel mounted on a single Insert card. These interchangeable, printed circuit cards may be selected foc Direct, FM, or Pulse recording. Speed equalization is via front panel plug-in networks. (Used in Models $3907 \mathrm{~B}, 3914 \mathrm{~B}, 3917 \mathrm{~B}$ and 3924 B .)
(2) The more fiexible, multi-speed manually switched electronics offer greatly improved signal-to-noise ratios. The Record Amplifiers and Reproduce Amplifiers are separately packaged; this provides greater system frexibility and economy where, for example, there is need for fewer reproduce than record data channels. Amplifiers, available for Direct or FM recording, house three of the six speed-equalization networks, selectable by front panel push-bar operation. (Used with 3950 Series and 3955 Series systems.)

SYSTEM CAPABILITIES										
iRIG band	Qandwldth				$\begin{aligned} & \text { Tape } \\ & \text { spopd } \\ & \text { spand } \\ & \text { (max) } \end{aligned}$	$\begin{aligned} & \text { Reel } \\ & \text { Rifie } \\ & \text { (max) } \end{aligned}$	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { traoks } \end{aligned}$	$\begin{aligned} & \text { lepe } \\ & \text { wldth } \end{aligned}$	model	$\begin{gathered} \text { gee } \\ \text { page } \end{gathered}$
	DIraci renording		FM reoordlng							
	B.W.	8/N(d8)	B.W.	S/N (did)						
LOW	$\begin{gathered} 100 \mathrm{~Hz} \\ 100 \mathrm{kHz} \end{gathered}$	40^{*}	$\mathrm{dc}^{\text {c-10 }} \mathrm{kHz}$	45	60 ips	101/2"	7+edge	Y/2'	39078	177-178
					60 ips	101/2"	$14+$ edge	$1^{\prime \prime}$	39148	177-178
	$\begin{gathered} 300 \mathrm{~Hz} \\ \text { to } \\ 250 \mathrm{kHz} \end{gathered}$	35*	di-20 kHz	45	60 ips	103/2"	$7+$ edge	1/2"	39178	177.178
					60 ips	10\%/2"	14+ edge	1"	39248	177.178
	$\begin{gathered} 300 \mathrm{~Hz} \\ 10 \\ 300 \mathrm{kHz} \end{gathered}$	40*	$\mathrm{dc}-20 \mathrm{kHz}$	48	60 ips	15^{*}	14	1^{μ}	3955A	179-180
					60 ips	15*	7	i/2 ${ }^{\text {N }}$	3955B	179-180
					60 ips	101/2"	14	$1^{\prime \prime}$	3955C	179-180
					60 ips	101/2"	7	$1 / 2^{*}$	39550	179-180
WIOE	$\begin{aligned} & 400 \mathrm{~Hz} \\ & 10 \\ & 1.5 \mathrm{MHz} \end{aligned}$	30^{*}	$\mathrm{dc}^{\text {c }} \mathbf{4 0 0} \mathrm{kHz}$	30	120 ips	$15^{\prime \prime}$	14	$1^{\prime \prime}$	3950A	179.180
					120 ips	15"	7	$1 / 2^{\prime \prime}$	39508	179.180

[^6]

3900 Series System in moblle cabinet with optional voice channel

3900 Serjes Portable System (Option 02)

IRIG.Compatible Instrumentation Recording Systems
3907B, 39148 lowband (to 100 kHz)
39178, 39248 intermediate band (to 250 kHz)

Hewlett-Packard Low-Band and low-cost IntermediateBand Instrumentation Recording is provided by the models described on this and the following page (also see the Table on page 176).

Both 7. and 14 -channel operation are offered, with IRIGcompatible tape-speeds and recording bandwidths.

The primary features of these systems evolve through use of low-cost, simplified electronics, making them especially suited to Medical, Chemical and Industrial applications, plus general laboratory testing. The electronics are all solid state and mounted on front panel accessible printed-circuit cards for ease in making recording mode changes.

Both the Record and the Reproduce electronics for a data channel are on a single printed-circuit Insert Card. This combination offers more compact electronics, at lower cost.

Data Channel Insert Cards are available for Direct, FM and Pulse modes of recording and can be all alike or mixed as desired to meet the requirements of data to be recorded on each of the 7 (or 14) channels.

For operation at the different tape speeds, the data chan. nel electronics are compensated by sliding a Direct or FM Plug-in card into the appropriate Insert Card (none is required for Pulse recording). With the appropriate Plug-ins, the Insert Cards are ready for operation at any of the six standard tape speeds.

FM Flutter Compensation is provided by channel 3 in 7 -channel systems and 3 and/or 10 in 14 -channel systems. By placing the Compensation Switch to $\mathrm{ON}_{\text {, a signal is fed to }}$ the output of each of the other channels, significantly reduc. ing the flutter noise component and improving the signal-tonoise ratio over the bandwidth, at all tape speeds. A new
feature of the FM electronics is the "record squelch" switch which allows re-recording on any pre-selected channels without erasing the other channels.

The Insert Rack and Transfer Chassis, located directly below the Tape Transport, contains the power supply and data channel electronics; up to eight Record/Reproduce Amplifier Inserts (one for the edge-track) are accommodated in each unit. It also provides built-in, switchable metering for aligning and monitoring FM channels; front panel test points are provided for power supply voltage testing.

Voice channel commentaries use edge-track recording, by incorporating the Model 3907-06A Voice Channel Amplifier in the system (see above photo). The magnetic heads on all models contain an edge-track which may be used for voice commentary or cime-coded data,

Transport Operating Controls include pushbuctons for LINE (power), STOP, PLAY, REVERSE, FORW ARD and RECORD. Also, all transport tape speeds, $17 / 8$ ips through 60 ips, are selected electrically by front panel pushbutions. Both Record and Reproduce can be performed simultaneously for immediate display of the data being recorded. A connector is provided for remote control of the PLAY, STOP, REVERSE, FORWARD and RECORD functions.

The Transport can be easily converted in the field to accommodate either $1 / 2^{\prime \prime}$ or $1^{\prime \prime}$ wide tape. A factory provision is required on the original system to allow for $1 / 2^{\prime \prime}$ to $1^{\prime \prime}$ con. version. No such provision is required for conversion from $1^{\prime \prime}$ to $1 / 2^{\prime \prime}$ tape.

The 3900 Series of Magnetic Tape Recorders are ideally suited for use with the 8800 Series Single Channel Preamplifers and the 8820A/21A Multi Channel Amplifiers. The 8875A Differential Amplifier may also be used with these systems.

Optional accessory equipment

Input signal coupler: adapts seven FM or Direct single-ended inputs for use with push-pull input signals. Atcenuator network plugins (onc per channel) required.
Price: HP Model 3907.07A, \$395.
Control panel: a central signal-distribution point for up to eight data channels. Input data is from rape or preamplifiers; outputs drive single-ended inputs of recorders or monitors, such as the Oprical Recorders, Thermal Recorders, Ink Recorders, Viso-Scopes, or a Magneric Tape Recorder.
Price: HP Model 568-2000A, \$1750.**
Remote control module: includes all functions excepr speed selec. tion for tape recorder operation from anosher location. With 25 ft cable. Rack mounting on Option 01. (See photo, page 183.)
Price: HP Model $3907.11 A, \$ 385$.
Voice channel amplifier: provides for edge-track recording of commentaries at same time data is being recorded. Edge-track is on all transports; only a Reproduce Preamplifier and Direct Record/ Reproduce Insert must be added. Includes microphone.
Price: HP Model 3907-06A, \$250.

System prices

(add appropriate Record/Reproduce Electronics)
Model 39078, 7-track, Low-Band Systems
$\$ 6185$.
Model 3914日, 14 -track, Low-Band Systems $\$ 8415$.
Model 3917日, 7-track, Intermediate-Band Systems $\$ 6435$.
Madel 3924B, 14-track, Intermediate-Band Systems $\$ 8915$.

System options

Less cabinet: includes all hardware for $19^{\prime \prime}$ rack mounting.
Option 01: (all systems)
deduct $\$ 505$.
Mounted in portable cabinets, (see photo, page [77).
Oprion 02: 7-channel spstems
deduct $\$ 200$. 14 -channel sysiems no charge.

Record/reproduce electronics

Direct record/reproduce insert: each direct recording channel requires one data amplifier insert, plus a reproduce equalization plug-in (listed below) for each tape speed to be used.
Price: HP Model 3900-12B, $\$ 155 \mathrm{ea}$.
Direct equalization plug-ins: these slide into direct insert (listed above) to be used. Available for all six tape speeds.
Pilce: HP Model (depends on tape speed), \$40 ea.
FM record/raproduce insert: each FM recording channel requires one data amplifier insert, plus an FN[carrier frequency plug-in (listed below) for each lape speed to be used.
Prlce: HiP Model 3900-13C, $\$ 200$ ea.
FM frequency plug-ins: these slide into FM insert (listed above), to generate the appropriate FM carrier frequency for tape speed to be used. Available for all six tape speeds.
Price: HP Model (depends on tape speed), $\$ 41$ to $\$ 60$.
Pulse record/reproduce insert: (no plug-ins required. Each pulse recording data channel requires one pulse insert.
Price: HP Model 3900-14A, \$125 ea.
Reproduce preamplifler: for use with voice channel amplifer (Model 3907.06A).
Price: HP Model 3900-10B. \$41 Ea.

Power, weight and dimensions (all models)

System power: 105 to $125 \mathrm{~V} \mathrm{rms}, 60 \mathrm{~Hz}$, approx 350 waits.
System weight (approx):
3907B: $456 \mathrm{lb}(207 \mathrm{~kg})$, net
$3914 \mathrm{~B}: 520 \mathrm{lb}(236 \mathrm{~kg})$, net
3917B: $424 \mathrm{lb}(192 \mathrm{~kg})$, net
3924B: $424 \mathrm{lb}(192 \mathrm{~kg})$, nel
System dimensions: $721 / 8^{\prime \prime}$ high, $22 \cdot 1 / 16^{\prime \prime}$ wide, $30^{\circ \prime}$ deєp (1832 x $561 \times 763 \mathrm{~mm}$).

Condensed specifications

(Common to Models 3907B through 3924B)
Note: For complete specifications, request current technical data sheet. Speed-dependent specifications are shown at 60 ips.

[^7]
Tape transport

Magnetic tape: 4600 fr of 1 -mil tape on $10 \frac{1}{2}$ " reel.
Tape speeds: $60,3015,71 / 2,33 / 4$ and $17 / 8 \mathrm{ips}$.
Drive speed accuracy: $\pm 0.25 \%$ of nominal capstan speed with $60 \mathrm{~Hz} \pm 0.03 \%$ line; speed is directly proportional to line frequency.
Maximum interchannel tlme displacement error: rotal interchannel displacement error (dynamic) $\pm 1 \mu \mathrm{sec}$ at 60 ips between 2 adjacent tracks on same head stack (all models).
Start tlme: within speed limits in approx 6 sec; futter within specifications in approx 10 sec at 60 ips .
Stop time: 2 sec max. Power-failsafe braking.
Rewind time: approx 200 sec For 4600 ft reel.
Peak-to-peak tlutter characteristics (at 60 ips): 0.2% over 0 to 200 Hz bandwidth
0.3% over 0 to 1.5 kHz bandwidth
0.6% over 0 to 10 kHz bandwidth

Direct electronics

Record amplifier Input: 20 K ohms input resistance. singleended. 0.5 to 10 V rms, adjustable.
Reproduce amplifler output: output impedance 100 ohms max, single-ended. Level adjustable from 1 V rms to 2.1 V rms at $\pm 3 \mathrm{~mA} . \mathrm{DC}$ level adjustable $\pm 1.5 \mathrm{~V}$.
Third harmonic distortion (conforms to JRIG stds): 3907 B and $3914 \mathrm{~B}: 1 \%$ typical at $1 \mathrm{kHz}, 60$ ips. 3017 B and 3924 B ; 1% eqpical at $500 \mathrm{~Hz}, 30 \mathrm{ips}$.
Bandwidth (at 60 ips); 3907 B and $391 \mathrm{AB}: \pm 3 \mathrm{~dB} .100$ to 100 kHz . 3917 B and $3224 \mathrm{~B}: \pm 3 \mathrm{~dB}, 300$ to 250 kHz .
Signal-to-noise ratio (at 60 ips):
3907 B and $3914 \mathrm{~B}: 40 \mathrm{~dB}$ * over 100 Hz to 100 kHz bandwidth. 3917 B and 3924 B : is dB over 250 Hz :o 250 kHz bandwidth.

FM electronics

Record amplifier input: 20 K ohms input impedance. singleended. $\pm 2.5 \mathrm{~V}$ dc nominal, adjustable from ± 1.2 to $\pm 3 \mathrm{~V}$.
Reproduce ampliffer output: outpur impedance less than 100 ohms max. Single-ended output is $\pm 2.5 \mathrm{~V}$ de, nominal (at $\pm 3 \mathrm{~mA} \mathrm{max}$); adjustable from ± 1.2 to $\pm 5 \mathrm{~V}$. DC position adjustable $\pm 2 \mathrm{~V}$.
Drift: $\pm 0.5 \%$ for $10^{\circ} \mathrm{C}$ change, $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}: \pm 0.25 \% \max$ for 10 V line voltage change.
Linearlty: max depariure from a straight line, using 0% and $+30 \%$ frequency deviarion as reference points, will be:

3907 B and $3914 \mathrm{~B}: \pm 1 \%$
3917 B and $3924 \mathrm{~B}: \pm 1.5 \%$
Bandwldth (at 60 lps): 3907 B and $391 \mathrm{AB}:+0,-1 \mathrm{~dB}$ from dc to 10 kHz . 3917 B and 3924 B : $+0,-1 \mathrm{~dB}$ from dc to 20 kHz .
Signal-to-nolse ratio (at 60 [ps):
3907 B and $3914 \mathrm{~B}: 45 \mathrm{~dB}$ over dc to 10 kHz bandwidith. : (48 dB with Gutier compensation).
3917 B and $3924 \mathrm{~B}: 45 \mathrm{~dB}$ over de 1020 kHz bandwidth.
Total harmonic distortion (at 60 (ps): 39078 and $3914 \mathrm{~B}: 1.2 \%$ 3917 B and $3924 \mathrm{~B}: 1.5 \%$
FM center carrier frequency (at 60 ips): 3907 B and 3914 B : 54 kHz , nominal. 3917 B and $3924 \mathrm{~B}: 108 \mathrm{kHz}$, nominal.

Pulse electranics

Recorder amplifier input: 10 K ohms input impedance, single. ended. Rectangulat, zero-based, negatice-going pulse, $-71 / 2 \mathrm{~V}$ to -30 V final amplirude.
Reproduce ampllfier output: ousput impedance of 1 K ohms; may be loaded. Single-ended outpur of approx -11.8 V into open circuis is zero-based, reciangular pulse.
Pulse characteristics (at 60 ips): (for 3907 B and 3924 B ; specifications for 3917 B and 3924 B shown in parentheses). Maximum rise time: 4 (3) $\mu \mathrm{sec}$. Minimum input pulse duration:

50 (25) $\mu s e c$ for output pulse reproduction accuracy.
10 (2) usec for any output pulse.
Pulse reproduction accuracy: ± 5 ($\pm 10) \mu \mathrm{sec}$.

[^8]ANALOG TAPE RECORDEAS zonsimud
Intermediate band (to 30 kHz) recordling 3955 Series

INTERMEDIATE BAND INSTRUMENTATION RECORDERS 40 de signel-to-nolse ratlo to 300 kHz .

The HP 3955 Serles Magnetic Tape Recorders provide you with highly Rexible, yet easy-to-operate systems to record and/or reproduce electrical signals in their original form. Both 7- and 14-channel capacity is available; plug-in electronics (Direct and FM) can be intermixed as desired. Maximum bandwidth at 60 ips is 300 kHz for Direct recording, and 20 kHz for FM recording.

Each 3955 System includes a high-performance Tape Transport and a number of interchangeable Record and Reproduce Amplifiers, offering an extremely wide latitude in determining the exact system configuration. You can choose 7 - or 14-track capability in either of two basic tape transports.

The smaller transport, which can handle tape reels up to $101 / 2^{\prime \prime}$ in diameter, provides economy as well as performance. This transport is for applications requiring average recording times.

The farger transport accepts tape reels up to $15^{\prime \prime}$ in diam. eter to provide over 19 hours of recording lime at a tape speed of $I 7 / 8$ ips.

The 7- and 14-track Record and Reproduce Head Assemblies conform to the generally accepted industry-standards for magnetic heads and tape format, as specified in IRIG (Inter-Range Instrumentation Group). In addition, for best alignment, the head stacks are mounted on a single precision baseplate. Because they are prealigned, head assemblies are easily field replaceable.

Tape reels snap on and off specially-designed hubs, and the open tape path allows quick, convenient tape threading.

All operating controls for the system ace located on the transport chassis. Pushbuttons are utilized throughout to obtain the desired mode of operation. Rear connectors are provided for remote control operation, accessorics, and inter. connecting cabling.

The transparent cover door completely encloses the reels and tape drive path to protect these parts from dust and damage. The control buttons are left uncovered for ready access when changing operating modes.

The transports are slide-mounted. When withdramen. they can be tilted in either direction for complete front-of-system accessibility of all parts formaintenance purposes.

The outstanding electrical and mechanical performance of the tape transports used in the 3955 Series Tape Systems is inherent in their simple, straightforward design. The rugged cast aluminum transport frame is precision-finished on automated machine rools to insure proper alignment of all parts of the tape drive system. Close tolerances in the computer-controlled machining process assure parts interchangeability without need for complex alignment, adjustments, or shims, in the transport mechanism.

Test Slgnals are provided by the Record Mainframe; 7 pushbuttons (see Figure 2) introduce test signals to the desired rrack. To apply a test signal, simply connect it to the front panel TEST INPUT jack and depress the appropriate pushbutton. This removes the normal data-signal and inserts the test-signa! into the desired Record Amplifer.

In the Record mode the recorded test signal is simultaneously reproduced with a delay equal to 3.5 inches of tape length, and is available at the output of the appropriate Reproduce Amplifier. It can be monitored by depressing the channel pushbutton on the Reproduce Mainframe (see photo, page 182); this connects the reproduce monitor meter and front panel OUTPUT jack to the desired Reproduce Amplifier. Using this technique, it is easy to quickly check all channels for proper operation from the front panel.

With all thelr flexlbility, the 3955 Systems are extremely easy to operate and maintain.

Flgure 1. Tape-speed netwarks, changeable from front-panal.

Record and Reproduce Electronics

The solid-state Record and Reproduce Amplifiers for the 3955. Series are separately packaged, modular units, designed as front-panel plug.ins. Supply voltages, signal connections, and metering for all amplifiers are provided by the Record and Reproduce Mainframes. Two mainframes are used in 7 -channel systems; four in 14 channel systems.

Figure 2. Recorder Maintrame, showing plug-in Record Amplitiers (Reproduce Mainframe is shown on Page 192).

A metal cover-door opens downward for Amplifier adjust. ment or removal (as shown in photo, above).

Direct electronics, with 300 kHz bandwidth, and FM electronles, with dc to 20 kHz bandwidrh, is provided for the 3955-Series (see listing, below; also shown on page 181).

The Reproduce Amplifiers used in 3955 systems are especially well suited to the magnetic head characteristics. The HP preamplifer, which evolved from other areas of magnetic develop. ment in Hewlett-Packard laboratories, gives an ourtstanding signal-to-noise performance.

Different equalization is used for each tape speed. Each equalizer circuit is mounted on a convenient plug-in circuit card (Figure 1). The push-bar indicates with the tape speed numerically, as weil as by a colored stripe to match the color of the speed pushbutton on the Tape Transport. Amplifiers accommodate equalizers for three tape speeds. The desired equalizer is selected by pushing on the equalizer push-bar. A mechanical "teeter-totter" auromatically femoves the previously operating equalizer from the circuit. The plug-in design of the equalizers allows reliable and rapid front-panel substitution of units for any speed, or of any entirely new set.

Prices for Record and Reproduce Electronics

Direct electronics: (to 300 kHz)
Direct Record Amplifier: HP Model 3534A, $\$ 125$ ea. (no equalization plug-ins required).
Direct Reproduce Amplifler: HP Model 3537A, $\$ 100$ ea. Direct Reproduce Equalizers ${ }^{* *}, \$ 25$ ea.
FM electronics (dc to 20 kHz)
FM Record Amplifier: HP Model 3535A, $\$ 210$ ea. FM Record Tuning Units**, \$15 ea.
FM Reproduce Amplifler: HP Model $3538 \mathrm{~A}, \$ 170 \mathrm{ea}$. With FM futter compensation, Option 01, \$235. With 0 to 5 volt p-p output, $\$$ (on request). FM Reproduce Filter Units $* *, \$ 40$ ea.

System Prices

System prices depend on number and yype of record and reproduce amplifiers, plus complementary equipment included. The following include 7 - or 14 -channels of direct record and reproduce electronics: 3-speed equalization: no complementary equipment:

Model 3955A: 14-channel system; 15" max reel dia
$\$ 14.500$
Model 3955B: 7-channel system; 15" max reel dia
Model 3955C: 14-channel system; L01/2" max reel dia
$\$ 10,050$
$\$ 14,000$
Model 3955D: 7 -channel system; 10 $1 / 2^{\prime \prime}$ max reel dia
$\$ 9,550$

Condensed Specifications
 (common to all 3955 -Series models)

Note: for complete specifications, request current rechnical dara sheet. Speed-dependent specifications are shown (at 60 ips).

Tape Transport

Magnetic tzpe: 3955A/B: 9200 feet of 1-mil rape on $15^{\prime \prime}$ reel (max). $3955 \mathrm{C} / \mathrm{D}: 3600$ feet of 1 -mil tape on $101 / 2^{\prime \prime}$ reel (max).
Tape speeds: $60,30,15,71 / 2,33 / 4$ and $17 / B$ inches per second.
Drive speed accuracy: $\pm 0.25 \%$ of aominal capstan speed with $60 \mathrm{~Hz}=0.03 \%$ line; speed is directly proportional to line frequency.
Maximum time base arror (TBE) (ac 60 ips) : $0.4 \mu \mathrm{~s}$ p-p jitter. max, over a 0.1 ms time interval.
Maximum interchannel time displacement error (ITDE): ± 1 $\mu \mathrm{s}$ at 60 ips between two adjacent tracks on the same head stack.
Start time: within speed limiss in approximately 6 seconds.
Stop time: 1 second. maximum. Pow'er-failsafe braking.
Rewind time (approx): 4 min for 9200 feet; 2 min for 3600 ft
Peak-to.Peak flutter characteristics (at 60 ips):
Within specs approx 10 seconds after start.
$0.2 \%, \mathrm{P} \cdot \mathrm{P}$, over 0 to 200 Hz bandwidth.
0.3 c\%. P-p, over 0 to 1.5 kHz bandwidth.
0.6%, p-p, over 0 to 10 kHz bandwidth.
Footage counter: 5 digits, $\pm 0.05 \%$ accuracy

Diract Electronics

Record amplifier input (3534A) : input impedance: 20 K ohms min, shunted by 150 pF , unbalanced. Input signal lerel: 0.19 ro 10 V mos, adjustable for IRIG. specifed record level.
Reproduce amplifier input (3537A): output impedance: 50 ohrns, nominal. Unbalanced output signal adjus:able from zero to 1 V rms (0.5 V rms into 50) : IRIG-specified record level on tape.
Total harmonic distortion (with 3534 A and 3537 A amplifiers): 1.2% THD, or less, when recording at IRIG-specified level. Bandwidth (at 60 ips): $\pm 3 \mathrm{~dB} .300 \mathrm{~Hz}$ to 300 kHz .
Signalto-nolse ratio (at 60 ips):
$40 \mathrm{~dB}^{*}$, or better, over 300 Hz to 300 kHz bandwidth. (System roise is limited by the magnetic tape used.
FM electronics
Record amplifier input (3535A) : inpur impedante: 20 K ohms min, shunted b; 150 pF , unbalanced. Input jignal lerel: ± 0.7 to ± 15 volts peak, adjistable for $\pm 40 \%$ carrier der iation
Reproduce amplifier output (3538A) : output impedance: 600 ohms, nominal. Unbalanced ouput signal is 2.8 V p-p inro matched load (5.6 V p-p, open ckt) : adjustable down to 0.3 V p.p. DC position adjustable to 0 V de ac zero deviation.

Drift: $\pm 0.4 \%$ max, for $10^{\circ} \mathrm{F}$ change, $32^{\circ} \mathrm{F}$ to $131^{\circ} \mathrm{F}$. $\pm 0.25 \%$ max, for 10 V line volcage change. $\pm 0.5 \%$ of p-p cutput-max, per 8 hrs (after 20 min warmup).
Linearity: $\pm 1 \%$ max departure from a zero-based straight line.
Bandwidth (at 60 ips): $+0.5,-1 \mathrm{~dB}$ from ds to 20 kHz , with 600 ohm load and output fiter adjusted for fiat amplitude re. sponse (also adjustable for best squarepiave response).
Signal-tormoise ratio (at 60 ips) : $>48 \mathrm{~dB}$ over de. 20 kHz bandwidth. (Further improred with FM flusier compensation ampl).
Total harmonic distortion (at 60 ips) : 1.5%. maximum,
FM center cerrier frequency (at 60 ips): 105 kHz .
Power, weight and dimensions
System power: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}(230 \mathrm{~V}, 50 \mathrm{~Hz}$ optional). 440 to 460 watts, approx (14 -track models) 330 to 350 watts. approx (7-rrack models).
System weight: (depends on number of channels and complementary equipment included: the following are typical): 675 lbs (304 kg), net. for in-cabinet 14 -channel s5stem. $575 \mathrm{lbs}(257 \mathrm{~kg}$), net, for in-cabinec 7 channel system.
System dimensions: (standard cabiner, with base with costers). $823 / 8^{\prime \prime}$ h. $\times 23^{\circ} / 8^{\prime \prime} \pi$. $\times 35-11 / 16^{\prime \prime}$ d. ($2099 \times 607 \times 907 \mathrm{~mm}$).

- Sin ratio measured using bandpass filter at output. Corner frequencies are of specifiea banawidth; rolloff is 18 dB /octave.
- Amplifiers accept three (3) tape speed compensating plug-ins, simultaneousily. Part number oepends upon tape speed specifled; plug-ins are available for all six tape speeds.

ANALOG TAPE RECDRDERS saminaud
Wlde-band (to 1.5 MHz) recording
3950 Series

The 3950 Series Magnetic Tape Recorders are a versatile and reliable means for recording and/or reproducing large amounts of data. With up to fourteen record and reproduce channels, six electrically switchable operating speeds, and rape reel capacity up to 15 inches in diameter, these systems provide a wide choice of operating modes.

Each 3950 system inciudes a high-performance Tape Transport, plus Record and Reproduce Amplifiers for the number of data-channels desired.

Simple and straightforward design of both the Tape Transport and the amplifers assures reliable operation with a minimum of coutine adjustment and maintenance. System fexibility permits arrangement of its parts in any desired quantity and configuration. Systems can be expanded or rearranged quickly and easily at field locations.

Bandwidth of each Direct-recording channel is 400 Hz to 1.5 MHz, providing 17 minutes of recording time when using 15 -inch reels and operating at the fastest speed of 120 ips. At its lowest standard speed of $3 \frac{3}{4}$ ips, the systenn will record 400 Hz to 47 kHz for over $91 / 2$ hours. With FM electronics, the bandwidth is from dc to 400 kHz at 120 ips , and $\mathrm{d} c$ to 5 kHz at $33 / 4 \mathrm{ips}$.

Outstanding electrical and mectianical performance is inherent in the simple, straightforward tape transport designed and buill by Hewlett-Packard. The rugged cast aluminum transport frame is precision finished on automated machine tools to assure proper alignment of all parts of the tape drive system. Close tolerances in the computer-controlled machining process assure parts interchangeability without need for complex alignment or adjustments in the transport mechanism.

Exceptionally good motional stability is achieved by a rape drive system that is easy to chread and requires a minimum of maintenance.

The 7 and 14 -track Magnetic Head Assemblles conform to generally accepted industry-standards for magnetic heads and tape format, as specifed by IRIG (Inter-Range Instrumentation Group). The head stacks are mounted on a single precision baseplate. The prealigned head assemblies are easily field replaceable, within 10 minutes.

Tape reels $5 n a p$ on and off specially-designed hubs for maximum operator convenience.

All operating controls for the system are located on the transport chassis. Pushbuttons are utilized throughout to obtain the desired mode of operation. Rear connectors are provided for remote control operation, accessories, and incer. connecting cabling.

A transport cover door completely encloses the reels and tape drive path to protect these parts from dust as well as possible damage. Control buttons are left uncovered for ready access to quickly change transport operating modes.

The transport is slide-mounted. When withdrawn from the rack, it can rotate in either dicection from the vertical to provide complete front-of-system accessibility of both top and bottom of the transport for maintenance purposes.

Test Signals are provided by the Record Mainframe; 7 pushbuttons (see photo, page 180) introduce test signals to the desired track. To apply a test signal, simply connect it to the Record Mainframe font-panel TEST INPUT jack, and depress the appropriate pushbutton. This removes the normal data-signal and inserts the test-signal into the desired Record Amplifier.

In the Record mode, the recorded test signal is reproduced with a delay equal to 3.5 inches of tape length and is available at the output of the appropriate Reproduce Amplifier. It can be monitored by depressing the channel pushoutton on the Reproduce Mainframe (see Figure 2); this connects the reproduce monitor meter and front panel OUTPLiT jack to the desired Reproduce Amplifier. Using this technique, it is easy to quickly check all channels for proper operation from the front panel.

The Rexible 3950 Series systems are extremely easy to operate and maintain.

Figura 1. Record and raproduce amplifiers.

Record and Reproduce Electronics

Solld state Record and Reproduce Amplifiers for HP 1.5 MHz Recorders are modular units designed for front-panel plug.in mounting in the system Mainframes (see Figure 2). Two Mainframes are used in 9 -channel systems; four in 14 channel systems. Each seven-channel Mainframe provides power supply voltages, signa! connecrions and merering for all amplifiers.

Figure 2. Reproduce Malnframe, showing plug-in Reproduce Ampllfiers. (Record Mainframe is shown on page 180.)

A metal cover door opens downward (as shown in Figure 2) for access to adjustments, and easy removal of the amplifiers.
Direct electronics, with i.5 MHz bandwidth, is provided for the 3950 -Series (see listing below). FM electronics, also used with the 395s-Series Systems (pages 179-180). provides ds to 20 kHz FM recording. Wideband FM Electronics (dc to 400 kHz) is a vailable on special order.
A radical new kind of Reproduce Amplifier, especially well suited to magnetic head characteristics is used with the 3950 . Series Systems. Also, the HP preamplifer, which evolved from other areas of magnetic development in Hewlett-Packard lab. oratories, gives an oursianding signal-so-noise performance.
Different equalization is used for each tape speed. Each equalizer circuiz is mounted on a convenient plug-in circuit card (shown on page 179). The push-bar indicates the tape speed numerically, as well as by a colored stripe to match the color of the speed pusthbutton on the Tape Transport. The ampifiers accommodate equalizers for three tape speeds. The desired equalizer is selected by pushing on the equalizer pushbar. A mechanical "teeter-totter" automatically removes the previously operating equalizer from the circuit. The plug.in design of the equalizers allows reliable and rapid front-panel substitution of units for any speed, or of any entirely new set.

Prices for Record and Reproduce Electronics

Direct electronics (to 1.5 MHz)
Direct Record Amplifler: HP Model 3540A, $\$ 170$ ea. (no equalization plug-ins required).
Direct Reproduce Amplifier: HP Model 3543A, $\$ 160$ ea. Direct Reproduce Equalizers***, \$40ea.
FM electronics (dc to 20 kHz)**
FM Record Amplifier: HP Model 3535A, Option 01, $\$ 210$ ea, FM Record Tuning Unirs***, $\$ 15$ ea.
FM Reproduce Amplifler: HP Model 3538A, $\$ 170$ ea. With FM flutter compensation, Option 01, (on request). With 0 to s volts $p \cdot p$ output (on request). FM reproduce filter units***, \$40 ea.

System Prices

System prices depend upon the number and type of record and reproduce amplifiers, plus complementary equipment included. The following represent a fuil 7 or 14 -channels of direct record and reproduce electronics; 3 -speed equalization; no complementary equipment:
Model 3950A: 14.channel system; 15" max dia reels $\$ 19,700$
Model 3950B: 7 -channel system; $15^{\prime \prime}$ max dia reels $\$ 13,350$

Condensed Specifications

(Common to both 3950A and 3950B)
Note: for complete specifications, request current technical data sheer. Speed-dependent specifications are shown (at 120 ips).
Tape Transport
Magnetic tape: (transports accept $101 / 2^{\prime \prime}, 14^{\prime \prime}$. or $15^{\prime \prime}$ NARTB reels).
4,600 feet of 1 -mil tape (0.18 milt oxide) on $101 / 2^{\prime \prime}$ reel.
9.200 feer of 1 -mil tape (0.18 milt oxide) on $14^{\prime \prime}$ reel.

10,800 feet of 1 -mil tape (0.18 milt oxide) on $19^{\prime \prime}$ reel.
Tape speeds: $120,60,30,15,71 / 2$, and $33 / 4$ inches per second.
Drive speed accuracy: $\pm 0.25 \%$ of nominal capstan speed with $60 \mathrm{~Hz} \pm 0.03 \%$ line: speed is directly proportional to line frequenc.
Maximum tlme base error (TBE) (at 120 ips): $3 \mu \mathrm{~s}$ p-p jitter, max, over a 0.1 ms time interval.
Maximum interchannel time displacement error (ITDE): ± 0.5 μ_{s} at $120 \mathrm{ips}\left(\pm 1 \mu_{s}\right.$ at 60 ips$)$ between iwo adjacent tracks on the same head stack.
Start time: within speed limits in approximately 6 seconds.
Stop time: 1 second, maximum. Power- failsate braking.
Rewlnd time: approximately $41 / 2$ min for 9200 ft ; 5 min for $10,800 \mathrm{ft}$.
Peak-to-peak flutter characteristics (ac 120 ips):
0.2%. p-p. over 0 to 200 Hz bandwidth.
$0.3 \%, \mathrm{p} \cdot \mathrm{p}$, over 0101.5 kHz bandwidth.
0.6%, p-p, over o to 10 kHz bandwidh.
Foótage counter: s digits, $\pm 0.05 \%$ accuracy.
Direct Electronics
Record amplitier input (3540A):
Input Impedance: 100 ohms, shunted by 70 pF , unbalanced. Input signal level: 0.25 to 30 V ms. adjusable for IRIG. specified record level.
Reprotuce amplifier output (3543A):
Output impedance: 75 ohms, unbalanced.
Output signal level: adjuscable up to 1 V rms into 75 ohms with IRIG-specified record level on tape.
Totat harmonic distortion (with 3540 A and 3543 A amplifers): 1.2% THD, or less, when recording at IRIG-specified levels.
Bandwidth (at 120 ips): $\pm 4 \mathrm{~dB}, 400 \mathrm{~Hz}$ to 1.5 MHz .
$\pm 3 \mathrm{~dB}, 10 \mathrm{kHz}$ to 1.5 MHz .
Maximum rise time (at 120 ips): $0.4 \mu \mathrm{~s}$ with fundamental of squarewave at 150 kHz .
Signal-to-noise ratio (at 120 ips): 30 dB , or better, over 400 Hz to 1.5 MHz bandwidth. (System noise is limited by the magretic tape used.)
FM Electronics
The EM record and reproduce amplifers used with the 3955 Series Magnetic Tape Systems (pages 179.180) ate also plug-in compatible with the 3950 Series, offering a ds to 20 kHz bandwidth. Wideband (dc to 400 kHz) FM electronics is available on special order.

Pulse recording

The direct electronics includes an adjustable all-pass network for phase compensation of pulse response.
Power, welght and dimensions
System power: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$ ($230 \mathrm{~V}, 50 \mathrm{~Hz}$ optional). 3950A: 600 watts (approx); 14 -channel system. 3950B: 520 watts (approx); 7.channel system.
System waight: depends on number of channels, and complementary equipment included; the following are lypical: $675 \mathrm{lb}(302 \mathrm{~kg}$), net, for 14 -channel Model 3950 A . 575 lbs (257 kg), net, tor 7 -channel Model 3950 B.
System dimensions: (cabinet, including extended base with casters). $823 / 8^{\prime \prime}$ high $\times 23 \% 8^{\prime \prime}$ wide $\times 35 \cdot 11 / 16^{\prime \prime}$ deep ($2099 \times$ $607 \times 907 \mathrm{~mm})$.

[^9]

Voice Channel
Model 3604A

AC Power Supply Model 3680A

Remote Control Unit Model 3907-1 1A

Reproduce Track Selector Model 11539A

Automatic Tape Degausser, HP Model 3603A
Degausses magnetic tape to 90 dB below saturared recorded level. Automatic operation: complete erasure every time. Desigoed for continuous operation. Accepts $3^{\prime \prime}$ to $15^{\prime \prime}$ diameter reels: $1 / 4^{\prime \prime}$ to $1^{\prime \prime}$.wide tape. Use in rack or on rable top. Digital Reel Hub Adapter Model $11572 \$ 17.00$

Voice Channel, HP Model 3604A
$\$ 550$
Records voice commentaries along with data. Provides for edge-rrack or multiplex recording. Multiplex operation combines voice with data for secording on any direct-record channel. Includes loudspeaker and rerractable microphone.

FM Frequency Source (not shown), HP Model 3605A \$67s
Provides precise carrier-frequency signals for alignment of Model 3538A FM Reproduce Amplifiers.

AC Power Supply, HP Model 3680A

$\$ 1,100$
Used to obtain crystal-controlled drive speed accuracy when system is operated from variable-frequency ($47-63 \mathrm{~Hz}$) power source. Eliminares minor tape speed changes resulting from abnormal frequency variations in the ac power line. Amplifier is driven from either an internal crystal or an external frequency source. Ideal for laboratory or field use, supplying up to 100 neatts, 115 volts, at any frequency from 30 Hz to 1.5 kHz

Tape Servo, HP Model 3681A

$\$ 1,380$
Generates IRIG-specified speed-control signal for recording on tape with data. When the rape is replayed, the reproduced speed-conerol signal drives the 3680A AC Power Supply (above); it, in curn. controls the tape speed such that data signals are reproduced at exactly the same frequency as recorded.

$$
\begin{array}{ll}
\text { Option } 01 \text { Amplitude Modulation } 17 \mathrm{kHz} & \$ 1,210 \\
\text { Option } 02 \text { Constant Wavelength and } A M, 17 \mathrm{kHz} & \$ 1,580
\end{array}
$$

Remote Control Unit

Includes all functions for cape recorder operations from another location. With 25° cable. Rack mounting optional.

$$
\text { HP Model 3907-11A (for } 101 / 2^{\prime \prime} \text { reel systems) } \$ 38 s
$$

HP Model 3907.11A, Optlon 02 (for $15^{\prime \prime}$ reel systems) $\$ 435$

Reproduce Track Selector

Permits system economy by using Jess than a full complement of Reproduce Amplifiers. Each front-panei switch connects any of the 14 recorded data-tracks to the input of a single Reproduce Amplifer. With seven switches available, only one Reproduce Mainframe, and from 1 to) Reproduce Amplifers may be used rwith a 14 channel system.
HP Model 11539A, Option 01 (for $101 / 2^{\prime \prime}$ reel systems) $\$ 340$
HP Model 11539A, Option 02 (for $15^{\prime \prime}$ reel systems) $\$ 340$
Pack Sensor (not shawn) HP Model 11553A \$350
Senses the remaining lape-pack on both supply and take-up reels. Permits system to be stopped before tape runs off end of reel; used for recycling tape, or turning on a second tape recording system before the first one runs out of tape. For $1 s^{\prime \prime}$ reel sysrems, only.

TRANSDUCERS

Sensors of linear motion, force, size and pressure
Madels 7LV, 585, FTA, 1281, DCDT, 311-A

The 7DCDT and the 24 DCDT linear dis. placement transducers are extremely convenieat to use for measuring, monitoring or controlling mechanical displacement. No external carrier system is requiced and phase shift and balancing adjustments are not necessary. Each DCDT has 2 built-in carrier oscillator and demodulator which produces a high-level dc output voltage proportional to the linear displacement of the core. Both secies have extremely high resolution, zero hysteresis and non-linearity less than $\pm 0.5 \%$ of the total sroke. The 24DCDT's have approximately chree times the sensitivity of the 7DCDT's and an operating temperature to $120^{\circ} \mathrm{C}\left(7 \mathrm{DCDT}, 60^{\circ} \mathrm{C}\right)$. Excication of 7DCDT models is 5 to 7 volts $d c$; for $24 D C D T$ models, 20 to 28 rolts dc.

Linear Displacement
 (AC excitation)

Linearspn(i) (585DT, 395DT) Transducers produce an electrical oulput proportional to any physical parameter converuble to a relative displacement between the uransducer's core and coil assembly. A wide selection of transducers is available for Hewlect-Packard or equivalent carrier amplifiers (linear displacements to $0.000001^{\prime \prime}$ may be resolved). Nondinearity error will not exceed 1.0% of total stroke; temperature range, $-46^{\circ} \mathrm{C}$ to $+96^{\circ} \mathrm{C}$. Linearsyns are shielded, immersible in non corrosive fuids, resistant to shock and vibration, and void of mechanical hysteresis and friction. Scandard carrier frequency is 2.4 kHz , with a cange of 400 Hz to 10 kHz (585DT), or 20 kHz (S9SDT).

Moded	Model $7 \mathrm{CCDT} / 24 \mathrm{CDT}$					
	-056	. 100	-250	-500	-1000	.3000
Stroke \{range) (in)	+0.05	± 0.1	± 0.25	=0,5	-1	± 3
$\begin{aligned} & \text { Output, volls fis. } 7 \mathrm{OCDY} \\ & \\ & 24 \mathrm{DCDT} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 7.0 \end{aligned}$	$\begin{array}{r} 3.3 \\ 12.5 \end{array}$	$\begin{array}{r} 4.8 \\ 18.0 \\ \hline \end{array}$	$\begin{array}{r} 5.0 \\ 13.0 \\ \hline \end{array}$
$\begin{aligned} & \hline \text { Output impedance } \\ & 7 \mathrm{DCOT} \\ & 24 \mathrm{OCDT} \end{aligned}$	$\begin{aligned} & 2.2 \mathrm{~K} \\ & 2.5 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 3.0 \mathrm{k} \\ & 3.5 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{k} \\ & 5.2 \mathrm{k} \end{aligned}$	$\begin{aligned} & 5.3 \mathrm{~K} \\ & 5.5 \mathrm{k} \end{aligned}$	$\begin{aligned} & 5.5 \mathrm{k} \\ & 5.6 \mathrm{k} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{k} \\ & 5.6 \mathrm{k} \end{aligned}$
$\left.\begin{array}{rr}\text { Dimenslons, inches (mm) } \\ \left.\begin{array}{r}\text { diamgler } \\ \\ 240 C D T \\ 240 C D\end{array}\right\}\end{array}\right\}$	0.75 (19.2)					
7 length $\quad 24$ DCDT	$\begin{array}{r} 0.81 \\ (20.61 \\ (2.87 \\ 0.82) \\ \hline \end{array}$	$\begin{array}{r} 1.06 \\ (27.0) \\ 1.12 \\ (28.5) \end{array}$	$\begin{array}{r} 3.00 \\ (76.2) \\ 3.21 \\ (81.8) \\ \hline 21 \end{array}$	$\begin{array}{r} 3.50 \\ (89.2) \\ 3.71 \\ (94.2) \\ \hline \end{array}$	$\begin{aligned} & 4.50 \\ & (115) \\ & 4.71 \\ & (120) \end{aligned}$	$\begin{aligned} & 10.50 \\ & (267) \\ & 10.52 \\ & (286) \\ & \hline \end{aligned}$
Weight Armature (gm) Assembly	1.6	2.1	3.4	3.8	4.3	8.1
Wolght (gmi) net shipping	$\begin{aligned} & 23 \\ & 84 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 84 \\ & \hline \end{aligned}$	$\begin{array}{r} 68 \\ 168 \\ \hline \end{array}$	$\begin{array}{r} 78 \\ 168 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 198 \\ & \hline \end{aligned}$	$\begin{aligned} & 210 \\ & 308 \\ & \hline \end{aligned}$
Price: 70 DCDT 24 DCDT	$\begin{aligned} & \$ 100 \\ & \$ 145 \end{aligned}$	$\begin{aligned} & \$ 105 \\ & \$ 150 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 120 \\ & \$ 165 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 130 \\ & \$ 175 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 140 \\ & \$ 185 \end{aligned}$	$\begin{array}{r} \$ 160 \\ \$ 210 \end{array}$

Model	588 CT				E960T		
	. 050	$\cdot 250$	-500	41000	-005	. 025	-100
Stroke cange (inches)	0.05	0.25	0.5	1	0.005	0.025	0.1
$\begin{aligned} & \text { Sensilfivity } y^{*} \\ & \text { (V/in./vex) } \end{aligned}$	4.8	1.7	1.1	0.79	2.2	3,4	2.7
Impedance* (onms) primary: secondary:	$\begin{array}{r} 163 \\ 2140 \\ \hline \end{array}$	$\begin{aligned} & 151 \\ & 176 \end{aligned}$	332 370	$\begin{aligned} & 157 \\ & 247 \end{aligned}$	$\begin{array}{r}93 \\ 154 \\ \hline\end{array}$	303 365	330 365
Vex ${ }^{\text {(}}$ (max)	21	17	25	30	5	11.5	13
Size-inches (mm) dismeler: length:	$\begin{gathered} 0.75 \\ (19) \\ 1.63 \\ (41) \end{gathered}$	$\begin{gathered} 0.75 \\ (199) \\ 3.31 \\ (84) \end{gathered}$	$\begin{gathered} 0.75 \\ (19) \\ 4.88 \\ (124) \end{gathered}$	$\begin{gathered} 0.75 \\ (19) \\ 6.88 \\ (155) \\ \hline \end{gathered}$	$\begin{gathered} 0.375 \\ (10) \\ 0.90 \\ (23) \\ \hline \end{gathered}$	$\begin{gathered} 0.375 \\ (10) \\ 109 \\ (28) \\ \hline \end{gathered}$	$\begin{aligned} & 0.395 \\ & (109 \\ & 1.09 \\ & (28) \end{aligned}$
Weight (gm) armature assembly	5	7	12	18	0.10	0.25	0.29
$\begin{gathered} \text { Weight (gm) } \\ \text { net } \\ \text { shipping } \end{gathered}$	$\begin{array}{r} 47 \\ 227 \end{array}$	$\begin{aligned} & 104 \\ & 227 \end{aligned}$	$\begin{aligned} & 132 \\ & 227 \end{aligned}$	$\begin{aligned} & 178 \\ & 227 \end{aligned}$	$\begin{aligned} & 7.1 \\ & 84 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 84 \\ & \hline \end{aligned}$	$\begin{gathered} 7.9 \\ 84 \end{gathered}$
Price	$\$ 55$	860	\$65	\$70	\$40	45	\$45

* At standard carrier irequency.

Transducer Amplifier-Indicator

The 3lla Traosducer Amplifier-Indicator is a convenient, portable unit for quickly measuring any physical variable to which a transducer requiring ace excitation may be attached. The 311 A provides 2.4 kHz excitation to the transducer, and provides two inditations of the variable uader measurement; (I) a $4^{\prime \prime}$ panel meter, to follow slowly changing variables, and (2) an electrital output for an oscilloscope, recorder, or other indicator for frequencies up to 200 Hz . Intemal calibrstion and five-position zero suppression are srandard features.

Price: HP Model 311A, portable case, 119/230 V switch, 50 to $400 \mathrm{~Hz}, \$ 475$.

Option 02: Harmonic filter kit installed, no additional charge. Filter is required with 267 and 268 Series Transducers. ducers.

Linear Velocity
 (No excization)

IVsyn(1) Linear Velociry Transducers are designed for sensitive measurements of relative velociry. The basic design eliminates the need for external excitation and makes the transducers easy to set up and use. DC voltages are generated by moving a high flux-density, permanent magnet in the bore of differencially wound coils. Voltage amplitude is proportional to core velocity. Resolution of an LVsyn output is nearly un-limited-sensitivity over the rated stroke range is constant within 5%-remperature range is from $-46^{\circ} \mathrm{C}$ to $93^{\circ} \mathrm{C}$. Linearity is berter than 1%. IVsyn's can be operated single-ended or push-pull; while immersed in non-corrosive fuids: without end stops or displace. ment limits. Each transducer is supplied with a calibration record.

FTA low-level tension and compression sensing ransducers (± 1 to $\pm 100 \mathrm{gm}$) are ideal for measuring buoyancy, discrete weighr, small bearing torques, dis. placements and angles, as well as phessiological motion. These small "Microforce" uransducers provide an economizal way to measure uni. or bi-directional forces with infinite resolution, lineariry to 0.2% of full scale and hysteresis as low as 0.1% of applied force. FTA's have 400% overload capacity, low tracking force (no bearing friction) and excellent thermal scability from $-18^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$.

1281 Series Pressure Transducens are heavy duty units designed for use in either gas or liquid systems at low or high viscosities (pressure ranges from 15 to 3000 psi). The units match the input requirements of Hewlett-Packard Carrier Preamplifiers such as the 8805A, $350-1100 \mathrm{C} .301,321,311$ A; and will provide a fast response to rapidly changing pressures. The 1281 Series has many industrial and laboratory applicacions in fields such as hydraulics, material processing, and pressure monitoring, as well as in systems designed to concrol a manufacturing process. The units are designed for either tube or fush mounting.

Model	8LVAG	3LY	ELVT	6LV2	8LV3		7LV9	7LY20
$\begin{aligned} & \text { Sensilivity } \\ & (\mathrm{mV} / \mathrm{in} / \mathrm{sec}) \end{aligned}$	$\begin{gathered} 120 \\ 40^{*} \end{gathered}$	$\begin{aligned} & 90 \\ & 35 * \end{aligned}$	$\begin{aligned} & 500 \\ & 250= \end{aligned}$	$\begin{aligned} & 500 \\ & 250^{*} \end{aligned}$	$\begin{aligned} & 500 \\ & 250 \end{aligned}$	$\begin{aligned} & 500 \\ & 250^{*} \end{aligned}$	$\begin{aligned} & 350 \\ & 150 * \end{aligned}$	20
Resistance (k ohms)	2	2.5	13	19	25	32	17	3
inductance (henrys)	0.085	0.065	1.6	2.9	3.2	4	2.8	0.035
Stroke inches (mm)	$\begin{aligned} & 0.5 \\ & (13) \end{aligned}$	$\begin{gathered} 1 \\ (25) \\ \hline \end{gathered}$	$\stackrel{1}{(25)}$	$\stackrel{2}{(51)}$	$\begin{gathered} 3 \\ (76) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (101) \end{gathered}$	$\stackrel{9}{(229)}$	$\begin{gathered} 20 \\ (508) \\ \hline \end{gathered}$
Sizs-inches (mm) diameter: length:	$\begin{aligned} & 0.37 \\ & (10) \\ & 3.16 \\ & (80) \end{aligned}$	$\begin{aligned} & 0.37 \\ & (10) \\ & 4.22 \\ & (108) \end{aligned}$	$\begin{gathered} 0.63 \\ (16) \\ 5 \\ (128) \end{gathered}$	$\begin{gathered} 0.63 \\ (16) \\ 7 \\ (178) \end{gathered}$	$\begin{gathered} 0.63 \\ (16) \\ 9 \\ (230) \end{gathered}$	$\begin{aligned} & 0.63 \\ & (16) \\ & (1.25 \\ & (275) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19) \\ & 22.75 \\ & (580) \end{aligned}$	$\begin{gathered} 0.75 \\ (19) \\ 30 \\ (760) \end{gathered}$
Weight (gm) armature assembly	3.5	4.5	11	15	17	22	69	40
Weight net coil (grams) core shipping	$\begin{array}{r} 20 \\ 3.5 \\ 84 \end{array}$	$\begin{array}{r} 25 \\ 4.5 \\ 84 \end{array}$	$\begin{aligned} & 110 \\ & 11 \\ & 224 \end{aligned}$	$\begin{array}{r} 150 \\ 15 \\ 252 \end{array}$	$\begin{array}{r} 200 \\ 17 \\ 308 \end{array}$	$\begin{array}{r} 250 \\ 22 \\ 336 \end{array}$	$\begin{array}{r} 610 \\ 69 \\ 756 \end{array}$	$\begin{array}{r} 800 \\ 50 \\ 900 \end{array}$
Price	\$50	\$50	\$50	\$55	360	\$85	\$100	\$120

- Output with non-breakable magnet coras (N models); to order add suffix -N to basic model number, e.g. 3 LVa $5 \cdot N$. 3 LVI- N_{1} ote. Prices same as standard models.

Model	FTA.1-1	FTA.10-1	FTA-100-1
Force (range, gm)	± 1	± 10	± 109
Displacement (full scale, in)	± 0.01	± 0.01	$=0.01$
Sensitivity (full scale, mV/vex)	8	8	8
Natural frequency (Hz_{2})	65	130	390
Sensitivity (g) (\% of f.s./E) iadial: axial:	21	$\begin{aligned} & 0 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0.6 \end{aligned}$
Excilation	5 Vat 2.4 kHz		
Zero shift (\% of l.s/ ${ }^{\circ} \mathrm{C}$)	0.02		
Temperature range	$-45^{\circ} 10+75^{\circ} \mathrm{C}$		
Dimensions, inches (mm)	$1.37 \mathrm{lg}, 0.75 \mathrm{dia}(35 \times 19)$		
Weight (gm)	net 153 , shipping 760		
Price	\$200		

Model	1281-014	1281.02A	\$28Y.03A	1281.04A	1281-36A
Range (psi)	15	100	300	1,000	3,000
Overload (psi)	50	300	900	3,000	4,500
G Sens, (\%FS)	0.1	0.02	0,005	0.002	0.001
Natural Freq	Above 1 kHz				
Sensitivity	$8 \mathrm{mV} / \mathrm{V}$ (neminal)				
Impedance	400 ahms input, 500 ohms output				
Non-linearity	0.5\% (max)				
Hysteresis	0.1% (max)				
Volume displ	$0.001 \mathrm{in}^{3}$ at full scale (max)				
Zero shift	$0.01 \% / c^{\circ}$ (max)				
Excitation	$5 \vee$ at 2.4 kHz				
Temperature	$-45{ }^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$				
Price:	\$250				

6e Precision Voltmeters and Sources

PRECISION ANALOG VOLTMETERS \& SOURCES

PRECISION VOLTMETERS \& SOURCES

As industrial and military electronics become more sophisticated, measurements require greater precision in normal working environments. To help alleviate today's measurement demands, Hewlett. Packard offers a broad line of precision instruments.

Traceable to NBS

The absolute accuracy of Hewlett. Packard's precision instruments and calibrators is traceable to the National Bureau of Srandards, as shown in the fow chart, Figure 1. Special care has been taken to develop instruments with srate-of the-art stability so that specified accuracy and traceability can be maintained for long periods of time.

0.02% ac signal generator

Available for the first time, ac voltages can be calibrated over a continuous wide band of frequencies with the accuracy of a dc calibration system.

The HP Model 745A AC Calibrator with a continuous frequency of 10 Hz to 110 kHz has a voltage accuracy of $\pm 0.02 \%$ from 20 Hz to 20 kHz . Long. term stability is $\pm 0.01 \%$ over a 6 month calibration period. Six voltage ranges from 1 mV to 100 V full scale (1 additional range reserved for future 1000 V amplifier) ate available with a 6 -digit readout and 10% overrange capabílity. The exror of the instrument under tes: can be read diectly in percent of reading withour time-consuming calculations.

The 745A is programmable for botla frequency and voltage ranges. Provision for local or remote sensing is obtained through a front-panel switch with sepa. rate sense-outpur terminals for remote sensing.

Figure 1. HP instrument traceability to NBS.

The accuracy of this ac calibrator is dependent on an ultra stable Zener diode in a temperature controlled oven. This Zener diode is a reference for two voltages; +9.9 V and -9.9 V . These voltages are used to generate a square wave with a special circuit (patent pend. ing) that maintains the basic accuracy of the rwo de voltages in the square wave (refer to the block diagram, Figure 2). The accuracy of the rms value of the square wrave thus generated is approximately 0.001%. A magnetic divider is used to obtain a 1.1 V ems square wave which is applied to the input of a 6 . place nagnetic divider to provide 6 digits

Figure 2. Simplifled block diagram of 745A.
of settability from 0.1 V to 1.1 V rms. The output of the calibrator is conpared to this ceference either directly or through an attenuator by the sampling amplifier. The 100 V range attenuator is a precision resistive divider manufactured by Hew. letr-Packard. It has an excellent T.C. and long-term stability. All other range attenuators are inductive dividers. The out. put of the 1 V range is compared directly to the reference square wave. Figure 3 shows the long-term stability of a 745 A reference supply. The rms value of the square wave is compared to the rms value of a portion of the sinerrave outpuk through a single thermocouple. The error signa! is demodulated, amplified, and fed back to the oscillator to correct the voltage at the ourput.

Figure 3. 6 month stability of a 745A refer. ence supply.

The sinewave oscillator of the 745A Calibrator uses a beat-frequency tech. nique combined with frequency dividers. The output from a 5 MHz crysta! oscillator is divided by a factor of 9 , resulting in an output of 555 kHz . This signal is heterodyned with a variable-frequency oscillator of 545 kHz to 445 kHz . The difference, or beat frequency, is the output frequency on the upper range (10 kHz to 110 kHz). Each successive Jower range is a sesult of heterodyning different frequencies and using a $10: 1$ divider. This variable-frequency oscillator is 10 cally tuned on the front panel by a variable air dielectric capacitor or remorely controlled by a varying dc volt. age or resistance
The ourput of the sinewave oscillator is amplified and transtormer-coupled to the output terminals. The purity of the sine wave output ar 25 kHz is shown in Figure 4 as the 745A output is swept by the 3590A Wave Analyzer. Two sense terminals make it possible to locally sense at the outpur terminals, or to sense re motely, merely by pressing a front-panel button switch and making the necessary remote connections.
The 745A is easily calibrated. The decade dividers and all bet one of the range dividers are magnetic and need no adjustment.

Figure 4. Recording of the 745A output, sel at 25 kHz , as it is swept by the HP 3590A Wave Analyzer. The slgnal at zero frequency is the zero response of the 3590A.

DC precision sources

The long-term accuracy and stability of the Hewlett-Packard de precision sources are dependent on selected Zener diodes. Three distincr steps are neces. sary to provide a reliable reference diode: 1) process control in its original fabrication, 2) design of a compatible circuit, and 3) a 100% thorough test of the completed circuir.
To achieve the stability and accuracy necessary for the HP precision do sources. a selected Zener diode and its associated circuitry is housed in a temperature. controlled oven. The inner-oven temperacure is held nominally at $80^{\circ} \mathrm{C} \pm 0.01^{\circ} \mathrm{C}$ during normal room variations.
The HP 735A Transfer Standard uses
this reference supply to obtain accurate stable voltages of 1.000 volts, 1.018 to 1.020 volrs, and 0 to $1000 \mu \mathrm{~V}$. It is quickly calibrated by a front-panel adjustment using a standard cell (or another 735A) and a null meter.

This precision voltage source transfers standard cell volrages to 1.000 volts with an accuracy of 10 PPm and a srability of 10 ppm per month.
Transfer accuracy becween saturated standard cells or unsaturated standard cells is 2 Ppm .

The E02.735A is a bank of four 735A's combined with a switch and terminals that make it possible to compare an ex. ternal voitage rith any one of the four 735A's or to compare an external voltage with the arithmetical mean of the four 735A outputs.
Includad with each E02.735A is a graph on the 1.018 position showing that 95% of the time, the mean of the four 735A's vary from a straight line less than $\pm 1 \mu \mathrm{~V}$, over a period of 120 days.

The HP 740B and 711B DC Standards use the oven-reference supply for a reference voltage to generate the 0 to 1000 . volr accurate, stable outpur. This reference voltage is applied to a precision resistive divider, which is the input to an amplifier chain, as shown in Figures.

Figure 5. HP simpified de standards dlagram.

The summing point compares the input of the amplifier to an attenuated sample of the output taken from the range voltage divider. The cursent limit control is nominally adjusted for the protection of the output load.

Precision dc differential voltmeters

Measurements made by the differential voltmeter technique (sometines called a potentiomerric or manual volemeter) are recognized as one of the most accurate means of relating an unknown voltage to a known reference. These measure. ments are made by adjusting a precision
resistive divider to divide down an ac. curately known reference voltage. The divider is adjusted to the point where the divider ourput equals the unknown voltage, as shown by the null voltmeter (Figure 6).

Figura 6. Classic differential voltage measurement

The unknown voltage is determined to an accuracy limited only by the ac. curacies of the reference voltage and the resistive divider: the meter serves only to indicate any residual differential between the known and unknown voltage.

The differential method is highly accurate (Herlett-Packard currently offers $\pm 0.002 \%$ accuracy).
A high-voltage standard is required to measure high voltage. This need may be overcome by inserting a voltage divider between the source and the nullmeter (Figure 7). This, however, results

Figure 7. Potentiometric method of measur. ing unknown voltages
in relarively low-input resistance for voltages higher than the reference srandard. This low-input resistance is undesirable because accurate measurements may not be obtained if substantial current is drawn from the source being measured. Most differential voltmeters used coday offer inpur resistance approaching in. finity only at a null condition, and then only if an input voltage divider is not used.

To overcome these limitations. Hew-lett-Packard has developed an input isolation stage which develops an input resistance exceeding $10^{\text {ju }}$ ohms and mea-
sures voltages up to 1000 volts $d c$. This high resistance is maintained indepen. dent of null condition.
As shown in the block diagram of Figure 8, the HP 740B DC Standard/

Figure B. Simpllfied diagram of de standard, differential voltmeter In differential voltmeter mode.

Differential Voltmeter has the principal parts of the conventional differential voltmerer.
In a marked departure from conven. tional differential voltmeter design, the circuitry also includes a high-gain feedback amplifice as an impedance convertor between the measured voltage source and the measurement circuits. The amplifier insures that the high-input impedance is maintained regardless of whether the in. strument is adjusted for a null reading.
A further advantage provided by the amplifier is that the resistive voltage divider which enables voltages as high as 1000 volts to be compared to a precision 1 -volt reference may be placed at the output of the amplifier father than being in serics with the measured voltage source. The isolation provided by the amplifier between the input and the range "stick" thus enables the instrument to have high-input impedance on all ranges.

The range dividers, amplifier, and voltage reference supply are used in the $7 \$ 0 \mathrm{~B}$ and 741 B for both the precision de source and the differential voltmeter.

Precision ac differential voltmeter

Highest accuracy in ac voltage measurements is accomplished by using an ac differential voltmeter.

The HP 741B uses a precision rectify. ing circuit to convert the unknown ac directly to de (equivalent to the average value of the ac), and the resulting dc is read to s-plact resolution by a potentiometric voltmeter rechnique. The measurement is straightforward in that the ac remains connected to the converter at all times and can be monitored continuously. Besides being a precision ac/ do differential volemeter, the inserument is also an ultra stable, high-resolution de standard source. Refer to page 196 for additional iníormation.

The accuracy of ac measurements is entanced by the higis-impedance probe attached to the instrument. The input impedance is $1 \mathrm{M} \Omega$ shunted by $<5 \mathrm{pF}$.

The low-input capacitance is important in measurements where capacitance load. ing is critical. Using the 741B, it is possible to measure high ac voltages without drawing large reactive currents.

A block diagram of the HP 741B in the ac differential voltmeter mode of op. eration is shown in Figure 9.

With compensation for both the frequency and the amplitude of the input signal, it has been possible to accomplish accurate ac-to-dc conversion that is linear over an amplitude range from $1 / 10$ full scale to full scale throughout a broad frequency range. With proper calibration procedures, it is possible to reduce errors to less than $\pm 0.02 \%$ end scale between 100 Hz and 100 kHz under normal lab. oratory conditions.

Differential voltmeter/ratiometer

Recently introduced, the HP 3420A/B carries a 0.002% accuracy specification with srability of 1 ppm per hour (of range) and 5 ppm per day. Nullmeter resolution is 0.2 ppm of range on all ranges. These specifications set new stan. dards in the scate of the art for dif. erential voltmeters.

To make 0.002% accuracy meaningfui. the HP Models $3420 \mathrm{~A} / \mathrm{B}$ have six ten. digit decade dividers, plus the usal lastdigit meter, and $\pm 10 \mu \mathrm{~V}$ full-scale sensitivity. A further feature is rechargeable battery operation, available in the $3-120 \mathrm{~B}$ version. A self-contained power source is important when it is necessary to measure dc voirages with common-mode noisc. Because the instrument can be compictely isolated from the power line, these com. mon-mode voltages do not influence the reading.

A block diagram of the HP $3520 \mathrm{~A} / \mathrm{B}$ is shown in Figure 10. DC voltage mea. surements in the 1 and 10 -volt ranges are performed by the differential voltmeter technique, comparing the input volvage to a known internal voltage. This comparison is performed by a nullmeter. On the 100 and 1000 -volt sanges, the inpur voltage is scaled to the 1 -volt level by a precision 10 MS resistance divider.

The outstanding accuracy of the in. strument is controlled by the internal voltage reference supply and the precision resistor networks. To enable the instrument to operate on battery power, an oven was not used.

All six decades are binary-coded dividers. The first decade has a 10% overrange capability to aid in measuring standard cells and other voltages that occur slightly above full scale. This feature enables the user to determine mea. surements with a resolution of <1 ppm.

The combination of high stability in the voltage reference supply, high resolution and zero stability in the null de. tector, and siv-derade divider gives a useful sensirivity of 0.2 ppm of range on all ranges.

Besides being a precision differential volemeter, the $3420 \mathrm{~A} / \mathrm{B}$ is also a precision ratiometer.

When making de voltage measurements, there are cases where the absolute value of the voltage is of little interest. Instead, the point of interest is its value in relationship to some orher volkage level or the eatio of it to some other level. i.e.,

$$
N=\frac{V b}{V_{a}}=\text { ratio }
$$

This ratio appears often in engineering work. Examples are resistor dividers, po-

Figure 9. Simplified block diagram of an ac differential voltmeter.

Figure 10. HP 3420A/B OC Differential Voltmeter mode.
tentiometer linearity, and power at various voltage levels.
Hewlett-Packard's precision differential voltmeters are multifunction instruments. Table 1 summarizes these instruments, giving the functions of each with the major specifications. By selecting the ac. curacy and stability necessary in anticipared tests and the functions most useful for specific needs, a precision instrument can be selected.

Thermal converters

Hewletr-Packard thermal converters are true rms detectors, yielding a de ourput proportional to the temperature sise resulcing from the as inpur porer. The Models $11049 \mathrm{~A}, 11050 \mathrm{~A}$, and 11051 A offer an exceptionally flat response and nearly constant impedance (50Ω) over a frequency range of 5 Hz to 10 MHz . Option 01 has a frequency range from s Hz to 60 MHz , and Option 02 has a frequency range from 5 Hz to 100 MHz .

Each thermal converter is shipped with a calibration report with statement of uncertainty traceable to NBS. Each option has an additional individual correctional data sheer attached to the calibration report.

AC/DC meter calibration systems

The HP E02.738日R Voltmeter Cali. bration System includes the Model 652A Test Oscillator and the Model 738BR Voltmeter Calibrator, mounted in a convenient cabinet. This system was designed specifically for calibrating high-imped. ance voltmeters and oscilloscopes.

The 738 BR provides a 400 Hz rms or peak-to-peak ac voltage and a dc voltage output from $300 \mu \mathrm{~V}$ to 300 volts. The accuracy is better than 0.1% dc and $0.2 \% \mathrm{ac}$. The 652 A provides a frequency response, by using the expand position of the meter, from 10 Hz to 10 MHz with a flatness of $\pm 0.25 \%$.
The HP Model 6920B Meter Calibra.
tor is an easily portable, simple device used to calibrate ac and dc meters from 0.01 volt to 1 kV , and from 0.01 mA to 5 A . The ourput setting of voltage or current is adjusted by means of a threedigit, ten-turn readout on any vols, milliampere, or ampere range. The do accuracy is 0.2%, and ac accuracy is 0.4% of output.
Designed primarily for calibrating production rest equipment where moving vane meters are employed, the Model 6921 A offers 0.25% accuracy at moder. ate cost. Moreover, the basic amplifier design of the ac meter calibrator allows it to operate into fully reacrive loads. It offers four voltage ranges covering from 1.4 volts to 280 volts, and five current ranges covering from 1.4 milli. amperes to 5 amperes. An internal oscil. lator provides frequencies of $60 \mathrm{~Hz}, 400$ Hz and 1 kHz An extra bandwidth is provided to accept external oscillators from 50 Hz to 2 kHz .

Table 1. HP Multifunction Precision Analog Instruments

Features	Model 740B (pg 192)	Model 741B (gg 196)	Model 3420A/日 (pg 195)
DC STANDARD	Yes	Yes	No
Ranges	4 (l V to 1000 V)	4 (1 V 101000 V)	
Accuracy	$\begin{aligned} & =0.002 \% \text { setting } \\ & +0.0004 \% \text { range } \end{aligned}$	$\begin{gathered} \pm 0.01 \% \text { setting or } \\ \pm 0.001 \% \text { range }+10 \mu \mathrm{~V} \end{gathered}$	
Remate sensing Current limit	$\begin{gathered} \text { Yes } \\ 5 \text { to } 50 \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{gathered} \text { Yes } \\ 41020 \mathrm{~mA} \end{gathered}$	
DC $~$ VOLTMETER	Yes	Yes	Yes
Ranges	7 () mV to 1000 V)	7 (1mV to 1000 V)	4 (1.101000 V)
Accuracy	$\begin{aligned} & \pm(0.005 \% \text { reading } \\ & +0.0004 \% \text { range) } \end{aligned}$	$\begin{aligned} & =0.02 \% \text { reading or } \\ & =0.004 \% \text { range } \end{aligned}$	$\begin{aligned} & \pm(0.002 \% \text { reading } \\ & +0.0002 \% \text { range }) \\ & \hline \end{aligned}$
AC $~$ VOLTMETER	No	Yes	No
Voltage range		7 (1 mV 101000 V)	
Frequency range		20 Hz 10.100 kHz	
Accuracy			
HIGH IMPEDANCE VM	Yes	Yes	Yes
Ranges	$10(1 \mu \nu$ to $1000 \vee d \mathrm{c})$	$\begin{gathered} \hline(\mathrm{l} \mathrm{mV} \text { to } 1000 \mathrm{~V}) \mathrm{ac} \\ \text { and } \mathrm{dc} \end{gathered}$	$9(10 \mu V 101000 \mathrm{~V}) \mathrm{dc}$
Accuracy	\pm (2% range $+0.1 \mu V)$	$\begin{aligned} & \pm 2 \% \text { ac and de, }+200 \\ & \mu V \text { for } 1 \mathrm{mV} \cdot 50 \mathrm{mV} \\ & (20 \mathrm{~Hz}-50 \mathrm{Hzz}) \end{aligned}$	$\pm 3 \%$
DC RATIOMETER	No	No	Yes
Ranges			4 ($\times 110 \times .001$)
Accuracy			$\begin{aligned} & =0.000 \% \text { rsading } \\ & +0.0004 \% \text { range) } \end{aligned}$
beneral			
Readout	5-digl display tubes and meter	4. dight readout and meter	6-digit readout and meter
Stability	$\begin{gathered} =(15 \mathrm{pDm} \text { setting } \\ +2 \mathrm{ppm} \text { range/mo. } \end{gathered}$		$\pm 5 \mathrm{ppm} / \mathrm{day}$
Floating	Yes	Yes	Yes
Guarding	Yes	No	No
Recorder output	IVdcmax al 1 mA end scale	IV dc max at 1 mA end scale	$\begin{aligned} & \text { IV dc al } 1 \mathrm{~mA} \\ & \text { end scase } \\ & \hline \end{aligned}$
Ampllifier outpul	Yes	Yes	No
Voltage gain	$\begin{gathered} 60 \mathrm{~dB} \max \\ (1 \vee 101000 \vee d c) \\ \hline \end{gathered}$	Unity (0 lo 1 kV dc)	

Note: Refer to pages $229-251$ to obtain intormation on Hewlett-Packarg Precision Digital instruments, Reter 10 page 191 for the AC Precision Caibrator.

AC CALIBRATOR Programmable signal generator Model 745A

PRECISION VOLTMETERS AND SOURCES

Description

AC voltages are now available over a concinuous wide band of frequencies with Standards Lab accuracy. Calibration of ac voltmeters, amplifiers and other ac devices can be performed with high confidence using the 745A AC Calibrator. Extreme precision test equipment can be measured over a wide band. width. You can select the output amplitude with 6 digit resolution in a range between 0.100000 mV rms and 109.9999 V rms in 6 decade ranges (10% overranging). A companion 1 kV amplifier will be introduced in the near future.

You can be assured of the accuracy of the 745A in the engineering lab, on production-line test stations, and in other un. protected environments-specified accuracy is maintained in an ambient remperature range of $20^{\circ}-30^{\circ} \mathrm{C}$ with line voltage changes of $\pm 10 \%$.

For auromated testing, frequency range and voltage range can be selected by elecrrical closures to ground (frequency coverage is four overlapping ranges, 10 Hz to 110 kHz). Frequency within any chosen sange also can be selecred by an externally y-supplied, adjustable voltage $(+1 \mathrm{~V}$ to $+10 \mathrm{~V})$.

Shorting the output causes no harm-ir is currenr limited. If overloaded, the 945 A turns on the front panel overload lamp but restores normal operation automatically when the overload is removed.

To measure errors in the device under test, the switch for the specific error range is depressed. The output amplitude can be adjusted within a small range with a separate control, and the percentage change is on the wide, slide-rule-type scale. Bring the output of the tested device back to a reference point, and the Calibrator reads the percentage amplitude error.

Specifications*

Output voltage ranges: 6 rangest with 10% overrange as follows:

Range	Settabllity
1 mV	.100000 mV to 1.099999 mV in 1 nV steps
10 mV	1.00000 mV to 10.99999 mV in 10 nV sleps
100 mV	10.0000 mV to 109.9999 mV in 100 nV steps
1 V	.100000 V to 1.099999 V in $1 \mu \mathrm{~V}$ steps
10 V	1.00000 V to $10.99999 \mathrm{Vin} 10 \mu \mathrm{~V}$ steps
100 V	10.0000 V lo 109.9999 V in $100 \mu \mathrm{~V}$ steps

Output frequency ranges: continuously adjustable from 10 Hz to 110 kHz in 4 decade ranges with 10% overlap.
Error measurement: 2 ranges with zero center dial, $\pm 0.3 \%$ or $\pm 3 \%$.
Accuracy: accuracy met after a $1 \cdot \mathrm{hr}$ warmup period at $25^{\circ} \mathrm{C} \pm 9^{\circ} \mathrm{C}$ with $<95 \%$ R.H. for a 90 -day period.
Voltage; specifications are relative to a 5 mA thermocouple calibrated by the National Bureau of Standards.

Range	Aosuracy
50 Hz to 20 kHz	$\pm(0.02 \%$ of selting $+0.002 \%$ of range $+10 \mu \mathrm{~V})$
20 Hz to 50 Hz	$\pm(0.05 \%$ of setting $+0.005 \%$ of range $+50 \mu \mathrm{~V})$
20 kHz to 110 kHz	
10 Hz to 20 Hz	$\pm(0.2 \%$ of setting $+0.005 \%$ of range $+50 \mu \mathrm{~V})$

Frequency: $\pm(2 \%$ of setting $+0.2 \%$ of end scale).
Error measurement: $\pm(0.5 \%$ of setting $+0.5 \%$ of range $)$.
Voltage stability: (stability mer after 1 hour warmup period a: constant temperature with less than 95% relative humidity). Long term: $\pm 0.01 \%$ of setting for ob months. Short eerm: $\pm 0.002 \%$ of setting for 24 hours.
Total distortion and noise: \pm (0.05% of seuting $-10 \mu \mathrm{~V}$ over 100 kHz bandwidrh) on all ranges.
Load regulations: (no load to full load) $\pm 0.01 \%$ of voltage setting on $1,10,100 \mathrm{mV}$ range, output resistance $<1 \Omega, 3 \mathrm{k} \Omega$ minimum load resistance. $\pm 0.002 \%$ of voltage secting on 1,10 , 100 V range for oupput current of 50 mA at greater than 20% of voltage range, decreasing to 25 mA at 10% of voltage range. Errot is included in accuracy specification for voltage output $>100 \mathrm{mV}$. Overload protected.
MaxImum capacitlue load: 1000 pF on all ranges.
Line regulation: less than $\pm 0.001 \%$ of setting change in outpu: voltage for a $\pm 10 \%$ change in line voltage.
Remote programming: all voltage, frequency, and \%-error measurement ranges programmable.
Power requirements: $115 / 230 \mathrm{~V}$ ac $\pm 10 \%, 50 \mathrm{~Hz}$ to 400 Hz . 70 W nominal, 100 W maximum.
Dimensions: $163 / 4^{\prime \prime}$ wide, $81 / 2^{\prime \prime}$ high, $181 / 4^{\prime \prime}$ deep ($425 \times 216 \mathrm{x}$ 464 mm) rack mount kit furnished with instrument.
Welght: net $65 \mathrm{lbs}(29,3 \mathrm{~kg})$: shipping $80 \mathrm{bs}(36,3 \mathrm{~kg})$.
Accessories furnished: rack mount kit; 22 pin printed circuit board extender; 15 pin printed circuit board extender.
Accessories available: rear output mating plug, (HP Part No. 1251-0469, Deutsch Part No. 6641).
Price: HP Model 745A, \$4500.

- Reler to data sheet for complete specifications.
†Companion amplifier providing a 1000 V range to be announced.

PRECISION VOLTMETERS \& SOURCES

DC STANDARD / \triangle VOLTMETER
 So much instrument at so great a value
 Model 740B

The 740 B is an ultra-stable, high-resolution de calibration source which delivers outpur voltage from zero to 1000 V with specified accuracy of $\pm(0.002 \%$ of setting $+0.0004 \%$ of range). Designed for calibrating digital voltmeters, differential voltmeters, potentiometers, voltage dividers and for general standards lab application, the 740 B has 6 -digit resolution with discrete steps of 1 ppm at full scale.
The 740 B will deliver current up to 50 mA and may be set at any desired limit berween 5 mA and 50 mA by a continuously adjustable front-panel control. A front-panel indicator displays overload conditions as the load current exceeds the curcent limit setting. Low output impedance is maintained by remote sensing terminals which control the output voitage at the load. The entire circuit is foaring and guarded.

The stability of the 740 B is dependent primarily on the stability of the reference source and the stability of the precision wise-wound resistors which comprise the decade and range dividers. The heart of the reference voltage supply is a temperature compensated Zener diode which, with other critical components, is housed in a proportionally controlled oven.

Differential voltmeter

As a differential voltmeter, the 740 B measures voltage from 0 to 1000 V dc with an input resistance of $>10^{20} \Omega$ independent of null condition. Meter sensitivity pushbuttons allow input volvages to be measured to 6 digits for a maximum resolution of 1 ppm of range, with a maximum usable sensitivity of $1 \mu \mathrm{~V}$ full scale. Specified accuracy is $\pm(0.005 \%$ of reading $+0.0004 \%$ of range $+1 \mu \mathrm{~V}$).
As a differential voltmeter, the 7408 is unique in maintaining an input impedance of $>10^{10 n}$ (on all ranges above 10 mV) regardless of whether or not the voltage dials are nulled. This feature simplifies operation by eliminating any calculations of loading error by the volimeter. In addition, the high-input impedance simplifies the measurement or comparison of standard cells or other devices that are sensitive to small curcent drains.

Voltage setting is indicated by 5 digital display tubes plus an individually calibrated taut-band meter.

High-impedance voltmeter

The HP 740B is also a $\pm 2 \%$ floating and guarded volemeter with ranges from $1 \mu \mathrm{~V}$ to 1 kV . Input impedance is $>10^{10} \Omega$ on most ranges.

Precision DC amplifier

The instrument can be used as a dc power amplifier, in differential voltmeter or volmeter modes, by connecting the source to the input terminals and taking the output from the terminals that normally supply the standard calibrated voltages. It is thus possible to augment the capabilities of a standard cell, for example, by using the amplifier as an impedance converter to provide power amplification. The available gain depends on the selected voltage range. The 7408 functions as a unity gain amplifier on the 1 V and higher ranges, but on lower ranges the gain increases in 20 dB steps to a maximum of 60 dB on the 1 mV range.

By taking output from a rear-panel recorder connector, the 740 B supplies up to 120 dB of voltage gain (depending upon range).

Specifications

DC Standard

Ranges

Output voltage: 0 to $1000 \mathrm{~V}^{*}$ in 4 decade ranges as follow's; 0 to 1 V in $1 \mu \mathrm{~V}$ steps; 0 to 10 V in $10 \mu \mathrm{~V}$ steps; 0 to 100 V in $100 \mu \mathrm{~V}$ steps: 0 to 1000 V in 1 mV steps. Digital display tubes indicate first S digits; meter displays 6th digit.

Performance

Accuracy ($<70 \%$ RH, constant line. Load and temperature $\pm 1^{\circ} \mathrm{C}$. Calibrated at factory at 115 V and $23^{\circ} \mathrm{C}$.) 30 day: $\pm(0.002 \%$ of setting $+0.0004 \%$ of range $)$. 90 day: $\pm(0.005 \%$ of seting $+0.0004 \%$ of range $)$.
Stability ($<70 \% \mathrm{RH}$, constant line, load and tempera. ture $\left.\pm 1^{\circ} \mathrm{C}\right)$:

Perlod	Zero stablility ppm of range	Voltage stability (exoludes zero stability) setting + range
1 hr	$\pm 1 \mathrm{ppm}$	$=(0 \mathrm{ppm}+1 \mathrm{pDm})$
24 hr	$=2 \mathrm{ppm}$	$=(5 \mathrm{DPm}+1 \mathrm{ppm})$

Temperature coafficient

$10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$: $< \pm 0.0002 \%$ of setting/ ${ }^{\circ} \mathrm{C}$ or $\pm 0.0001 \%$ of range $/{ }^{\circ} \mathrm{C}$, whichever is greater.
Line regulation: $< \pm(0.0005 \%$ of setting $+0.0001 \%$ of range) for 10% line voltage change.
Load regulation (no load to full load): $<(0.0005 \%$ of setting $+10 \mu \mathrm{~V}$).
Output characterlstics
Terminals: plus and minus output, plus and minus sense, circuit guard, and chassis ground. Minus output and circuit guard can be fioated up to $\pm 500 \mathrm{~V}$ with respect to chassis ground.
Output current: maximun output current 50 mA at I V output, decreasing linearly to 20 mA at 1000 V output. Current limiter continuously adjustable from 10% to 100% of maximum output current.
Output resistance: $<\left(0.0002+0.0001 \mathrm{E}_{\text {out }}\right) \Omega$.
Nolse (rms value):

Range	$0.01 \mathrm{~Hz}-1 \mathrm{~Hz}$	$1 \mathrm{~Hz}-1 \mathrm{MHz}$
1 V	$<1 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
10 V	$<10 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
100 V	$<100 \mu \mathrm{~V}$	$<1 \mathrm{mV}$
1000 V	$<1 \mathrm{mV}$	$<10 \mathrm{mV}$

DC differential voltmeter

Ranges
Voltage: 1 mV to $1000 \mathrm{~V}^{*}$ in 7 decade ranges.
Resolution: 6-digit readout yields resolution of 0.0001% of range (6 th digit indicated on meter).

Performance

Accuracy ($<70 \% \mathrm{RH}$, constant line and temperature $\pm 1^{\circ} \mathrm{C}$. Calibrated at factory at 115 V and $23^{\circ} \mathrm{C}$.)
30 day: $\pm(0.003 \%$ of reading $+0.0004 \%$ of range ± 1 $\mu \mathrm{V})$.
90 day: $\pm(0.008 \%$ of reading $+0.0004 \%$ of range +1 $\mu \mathrm{V}$).
Stabllity ($<70 \%$ RH, constant line and remperature $\pm 1^{\circ} \mathrm{C}$):

Patrlod	Zero stabllity	Readun atabllity (oxoludes yero stabilliy) readlag + range
1 hr	$\pm(1 \mathrm{ppm}$ of range $+1 \mu \mathrm{~V}$)	\pm (0 ppm +1 ppm)
24 hr	\pm (1 pom of range $+2 \mu \mathrm{~V}$)	$\pm(5 \mathrm{ppm}+1 \mathrm{ppm})$

Temperature coefficient
$10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}:\left\langle \pm(0.0002 \%\right.$ of reading $+1 \mu \mathrm{~V}) /{ }^{\circ} \mathrm{C}$.
Line regulation: $< \pm(0.001 \%$ of reading $+2 \mu \mathrm{~V})$ for 10% line voltage change.
Input characteristles
Terminals: plus and minus input, circuit guard and chassis ground. Minus input and circuit guard can be foated up to $\pm 500 \mathrm{~V}$ with respect to chassis ground.
Input resistarice (independent of null)
100 mV to 1000 V ranges: $>10^{50} \mathrm{\Omega}$.
10 mV range: $>10^{\circ} \Omega$. 1 mV range: $>10^{6} \Omega$.
Effective common-mode rejection (ECMR): ECMR is the ratio of the common-mode signal to the resultant error in readout with $1 \mathrm{k} \Omega$ unbalance resistor in either lead. At 60 Hz and above: $>120 \mathrm{~dB}$.
Normal-mode rejection (NMR): NMR is the ratio of the ac normal-mode signal to the resultant error in readous.
At 60 Hz and above: $>100 \mathrm{~dB}$.
Maximum ac normal-mode signal: 25 V ims.

Overload protection: $1000 \mathrm{~V}^{*}$ de may be applied on any sange or sensitivity without damaging instrument.
DC voltmeter
Voltage ranges: $1 \mu \mathrm{~V}$ to 1000 V * in 10 decade ranges.
Accuracy: $\pm(2 \%$ of range $+0.1 \mu \mathrm{~V})$.
Input resistance: 100 mV to 1000 V range: $>10^{10} \Omega ; 10 \mathrm{mV}$ range: $>10^{9} \Omega ; 1 \mu \mathrm{~V}$ to lmV cange: $>10^{8} \Omega$.
Zero dritt: $<2 \mu \mathrm{~V}$ per day; zero control limits: $> \pm 10 \mu \mathrm{~V}$.
Normal-mode rejection: same as DC Differential Volemeter.
DC amplifier
Voltage gatn: 1 mV range, $60 \mathrm{~dB} ; 10 \mathrm{mV}$ range, $40 \mathrm{~dB} ; 200$ mV range, $20 \mathrm{~dB} ; 1 \mathrm{~V}$ to 1000 V ranges, 0 dB .
Bandwidth; de to 0.2 Hz .
Galn accuracy: $\pm(0.01 \%$ of input $+0.0005 \%$ of range +2 $\mu \mathrm{V}$) referred to input.
LInearity: $\pm 0.002 \%$ on any range.
Stabillty, temperature coeffleient, Iline regulation, input resistance, ECMR, NMR, and overload protection: same as DC Differential Voltmeter.
Load regulation, output current, and output resistance: same as DC Standard.
Nolse (rms value, referred to Input):

Banpe	$0.01 \mathrm{~Hz} \cdot 1 \mathrm{~Hz}$	$1 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$
1 mV	$<0.2 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
10 mV	$<0.4 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
100 mV	$<1 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
1 V	$<1 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
10 V	$<10 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
100 V	$<100 \mu \mathrm{~V}$	$<1 \mathrm{mV}$
1000 V	$<1 \mathrm{mV}$	$<10 \mathrm{mV}$

General

Rocorder output: provides voltage proportional to meter deAection in all modes of operation. Adjustable output sup. plies up to $\pm 1 \mathrm{~V}$ dc across 1 ka load; voltage polartity same as meter defiection.
Operating temparature: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ unless specified other. wise.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
RFI: meets MIL-I-6181D \# .
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to $400 \mathrm{~Hz},<125 \mathrm{~W}$.
Dimenslons: full module, $163 / 4^{\prime \prime}$ wide, $67 / 8^{\prime \prime}$ high, $181 / 4^{\prime \prime}$ deep. ($425 \times 175 \times 464 \mathrm{~mm}$).
Weight: net 47.3 lb ($21,3 \mathrm{~kg}$); shipping 60 lb (27 kg).

Accessories furnished

11054 A input cable assembly; 4 banana jacks mounted on terminal box with 3 -ft cable and mating connector. Terminals include positive and negative input, circuit guard, and chassis ground. Positive and negative rerminals are solid copper, gold flashed. A switch allows reduction of input resistance to 2 M s.
11055B output cable assembly: 6 banana jacks mounted on terminal box with $3 . \mathrm{ft}$ cable and mating connector. Terminals include positive and negative output, positive and negative sense, circuit guard, and chassis ground. Outpot and sense terminals are solid copper, gold fashed.
Price: HP 740B, $\$ 2450$.

[^10]
PRECISION VOLTMETERS AND SOURCES

DC TRANSFER STANDARD Portable instrument transfers std. voltages Model 735A

The HP 733A is a general-purpose laboratory transfer standard. Ir may be used as a I V standard output with standard cell accuracy, a standard cell comparator with seven digits, or as a 0 to $1000 \mu \mathrm{~V}$ standard source for $d c$ and potentiometric measurements.

Specifications

Standard outputs: $1.00000 \mathrm{~V}: 1.018+\Delta * ; 1.019+\Delta^{*}$; 0 to $1000 \mu \mathrm{~V} \triangle^{*}$
Transfer accuracy: (after 30 min . warmup) 2 ppm between saturated standard cells or unsaturated standard cells; 10 ppm standard cell to 1 V ; 10 ppm saturaced standard cell to unsaturated standard cells.
Stability: (after 30 min . warmup) better than $10 \mathrm{ppm} /$ month.
Line regulation: $<1 \mu \mathrm{~V}$ for 10% line change.
Output impedance: $1 \mathrm{k} \Omega \pm 1 \%$.
Short-clrcuit current: $<1.5 \mathrm{~mA}$.
Temperature coefficient: $<1 \mathrm{Ppm} /{ }^{\circ} \mathrm{C}, 0^{\circ}$ to $+50^{\circ} \mathrm{C}$.
Variable output
Range: 0 to $1000 \mu \mathrm{~V}$.
Accuracy: 0.1% to $\pm 1.5 \mu \mathrm{~V}$.
Resolution: $1 \mu \mathrm{~V}$.
Output impedance: $146 \Omega \pm 1 \%$.
Output noise: ds to $1 \mathrm{~Hz}<1 \mu \mathrm{~V}$ p.p. 1 Hz to 1 MHz :
$<200 \mu \mathrm{~V}$ rms.
Output: floating and guarded.

Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 12 \mathrm{~W}$.
Outpert terminals: four 5 -way binding posts. Positive, negative. circuit-guard shield, and chassis ground, positive and nega. tive terminals are solid copper with gold flash. A maximum of 500 V dc may be connected becareen chassis ground and guard or circuit ground.
Dimensions: standard $1 / 3$ module: $51 / 8^{\prime \prime}$ wide, $3^{\prime \prime}$ high (wishout removable feet), $11^{\prime \prime}$ deep ($130 \times 76 \times 279 \mathrm{~mm}$).
Weight: net $51 / 2 \mathrm{lbs}(2,5 \mathrm{~kg})$; shipping $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Price: HP T3SA DC Transfer Standard, $\$ 400$.
-3-diglt direct-reading 0 to $1000 \mu \mathrm{~V}$ offset voltage.

ULTRA-ACCURATE TRANSFER STANDARD Mean of four 735A's with 120 days calculated drift Model E02.735A

The Model E02-735A consists of four 735 A Transfer Stan. dards. with a nine position switch mounted in a 1052 A com. bining case. The four instruments can be connected in parallel to the output terminals resulting in the arithmetical mean of the four voltages. In the 1.018 position of the function switch. a graph is furnished with the instrument showing drift devia. tion from a straight line over a 120 day period. With this graph, the accuracy of the bank of $735 \mathrm{~A}^{\prime}$ s can be predicted within a fiaction of a ppm for a 120 day calibration period. An external voltmeter can be inserted in the circuit so that when the outpur terminals are connected to a saturated standard cell or another external voltage, the meter will read the difference between the mean of the four 735A's and the exrernal voltage.

In other positions of the E02.735A switch, the (No. 1) 735 A can be connected opposing each of the other 735A's so that the meter reads the difference of the two voltages Each of the four 735A's can also be connected to the output terminals so that an external source can oppose any one of the 735 1 's with the meter reading the difference in voltages.

Specifications

(In addition to the specifications of the Model 735A.)
A graph is furnished with each E02.735A showing that the arithmetical mean of the four 735A's in the 1.018 position of the function switch has a drift deviation from a straight line of $\langle \pm 1 \mu \mathrm{~V}, 95 \%$ of the time, for 120 days.

Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ to $400 \mathrm{~Hz}, 48 \mathrm{~W}$.
Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $183 / 4^{\prime \prime}$ deep ($425 \times 185 \times$ 467 mm).
Weight: net $35 \mathrm{lbs}(15,8 \mathrm{~kg})$; shipping $42 \mathrm{fbs}(18.9 \mathrm{~kg})$.
Price: HP E02.735A, $\$ 2435$.

PRECISION VOLTMETERS AND SOURCES

Differential voltmeter

As a de differential voltmerer the HP 3420A/B measures de voltages in four ranges: $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V full scale with an accuracy of $=(0.002 \%$ of reading $+0.0002 \%$ of range $)$ with a 10% over-range on all ranges.

The $3420 \mathrm{~A} / \mathrm{B}$ has inforite ($>10^{4}$ ohms) inpur resistance at nuil on 1 V and 10 V ranges with at least $10 \mathrm{M} \Omega$ off null on all ranges. The 6 -digit in-line read-out plus meter gives a meter resolution of 0.2 ppin of range.

Ratiometer

The HP $3420 \mathrm{~A} / \mathrm{B}$ may be used to measure resistance divider ratios and volkage ratios rapidly without using conventional, tedious, mathematical computations. Voltage and resistance ratios can be measured from $10^{\circ}: 1$ to $1: 1$ in four ranges; $\mathrm{X}_{1}, \mathrm{X}_{0.1}, \mathrm{X}_{0} 02$ and X 0.001 . The resolution is 0.2 ppm of range. Accuracy is 20 ppm of reading +4 PPm of range.

Spechfications*

DC differentlal voltmeter
Ranges
Voltage: $\pm 1 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 100 \mathrm{~V}$ and $\pm 1000 \mathrm{~V}$ with $\mathrm{up}_{\mathrm{p}}(0$ 10% over ranging available on all ranges.
Resolutlon: 6 -digit readout yields resolution of 1 ppra of range: 0.2 ppm of range indicated on meter.

Performance rating
Accuracy
30 day: $\pm(0.002 \%$ of reading $+0.0002 \%$ of range) at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C},<70 \% \mathrm{RH}$. 90 day: $\pm(0.003 \%$ of reading $+0.0002 \%$ of range) at $23^{\circ} \mathrm{C}=1^{\circ} \mathrm{C},<70 \% \mathrm{RH}$.
Stability: (at $23^{\circ} \mathrm{C}=1^{\circ} \mathrm{C},<70 \% \mathrm{RH}$): 1 hr: $<1 \mathrm{ppm}$ of reading; $24 \mathrm{hr}:<5 \mathrm{ppm}$ of reading.
Temperature coofficlenti $<4 \mathrm{ppm}$ of range $1^{\circ} \mathrm{C}\left(20^{\circ} \mathrm{C}\right.$ $\left.30^{\circ} \mathrm{C}\right)<5$ ppm of range $1^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{C} \cdot 20^{\circ} \mathrm{C}\right.$ and $30^{\circ} \mathrm{C}$ $40^{\circ} \mathrm{C}$).
Zero adjustment range: $> \pm 12 \mathrm{ppm}$ of range.
Meter noise: < 0.2 ppm of range p-p.
Input characterlstics
Inputs: floated binding posts on front panel can be operated up to $\pm 500 \mathrm{~V} \mathrm{dc}(330 \mathrm{~V}$ rms) with respect to chassis ground.
Input resistance: $>10^{4}$ at null, $<70 \% \mathrm{RH}$; at least $10 \mathrm{M} \Omega$ off nult ($1 \mathrm{~V}, 10 \mathrm{~V}$ ranges) ; $10 \mathrm{M} \Omega(100 \mathrm{~V}, 1000 \mathrm{~V}$ ranges).
Effective common-mode rejection (ECMR)
DC: >140 d8 on all ranges, $<70 \% \mathrm{RH}$.
60 Hz and above: $>150 \mathrm{~dB}$ on all ranges, $<70 \% \mathrm{RH}$.
AC normal mode-rejection (ACNMR)
60 Hz and above: $>102 \mathrm{~d}$.
Maximum AC normal-mode slgnal: 25 V rms on 1 V range, 200 V ins on $10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$ ranges.
Overload protectlon: $\pm 1100 \mathrm{~V}$ de may be applied on any range or sensitivity for up to 1 min without damaging insirument. Meter indicates within $s s$ after removal of overload.

DC ratlometar

Ranges
Ratlo: X1, X.I, X. 01 and X. 001.
Resolution: 6-digit readoui pields resolution of 1 ppm of range; 0.2 ppra of range indicaicd on meter.
Performance rating
Accuracy
30 day: $\pm(0.002 \%$ of reading $+0.0004 \%$ of range $)$ at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C},<70 \% \mathrm{RH}$.
90 day: \pm (0.003% of reading $+0.0004 \%$ of range) at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}<70 \% \mathrm{RH}$
Stability: (at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C},<70 \% \mathrm{RH}$) 1 hr : <1 ppm of read. ing; $24 \mathrm{hr}:<3$ ppm of reading.
Temperature coofficlent: ($10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$) X1 range: <1 ppm of range per ${ }^{\circ} \mathrm{C}$.
X. 1, X.01, X. 001 ranges: <5 pprn of range per ${ }^{\circ} \mathrm{C}$.

Zero adjustment range: $> \pm 12 \mathrm{ppm}$ of range.
Mater nolse: <0.2 ppm of range ($\mathrm{p}-\mathrm{p}$).
Input characteristics
Input: 3 terminals, $A, B, C o m m o n$
Displayed $\left.=E_{(B \text { w }} C O M\right)$ with $\left.E_{(A \text { to }}(O M)>E_{(B \text { ro }} C O M\right)$ Voliage Ratio $=\frac{E_{(A \text { to }} \text { COM) }}{}$
and of same polarity.

Annge	$\begin{aligned} & \text { A to Common } \\ & \text { Input Voltape } \end{aligned}$	A to Common	B to Commen
XI	10 V	$10 \mathrm{k} \Omega \pm 0.05 \%$	
X. 1	70 V	$100 \mathrm{k} \Omega=0.05 \%$	$>1010 \Omega$ at null at
X. 01	500 V	$1 \mathrm{M} \Omega=0.05 \%$	least $10 \mathrm{Mn}=0.05 \%$
X, 001	1000 V	$10 \mathrm{Mn} \pm 0.05 \%$	dif null

DC voltmeter

General
Recorder output: fully adjustable 0 to $\pm 1 \mathrm{~V}$ supplies 1 mA to $1 \mathrm{k} \Omega$ minimum resistance. (In ratiomerer mode, recorder grouad must be isolated from COM terminal by $>10^{10} \mathrm{Q}$.)
Recorder output nolse: $<50 \mathrm{mV}$ p-p ($<0.5 \mathrm{ppm}$ of range referred ro input at maximum sensitivity).
Operating temperature; instrument will operate within rated specifications from $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ unless otherwise specified.
Power: 3420A: 115 V or $230 \mathrm{~V} \pm 10 \%$, so Hz to 400 Hz , <2 W.
3420B: 115 V or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to $400 \mathrm{~Hz},<2 \mathrm{~W}$ or rechargeable batteries (8 fumished) 30 hours op. eration per recharge; input for fast charge mode, <3 W.

Dimenslons: $163 / 4^{4 \prime}$ wide, $5^{\prime \prime}$ (without removable feet) high, $\times 1144^{\prime \prime}$ deep ($425 \times 127 \times 286 \mathrm{~mm}$).
Welght: 3420 A net $20 \mathrm{ib}(9 \mathrm{~kg})$; shipping $25 \mathrm{ib}(11,3 \mathrm{~kg})$. 3420 B net $21 \mathrm{lb}(9,3 \mathrm{~kg})$; shipping $27 \mathrm{lb}(12,2 \mathrm{~kg})$.
Accessorles furnished: rack mount kit for $19^{\prime \prime}$ rack.
Price: HP 3420A, \$1300; HP 3420B, \$1450.

[^11]
AC-DC $\triangle V M / D C$ STANDARD
 Multi-function calibration instrument
 Model 741B

The Hewriett-Packard Model 741B is a versatile and accurate instrument with 6 modes of operation. Now it is possible to solve most measurement problems with one convenient instru. ment.

The 741B is easy to use. The 4 most significant digits are digitally displayed; the meter displays the remaining resolution. The decimal point is placed automatically by the range switch. The voltage set switches are concentric with the sensitivity buctons; no confusion about which switch to turn.

DC Standard source

As a de standard, the 7418 delivers 0 to 1000 voles with an accuracy of 0.01% of secting. Designed for calibrating digital voitmeters, differential voltmeters and for general standards lab use, the 741 B delivers voltages quickly and easily. Sense terminals allow sensing voltage at distant loads, eliminating errors due to voltage drop in long leads.

DC differential voltmeter

The high input cesistance of $>10^{\circ} \mathrm{R}$ distinguishes the 7418 as a do differential voltmeter. This high resistance is maintained for voltages up to 1000 volts independent of null. Accuracy is $\pm 0.02 \%$ of reading.

AC differential voltmeter

As an ac differeotial voltmeter, the 741 B offers two features unique to ac voltage neasurement; high accusacy and low input capacitance. With $<5 \mathrm{pF}$ inpur capacitance, the 741B has a minimal ioading effect at higher frequencies.

High impedance ac or dc voltmeter

The model 741 B is a $\pm 2 \%$ floating dc voltmeter with ranges from 1 mV to 1000 V . It is also a $\pm 2 \%$ floating ac voltmeter from 50 mV to 1000 V , with reduced accuracy to the 1 mV range.

Amplifiers

As a voltage ampliner, up to 60 dB gain is avaitable at the recorder terminals.
As a $\pm 0.02 \%$ power amplifer, the HP 741 B provides unity voltage gain from 0 to 1000 V at the output terminals.

Specifications* DC standard

Ranges

Voltage: 0 to 1000 V in 4 decade ranges as follows: 0 to 1 V with $: \mu \mathrm{V}$ resolution; 0 to 10 V with $10 \mu \mathrm{~V}$ resolution: 0 to 100 V with $100 \mu \mathrm{~V}$ resolution; 0 to 1000 V with 1 mV resolu. tion.

Performance rating

Accuracy*a: $<80 \% \mathrm{RH}$, constant temp $\pm 1^{\circ} \mathrm{C}$, line and load. Calibrated at factory ar $23^{\circ} \mathrm{C}$ and 115 V line.
90 day: $\pm 0.01 \%$ of setting or $\pm 0.001 \%$ of range, which. ever is greater $+10 \mu \mathrm{~V}$.
180 day: $\pm 0.015 \%$ of setting or $\pm 0.0015 \%$ of sange, whichever is greares $+15 \mu \mathrm{~V}$.
Stability: $<80 \% \mathrm{RH}$, constant temp $\pm 1^{\circ} \mathrm{C}$. line and load. $1 \mathrm{hr}:<(0.0003 \%$ of serring $+0.0001 \%$ of range $)$.
$24 \mathrm{hr}:<(0.001 \%$ of setting $+0.0001 \%$ of range $)$.
Temperature coefficient: $<(0.0003 \%$ of setting $+0.0001 \%$ of range) per ${ }^{\circ} \mathrm{C}$.
Line regulation: $<(0.0001 \%$ of setring $+1 \mu \mathrm{~V})$ per 1%.
Load regutation (no load to full load): $<(0.001 \%$ of setting $+10 \mu \mathrm{~V})$.
Oulput characteristics
Terminais: plus and minus output, plus and minus sense. Minus outpur can be floated up to $\pm 500 \mathrm{~V}$ de with respect ro chassis ground.
Output cuprent: cursent limiter continuously adjustable from $<4 \mathrm{~mA}$ to $>20 \mathrm{~mA}, 0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. Reduced to 10 W maximum from $40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Output resistance: $<\left(0.0005+0.0005 \mathrm{E}_{\text {out }}\right) \Omega$.
Noise (rms value):

Range	OC -1 Hz	$1 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$
1 V	$<10 \mu \mathrm{~V}$	$<200 \mu \mathrm{~V}$
10 V	$<100 \mu \mathrm{~V}$	$<200 \mu \mathrm{~V}$
100 V	$<1 \mathrm{mV}$	$<1 \mathrm{mV}$
1000 V	$<10 \mathrm{mV}$	$<10 \mathrm{mV}$

AC differential voltmeter

Ranges

Voltage: $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$.
Resolution: 4-digit readout yield's resolution of 0.01% of range; 0.002% of range indicated on meter.
Response: responds to average value, calibrated in rms.

Performance rating

Accuracy: $<80 \% \mathrm{RH}$, constant temp $\left(\pm 1^{\circ} \mathrm{C}\right)$ and line. Calibrated at faciory at $23^{\circ} \mathrm{C}$ and 115 V line.
90 day:

Frequendy	Voltage	Acouraoy $=1 \%$ of reading $+\%$ of ranges
$400 \cdot 5 \mathrm{kMz}$	$50 \mathrm{mV} \cdot 100 \mathrm{~V}$	0.02\% +0.01\%
$20 \mathrm{~Hz}-30 \mathrm{~Hz}$	50 mV -1 kV	0.2% +0.01\%
$30 \mathrm{~Hz}-50 \mathrm{~Hz}$		0.15\% + 0.01%
50 Hz - 100 Hz		0.1\% +0.01\%
$100 \mathrm{~Hz} \cdot 10 \mathrm{kHz}$		0.04\% $+0.01 \%$
$60 \mathrm{kHz}-50 \mathrm{kHz}$		$0.2 \%+0.01 \%$
50 kHz - 100 kHz		0.4\% +0.01\%
20 Hz - 50 kHz	$1 \mathrm{mV}-50 \mathrm{mV}$	0.4\% +0.01\%

180 day:
20 Hz to 20 kHz : add $\pm(0.02 \%$ of reading $+0.01 \%$ of range) to 90 -day specification.
20 kHz to 100 kHz : add $\pm(0.4 \%$ of reading $+0.02 \%$ of range) to 90 .day specification.
Stabiity: $<80 \% \mathrm{RH}$, constant temp $\pm 1^{\circ} \mathrm{C}$ and line. 20 Hz to 20 kHz .
$1 \mathrm{hr}:<0.003 \%$ of range. $24 \mathrm{hr}:<0.005 \%$ of range.
Temperature coefflcient:

Temperature	Frequency	Change per ${ }^{\circ} \mathrm{C}$
$5^{\circ} \mathrm{C} \cdot 40^{\circ} \mathrm{C}$	$20 \mathrm{~Hz} \cdot 10 \mathrm{kHz}$	$<0.002 \%$ of range
	$10 \mathrm{kHz} \cdot 100 \mathrm{kHz}$	$<0.006 \%$ of range
$0^{\circ} \mathrm{C} \cdot 5^{\circ} \mathrm{C}$	$20 \mathrm{~Hz} \cdot 10 \mathrm{kHz}$	$<0.004 \%$ of range
$40^{\circ} \mathrm{C} \cdot 50^{\circ} \mathrm{C}$	$10 \mathrm{kHz} \cdot 100 \mathrm{kHz}$	$<0.008 \%$ of range

Line regulation: $<0.001 \%$ of range per 1% line voltage change.
Input characteristics
Input: probe with 3 -ft cable can be floated up to $\pm 500 \mathrm{~V}$ dc.
input impedance: $1 \mathrm{M} \Omega$ shuoted by less than 9 pF .
Overload protection: 1000 V can be applied on any range.

DC differential voltmeter

Voltage yanges: $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$.
Resolution: 4 -digit readout yields resolution of 0.02% of range; 0.002% of range indicated on meter.

Performance rating

Accuracy**: $<80 \%$ RH, constant temp $\pm 1^{c} \mathrm{C}$ and line. Calj. brated at factory at $23^{\circ} \mathrm{C}$ and IS V line. 90 day: $\pm 0.02 \%$ of reading or $\pm 0.004 \%$ of range, whichever is grearer. 180 day: $\pm 0.025 \%$ of reading or $\pm 0.004 \%$ of range, whichever is greater.
Stability: $<80 \% \mathrm{RH}$, constant temp $\pm 1^{\circ} \mathrm{C}$ and line. $1 \mathrm{hr}:<0.0003 \%$ of reading $+0.0001 \%$ of range $\}$. $24 \mathrm{hr}:<(0.001 \%$ of reading $+0.0001 \%$ of range $)$.
Temperature coetficient: $<(0.0003 \%$ of reading $+0.0001 \%$ of range) per ${ }^{\circ} \mathrm{C}$.
Line regulation: $<0.0002 \%$ of range per 1% line voltage change.
Input characteristics
Terminals: plus and minus input terminals and chassis ground. Minus input can be floated up to 土 500 V de with respect to chassis ground.
Input resistance: $>10^{\circ} \Omega$, independent of null.
AC normal mode rejection (ACNMR): 50 Hz and above: >80 dB .
Maximum ac normal mode voltage: 50% of $d c$ input or 25 V .
Overload protection: 1000 V can be applied on any range.
High impedance ac/dc voltmeter and power amplitier*:

General

Recorder output: available for all modes of operatior Re. corder voltage output directly proportional to meter deflection, 60 dB gain (max.), 1 mA into $1 \mathrm{k} \Omega$ load.
Power supply: 115 or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to $-200 \mathrm{~Hz}, 125$ W' max.
Dimensions: $163 / 4^{\prime \prime}$ wide, $67 / 8^{\prime \prime}$ high, $181 / 4^{\prime \prime} \operatorname{deep}(425 \times 175 \times$ 464 mm).
Weight: nec $42 \mathrm{lbs}(18,9 \mathrm{~kg}$) ; shipping $55 \mathrm{ibs}(24,8 \mathrm{~kg})$.
Accessories furnished: rack mounting kit for $19^{\prime \prime}$ rack.
Price: HP 741B, \$1875, HP 741B, oprion $01^{* * *}$, $\$ 1875$.

- For comp/ata specifications, reter to Dato Sheest.
**Option Oil accuracies for DC \perp VM and DC standard are interchenged.

Models 11049A, 11050A, 11051A Thermal Converters

Hewlert-Packard Thermal Converters are true ims indicators, yielding a do output voltage proportional to the cemperature rise resulting from the input power. The Models 11049A, ILOSOA and 11052A offer an exceprionally flat response and nearly constant impedance over a wide frequency range. These characteristics make the thermal converters ideal to check the response of precision ac voltmeters, oscilloscopes and amplifiers.

Specifications

Maximum Input voltage:

11094A: 3 V rms; 11050A: 1 V mms ; 11051A: 0.45 V mms.
Inpuk impedance: 50 ohms ± 0.15 ohms to 10 MHz . Output voitage for maximum input voltage: 7.5 mV dc.
Output impedance: less than 10Ω.
Callbration accuracy

Frequenoy range	In releremoa to std.	
20 Hz 10 20 kHz	Wilhin $=0.01 \%$	$\pm 0.02 \%$
20 kHz to 50 kHz	within $\pm 0.01 \%$	$\pm 0.03 \%$
50 kHz 101 MHz	within $=0.01 \%$	$\pm 0.06 \%$
5 Hz 1020 Hz and 1 MHz to 10 MHz	within $=0.05 \%$	$\pm 0.12 \%$
10 MHz to 30 MHz		$\pm 0.25 \%$
30 MHz to 60 MHz		$\pm 0.50 \%$
60 MHz to 100 MHz		$\pm 1.50 \%$

Dimensions: $3^{\prime \prime}$ wide, $13 / 4^{\prime \prime}$ high, $11 / 2^{\prime \prime}$ deep ($7,6 \times 4,4 \times 3,8$ cm)

Waight: net 2.2 oz (62 g); shipping $1 \mathrm{Jb}(450 \mathrm{~g})$.
Price: HP Model 11049 A*, S125: HP Model 11050A*, \$125: HP 11051A*. 5125.
Optlon 01 *: calibration to 60 MHz , add $\$ 25$.
Option 02*; calibration to 100 MHz , add $\$ 50$.

[^12]
PRECISION VOLTMETERS AND SOURCES

VOLTMETER CALIBRATOR
 DC, rms and p -p volts; flatness $10 \mathrm{~Hz}-10 \mathrm{MHz}$ Model EO2-738BR

The 652A Test Oscillator and the 738BR Voltmeter Calibrator calibrates high-impedance voltmeters and oscilloscopes for both frequency response and voltage accuracy. The system combines two moderately priced basic Hewlett-Packard instrumencs that calibrate for ac and dc voltage levels from $300 \mu \mathrm{~V}$ 10300 V in precise preselected steps and calibrate for frequency response from 10 Hz co 10 MHz .
The two instruments are a vailable individually or in a single enclosure provided with a rear-access door and power strip as the E02.738BR.
The 738 BR is a highly stable precision volrage source with drift less than 0.1% per week for de voltage, less than 0.2% per neek for ac voitage. The 652A provides a convenient con-stant-amplitude ac outpur voltage at an adjustable frequency
from 10 Hz to 10 MHz . The instruntent's expanded meter scale monitors the frequency response rapidly and accurately with $\pm 0.25 \%$ Alatness.

Specifications

E02-738BR Votemeter Callbration System

738BR

Voltage range: $300 \mu \mathrm{~V}$ to 300 V . $\mathrm{d} c$ or ac (rms and p.p. 400 Hz)
Levels: calibration voltage $300{ }_{\mu} \mathrm{V}$ to 300 V in sceps of $1,3$. 1.5 and s : tracking voltages 0.1 to 1 V in 0.1 V steps and 0.05 to 0.5 V in 0.05 V steps

Accuracy: 300 V working voltage inro atrenuator, accorate within 0.1% de and $0.2 \% \mathrm{ac}$, after a 30 minute wasmup.
Attenuator aceurscy: within $\pm 0.1 \%$ or $\pm 2.5 \mu \mathrm{~V}$. whichever is larger, open circuit.
Long-term stablity: less than 0.1% do drift per week, less than 0.2% ac diff per week.
Power: 113 or (230 V must be specified) $\pm 10 \% ~ 50$ to 60 Hz .350 W
Dlmenslons: $19^{\prime \prime}$ wide. 7 "high. $153 / 4^{\prime \prime}$ deep behind panes ($483 \times 178 \times 400 \mathrm{~mm}$).
Weight: net 38 lbs (17 kg); shipping $53 \mathrm{lbs}(24 \mathrm{~kg}$).
Price: HP 738BR, $\$ 1100$ (rack mount).
652A
Specifications are listed on page 381 of this catalog

General

Dimensions: 201/2" wide, $15 \mathrm{~s} / 8^{\prime \prime}$ high, $181^{\prime \prime \prime \prime}$ deep (321×397 $x\{70 \mathrm{~mm}$).
Weight: net 75 (bs ($33,8 \mathrm{~kg}$); shipping $110 \mathrm{lbs}(49,8 \mathrm{~kg}$).
Accessories furnished: cable HP part number 739A.16A, Rat response to $10 \mathrm{MHz}, \mathrm{BNC}$ to shielded 508 terminated dual banana plug.
Price: HP E02.738BR. $\$ 2110$.

PORTABLE DC NULL VOLTMETER Battery operation, $0.1 \mu \mathrm{~V}$ resolution Model 419A

The Model 419A DC Null Meter is a solid-state, battery operated micro-voltmeter with $0.1{ }_{\mu} \mathrm{V}$ resolution.

The 419A is an excellent de null detector for comparing 2 standard voltage with another source voltage, resistive divider or amplifier. By connecting the two voltages to the + and - floating input terminals, the voltages oppose each orther and the instrument under test may be adjusted to the exact dc voltage of the standard instrument. This is accom-
plished by nulling the difference between the two sources on the 419A's $3 \mu \mathrm{~V}$ range with a resolution of $0.1 \mu \mathrm{~V}$. Internal noise is very low, even at this resolution.

The $419 A$ is operated from a rechargeable battery-power source so that it can be isolated from the ac power line, eliminating ground loops.

The 419A offers a feature not available in any other de null meter.... an adjustable internal nulling supply. An infinite input impedance is obtained (even on the $3 \mu \mathrm{~V}$ range) when used as a null detector with the internal nulling supply.
Additional appllcations
(1) The 419A, because of its high-input impedance and sensitivity, may be used for measutements where a voltage must be read, compared or adjusted across a resistor.
(2) Transistor collector voltages can be measured.
(3) Voltages may be measured across a resistuve divider
(4) Berause of its high sensitivity, the 419A may be used to measure thermocouple voltages and other low-level transducer sources.
(5) Nerve potentials in biology and medicine as well as chemically-generated emf may be measured.

For complete specifications, see page 219.

AC/DC METER CALIBRATOR

Four calibrators in one case Model 6920B

Can be used to check:

1. DC Voltmeters up to 1000 volts
2. AC Voltmeters up to 1000 volts
3. DC Ammeters up to 5 amps
4. AC Ammeters up to 5 amps

Description

Model 6920B is a versatile ac/de meter calibrator, capable of both constant volrage and constant current oucpur, Its absolute accuracy makes it suitable for laboratory or production testing of panel meters, multimeters, and other meters having accuracy of the order of 1.0% or higher. This calibrator has been designed for convenience, and combines in one instrument all the outputs needed to test the more commonly used meters. Model 6920B has been packaged in an HP cabinet module suitable for bench or rack use.

Output switch

An output switch selects the safest mode of operation for the particular type of meter being tested. A "lock" position leaves the testing parameters in operation to free both hands for attaching and disconnecting successive meters. A "test" position, springloaded so that the meter calibrator output is presented to the terminals only while finger pressure is applied, facilitates testing meters with several full-scale values and reduces the danger of burn-out.

AC Output waveshape

When the function switch is set on " $A C$ ", the output waveshape is sinusoidal (to a first approximation) and has the same frequency as the input line power applied to the instrument. The feedback loop which controls and regulates this $A C$ is actually monitoring the average value of the ac output, although the front panel controls are calibrated in terms of tms. Thus this cafibrator is suitable for use with average reading ac voltmeters scaled in cms. Moreover, it is
not improper to use this calibrator with true ems meters pro. vided the input line waveshape has a negligible amount of harmonic distortion. The meter calibrator's contribution to the total harmonic distortion present in its output is small compared to its overall accuracy.

Specifications

Input: $115 \mathrm{~V} \mathrm{ac} \pm 10 \%$, single phase, $58.62 \mathrm{~Hz}, 0.7 \mathrm{~A}, 65$ W max.
Output voltage ranges:
0.01 .1 V current capability 0.5 A
0.1-10 V current capability 0.1 A
$1-100 \mathrm{~V}$ current capability 0.100 mA
10.1000 V current capability 0.10 mA

Above output voltage ranges and maximum current capabilities for each range apply in full for either de or ac operation.
Output current ranges: (5 A maximum output)
$1.100 \mu \mathrm{~A}$ voltage capability 0.500 V
0.01 .1 mA voltage capability 0.500 V
0.1 .10 mA voluge capability 0.500 V
$1-100 \mathrm{~mA}$ voltage capability 0.50 V
0.01-1 A voltage capability 0.5 V
$0.1-10 \mathrm{~A}$ voltage capability 0.0 .5 V
Above output current ranges and maximum voltage capabilties for each range apply in full for either dc or 60 Hz , operation.
Output accuracy: DC -0.2% of ser value plus 1 digit. AC0.4% of set value plus 1 digit. Above accuracy applicable over a temperature range from $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ and over full input voltage range.

Controls:

FUNCTION SWITCH-This is a 3 -position switch: "OFF", "AC", and "DC". In the "OFF" position the ac power input is disconnected from the unit. In the " $A C$ " position the meter calibrator produces an ac output; similarly, in the "DC" position the calibrator produces a dc output.
RANGE SWITCH— 10 positions, one for each voltage and current range.
CALIBRATED OUTPUT CONTROL-Digital potentiometer readour control (3 significant digits) determines exact value of output,
OUTPUT SWTTCH-Switch described above.
Output terminals: two front panel rerminals are provided; these are the output terminals for both ac and dc operation. In voltage ranges, the negative terminal is grounded.
Ripple: in de operation the output ripple is typically less than 1.0% rms of the output range switch setting.
Operating temperature range: $0.50^{\circ} \mathrm{C}$,
Slze: $63 / 4^{\prime \prime}(172 \mathrm{~mm}) \mathrm{H} \times 7.13 / 16^{\prime \prime}(198 \mathrm{~mm}) \mathrm{W} \times 11^{\prime \prime}$ (279 mm) D.
Weight: $15 \mathrm{lbs}(6,8 \mathrm{~kg})$ net, $17 \mathrm{lbs}(7,71 \mathrm{~kg})$ shipping. Price: $\$ 695$.
Option 05: 50 Hz ac input regulation realignment. add $\$ 25$.
Option 28: 230 V ac $\pm 10 \%$, single phase input, add $\$ 10$.

PRECISION VOLTMETERS \& SDURCES

Advantages:

Constant voltage or constant current output
Programming accuracy- 0.25%
High output power-up to 25 watts
Overvoltage and overcurrent load protection
Handles fully reactive loads
Easily calibrated
Low cost
Front-panel choice of 3 output frequencies

AC METER CALIBRATOR
 Low-cost, 0.25\% accuracy
 Model 6921A

Description

Model 6921A is a calibrated ac source that can provide a constant voltage or a constant current ourput. The output waveshape is sinusoidal and its rms a mplitude is within 0.25% of the set value.

Output frequencies of $60 \mathrm{~Hz}, 400 \mathrm{~Hz}$, and i kHz (with an accuracy of 10%) are standard with the calibrator; or an ex. ternal oscillator (of $1-2 \mathrm{~V}$ p-p amplitude) can be used to ob. tain any output frequency between 50 Hz and 2 kHz (without degrading the accuracy of the calibrator).

The calibrator has fout output voltage ranges and five output current ranges (see specification chart). A decade readout of the settings is conveniently located on the front panel. Model 6921 A can be used for calibrating ac voltmeters and ammeters and for cesting other ac devices. Its relatively high output power and ability to operate into a full reactive load makes it particulariy suitable for calibrating large, moving-vane type meters. This instrument can also be used as a leveling amplifier which provides a constant output despite amplitude variations of an input signal between 1-2 V p-p.

Specifications

Input: $115 / 230 \mathrm{~V}_{\mathrm{ac}} \pm 10 \%, 1 \phi, 48.440 \mathrm{~Hz}, 120 \mathrm{~W}$ nominal. Output voltage (rms): voltage setability in the chart below indicates the minimum and maximum limits for each range. The calibrator can be set to zero voles in each range, but performance within spec is not guaranteed below the lower limit. The current limit in the 14 V and 140 V ranges is internally switched to lower values when the volrage is set above 5 V and 50 V , respectively.

Vollege range	Output eapabilility		Resolurita
	Voltene sotablity	Current 1 mh	
1.4 V	$0.1000-1.4000 \mathrm{~V}$	5A	0.1 mV
14 V	$\begin{aligned} & 1.000-5.000 \mathrm{~V} \\ & 5.001-14.000 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5 A \\ & 2 A \end{aligned}$	1 mV
140 V	$\begin{aligned} & 10.00-50.00 \mathrm{~V} \\ & 50.01-140.00 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~A} \\ & 0.2 \mathrm{~A} \end{aligned}$	10 mV
$\begin{aligned} & 240 \mathrm{~V} \times 2 \\ & (280 \mathrm{~V}) \end{aligned}$	20.00-280.00 V	0.1 A	20 mV

Current rande	Currant satabllity	Currant $1(m) \mid t$	resolution
1.4 mA	. $10000-1.4000 \mathrm{~mA}$	140 V	. $1 \mu \mathrm{~A}$
14 mA	$1.0000-14.000 \mathrm{~mA}$	140 V	$1 \mu \mathrm{~A}$
140 mA	$10.00-140.00 \mathrm{~mA}$	140 V	$10 \mu \mathrm{~A}$
1.4 A	$\begin{aligned} & .1000-0.5000 \mathrm{~A} \\ & 0.500 \mathrm{~J}-1.4000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 50 \mathrm{~V} \\ & 20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 100 \mu \mathrm{~A} \\ & 100 \mu \mathrm{~A} \end{aligned}$
5 A	0.500-5.000 A	5 V	1 mA

Output voltage and current accuracy: 0.25% of output voltage or current setting after one hour warm-up.
Dutput frequency: one of three internal frequencies, $60 \mathrm{~Hz}_{2} 400$ Hz , or 2 kHz , can be selected by means of a front panel switch. Frequency accuracy is $\pm 10 \%$ of serting.
External oscillator Input: unit can be driven by input from ex. ternal oscillator at any frequency of from 50.2 kHz while meeting all specifications. Input signal must be 1.2 V ac p-p.
Output distortion:
Second harmonic: less than 0.5%.
Third harmonle: less than 0.1%.
Temperature coefficient: less than 0.01% of each output voltage or current range per ${ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Stabillty: rotal drift for 24 hours is less than 0.1% of any range under constant ambient temperature conditions and after 1 -hour warn up.
Load regulation: less than 0.1% of voltage or current setting for no load to full load change.
Line ragulation: Less than 0.01% of voluge or current setting for any line voltage change within input rating.
Temperature ranges: operating: 0 to $+55^{\circ} \mathrm{C}$. Storage: -40 to $+75^{\circ} \mathrm{C}$.
Overload protection; the unit and its joad circuits are fully prorected against any overload condition including a continuous short circuit.
Output terminals: HI, CONMMON, and GND terminals are included on the front panel. They can be floated up to 300 volts off ground
Cooling: convection cooling is employed. There ace no moving parts.
Controls: output dials and range and frequency switches are iscluded on the front panel.
Size: $161 / 2^{\prime \prime}(41.9 \mathrm{~cm}) W \times \mathrm{s}^{\prime \prime}(12.7 \mathrm{~cm}) \mathrm{H} \times 173 / 4^{\prime \prime}(45 \mathrm{~cm}) \mathrm{D}$.
Welght: ner $28.2 \mathrm{lbs}(12,8 \mathrm{~kg})$. Shipping $32.16 \mathrm{lbs}(14,5 \mathrm{~kg})$.
Price: \$975.

Voltage, current and resistance measurements are easy, fast and accurate with electronic instruments using meter movements. Most electronic voltmeters, ammeters and ohmmeters use rectifiers, amplifers and other circuits to generare a current proportional to the quantity being measured, whith then drives a meter movement. Devices of this type are called analog instruments.
Meter Movements-the meter-move. ment readout should continue to be popular since it is economical and suitable for many jobs. It also lends itself well to special, nonlinear scales such as dB scales.
The pivot-jewel suspension is being replaced more and more by taut-band suspension. This has resulted in excellent repeatability with hysteresis virtually eliminated. This repeatability, in turn, makes practical the individually calibrated metec scale. Both of these improvements are standard in most HP analog voltmeters.
Figure 1 shows scales for two different individually calibrated meters printed on one face by Hewlett-Packard's calibrator. By combining HP-produced taut-bend meter movements with individually calibrated meter faces, Hewlett-Packard's meters are outstanding in ruggedness and precision.

Figure 1. Scales for two differant individually calibrated meters printed on one face by Hewlatt.Packard's calibrator

DC voltage measurements

The de voltmeter represents a straightforward application of electronics to measuring instruments. This instrument usually has a do amplifier preceding the meter movement.
Dc amplifiers can be classified as (a) direcr-coupled and (b) chopper stabi. lized.
Direct-coupled amplifiers are attrac. tive for their economy and find applica. tion in lower-cost electronic voltmeters.
The direct-coupled amplifier is used to obtain sensitive ranges and higher input impedance than can be realized with nonelectronic rypes of voltmeters.

An amplifier also limits the maximum current supplied to the meter movement so that there is little danger that unex. pected overloads will burn out the meter movement. The HP 427A is representa. tive of this class of instruments.

To supply ranges of a few millivolts or microvolts full scale, chopper stabilized amplifiers are genecally used. HewletrPackard choppers convert the input dc to a propoctional ac with zero offsets of $1 \mu \mathrm{~V}$ or less. The ac signal is first amplified and then converted to dc (demodulated). The HP 410 C uses this technique to minimize the drift charac. teristics of direct-coupled amplifiess.

The HP solid-stare 419A DC Null Voltmeter also uses a chopper-stabilized amplifer and has $0.1 \mu \mathrm{~V}$ resolution with 18 ranges from $3 \mu \mathrm{~V}$ to 1000 V . An in. ternal, adjustable, bucking voltage allows the operator to null the input signal with a front-panel control, making the input impedance effectively infinite. This de null voltmeter is powered by rechargeable barteries.

Automatic polarity and range selection features are available. The operator can detect polarity and measure any voltage within the range of the instrument with. out setting controls. The meter indication is automatically maintained between $1 / 3$ and full scale, while the range also is automatically displayed. These features are offered in the HP 414A Autovolt. meter.

DC current measurements

For most de current measurements, the meter movement, by itself, serves the purpose admirably. In these cases, the meter coil requires relatively few turns to gen, erate sufficient magnetic flux for defecring the meter pointer. For lower current measurements, the sensitivity of the meter movement must be increased. This is usually accomplished by adding more turns on the coil. These added rurns in. crease the resistance of the current path which can be troublesome in lor-impe. dance circuits.

Electronic instruments overcome this dificuity by measuring the small voltage drop across a low value resistance placed in series with the cursent to be measuced. The HP 412A and 425A Voltmeters are equipped with internal-calibrated shunt resistors for reading de currents withour a ccessory equipment.

Resistance measurements

Resistance is customarily determined through the familiar Ohm's relation:
$\mathrm{E}=\mathrm{IR}$. By appiying a known voltage, E, to the unknown resistance, R, and then measuring the current, I, passing through $i t, R$ can be computed.

A modified procedure for doing this is incorporated in the HP $410 \mathrm{~B}, 410 \mathrm{C}$, 412 A , and 427 A multi-function voltmeters.

The HP 414 A employs a feedback. stabilized current source, allowing the use of a linear ohms scale and a voiding a special meter scale for resistance mea. surements. The resulting meter scales are easy to read with good resolution at lower-resistance values.
To measure extremely low resistances such as are found in short lengths of large wire, relay and switch contacts, earth ground terminals or in commutator brushes, the HP 4328A Milliohmmerer is recommended. (See page 222.) The HP 4328A measures resisrance from 0.001 to 100 ohms full scale over 11 ranges with $\pm 2 \%$ accuracy. (No additional ecror is caused by series reactances up to 2 times full seale resistance.)

Although the four terminal method is used to insure accurate measurements, only two probes are connected to the sample. To eliminate error due to therma! emf, contact potential differences and electrolytic polarization, the milliohm. meter is internally driven by a 1 kHz signal. The probes are loating and contain de blocking capacitors to protect the 4328 A from damage and to prevent measuring error when the probes come in contact with a de circuit. Thus, the sesistance of a sample can be measured at de potentials.

Resistance measurements in the 4328A are accomplished by two major circuits. (Figure 2.) One is a 1 kHz constantcurrent oscillator which supplies a current to the resistance under test. The other is a voltmeter which senses voltage drop across the resistance under test and calibrates it in ohms. The voltmeter in. corporates a phase-discriminator elimi. nating errors caused from series reac. tance.

Figure 2. Simplifisd block diagrem of HP 432ea milliohmmeter.

With the 4328 A, the voltage and current applied to the sample are excremely small. The current is constanc for each range and varies from $150 \mu \mathrm{~A}$ rms on the 100Ω range to 150 mA on the $1 \mathrm{~m} \Omega$ range. Even when the resistance value of the sample is greater than the range setring, the voltage protective circuit prevents any voltage higher than 20 mV from being applied to the sample.

The HP 4329A is a solid-state ohmmeter designed to measure very high resistance values found in resins, porcelain and insulating oils. This one instrument can also measure voltage and current. Accessories include a cell for resistivity measurements. Refer to page 223 for additional information.

$A C$ voltage measurements

Electronic instruments for measuring ac voltages also use an amplifer with the meter movement. Analog ac volemeters are ac-to-dc converters which derive a de current proportional to the ac input be. ing measured, employing this current for meter deflection. In some situations, conversion to dc by use of external probe diodes precedes amplification. The required amplifiers must then be do ampli. fiers, either direct-coupled or chopper type. In other cases, the de may be derived as a final step with sufficient power available to directly drive the meter movement of the voltmeter. Any ac am. plifier may readily be a broadband dc amplifier preceded by an input-biocking capacitor. For detailed information on de amplifers, refer to Hewlett-Packard Application Note 69.
Analog (meter) indicating ac voltmeters fall into three broad categories: average-responding, peak-responding, and rms-responding, Ac voltmeters in general use are average and peak-responding types, atthough rms values are of principal interest.

Average-responding voltmeters

Probably the most widely used measurement rechnique combining acceptable accuracy and reasonable cost is the aver. age-responding (absolute average) method. Figure 3 shows a typical arrangement for making an average measurement. The signal is amplified (or attenuated) and

Flgure 3. Average-responding voltmeter.
fed to the meter circuit through a diode bridge. For good linearity, the amplifier should be a current source at all frequencies of interest.

The average value of an ac voltage is simply the average value of voliage mea. sured point by point along the paveform. For a sine wave and any raveform sym. metrical about zero, the rrue average value is zero. However, a resistive load is heated by both the positive and negative current excursions in proportion to the absolute average of voltage above and be. low zero. Accordingly, when we speak of average voltage, we mean the average value of a full-wave rectified voltage. This value for sine wiave is 0.636 times the peak voltage.

For a sinusoidal waveform, then, the rms value can easily be calibrated on a meter responding to the average value because the rms value is greater by the constant $k=0.907 / 0.636=1.11$. Many waveforms encountered in electronic measurements are sinusoidal; in these instances, the average-responding meter. calibrated in the rms value of a sime wave. provides an accurate indication of the rims value. The widely used HP 400 series Voltmeters are average-responding volt. meters.

Average-responding voltmerer error due to harmonic distortion is low-less than 3% for about 20% harmonic dis. tortion.

AC microvaltmeter

Most broadband average-responding voltmeters are limited in sensitivity (100 $\mu \mathrm{V}$ full scale) by inherent noise and spur. ious signals. An extention of the average. responding voltmeter, the new HP 3410 A uses a syrichronous phase-lock detector to read very low level signals ($3 \mu \mathrm{~V}$ full scale) obscured in other instruments by noise. Noise and spurious signals up to 20 dB above full scale can be tolerated.
The block diagram in Figure f illus. trates the basic operation of the HP 3410A AC Microvoltmerer. The circuit

Figure 4. Block diagram of NP 3410A AC Microvaltmeter.
consists of four trajor sections: the input or signal conditioning circuit, the phaselock loop, an inhibit circuit and a meter circuit. When tuned to any discrete frequency between 5 Hz and 600 kHz , the meter indicates the rectified average value of the signal. All noise and non-har. monically related signals are rejected. Most voltmeters using this rechnique require a clean, high level reference signal input from the test signal source, or that the system under cest use the local oscit. lator output of the voltmeter. When us. ing the HP 3410A, such a hook-up is not necessary. By using a phase-lock oscillator to drive the synchronous detector, the need for a reference input is eliminated. Some useful 3410 A applications are mea. suring frequency of signals in noise, separating closely-spaced coherent signals, measuring power supply ripple, measuring signal-to noise ratios, calibrating attentuators and measuring sum. ming junction voitages. Refer to HP Journal, Vol. 18, No. 9.

RF voltmeters

Conventional volemeters responding to the absolute average or the true rms value of an ac waveform are sometimes limited in sensitivity and bandridth by the input impedance converter, amplifier and detector. These restrictions may be relieved by sampling the signal prior to amplification and detection. This rech. nique constructs low-frequency equiva. lents of high-frequency signals and permits voltmerers to make measurements over wide frequency and voltage ranges.
The HP 3406A uses an incoherent sampling technique. Linlike colverent sampling, it requires neither a triggering source nor that the inpur signal be periodic. The sampling voltmeter operates equally well with sinusoidal, pulsed, random or frequency-modulated signals.
The HP 3406A Sampling Voltmeter responds to the absolute-average values of unknown voltages and is calibrated to read both the rms value of a sine wave and dBm in 50 ohm systems. Its sensi. tivity is high enough to measure voltages as small as $50 \mu \mathrm{~V}$ over a 25 kHz to >1 GHz frequency range. Volcage scales are linear, and resolution is $20 \mu \mathrm{~V}$ on the 1 mV range. Unlite some RF voltmeters with peak detectors that are rms-responding on the lower ranges and gradually change to peak-detecting on the higher ranges, the HP 3406A is average-responding on all ranges. This means that measurements of non-sinusoidal voltages are more accurate because its detector lan. does not change with the amplitude of the inpur signal.
An output connector from the zero. order hold circuit is available at the rear panel of the instrument for connection to other measuring equipment. Since the
statistics available at this point are the same as those of the inpur signal, proper. ties such as peak, average and rms can be measured by instruments with narcow bandwidth capabilities. Peak voltages, amplitude modulation envelopes, true rms values, pulse height information, and probability density functions of broad. band signals can be determined by observing the output of the zero-order hold circuit. Much of this information has never before been accessible for broad. band signals. For a detailed description of applications and operation of the HP 3406A Sampling RF Voltmeter, ask for a copy of the HP Journal, Volume 17. No. 11.

Recently introduced, the HP 8405A RF Vector Voltmeter, can measure ampli. tudes and phase angles simultaneously from 1 to 1000 MHz . The 8405A RF Vector Voltmeter operates on the principle of coherent sampling.

Peak-responding voltmeter

Peak-responding voltmeters can perform over a bandwidth extending to sereral hundred MHz . They have a lowshunt capacitance to minimize circuit loading. Good linearity is possible for input sinusoidal signals of 0.5 volts and above. For signals smailer than 0.5 volts, special compensation techniques must be used to achieve linear meter indications.

The indication of the peak-responding voltmeter block diagram shown in Figure 5 places the rectifier in the input circuit where it charges the small input capacitor to the peak value of the input signal. This voltage is passed to a dc amplifier, which drives the meter.

Figure 5. Peak-responding voltmeter.
Since ac-to-de conversion is usually ac. complished in the peak-responding voltmeter at the input, a de meter circuit is required. Often de volts, ohms and am. pere scales are added to make the peakresponding meter a multi-function in. strument as is the HP 410 C .

Like the average-responding voltme. rers, peak-responding voltmeters are usually calibrated in the rms value of a sine wave. The average-responding type, therefore, indicates 1.11 times higher than the average voltage, while the peak. responding type indicated 0.707 times the peak voltage. Consequently, both meters may be in error if the measured signal is not a pure sine wave. Peak-reading instru-
ments are generally sensitive to harmonic distortion, and care must be taken in the interpretation of the measured peak value of a non-sinusoidal waveform. For a detailed discussion of the limits of error introduced into peak and average-responding voltmeters by various harmonics, refer to HP Application Note 60.

RMS-responding voltmeter

The ruue-rms measurements recinique is most ofen used when a high degree of accuracy is required. Instrument indica. tion is proportional to the rms heating value of the impressed waveform. Mathematically, the root-mean-square (rms) value of any complex quantity is obtained by summing the squares of each component and taking the square root of the sum, defined as the equivalent heating power of the waveform.

The 3400A uses the thermocouple ap. proach to measure the true rms value of D'aveforms. When a signal is applied, the dc voltage generated at the output of the thermocouple is proportional to the true rms value of the inpuc. Nonlinear characteristics of the thermocouple have previously been a problem in accuracy calibration. Other problems have been sluggish response and tendency to burn out.

These thermocouple problems have been solved in the 3400 A by using a thermocouple pair which acts as a summing point. The output of the ac amplifier (as shown in Figure 6) and the leed. back from the de emitter follower are inputs to the two thermocouple heaters. The difference between the two thermocouple voltages is the do input to the chopper amplifier. This difference is modulated, amplified, demodulated, and supplied to the meter. This voltage is also fed back to TC 2 (Figure 6). This amplified do voltage represents the true rms value of the ac signal applied to the inpur after it is attenuated for range. By using two matched thermocouples and measuring the de difference. the output of the do amplifier is linear. Using two thermocouples also provides stability against ambient temperature changes.

The ds voltage driving the meter is available at the de output. This de volt. age provides a true rms ac-to-de converter outpus.
The true rms value is measured in-
dependently of the wave-shaped provided that the peak excursions of the measured waveform do not exceed the dynamic range of the instrument. Distortion is not an error-contributing factor. This arrangement allows the Model 3400 A to provide accurate readings of the ims value of complex waveforms having crest factors (ratio of peak-to rms) as high as $10: 1$ at full scale. At 10% of full scale deflection, where there is less likelihood of amplifier saturation, waveforms with crest factors as high as 100:1 can be permitted.

Voltmeter considerations

The most appropriate instrument for ac or de voltage measurement is the in. strument realiably giving the performance needed for the existing conditions. Some considerations are:

Accuracy-Before we can discuss meter accuracy we musr have a familiarity with the various meter scales avail. able. Many instruments have meter scales marked in both volts and decibe! (dB) units. It should be noted that dB and voltage are complements of each other. That is, if a voltage scale is made linear. the dB scale on the same meter face aill be logarichmic or nonlinear. Likerise, if the $d \mathrm{~B}$ scale is made linear, then the voltage scale becomes nonlinear. The term "Ifnear-log scale" is applied to an instrument that has a linear dB scale and therefore a nonlinear voltage scale. Several dif. ferent types of meter facts are illustrated in Figure 7.

Accuracy specifications are usually expressed in one of three ways: 1. (percent of the full-scale value) 2. (percent of the reading) 3. (percent of reading + per. cent of full-scale). The first is probably the most commonly used accuracy specification. The second, (percent of reading) is more commonly applied to meters having a logarithmic scale. The last method has been used more recently to obtain a tighrer accuracy specification on a linear-scale instrument.

To understand the selative value of applying several accuracy specifications to any given instrumenr, percent uncertainty should be understood. Percent uncertainty can be defined as the ratio (in percent) of the calculated reading uncertainty to the actual meter reading. both expressed in the same scale units.

Figure 6. True ins-responding voltmeter.

Figure 7. Four diffarent types of meter scales avallable. (a) Linear 0.3 V and $0-10 \mathrm{~V}$ scales plus a dB scala. (b) Linear d8 scale plus nonlinear (logarlthmic) voltage scales. (c) 08 scale placed on larger are for greater resolution, (d) Linear - 20 to 0 d8 scale useful for acousticsl and communications applica. tions.

If the uncerrainty is calculated from the (percent of reading) spec and then divided by the reading. the percent uncertainty will be constant for all readings and, thus, have the same value as the accuracy spec. Applying this type of accuracy specification to an instrumenr is practical only if the lower end of the scale is greatly expanded.
The (percent-of-reading) spec is employed for instruments having a log scale. If this type of spec is employed for linear-scale instruments, the percent uncertainty will be unrealistically small for the lower portion of the scale. Many linear-scale instruments commonty employ (percent of full-scale) specification. However, most meters of this type are capable of better accuracy tian the percent uncertainty indicates. Hewlert-Pack. ard uses the trvo-part accuracy specifica. tion to take advantage of the upper-scale accuracy and yet maintain a reasonable specification for the lower portion of the scale. (See Figure 8.)
Downeanging is a method by which the improved upper.scale accuracy is ucilized. In Figure 8 note that the knee of the curve for the two-part accuracy specification occurs at about 30 percent of fullscale. Thus, it is convenient to design voi. tage ranges in a $1-3 \cdot 10$ sequence. With this approach, all readings can be made on the upper two-thirds of the scale
where accuracy is best. Downranging is illustrated by the inset in Figure 8 show. ing a case where a maximum uncertainty of approximately 2 percent can be at. tained.
For a thorough evaluation of accuracy, the following should be considered: Does it apply at all inpur-voltage levels up to maximum overrange point? (Linearity specifications may be added to qualify this point.) Does it apply to all frequen. cies throughout its specified bandwidth? Does it apply on all ranges? Does it apply over a useful temperature range for the application? If not, is remperature co. efficient specified?
An affirmative answer to all items is required for a complete accuracy specif. carion. Accuracy ratings generally apply for a zero-impedance source; the same accuracies can be achieved for higher source impedances by calculating the loading effect of the input impedance on the source. Complex impedances may limit the usefulness of this technique with ac voltmeters.

Figure 8. Percent uncertainty for three methods of specifying accuracy.

Outputs - Some voltmeters provide several anaiog outpurs besides the meter reading. For instance, there may be both ac and de outpur proportional to the pointer deflection. The ac output is useful for monitoring the waveform on an oscilioscope or to lower the output impedance of the circuit under tesr. The de ourput can be used to drive a strip chart or X-Y recorder for a permanent record, or to drive a de digital voltmeter to increase accuracy and resolution of broad. band instruments.

Battery operation-For field work, an instrument powered by internal batteries is necessary. If an area contains trouble. some ground loops, a battery powered instrument should be used to remove the ground path.

SENSITIVITY VS. BANDWIDTH-Noise is a function of bandwidth. A volumeter with a broad bandwidth will pick up and generate more noise and is less sensitive than one operating over a narrow range of frequencies. For example, an instrument with a bandwidth of 10 Hz to 10 MHz typically can have a sensitivity of 1 mV . On the other hand, a voltmeter with bandwidth extending only to 500 kHz could have a sensitivity of $100 \mu \mathrm{~V}$.

AC current probe

The HP 456A Currenc Probe enables ac current to be measured without dis. turbing the circuit. This probe clips around the wire carrying the cucrent to be measured and, in effect, makes the wire the one.turn primary of a trans. former formed by ferrite cores and a manyturn secondary within the probe. The sigaal induced in the secondary is amplified and can be applied to any suirable ac voltmeter for measurement. The amplifier constants are chosen so thar 1 mA in the wire being measured produces 1 mV at the amplifier output. Current is read directly on the voltmeter.

Summary

The basic specifications for Her-letrPackard analog voltmeters are summa. rized in Table I. To help you select a voltmerer suitable to your needs, our guidelines are restated as follows:
(1) For measurements involving dc applications, select the instrument with the broadest capability meeting your requirements.
(2) For ac measuremenss involving sine waves with only modest amounts of distortion ($<10 \%$), the average-tesponding voltmeter provides the best accuracy and most sensitivity per dollar.
(3) For ac measurements involving low-level signals that may be obscured by noise or other uncelated signals, the runed voltmeter provides the best accuracy and most sensirivity per dollar.
(4) For high-frequency measurements ($>10 \mathrm{MHz}$), the peak-responding voltmeter with the diode-probe input is the most economical choice. Peak-responding circuits are acceptable if inaccuracies caused by distortion in the input wave. form can be tolerated.
(5) For measurements where it is important to determine the effective power of waveforms that depart from a true sinusoidal form, the true rms-responding voltmeter is the appropriate choice.
(6) For very wide bandwidths (up to 1 GHz) and high-sensitivity measure. ments of sinusoidal or non-sinusoidal Waveforms, the HP 3406A is the proper choice. Nlthough the 3406A is averageresponding, it has a sample hold oucput which makes analysis of ruaveforms possible.

Table 1 Hewlett-Packard Analog Voltmeters

DC VOLTMETERS	Voltage Range	Frequanoy Ranga Aoduracy 81 F,S,*	Inpul Impedanoe	Model	Sab Page
DC NULL VOLTMETER Internal nulling supply battery operation de amplifier, Ammeter $30 \rho A \cdot 30 \pi A$	$\begin{gathered} \pm 3 \mu V- \pm 1 \mathrm{kV} \\ \text { end scale } \\ 0.1 \mu V \text { resolution } \\ \text { (18 ranges) } \\ \hline \end{gathered}$	$\begin{gathered} \Delta c \\ \pm 2 \%+1 \mu V \end{gathered}$	$100 \mathrm{~K} \cdot 100 \mathrm{M} \Omega$ depending on range (infinite when nulled)	419A	219
DC NULL VOLTMETER Amplifier	$\begin{gathered} =1 \mathrm{mV} \text {-地 } 1 \mathrm{kV} \\ \text { end scale } \\ \text { (13 ranges) } \end{gathered}$	$\begin{aligned} & \mathrm{dc} \\ = & 2 \% \end{aligned}$	10M-200 MS depending on range	413A	218
AC VOLTMETERS	Voltage Range	Frequency Ranga Typloal Acoursoy	Respense Input Impedanoe	Madel	See Page
BATTERY OPERATED AC VOLTMETER	$\begin{aligned} & 1 \mathrm{mV}-300 \mathrm{~V} \\ & (12 \text { ianges }) \end{aligned}$	$\begin{aligned} & 1 \mathrm{~Hz} \cdot 1 \mathrm{MHz} \\ & =3 \% \cdot \pm 5 \% \end{aligned}$	$\begin{gathered} \text { Average } \\ 2 \mathrm{M} \Omega /<25-60 \mathrm{of} \end{gathered}$	403A	21)
$\begin{aligned} & \text { RECHARGEABLE BATTERY AC VOLT- } \\ & \text { METER } \end{aligned}$	$\begin{aligned} & 1 \mathrm{mV} \cdot 300 \mathrm{~V} \\ & (12 \text { ranges }) \end{aligned}$	$\begin{aligned} & 5 \mathrm{~Hz} \cdot 2 \mathrm{MHz} \\ & =2 \% \cdot \pm=5 \% \end{aligned}$	$\begin{gathered} \text { Average } \\ 2 \mathrm{~m} /<30 \cdot 60 \mathrm{pF} \end{gathered}$	4038	211
VACUUM-TUBE VOLTMETER, also usefu! as ac amplifier	$\begin{aligned} & 1 \mathrm{mV} \cdot 300 \mathrm{~V} \\ & \text { (12 Ianges) } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~Hz} \cdot 4 \mathrm{MHz} \\ & =2 \% \cdot 5 \% \end{aligned}$	$\begin{gathered} \text { Average } \\ 10 \mathrm{~m} \Omega / 15 \cdot 25 \mathrm{pF} \end{gathered}$	4000	210
Similar to 4000 except has 1% accuracy		$\pm 1 \%-=5 \%$		400 H	210
Similar to 400H except has linear 12 dB log scale	$\begin{gathered} -70 \mathrm{~dB} \cdot+52 \mathrm{~dB} \\ (12 \text { (anges) } \\ \hline \end{gathered}$	$\pm 2 \%- \pm 5 \%$		400L	210
FAST-RESPONSE AC VOLTMETER 100 kHz low-pass filter ac amplifier	$\begin{gathered} 100 \mu \mathrm{~V}-300 \mathrm{~V} \\ (14 \text { ranges) } \end{gathered}$	$\begin{aligned} & 20 \mathrm{~Hz}-4 \mathrm{NHz} \\ & =1 \%- \pm 4 \% \end{aligned}$	$\begin{gathered} \text { Average } \\ 10 \mathrm{M} \Omega / 10 \cdot 25 \mathrm{p} \% \end{gathered}$	400F	207
Similar to 400F except has linear 12 dB log scale	$-90 \mathrm{~dB} \cdot+52 \mathrm{~dB}$	$\pm 1 \% \cdot \pm 1 \%$		400FL	207
HIGH ACCURACY dB VOLTMETER $20 \mathrm{~dB} \log$ scale $(0 \mathrm{~dB}=1 \mathrm{~V})$	$\begin{gathered} -100 \mathrm{~dB} \cdot+60 \mathrm{~dB} \\ (8 \text { ranges }) \end{gathered}$	$\begin{aligned} & 20 \mathrm{~Hz} \cdot 4 \mathrm{MHz} \\ = & 0.2 \mathrm{~dB} \cdot 0.4 \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { Average } \\ 10 \mathrm{~m} \Omega / 10 \cdot 25 \mathrm{pF} \end{gathered}$	400GL	208
HIGH ACCURACY AC VOLTMETER has dc oulput ($=0.5 \%$) for driving recorder	$\begin{gathered} 1 \mathrm{mv} \cdot 300 \mathrm{~V} \\ \text { (12 ranges) } \end{gathered}$	$\begin{aligned} & 10 \mathrm{~Hz} \cdot 10 \mathrm{MHz} \\ & =1 \% \cdot=5 \% \end{aligned}$	$\begin{gathered} \text { Average } \\ 10 \mathrm{M} \Omega / 8 \cdot 21 \mathrm{pF} \end{gathered}$	400E	209
Similar to 400E except has linear 12 dB log scale uppermost	$\begin{gathered} -70 \mathrm{~dB}+52 \mathrm{~dB} \\ (12 \text { ranges) } \end{gathered}$	$\pm 1 \% \cdot \pm 5 \%$		400EL	209
AC MICROVOLTMETER: measures signals obscured by noise	$\begin{aligned} & 3 \mu V \cdot 3 V(13 \text { ranges }) \\ & -110 d 8 \mathrm{~m} \text { to }+10 \mathrm{dBm} \end{aligned}$	$\begin{array}{r} 5 \mathrm{~Hz} \cdot 600 \mathrm{kHz} \\ \pm 3 \% 10=10 \% \end{array}$	$\begin{gathered} \text { Average } \\ 10 \mathrm{M} \Omega /<10^{\circ} \cdot 20 \mathrm{pF} \end{gathered}$	3410A	206
RMS VOLTMETER provides rms readings of complex signals. Has de output for driving DVM's or recorders	$\begin{gathered} 1 \mathrm{mV}-300 \mathrm{~V} \\ (12 \text { ranges) } \end{gathered}$	$\begin{gathered} 10 \mathrm{~Hz}-10 \mathrm{MHz} \\ \pm 1 \%=5 \% \end{gathered}$	$10 \mathrm{MS} 2 / 15$ - 40 pF	3400A	212
SAMPLING RF VOLTMETER provides true rms measurements when used with 3500A. Many accessories	$\begin{aligned} & 1 \mathrm{mV}-3 \mathrm{~V} \\ & \text { (8 ranges) } \end{aligned}$	$\begin{gathered} 10 \mathrm{kHz} \cdot>1.2 \mathrm{GHz} \\ =3 \%= \pm 13 \% \end{gathered}$	Statíslical Average: Inpul Z depends on probe tip used	3406A	216
RF MILLIVOLTMETER	$10 \mathrm{mv} \cdot 10 \mathrm{~V}$ (7 ranges)	$\begin{gathered} 500 \mathrm{kHz} \cdot 1 \mathrm{GHz} \\ =3 \% \cdot 1 \mathrm{~dB} \end{gathered}$	Average Input Z depends on probe tip used	411A	217
VECTOR VOLTMETER phase and amplitude measurements	$\begin{gathered} 100 \mu \mathrm{~V}-10 \mathrm{~V} \\ (9 \mathrm{ranges}) \end{gathered}$	$\begin{gathered} 1 \mathrm{MHz} \cdot 1 \mathrm{GHz} \\ \pm 0.5 \mathrm{~dB}=1 \mathrm{~dB} \end{gathered}$	$\begin{gathered} \text { Average } \\ 0.1 \mathrm{~m} \Omega / 2.5 \mathrm{pF} \end{gathered}$	8405A	467
MILLIOHMMETER; two probes used when making 4 terminal measurements	$\begin{aligned} & 0.00110100 \Omega \\ & \text { F.S. (11 ranges) } \end{aligned}$	$\begin{aligned} & \text { l kHz (fixed) } \\ & \pm 2 \% \mathrm{~F} . \mathrm{S} . \end{aligned}$	Max. outout Voltage: 20 mV	4328A	222
HIGH RESISTANCE METER and picoammeter	$0,5 \mathrm{Mn}$ to $2 \times 1016 \Omega$ F.S. 7 ranges 0.05 pA to $20 \mu \mathrm{~A}$	$\begin{aligned} & \text { Voltage: }=10 \% \\ & \text { Current: }=5 \% \end{aligned}$	Max, oulput Voltage: I XV	4329A	223
MULTIFUNCTION METERS	Voltage Range (Apoursoy)	Cureent Ranga (Accuracy)	Rasistance Range (A0perany)	Model	See Page
AUTOVOLTMETER has aulomatic ranging and polarity; input impedance 10-100 M Ω	$\begin{gathered} D C: \pm 5 \mathrm{mV}- \pm 1500 \mathrm{~V} \\ \pm(0.5 \% \text { f.s., }+0.5 \% \mathrm{rdg}) \\ 12 \text { ranges } \end{gathered}$		$\begin{gathered} 5 \Omega-1.5 \mathrm{M} \Omega \\ (=1 \% \mathrm{rdg},=0.5 \% \text { \%.s.) } \\ 12 \text { ranges } \end{gathered}$	41AA	218
BATTERY-OPERATED MULTIFUNCTION METER has $10 \mathrm{M} \Omega$ dc input impedance and $10 \mathrm{MQ} / 20 \mathrm{pF}$ ac input impedance	$\begin{gathered} \hline D C:=100 \mathrm{mV}, \pm 1000 \mathrm{~V} \\ (\pm 2 \sigma) 9 \text { range } \\ A C 10 \mathrm{mV} \text {. } 300 \mathrm{~V} \\ 10 \mathrm{~Hz} .1 \mathrm{MHz} \\ (\pm 2 \%) 10 \text { ranges } \end{gathered}$		```10\Omega.10M\Omega midscale 土 5%%; rrom.3 to 3 on the meter scale 7 ranges```	427A	213
VERSATILE VOLTMETER has $100 \mathrm{M} \Omega$ dc input impedance and $10 \mathrm{MR} / \mathrm{l} .5 \mathrm{pf}$ ac impedance	$\begin{gathered} \mathrm{DC}: \pm 15 \mathrm{mV}: \pm 1500 \mathrm{~V} \\ \mathrm{AC}: 0.5 \mathrm{VV}=300 \mathrm{~V} \\ 20 \mathrm{~Hz}->700 \cdot \mathrm{MHz} \\ (\pm 3 \% \text { at } 400 \mathrm{~Hz}) 7 \mathrm{ranges} \\ \hline \end{gathered}$	$\begin{gathered} D C: \pm 1.5 \mu A 10 \\ \pm 150 \mathrm{~mA}(\pm 3 \%) \\ 11 \text { ranges } \end{gathered}$	```10\Omega.10 M\Omega midscala; }\pm5%\mathrm{ from. 3 to 3 on the meler scale ranges```	410C	214
VACUUM-TUBE VOLTMETER häs 122 $\mathrm{M} \Omega$ de input impedance and $10 \mathrm{M} \Omega / 1.5$ pF ac impedance	$D C: \pm 1 \mathrm{~V}:=1000 \mathrm{~V}$ $(=3 \%) 7$ ranges AC:1. 300 V $20 \mathrm{~Hz} \cdot 700 \mathrm{MHz}$ $(\pm 30 \%$ at 130 Hz$) 6$ ranges		$10 \Omega-10 \mathrm{MQ}$ midscals; $\pm 5 \%$ from 3 to on meter scale (19 on XI range)	4108	215
OC VACUUM-TUBE VOLTMETER has 10 Msa to 200 MS inpul impedance	$\begin{gathered} D C: \pm 1 \mathrm{mV}-=1000 \mathrm{~V} \\ (=1 \%) 13 \text { ranges } \end{gathered}$	$\begin{aligned} & D C: \pm 1 \mu \mathrm{~A} \text { to } \\ = & \mathrm{A}(=2 \%) 13 \text { ranges } \end{aligned}$	$\begin{gathered} 1 \Omega-100 M \Omega \\ (=5 \% \text { midscale }) 9 \text { ranges } \end{gathered}$	412A	220
DC MICROVOLT•AMMETER has 1 MQ input impedance	$\begin{gathered} D C:=10 \mu V- \pm 1 V \\ (=3 \%) 11 \text { ranges } \\ \hline \end{gathered}$	$\begin{gathered} D C: \pm 10 \mathrm{pA} 10 \\ \pm 3 \mathrm{~mA}(\pm 3 \%) / 8 \text { ranges } \end{gathered}$		425A	22.
CURRENT METERS	Current Ranga	Accuracy	Frequency Range	Model	Soe Page
DC MILLIAMMETER with clip-on probe eliminates direct connection	$\begin{gathered} 1 \mathrm{~mA} \cdot \operatorname{lo} \mathrm{~A} i . \mathrm{s} . \\ (9 \text { ranges }) \end{gathered}$	-3\%	dc .400 Hz	428 B	224
AC CLIP-ON CURRENT PROBE makes measurements without breaking circuit	$1 \mathrm{~mA}-1 \mathrm{~A} \mathrm{~ms}$ (to 25 A with divider)	$\begin{aligned} & \pm 2 \% \\ & \text { to } 3 \mathrm{~dB} \end{aligned}$	$25 \mathrm{~Hz} \cdot 20 \mathrm{MHz}$	4568	225

*For exact accuracy reler to page designated.

VOLTAGE. CURRENT. RESISTANCE

AC MICROVOLTMETER
 Measure signals obscured by noise Model 3410A

Uses:
Measure amplitude of signal buried in noise
Measure amplirude of ripple frequency
Measure amplitude of superimposed frequency
Use as a Preamp/Noise Discriminator for frequency measurements

The HP Model 3410A AC Microxoltmeter is a tuneable. phase lock voltmeter designed to measure low level repetitive signals obscured by noise or in the presence of other non-harmonically related signals. Its sensitivity is $3 \mu \mathrm{~V}$ to 3 V full scale in 13 ranges over a frequency range of 5 Hz to 600 kHz . Signals obscured by noise 20 dB above full scale can be detected and measured with no degradation in accuracy.

Frequency of low level and noise repetitive signals can be accurately measured using a frequency counter connected to the local oscillator output on the rear panel of the 3410A. This signal is a 4 V square wave, phase locked to the tuned input signal. Counter sensitivity can be increased to better than 300 nanovolts (the point at which phase lock is lost on the 3 microvolt range) with excellent noise discrimination.

A de recorder output enhances the usefulness of the 3410A as a sensitive detector for graphic recording.

Specifications

Voltage range: $3 \mu \mathrm{~V}$ full scale to 3 V full scale in 13 ranges. Voltage accuracy; (\% of full scale).

*at lower frequencies and microvolt slgnal levels, meter fluctuations in the REAO MODE may give the imgression of en unstable lock condition. Howover. the 3410 A wlll lock and track at these lower frequencles and provlde a stable voltage indication.

Frequency range: 5 Hz to 600 kHz in $;$ decade ranges.
Frequency dial accuracy: $\pm 10 \%$ full scale (unlocked).
Phase lock range: pull in $\pm 1 \%$ of fuil scale frequency. Track $\pm 5 \%$ of full scale frequency. Tracking speed 0.5% of full scale frequency/second.
Maximum noise rejection: 20 dB cms above full scale on all ranges for rated accuracy.
Input impedance: 10 mV to 3 V range, $10 \mathrm{M} \Omega$ shunted by $<10 \mathrm{pF} .3 \mu \mathrm{~V}$ to 3 mV range, $10 \mathrm{M} \Omega$ shunted by $<20 \mathrm{pF}$.
Mater indication: responds to average value of input waveform; calibrated in rms salue of sine wave. Linear voltage scales 0 to 1 and 0 to $3 ; \mathrm{dB}$ scale -12 to +2 dB $(0 \mathrm{~dB}=1 \mathrm{~mW}$ into $600 \Omega)$.
Local oscillator output: $>4 \mathrm{~V}$ square wave into open circuit at the same frequency as the phase locked input signal.
DC output: 1 V into 1000 n for full scale, proportional to meter defection; $\pm 0.5 \mathrm{~V}$ adjustable offset level.
AC power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 22 \mathrm{~W}$.
Weight: net $10 \mathrm{lbs}(4,5 \mathrm{~kg})$; shipping $12.5 \mathrm{lbs}(5,6 \mathrm{~kg})$.
Dimensions: $73 / 4^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (without removable feet), $11^{\prime \prime}$ deep ($197 \times 159 \times 279 \mathrm{~mm}$).
Accessories available: HP 11074A Voltage Divider Probe. Provides $10: 1$ division ratio to extend 3410 A input to 30 V rms full scale, $\$ 50$.
Price: HP 3410A, s875. HP 3410A Option 01, dB scale uppermost, add $\$ 10$.

AC VOLTMETERS Measure 20 Hz to $4 \mathrm{MHz}, 100 \mu \mathrm{~V}$ to 300 V Models 400F, 400FL

VOLTAGE, CURRENT. RESISTANCE

Description

The HP 400F/FL Solid-State AC Voltmeters are ruggedly built precision instruments for measuring ac voltages from 100 microvoles to 300 V rms full scale. They cover a frequency range from 20 Hz to 4 MHz and have constant 10 megohm input resistance on all ranges. Input capacity is 25 pF on the $100 \mu \mathrm{~V}$ to 300 mV range and 10 pF on the 1 volt to 300 volt range. The instruments are simple to operate and give direct voltage and dBm readings. The $400 \mathrm{~F} / \mathrm{FL}$ may also be used as stable, high.gain ac amplifers with up to 80 dB amplification.

100 kHz low pass filter

In order to reduce the effect of unoranted bigh frequencies (noise, erc.) on the accuracy of measuring lower frequency signals, a 100 kHz low-pass filter is provided. It may be acti. vated by a front-panel switch. The filter is effective on all ranges but will be of greater use on more sensitive ranges. It has 3 dB of attenuation at $100 \mathrm{kHz} \pm 5 \mathrm{kHz}$.

Battery operation

The Models $400 \mathrm{~F} / \mathrm{FL}$ can be operated from tro $35 \cdot \mathrm{to}-95$-vole batteries connected to the rear-panel battery terminals. This feature is ideal for communications usage or when ground loops cause trouble.

Model 400F

The 400 F has all the characteristics mentioned in the general description with $1 / 2 \%$ of reading plus $1 / 2 \%$ of full scale accuracy on a $41 / 2^{\prime \prime}$ mirror-backed taut-band metcr. The meter is individually calibrated with 100 divisions to provide greater resolution. The Model 400 F Oprion 01 with dB scale uppermost is recommended for greater resolution in dB measurements.

Model 400FL

The 400 FL has all the characteristics mentioned in the general description with 1% of reading accuracy on a linear 12 dB logarithmic scale. This meter is also individually calibrated with 120 divisions and is ideal for dB measurements. It in-
corporates a Hewletr-Packard taut-band, mirror-backed, logacithmic meter. A range switch changes sensitivity in 10 dB steps which, combined with the 12 dB scale, provides the overlap desirable in decibel.leve! neeasurements.

Specifications

Frequency range: 20 Hz to 4 MHz .
Voltage range: $100 \mu \mathrm{~V}$ to 300 V full scale, 14 ranges.

Valtage Ranges	Filter In	Fllter Out
$300 \mu \mathrm{~V}$ to 300 V	$<5 \mu \mathrm{~V}$	$<30 \mu \mathrm{~V}$
$100 \mu \mathrm{~V}$	$<5 \mu \mathrm{~V}$	$<15 \mu \mathrm{~V}$

VOLTAGE, CURRENT, RESISTANCE

Description

The HP Model 400GL features 20 dB dynamic range on a large $41 / 2$ inch linear scale-permitting measurements of voitages of widely different levels with a minimum of range switch. ing. This is especially beneficial when measuring input and outpur levels of devices such as amplifiers and attenuators, since it saves times and reduces errors. The 400GL has only one voltage scale; reading time is faster and the possibility of reading errors is further minimized. Furthermore, accuracy and resolution is uniform over the entire scale, making each range completely usable.

In order to reduce the effect of unwanted high frequencies (noise, etc.) on the accuracy of measuring small low frequency signals, a switchable low pass filter is provided. When activared, the filter attenuates frequencies above 100 kHz .

For field applications and for ground loop isolation, the 400 GL can be battery operated by connecting two $35-50$ volt batteries to the rear panel terminals.

The 400 GL can also be used as a stable, high gain 4 MHz amplifier, with up to 80 dB gain on the lower ranges. 'Output is proportional to the voltage indicated on the meter.

Specifications

Voltage ranga: $100 \mu \mathrm{~V}$ to 1000 V full scale, 8 ranges.
Frequency range: 20 Hz to 4 MHz .
Calibration: responds to average value of input waveform: calibrated in rms value of a sine wave. Linear dB scale, 100 divisions from -20 to 0 dB . Logarithmic voltage scale $0 \mathrm{~dB}=\mathrm{l} \mathrm{V}$.

Noise referred to linput (1000 ohm termination):

	Filtor in	Fliter out
$1 \mathrm{mV}-1000 \mathrm{~V}$	$<5 \mu \mathrm{~V}$	$<30 \mu \mathrm{~V}$
$100 \mu \mathrm{~V}$ Range	$<5 \mu \mathrm{~V}$	$<15 \mu \mathrm{~V}$

Note: Nolse adds to the gignal appirximately by the relation;

$$
\text { Reading }=V(\text { signal })^{2}+(\text { Noise })^{2}
$$

Temperature ranga: 0 to $+35^{\circ} \mathrm{C}$.
Recovery from overload: <2 seconds for 80 dB overload (1200 V max. input).
Inpuk impodance: resistance: 10 M n all ranges.
capacitance: $<30 \mathrm{pF}$ for $100 \mu \mathrm{~V} \cdot 100 \mathrm{mV}$ ranges. <1s pF for $1 \mathrm{~V} \cdot 1000 \mathrm{~V}$ ranges.
Amplitlar ac output: 1 V rms open circuit (full scale) and is proportional to meter indication on the voltage scale; output impedance 600 ohms. Frequency response 20 Hz to 4 MHz .
AC power: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ to $400 \mathrm{~Hz}, 5 \mathrm{~W}$.
Extarnal battery aperation: terminals are provided on rear panel; positive and negative voltages between 35 V and 35 V are required; curcent drain from each battery is approximately 45 mA . (External switching and on/off monitoring should be used for battery operation.)
Dlmenslong: $51 / s^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (without removable feet), $11^{\prime \prime}$ deep ($130 \times 199 \times 279 \mathrm{~mm}$).
Weight: net $6 \mathrm{lbs}(2,7 \mathrm{~kg})$; shipping $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Accessorias available: HP 11074A, 10:1 Voltage Divider Probe.
Price: HP $400 \mathrm{GL}, \$ 325$.

Voltage divider probe

The Voltage Divider Probe (HP 11074A) with a banana post to BNC adapter (HP 10111A) provides iow input capacitance as the point of measurement when using the 400 series volt. meters.

Speciffcations

Input impedanca: 10 megohms shunted by 10 pF .
Dlvislon ratio: 10:1.
Divislon ratio accuracy; $\pm 2 \%$.
Bandwldth: de to 10 MHz .
Maximum Input voltage: 1000 V rms.
Terminals: alligator clip contactor with BNC output connector.
Length and weight: 5 feet, approximately $40 z$.
Price: HP 11074A Voitage Divider Probe, $\$ 50$. HP 10111A Adapter, $\$ 7$.
HP 11076A Instrument Case (refer to page 227). Price, $\$ 45$.

Description

The HP 400E/EL Solid-State AC Voltmeters are ruggedly buitt precision instruments for measuring ac voltages from 1 mV to 300 V rms full scale. They cover a frequency range from 10 Hz to 10 MHz and have constant $10 \mathrm{M} \Omega$ input resistance on all ranges. Input capacity is $<25 \mathrm{pF}$ on the 1 mV to 1 volt range and $<12 \mathrm{pF}$ on the 3 volt to 300 volt range. The instruments are simple to operate and give direct voltage and dBm readings.

Specifications, 400E, 400EL

Voltage range: 1 mV to 300 V full scale, 12 ranges.
Frequency range: 10 Hz to 10 MHz .

Model 400E

Calibration: reads ims value of sine wave; voltage indication proportional to absolute average value of applied wave; $d B$ scale -10 to $+2 \mathrm{~dB}, 10 \mathrm{~dB}$ between ranges; 100 divisions on 0 to 1 scale.

Model 400EL

Calibration: reads mms value of sine wave; voltage indication proportional to absolute average value of applied wave; linear dB scale -10 dB to $+2 \mathrm{~dB}, 10 \mathrm{~dB}$ between ranges: logarithmic voltage scales 0.3 to 1 and 0.8 to 3; 120 divisions from -10 to +2 dB .

Model 400/EL

[^13]

Input Impedance: $10 \mathrm{M} \Omega$ shunted by $<25 \mathrm{pF}$ on the ImV to 1 V ranges, and $10 \mathrm{M} \Omega$ shunted by $<12 \mathrm{pF}$ on the 3 V to 300 V ranges.
Amplifier ac output: 150 mV rms $\pm 10 \%$ for full scale meter indication; output impedance $50 \Omega, 10 \mathrm{~Hz}$ to 10 MHz (105 mV on the 1 mV range); accuracy $\pm 10 \%, 10 \mathrm{~Hz}$ to 4 MHz .
AC-DC converter output: 1 V de output for full scale meter deflection (linear output).
Output resistance: $1000 \Omega \pm 5 \%$.
Response time: 2 s to within 1% of final value for a step change.
Mater respanse time: $1<\mathrm{s}, 0$ to full scale.
Tomperature range: 0 to $+55^{\circ} \mathrm{C}$ (except where nored on ac. curacy charts).
AC power: I1s or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz , $s W$.
External battery operation: terminals are provided on rear panel; positive and negative voltages between 35 V and 95 V are required; current drain from each voltage is 54 mA (external switching and on/off monitoring should be used (or battery operation).
Dlmensions: standard $1 / 3$ module $51 / 8^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (with. out removable feet), $11^{\prime \prime}$ deep ($130 \times 165 \times 279 \mathrm{~mm}$).
Weight: net $6 \mathrm{lbs}(2,7 \mathrm{~kg})$; shipping $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Accessories avallable: 11076A Instrument Case (refer to page 227, $\$ 45$. 11074, $10: 1$ voltage divider probe, $\$ 50$.
Price: HP 400E, $\$ 325$, HP 400EL, $\$ 335$.
Option 01 (400E only): reads directly in volts and dB with dB scale uppermost, add $\$ 10$.
H05-400E/EL: constant input capacity available on special order, price on request (optimum performance for 11074A Voltage Divider Probe).

VOLTAGE, CURRENT. RESISTANCE

VACUUM TUBE VOLTMETERS
 Quality linear and log voltmeters

Models $400 \mathrm{D}, 400 \mathrm{H}, 400 \mathrm{~L}$

4000

400 H

400L

Description

Model 4000 is essentially a low-priced precision voltmeter offering wide voltage range, 2% accuracy and the broad frequency coverage 10 Hz to 4 MHz .

Model 400 H is an adaptation of Model 400 D but offering individual meter-face calibration and 1% accuracy on an extra latge ${ }^{\prime \prime}$ mirror-scale meter.

Model 400L, a logarithmic version of Model 400D, has an
accuracy of $\pm 2 \%$ of reading or $\pm 1 \%$ of full scale, whichever is more accurate. The 5" meter is mirror-backed.

Special de-measuring options

As normally supplied, Models 400 D and 400 H read direct in volts and dB , with the voltage scale uppermost. For greater resolution in dB measuring, these instruments are available as Models 400D Option 01, and 400 H Option ol ($\$ 25$ extea) with the dB meter scale uppermost.

Specifications

	400D, DR	400H, HR	400LLLR
Voltage range:	1.0 mV to 300 V full scale, 12 ranges	1.0 Mv 10300 V full scale, 12 ranges	$-70 \mathrm{~d} 8 \mathrm{to}+52 \mathrm{~dB}$ in 12 tanges 1.0 mV to 300 V full scale, 12 ranges
Frequency range:		10 Hz to 4 MHz	
Accuracy:	$10 \mathrm{~Hz} 1020 \mathrm{~Hz}:=5 \% \%$ f.s. 20 Hz to $1 \mathrm{MHz}:=2 \%$ f.s. 1 MHz to $2 \mathrm{MHz}: \pm 3 \% \mathrm{f} . \mathrm{s}$. 2 MHz to $4 \mathrm{MHz}: \pm 10 \% \mathrm{~s}$.	10 Hz 1020 Hz : $\pm 5 \%$ f.s. $20 \mathrm{~Hz} 1050 \mathrm{Mz}: \pm 2 \%$ i. 5. $50 \mathrm{~Hz} 10500 \mathrm{kHz}=1 \% \mathrm{i} . \mathrm{s}$. $5004 \mathrm{~Hz} 101 \mathrm{MHz}:=2 \% \mathrm{f} . \mathrm{s}$. 1 MHz to $2 \mathrm{MHz}=3 \%$ i.s. 2 MHz to $4 \mathrm{MHz}:=10 \% \mathrm{f} . \mathrm{s}$.	10 Hz to $20 \mathrm{~Hz}:=5 \%$ of rdg. $20 \mathrm{~Hz} 1050 \mathrm{~Hz}:=3 \%$ of dg . or $=2 \%$ of f.s. \dagger 50 Hz to $500 \mathrm{kHz}:=2 \%$ of rdg. of $\pm 1 \%$ of i.s. \dagger 500 kHz to $1 \mathrm{MHz}:=3 \%$ of rdg. or $\pm 2 \%$ of i.s. \dagger 1 MHz to 2 MHz : . 4% of rdg. or $\pm 3 \%$ of f.s. \dagger $2 \mathrm{MHz} 104 \mathrm{MHz}:=10 \%$ of rdg.
Calibration:	reads rms value of sine wave; voltage indication proportional to average value of applied wave; linear voltage scale 0 to 3 and 0 to $1 ; \mathrm{dB}$ scale $-12 \mathrm{to}+2 \mathrm{~dB}(0 \mathrm{~dB}=1 \mathrm{~mW}$ in 600 ohms$) ; 10 \mathrm{~dB}$ interval between ranges		reads rms value of sine wave; logarithmic voltage scale 0.3 to 1 and 0.8 to 3 ; linear dB scale, -10 dB to +2 dB (based on $0 \mathrm{~dB}=1 \mathrm{~mW}$ in 600 ohms); 10 dB intervals between ranges
Input impedance:	10 megohms shunted by $<20 \mathrm{pF}$ on ranges 110300 V < $<35 \mathrm{pF}$ on ranges 0.001 to 0.3 V		
Amplifier:	output 0.15 V max.; internal impedance 50 ohms; max. gain 150 on 0.001 range		
Power:	115 or (230 volts must be specified) $\pm 10 \%$, 50 to $400 \mathrm{~Hz} ; 80$ wats (100 watts for $400 \mathrm{H}, \mathrm{L}$)		
Oimensions:	cabinet mount: $71 / 2^{\prime \prime}$ wide, $111 / 2^{\prime \prime} \mathrm{h}$)gh. $12^{\prime \prime}$ degp ($191 \times 292 \times 305 \mathrm{~mm}$) rack mount: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $10 \% / \mathrm{s}^{\prime \prime}$ deep behind panel ($483 \times 389 \times 276 \mathrm{~mm}$)		
Weight:	net 18 los ($8,1 \mathrm{~kg}$), shipping $19 \mathrm{lbs}(8,6 \mathrm{~kg})$ (cabinet mount); net $21 \mathrm{lbs}(9,45 \mathrm{~kg})$, shipping 31 lbs (14 kg) (rack mounl)		
Price:	$\begin{aligned} & \text { HP 400D, } \$ 275^{*} \\ & \text { HP 400DR, } \$ 280^{* *} \end{aligned}$	$\begin{aligned} & \text { HP 400H, } \$ 375 * \\ & H P 400 H R, \$ 380^{* *} \end{aligned}$	

[^14]
AC VOLTMETERS Solid－state，battery－operated，portable Model 403A，B

VOLTAGE，CURRENT． RESISTANCE

Description

Models 403A and 403B ac volmeters are versatile，gen－ eral－purpose instruments for laboratory and production work and are ideal for use in the field，since they are solid state， battery－operated and portable．

Both measure from 100 microvolts to 300 volts，the 403 A covering 1 Hz to 1 MHz and the 403 B covering 5 Hz to 2 MHz ．Both operate from internal batteries and，thus，may be completely isolated from the power－line and external grounds，permitting accurate measurements at power－line frequency and its harmonics without concern for beat effects． Isolation from external ground also permits use where ground loops are troublesome．Tumover effect and waveform errors
are minimized because the meters respond to the average value of the input signal．

The 403B operates from an ac line as well as from the internal battery pack，and batteries recharge during ac op－ eration．Battery charge may be easily checked with a front－ panel switch to assure reliable measurements．Normally， about 15 hours of ac operation recharges the batteries；but an internal adjustment is provided which nearly doubles the charging rate．You can use the Model 403B while its batteries charge．A sturdy taut－band meter eliminates fric－ tion and provides greater precision and repeatability．

For improved resolution in dB measurements，the 403 B Option 01 is available．This version spreads out the $d B$ scale by making it the top scale of the meter．

Specifications

HP Model	403A	403B	403B 〈Optlon 01．）
Range 0.001 to 300 V rms full scale， 12 ranges，in a $1,3,10$ sequence．			

Accuracy	within $\pm 3 \%$ of Tull scale， 5 Hz to 500 kHz ； within $=5 \%$ of full scale， 1 10 5 Hz and 500 kHz 10.1 MHz	within $\pm 2 \%$ of full scale from 10 Hz to 1 MHz ；within $=5 \%$ of full scale irom 5 to 10 Hz and $102 \mathrm{MHz}_{\text {，excepl }} \pm 10 \% 1$ to 2 MHz on the 300 V range $\left(0\right.$ to $50^{\circ} \mathrm{C}$ ）＂	within $\pm 0.2 \mathrm{~dB}$ of full scale from 10 Hz to I MHz ；within $\pm 0.4 \mathrm{~dB}$ of full scale from 5 to 10 Hz and 1 to 2 MHz ，except $\pm 0.8 \mathrm{~dB}$ I to 2 MHz on the 300 V range（ 0 to $50^{\circ} \mathrm{C}$ ）${ }^{-}$
Input impedance	2 megohms shunted by $<60 \mathrm{\rho F}, 0.001$ to 0.1 V ranges： $2 \mathrm{M} \Omega$ shunled by $<25 \mathrm{of}$ on 0.3 to 300 volt ranges	2 megohms；shunted by $<60 \mathrm{pF} ; 0.001$ to 0.03 V ranges；$<30 \mathrm{pf}, 0.1$ 10 300 V ranges	same as 403B
Maximum input	600 V peak， 0.3 V and higher ranges； 25 V rms on 0.1 V and lower ranges（tused）．	600 V peak， $0,310300 \mathrm{~V}$ range； 25 V ms ， 60 V peak， 0.001 to 0.1 V ranges（lused）．	same as 4038
Power	5 slandard radio－type mercury cells．battery life approx． 400 hours	4 rechargeable batteries． 40 hours＇opera－ tion per recharge，up 10500 recharging cycles；self－contained recharging circuit functions during operation from ac line	same as 4038
Dimensions	$81 / 2^{"}$ wide， $51 / 2^{\prime \prime}$ high， $61 / \mathrm{e}^{"} \operatorname{deep}(210 \times 140 \times$ 162 mm ）	$51 / 3^{\sim}$ wide， $61 / 4^{" ~ h i g h ~(w i t h o u t ~ r e m o v a b l e ~}$ feel）， $8^{\prime \prime}$ deep（ $130 \times 159 \times 203 \mathrm{~mm}$ ）	same as 403日
Weight	net 43／4 lbs（2，1 kg）；shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$	net $61 / 2 \mathrm{lbs}(2,9 \mathrm{~kg}$ ；shipping $8 \mathrm{lbs}(3,6 \mathrm{~kg})$	same as 403日
Frice	\＄320	\＄340	\＄365

VOLTAGE, CURRENT, RESISTANCE

RMS VOLTMETER
Specified ac to dc converter Model 3400A

The Hewlett-Packard Model 3400 A is a true root-mean. square (mms) voltmeter, providing a meter indication proportional to the dc heating power of the input waveform. In addition to irs meter indication, the Model 3400A provides a dc output proportional to meter deflection making it a useful true ms detector for graphic recording and digitizing with a de digital voltmeter, such as the HP Model 3440A.

Versatility

Versatility of the Model 3400 A is enhanced by its wide $10-\mathrm{Hz}$ to $10 . \mathrm{MHz}$ frequency response, high crest factor, $1-\mathrm{mV}$ to 300 -Volt full-scale sensitivity and $10-\mathrm{M} \Omega$ input impedance. Six-decade frequency coverage makes the 3400 A extremely flexible for all of your audio and most of measure. ments and permits the measurement of broadband noise and fast-rise pulse. A wide range of sensitivity (12 ranges) allows you to measure anything from "down in the grass" signal and noise, to transmitter and amplifier outputs (with 30 -dB overload protection). Pulses or other non-sinusoids with crest factors (ratio of peak to rms) up to $10: 1$ can be measured full scale. Crest factor is inversely proportional to meter deflection, permitting up to $100: 1$ crest factor at 10% of full scale. The ability of the 3400 A to accept wave. forms with such large crest factors insures accurate noise and pulse measurements, without the need for correction factors. Permanent plots of measured data and higher resolution measurements can be obtained by connecting an X-Y plotter, strip chart recorder or digital voltmeter to the convenient rear-panel dc output. The dc output provides a linear 0 to 1 -volt drive, proportional to meter deflection.

True-rms current measurements can be made conveniently by using the HP Model 456A Current Probe with the Model 3400 A. See page 225.

Specifications

Voltage range: 1 mV to $300 \mathrm{~V}, 12$ ranges,

DE range: -72 to $+52 \mathrm{dBm}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $600 \Omega)$.
Frequency range: 10 Hz to 10 MHz .
Response: responds to rms value (heating value) of the input signal for all waveforms.
Meter accuracy: \% of full scale ($20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$)*

Ac.fo-dc converter accuracy: \% of full scale $\left(20^{\circ} \mathrm{C}\right.$ to $30^{\circ} \mathrm{C}$)

Crest factor: (ratio of peak amplitude to rms amplitude): 10 to 1 at full scale (except where limited by maximum input) inversely proportional to pointer deflection, (e.g. 20 to 1 at half-scale, 100 to 1 at tenth scale).

Maximum dc input: 600 V on any range.
Input Impedance: from 0.001 V to 0.3 V range: $10 \mathrm{M} \Omega$ shunted by $<50 \mathrm{pF}$. From 1.0 V to 300 V range: $10 \mathrm{M} \Omega$ shunted by $<20 \mathrm{PF}$.
Respanse tlme: for a step function, <5 seconds to respond to final value.

Ac overload: 30 dB above full scale or 800 V peak, whichever is less, on each range.

Output: negative l V dc into open circuit at full-scale deflection, proportional to pointer defection. (From 10. 100% of full scale.) 1 mA maximum; nominal source impedance is 1000 . Output noise $<1 \mathrm{mV} \mathrm{P} \cdot \mathrm{P}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 7 \mathrm{~W}$.
Dimenslons: $51 / 8^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (without removable feet), $11^{\prime \prime}$ deep ($1 / 3$ module). ($130 \times 159 \times 279 \mathrm{~mm}$).
Weight: net: $71 / 4 \mathrm{lbs}(3,3 \mathrm{~kg})$; shipping: $10 \mathrm{lbs}(4,5 \mathrm{~kg})$.
Accessorles furnished: 10110A Adapter, BNC to dual banana jack.
Accessories avallable: 11001 A Cable, 45 in. long, male BNC to dual banana plug, $\$ 6.00 .10503 \mathrm{~A}$ Cable, 4 ft . Jong, male BNC connectors, $\$ 7.00$. 11002A Tesc Lead, dual banana plug to alligator clips, $\$ 8.00$. 11003 A Test Leads, dual banana plug to probe and alligator clip, \$10. 11076 A Carrying Case (refer to page 228), 545.00 . HP Model 456A AC Current Probe, $1 \mathrm{mV} / 1 \mathrm{~mA}, \$ 225$.
Price: HP 3400A, \$525.
HP Model 3400A (Option 01) spreads out the dB scale by making it the top scale of the meter, add $\$ 25$.
Rear terminals in parallel with front panel terminals and linear log scale uppermost on the meter face are available on special order.

[^15]

Description

The Hewlett-Packard Model 427A is a portable, versatilc, low cost multi-function meter which is valuable in any labora. tory, producrion line, service department. or in the ficld. It is capable of measuring dc volcages from 100 mV to 1 kV full scale; ac voltage from 10 mV to 300 V full scale at frequencies up to 1 MHz ($>500 \mathrm{MHz}$ with the 11096 A High Frequency Probe) ; and resistance from 10Ω to $10 \mathrm{M} \Omega$ center scale.

The 427A will operate continuously for more than 300 hours on its internal 22.5 V dry cell battecy. AC line and battery operation is available as an option.

Specifications

DC voitmeter

Ranges: $\pm 100 \mathrm{mV}$ to $\pm 1000 \mathrm{~V}$ in 9 ranges in 10 dB steps.
Accuracy: $\pm 2 \%$ of range.
Input resistance: 10 Mn .
AC normal-mode relection (ACNMR): ACNMR is the ratio of the normal-mode signal to the resultant error in readout. 50 Hz and above: $>80 \mathrm{~dB}$.
Overload protection: $1200 \mathrm{~V} d c$.

AC voltmeter

Ranges: 10 mV to 300 V in 10 ranges in 10 dB steps
Frequency range: 10 Hz to $: \mathrm{MHz}$.
Response: responds to average value, calibrated in rms.
Accuracy:

Frequency	Aange	
10 Hz 10100 kHz	.01 V to 30 V	100 V to 300 V
	2% of range	2% of range

Input impedance: 10 mV to 1 V range, 10 M n shunted by $<40 \mathrm{pF}$; 3 V to 300 V range, 10 Mn shunted by $<20 \mathrm{pF}$. Overload protection: 10 mV to 1 V range, $100 \mathrm{~V} ; 3 \mathrm{~V}$ to 300 V range, 450 V.
Ohmmeter
Ranges: 10Ω to $10 \mathrm{M} \Omega$ center scale in 7 decade ranges.
Accuracy (from . 3 to 3 on scale): $\pm 5 \%$ of reading.
Source current (ohms terminal positive). Shart circuit current: from 10 mA on the X 10 range to $0.1 \mu \mathrm{~A}$ on the X 10 M range.
Open clrcuit voltage: from 0.1 V on the X 10 range to 1 V on the X 10 M range.
Input: may be floated up to $\pm 500 \mathrm{~V}$ dc above chassis ground. Ohms input open in any function except ohms. Volts input open when instrument is off.
Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power: >300 hr operation per batcery. HP 427A: 22.5 V dry cell battery, Eveready No. 763 or RCA VS102. HP 427A Option 01: battery operation or ac line operation, selectable on rear panel. LIS V or $230 \mathrm{~V} \pm 20 \% 50 \mathrm{~Hz}$ to $400 \mathrm{~Hz},<0.5 \mathrm{~W}$.
Dimenslons (standard 1/3 module): $51 / 8{ }^{\prime \prime}$ wide, $61 / 41$ high (without removable feet), $8^{\prime \prime}$ deep ($130 \times 159 \times 203 \mathrm{~mm}$).
Weight: ner $5.3 \mathrm{lb}(2,4 \mathrm{~kg})$; shipping $7 \mathrm{lb}(3,2 \mathrm{~kg})$.
Price (includes battery): HP 427A, $\$ 225$. HP 427A Option 01, add $\$ 25$.

Accessories avallable:

HP 11096A High Frequency AC Probe excends range to $>500 \mathrm{MHz}$. With the 11096 A you can measure 0.25 to 30 V rms signals out to 500 MHz with better than ± 1 dB accuracy. Usable relative measurements can be made up to $1 \mathrm{GHz}(3 \mathrm{~dB}$ point at 700 MHz). The 11096 A is 3 peak-responding detector calibrated to produce a de output proportional to the rms value of a sine wave input. Input impedance is 4 Mn shunted by 2 pF .
Price: HP 11096A, 845.
HP lio7s A High Impact Case. A rugged case for carrying, storing and operating the 427A. \$15.
HP 11001 A 45 " rest lead, dual banana plug to male BNC, $s 6$.
HP $11002 \mathrm{~A} 60^{\prime \prime}$ test lead, dual banana plug to a liligator clips, $\$ 8$.
HP 11003 A $60^{\prime \prime}$ test lead, dual banana plug to pencil probe and alligator clip, $\$ 10$.
HP 11039A 1000: 1 capacitive voltage divider, 25 kV max, $\$ 185$.
HP 10IIIA BNC female to dual banana adapter. \$7.

Description

The HP Model 410 C is a versatile general-purpose instrument for use anywhere electrical measurements are made. This one instrument measures dc voltages from 15 mV to 1500 V , direct current from $1.5 \mu \mathrm{~A}$ to 150 mA , and resistance from 0.2Ω to $500 \mathrm{M} \Omega$. With a standard pluga in probe, ac voltages at 20 Hz to 700 MHz from 50 mV to 300 V and comparative indications to 3 GHz are attainable.

410C Specifications

DC voltmeter
Voltage ranges: $\pm 15 \mathrm{mV}$ to $\pm 1500 \mathrm{~V}$ full scale in 15 , 50 sequence (11 ranges).
Accuracy: $\pm 2 \%$ of full scale on any range.
Input resistance: $100 \mathrm{M} \Omega \pm 1 \%$ on 500 mV range and above, $10 \mathrm{M} \Omega \pm 3 \%$ on 150 mV range and belon.
AC voltmeter
Voltage ranges: 0.5 V to 300 V full scale in $0.5,1.5,5$ sequence (7 tanges).
Frequency range: 20 Hz to 700 MHz .
Accuracy: $\pm 3 \%$ of full scale at 400 Hz for sinusoidal voltages from 0.5 V to 300 V ms . The ac probe responds to the positive peak-above-average value of the applied signal. The meter is calibrated in rms.
Frequency response: $\pm 2 \%$ from 100 Hz to 100 MHz (400 Hz ref.), $\pm 10 \%$ (rom 20 Hz to 100 Hz and from 100 MHz to 700 MHz .
Input impedance: inpur capacitance 1.5 pF , inpur resistance $>10 \mathrm{M} \Omega$ ar low frequencies. At high frequencies impedance drops off due to dielectric loss.
Satety: the probe body is grounded to chassis at all times for safety. All ac measurements are referenced to chassis.

DC ammeter

Current ranges: $\pm 1.5 \mu \mathrm{~A}$ to $\pm 150 \mathrm{~mA}$ full scale in $1.5,5$ sequence (11 ranges).
Accuracy: $\pm 3 \%$ of fuil scale on any range.
Input resistance: decreasing from $9 \mathrm{k} \Omega$ on $1.5 \mu \mathrm{~A}$ range to approximately 0.3Ω on the 150 mA range.

Special current ranges: $\pm 1.5, \pm 5$ and $\pm 15 \mathrm{nA}$ may be measured on the 15,50 and 150 mV ranges using the dc voltmeter probe, with $\pm 5 \%$ accuracy and $10 \mathrm{M} \Omega$ input resistance.

Ohmmeter

Resistance range: resistance from 10Ω to 10 Mr g center scale (7 ranges).
Accuracy: $\pm 5 \%$ of reading from 3 to 3 on the meter scale.

Amplifier

Voltage gain: 100 maximum.
AC rejection: 3 dB at 0.5 Hz ; approximately 66 dB at 50 Hz and higher frequencies for signals $<1600 \mathrm{~V}$ peak or 30 times full scale, whichever is smaller.
Isolation: impedance berween common and chassis is >10 $M \Omega$ in parallel with $0.1 \mu \mathrm{~F}$. Common may be floared up to 400 V dc above chassis for dc and resistance measurements.
Output: proportional to meter indication; 1.5 V de at full scale, maximum current, 1 mA .
Output impedance: $<3 \Omega$ at dc.
Noise: $<0.5 \%$ of full scale on any range ($\mathrm{p} \cdot \mathrm{p}$).
DC dritt: $<0.5 \%$ of full scale/yr at constant temperature; $<0.02 \%$ of full scale $/{ }^{\circ} \mathrm{C}$.
Overload recovery: recover from 100:1 overload in $<3 \mathrm{~s}$.

General

Maximum Input: DC ; 100 V on 15,50 and 150 mV ranges, 500 V on 0.5 to 15 V ranges, 1600 V on higher ranges. AC: 100 times full scale or 450 V peak, whichever is less.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to $400 \mathrm{~Hz}, 20 \mathrm{~W}$ maximum.
Dimenslons: $51 / \mathbf{s}^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (writhout removable feet), $11^{\prime \prime}$ deep ($130 \times 159 \times 279 \mathrm{~mm}$) behind panel.
Weight: ner $8 \mathrm{lb}(4 \mathrm{~kg})$; shipping $12 \mathrm{lb}(5,44 \mathrm{~kg})$.
Accessories furnished: detachable power cord, NEMA plug.
Accessories avallable: 11076 A carrying case (page 227). $\$ 45$.
Prica: HP 410C with HP 11036A Detachable AC Probe, $\$ 475.410 \mathrm{C}$ Oprion 02 (less ac probe), deduct $\$ 50$.

VACUUM TUBE VOLTMETER Model 410B

Because of the large number of tasks it will perform, the 4108 Vacuum Tube Voltmeter can play a uniquely valuable role in any laboratory, broadcast station or production test department. It combines in one instrument an ac voltmerer covering the frequency range from audio to radar frequencies, a dc voltmeter with $100 \mathrm{M} \Omega$ input impedance, and an ohmmeter capable of measuring resistance from 0.2Ω to 500 M ?

410B specifications

Ranges: 1 V to 300 V full scale in 6 ranges; $1,3,10,30,100$ and 300 V ac or dc , and 1000 V dc . Resistance, 0.2Ω to 500 $\mathrm{M} \Omega$ in 7 ranges. Midscale reading of $10 \Omega, 100 \Omega, 1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$. $100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$ and $10 \mathrm{M} \Omega$,
Accuracy: $\pm 3 \%$ of full scale on all ranges for sinusoidal ac voltages at 400 Hz and for dc voltages. The ac portion of the instrument is peak respondiog, calibrated io rms volts. Ohmmeter accuracy is $\pm 1 \Omega$ at midscale on Rxi range, $\pm 5 \%$ at midscale on all other ranges. (Midscale is 3 to 30 on the meter face.)
Frequency response: $\pm 1 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 700 MHz . Probe resonant frequency is abour 1250 MHz , and an indication can be obtained up to 3000 MHz .
Input impedance: input capability is 1.5 pF , input resistance is $10 \mathrm{M} \Omega$ at low frequencies. At high frequencies resistance deops off due to dielectric losses. DC input resistance is 122 $\mathrm{M} \Omega$ for all ranges.
Power: 115 V or (230 V must be specified) $\pm 10 \% .50 \mathrm{~Hz}$ to $400 \mathrm{~Hz}, 40 \mathrm{~W}$.
Dimensions: cabinet; $73 / 8^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high. $83 / 4^{\prime \prime}$ deep (187

$\times 292 \times 223 \mathrm{~mm}$). Rack; 19" wide, $6^{31} 132^{\prime \prime}$ high. $6^{\prime \prime}$ deep behind panel ($483 \times 177 \times 152 \mathrm{~mm}$).
Weight: cabinet; nel $12 \mathrm{lb}(5,4 \mathrm{~kg})$, shipping $13 \mathrm{lb}(5.9 \mathrm{~kg})$. Rack; net $12 \mathrm{lb}(5.4 \mathrm{~kg})$, shipping $19 \mathrm{lb}(8,6 \mathrm{~kg})$.
Price: HP 410B, $\$ 300$ (cabinet): HP 410BR, $\$ 320$ (rack mount).

410 series accessories

HP I1039A Capacitive Voltage Divider
Safely measures power voltages to 25 kV (see page 225). Division ratio 1000:1 price 11039A, $\$ 185$.
(Use HP 11018 A adapter to connect to 410 series Voltmeter).

11018A Adapter

Connects 410 series ac probe to dual banana plugs. Price: HP 11018A, $\$ 35$.

11036A Probe

$A C$ probe for the 410 C . Price: HP 11036A, $\$ 60$.

11040A Capacitive Voltage Divider

For 410 series voltmeters. Increases range so transmitter voltages can be measured quickly, easily. Accuracy, $\pm 1 \%$; division ratio, 100:1; inpur capacity, approximately 2 pF . Maximum voltage, 2000 V at 50 MHz , decreasing to 100 V at 400 MHz . Frequency range, 10 kHz to 400 MHz . Price: HP 11040A, $\$ 35$.

11042A Probe Coaxial "T" Connector

For 410 Series voltmeters. Measures voltages between center conducror and sheach of 50Ω transmission line. Maximum SWR, 1.1 at $500 \mathrm{MHz}, 1.2$ at 1 GHz . Male and female Type N firtings. Price. HP 11042A, $\$ 50$.

$11043 A$ Probe Coaxial "N" Connector

For 410 Series voltmeters. Measures at open end of 50Ω transmission line (no terminating resistor). Has male Type N fitrings. Price: HP 11043A, $\$ 38$.

11044A dc Voltage Divider

For $410 B$ Voltmeter. Gives maximum safety and convenience for measuring high voltages as in television receivers, etc. Accuracy, $\pm 5 \%$, division ratio, $100: 1$. Input impedance, $12 \mathrm{G} \Omega$. Maximum voltage, 30 kV . Maximum current drain, $2.5 \mu \mathrm{~A}$. Price: HP: $11044 \mathrm{~A}, \$ 50$.

11045A de Voltage Divider

For 410 C Voltmeter. Same as 110.14 A except input impe. dance, 10 G Ω. Price: ZPP 11045A, $\$ 50$.

VOLTAGE, CURRENT, RESISTANCE

Description

Average-response (calibrated in rms of a sine wave) of high frequency signals previously impractical can now be made easily with the HP 3406A Sampling Voltmeter. Employing incoherent sampling techniques, the HP 3406A has extremely wide bandwidth (10 kHz to 1.2 GHz) with high input impedance. Signals as small as $50 \mu \mathrm{~V}$ can be resolved on the sampling voltmeter's linear scale. Full scale sensitivity from 1 mV to 3 V is selected in eight 10 dB steps and may be read directly from -62 dBm to +23 dBm for power measurements. Accessory probe tips make the HP 3406A suitable for voltage measurements in many applications such as receivers, ampliffers and coaxial transmission lines.

Measurement indications can be retained on the 3406A meter by depressing a push-button located on the pen-type probe. This feature is useful when measurements are made in awkward positions where the operator cannot observe the meter indication and probe placements at the same time. Other features include a de recorder output and sample hold output for connection to oscilloscopes, and peak or true rms voltmeters if other than absolute average measurements are required.

Specifications

Voltage range: 1 mV to 3 V full scale in 8 canges; decibels from -50 to $+20 \mathrm{dBm}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$; average.responding instrument calibrated to rms value of sine wave.
Frequency range: 10 kHz to 1.2 GHz ; useful sensitivity from 1 kHz to beyond 2 GHz .

RF VOLTMETER
20μ sensitivity; average-response Model 3406A

Full-scale accuracy (\%) with appropriate accessory: (after probe is properly calibrated).

| 10 | 20 | 25 | 100 | 100 | 700 | 1 | 1.2 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| kHz | kHz | kHz | kHz | MHz | | MHz | GHz | GHz |

± 13	± 8	± 5	± 3	± 5	± 8	± 13

Input impedance: input capacity and resistance will depend upon accessory tip used. $100,000 \Omega$ shunted by $<2.1 \mathrm{pF}$ at 100 kHz with bare probe; $<10 \mathrm{pF}$ with 11072 A isolator tip supplied.

Sample Hold Output

Provides ac signal whose unclamped portion has statistics that are narrowly distributed about the statistics of the input, inverted in sign (operating into $>200 \mathrm{k} \Omega$ load with <1000 pF).
Naise: $<175 \mu \mathrm{~V}$ rms.
Accuracy (atter probe is properly calibrated): 0.01 V range and above: same as full scale accuracy of instrument.
$0.001 \vee$ to 0.003 V range; value of input signal can be computed by taking into account the residual noise of the instrument.
Jitter: meter indicates within $\pm 2 \%$ peak of reading 95% of time (as measured with HP 3400A True RMS Voltmeter).
RMS crest factor: 0.001 V to $0.3 \mathrm{~V}, 20 \mathrm{~dB} ; 1 \mathrm{~V}, 13 \mathrm{~dB}$; 3 V .3 dB .
Meter
Meter scales: linear voltage, 0 to 1 and 0 to 3; decibel, -12 to +3 . Individually calibrated taut-band meter. Response time: indicates within specified accuracy in <3 sec.
Jitter: $\pm 1 \%$ peak (of reading).

General

DC recorder output: adjustable from 0 to 1.2 mA into 1000 ohms at full scale, proportional to meter deßection.
Overloat recovery tlme: meter indicates within specified accuracy in $<5 \sec (30 \mathrm{~V}$ p-p max.).
Maximum input: $\pm 100 \mathrm{~V} d c, 30 \mathrm{~V}$ P.p.
RFI: conducted and radiated leakage limits are belox those specified in MIL-6181D and MYL-1.16910C except for pulses emitted from probe. Spectral intensity of these pulses are nominally $50 \mathrm{nV} / \sqrt{\mathrm{Hz}}$; spectrom extends beyond 2 GHz .
Temperature range: instrument, $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$; probe, $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 Hz to 400 Hz , nominally $<20 \mathrm{~W}$.
Dimensions: $73 / 4$ " wide, $61 / 4^{\prime \prime}$ high (without removable feet), $11^{\prime \prime}$ deep ($197 \times 159 \times 279 \mathrm{~mm}$) ; $1 / 2$ module.
Welght: net $12 \mathrm{lbs}(5,4 \mathrm{~kg})$; shipping $14 \mathrm{lbs}(6,4 \mathrm{~kg})$.
Price: HP 3406A, $\$ 750$.

HP 3406A RF Voltmeter Accessories

Accessories furnished
Nut Driver, HP Part Number 8710-0084: nut driver for rip replacement, $\$ 1$.
11072A Isolator TIp: eliminates the effect of source impedance variations when the 11063 A " T " and $10: 1$ divider are not used. Frequency range, 10 kHz to 250 MHz ; input capacitance. $<10 \mathrm{pF}: \$ 13$.
10213.62102 Ground Clips
s020.0457 Replacement Tips
$5060-4991$ Ground Lead

Accessories avallable

11064A Accessory Probe KIt consists of the following: 11063A 50 " T " 11061A 10:1 divider tip: 10218A BNC adapter; 0950-0090 50 clips (2 ea.); 5020.0457 probe tip (5 ea.); 5060.4991 ground leads (2 ea). Price HP 11064A, $\$ 100$.
11063A "T": should be used whenever measuremenks are made in 50Ω systems; useful to about 1.5 GHz .
VSWR: <1.15 at 1 GHz (bare probe in "T"). Insertion loss: $<1 \mathrm{~dB}$ up to 1 GHz . Price: HP $11063 A, \$ 55$.
$10218 A$ BNC Adapter: probe to male BNC adapter. Fre. quency range: 10 kHz to 250 MHz . Price: HP 10218 A . \$6.
11061A 10:1 Divider: as well as dividing the input voltage by a factor of ten, this accessory eliminates the effects of source impedance variations.
Accuracy (divider alone): $\pm 5 \% 1 \mathrm{kHz}-400 \mathrm{MHz}$.
$\pm 12 \% 400 \mathrm{MHz} \cdot 1 \mathrm{GHz}$.
Maximum input; 150 V p-p ac, 600 V dc. Price: HP 11061A, $\$ 35$.
50 ohm termination: (0950-0090) Price: $\$ 39.50$.
Ground clips: 2 each (10213-62102) Price: $\$ 1$.
Probe tips: 5 each (5020.0457) Price: $\$ 1$.
Ground leads: 2 each (5060 . 4991) Price: $\$ 2.30$.
11071A Accessory Probe Klt: consists of all the 11064 A accessories plus 11073A Pen Type Probe (with 11073. 62101 ground lead): 10219A Type 874A Adapter: 10220 A
loo7ia accassory from Xit

Microdot Adapter; 5060.0418 Pin Tip. 5060.0419 Hook Tip; 5060.0420 Spring Tip: 5060-0417 Pincer Jawr; 1291. 0013 Banana Tip. Price: HP 11071A, \$185.
11073A Pen Type Isolator: frequency range is 10 kHz to 50 MHz . Various accessories adapt the 11073 A to alligator jaws and orher tips which facilitate poinc-to-point mea. surements. Input capacitance: $<10 \mathrm{pF}$. Price: HP 11073A. $\$ 45$.
10219A Type 874A Adapter: Price: HP 10219A, $\$ 1 \mathrm{~s}$.
10220A Microdot Adapter: Price: HP 10220A, $\$ 4$.
Pincer jaw: ($5060-0417$). Price: $\$ 4$.
Ground lead for pen type isolator: (11073-62101). Price: $\$ 2.70$.
Ground leads: 2 each ($5060-4991$). Price: $\$ 2.30$.
Ground clips: 5 each (10213-62102). Price: $\$ 1$.
Probe tips: 7 each ($5020-0457$). Price: $\$ 1$.
Banana tip: (1251.0013). Price: $\$ 0.50$.
Spring tip: ($5060-0420$). Price: $\$ 0.50$.
Pin tip: (5060.0418). Price: $\$ 0.50$.
Hook tip: (5060.0419). Price: $\mathbf{\$ 0 . 5 0}$.

RF MLLLIVOLTMETER
 Measurements, 10 mV to $10 \mathrm{~V}, 500 \mathrm{kHz}$ to 1 GHz
 Model 411A

Description

RF voltmeter offers millivolt sensitivity and two easy-reading linear voltage scales in $1 \cdot \mathrm{ro-3}$ ratio. Range is 10 mV to 10 V full scale rms, 500 kHz ro $1 \mathrm{GHz}, \mathrm{DB}$ scale is calibrated from +3 to -12 dB . Accuracs is $\pm 3 \%$ of full scale to $\pm 1 \mathrm{~dB}$, depending upon frequency and probe used. Five probe tips increase versatility. The probe tips, available individually, are offered along with a spare diode cartridge as a complete set in a compact kit. Galvanometer recordes output. For detailed information and complete specifications, refer to dara sheet.
BNC open circuit probe tip furnished with the instrument. HP 11027A Probe Kit includes a pen-type probe tip, a VHF probe tip, a type N-tee, a 100:1 Capacitor divider and a spare diode cartridge: $\$ 153$.
Price: HP fllA. \$450. (cabiner): HP \{llAR, \$45s (rack).

VOLTAGE, CURRENT,

 RESISTANCE
AUTOVOLTMETER

Automatic voltage and resistance measurements
Model 414A

The 414 A is a 12 -range, all solid-state dc volt-ohmmeter which provides accurate measurements immediately because of its automatic range selection. Operation is simply touch and read. Both range and polarity are displayed by illuminated characters and the meter pointer indicates the correct reading for the range that has been automatically selected.

DC voltmeter

Specifications

Voltage Ranges: $\pm 5 \mathrm{mV}$ to $\pm 1500 \mathrm{~V}$ in 12 ranges in a $5-1 \mathrm{~s}$ sequence. Automatic or manual range selection.
Accuraty: $\pm(0.5 \%$ of reading $+0.3 \%$ of range $)$.
Input: voltage probe and common lead. COM lead can be foated up to $\pm 500 \mathrm{Vdc}$ above chassis ground.
Input Resistance: $100 \mathrm{M} \Omega$ on 50 mV range and above; 10 Mn on 5 mV and 15 mV ranges.
AC Normal-Mode Rejection: reading not affected by 50 Hz or 60 Hz signal having peak values less than the follow. ing:
In Auto: 13\% of ds input.
In Hold: 600% of range.
Ohmmeter (linear scale)
Resistance ranges: 5Ω to $1.5 \mathrm{M} \Omega$ in 12 linear ranges in $5-15$ sequence (manual or automatic range selection).
Accuracy: \pm (1% of reading $+0.5 \%$ of range $)$.
Source current: up to $5 \mathrm{k} \Omega$ range, 1 mA ; above $5 \mathrm{k} \Omega$ range, $1 \mu \mathrm{~A}$.
General
Automatic range selection: automaticaliy selects correct voltage and resistance range in less than 300 ms .
Manual range selection: down-ranges one range each time down-range button is pressed. Starts over at 1500 V from 5 mV range.
Polarity selection: automatic.
Operating temperature: insirument will operate within specifications from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $+00 \mathrm{~Hz},<18 \mathrm{~W}$.
Dlmensions: ($1 / 2$ module) $73 / 4^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (withour removable feer), $11^{\prime \prime}$ deep ($197 \times 150 \times 279 \mathrm{~mm}$).
Weight: net $101 / 4 \mathrm{lbs}(4,6 \mathrm{~kg})$: shipping $13 \mathrm{lbs}(6,4 \mathrm{~kg})$.
Prica: HP 414A, $\$ 690$.

DC NULL VOLTMETER

Floating, high.lmpedance input; 1 mV end-scale sensitivity
Model 413A

The 413 A has 13 zerocentered ranges running from 1 mV to 1000 V end scale.

High-input impedance ($10 \mathrm{M} \Omega$ on the most sensitive range, 200 $\mathrm{N} \cdot \Omega$ on the 300 mV range and above) makes the f13A especially valuable in resistance bridge measurements. Accuracy of this instrument is within 2% of end scale.

Voltmeter

Range: positive and negative roltages from 1 mV to 1000 V end scale in 13 zero-centered ranges.
Accuracy: $\pm 2 \%$ of end scale.
Limits of zero control: more than \pm end scale on any range when using expanded scale.
Input Resistance: $10 \mathrm{M}(\Omega$ on 1,3 and 10 mV ranges; $30 \mathrm{M} \Omega$ on 30 mV range; $100 \mathrm{M} \Omega$ on 100 mV range; $200 \mathrm{~N} 1 \Omega$ on 300 mV range and above.
AC rejection: a voltage at power line or twice power-line frequency 40 dB greater than end scale affects reading $<1 \%$: peak voltage must not exceed 1500 V .
Amplifier (refer to data sheet for detailed specifications)
Gain: 0.001 to 1000 in 13 steps.

General

Input terminals: dual banana jacks
Input isolation: $>100 \mathrm{M}$ n shunted by $0.1 \mu \mathrm{~F}$ to case (powerline ground).
Common signal rejectlon: may be operated with up to 500 V de or 130 V ac abore ground.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, so to 60 Hz , 35 W .
Dimensions: cabinet $71 / 2^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high, $10^{\prime \prime}$ deep ($191 \times$ $292 \times 254 \mathrm{~mm}$); rack mount 19 " wide. $57 / 32^{\prime \prime}$ high, $65 / 3^{\prime \prime}$ deep $(483 \times 134 \times 168 \mathrm{~mm})$.
Weight: cabinet net 12 lbs ($5,4 \mathrm{~kg}$), shipping i4 lbs (6.4 kg) rack net 12 lbs ($5,4 \mathrm{~kg}$), shipping $19 \mathrm{lbs}(8,6 \mathrm{~kg}$).
Price: HP $413 \mathrm{~A}, \$ 385$ (cabinet): HP $413 \mathrm{AR}, \$ 390$ (rack)

DC NULL VOLT-AMMETER 18 Voltage, 7 current ranges; $0.1 \mu \mathrm{~V}$ resolution Model 419A VOLTAGE, CURRENT, RESISTANCE

Eighteen voltage ranges with $0.1 \mu \mathrm{~V}$ resolution on the lowest range set this HP solid-state DC Null Voltmeter apart from previous de null meters. The accuracy of this rechargeable battery-operated instrument is $\pm 2 \%$ of end scale ± 0.1 $\mu \mathrm{V}$ on all ranges. Noise is less than $0.3 \mu \mathrm{~V}$ p-p, and drift is less than $0.5 \mu \mathrm{~V} /$ day.

An internal bucking source allows input voltages up to 300 mV to be nulled giving an infinite input impedance. Input impedance above the 300 mV range is 100 megohms.
Pushbutton selection provides convenience-versatility
Seven pushbuttons allow the operator to select capidly the desiced function of the HP 419A. This de null voltmeter operates from the ac line or from the internal rechargeable batteries. During operation from the ac line the batteries are trickle-charged. A fast-charge pushbutton is provided to increase the charging rate, recharging the batteries in approximately 16 hours. Battery voltage may be easily checked with the battery-test pushbutton. The zero pushbutton enables the operator to compensate for any internal offsets before making a measurement. When this pushbutton is depressed, the positive leg of the voltmeter is disconnected from the positive input terminal and connected to the negative input terminal.

When the VM pushbutton is depressed the HP 419A

functions as a zero-center scale $3 \mu \mathrm{~V}$ to 1000 V dc volimeter. When the AM pushbutton is depressed, the HP 419A functions as a zero-center scale 30 pA to 30 nA ammeter.

Specifications

DC null voltmeter
Ranges: $\pm 3 \mu \mathrm{~V}$ to $\pm 1000 \mathrm{~V}$ dc in 18 zero-center ranges.
Accuracy: \pm (2% of range $\pm 0.1 \mu \mathrm{~V}$).
Zero control range: $> \pm$ is $\mu \mathrm{V}$.
Zero drift: $<0.5 \mu \mathrm{~V} /$ day after 30 min warm-up.
Zero temperature coefficient: $<0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
Response time: 3 s to within 95% of final reading on $3 \mu \mathrm{~V}$ range: 1 s to within 95% of inal reading on $10 \mu \mathrm{~V}$ to 1000 \checkmark ranges.
Noise: $<0.3 \mu \mathrm{~V}$ p-p, input shorted.
[Noise amplitude approximates Gaussian distribution. RMS value (standard deviation) is $<0.075 \mu \mathrm{~V}, \mathrm{p} \cdot \mathrm{p}$ noise value is $<0.3 \mu \mathrm{~V} 95 \%$ of the time.]
Input characteristics
At null: infinite resistance on $3 \mu \mathrm{~V}$ through 300 mV ranges in SET NULL mode. Negative inpur terminal can be Hoated up to $\pm 500 \mathrm{~V}$ de from ponerline ground. Off null:

Vollage range	Inpul reslsianos
$3 \mu \mathrm{~V} \cdot 3 \mathrm{mV}$	$100 \mathrm{k} \Omega$
$10 \mathrm{mV} \cdot 30 \mathrm{mV}$	$1 \mathrm{M} \Omega$
$100 \mathrm{mV} \cdot 300 \mathrm{mV}$	$10 \mathrm{M} \mathrm{\Omega}$
$1 \mathrm{~V} \cdot 1000 \mathrm{~V}$	$100 \mathrm{M} \Omega$

Negative input terminal can be floated up to $\pm 500 \mathrm{~V}$ de from powerline ground.
AC normal-mode rejection: ac voltages 50 Hz and above and 80 dB greater than end scale affecr reading less than 2%. Peak ac voltage not to exceed maximum overload voltage.

DC ammeter

Ranges: $\pm 30 \mathrm{pA}$ to $\pm 30 \mathrm{nA}$ in 7 zero-center ranges.
Accuracy: $\pm(3 \%$ of range $+1 \rho A)$.

Zero control ranga: $> \pm 150 \mathrm{pA}$.
Zero drift: <spA/day after 30 min warm-up.
Zero temperature coetficient: $<0.5 \mathrm{pA} /{ }^{\circ} \mathrm{C}$.
Nolse: <3 pA p-p, input shorted.
laput resistance: 100 kr on all ranges.

Ampiliter

Gain: 110 dB on $3 \mu \mathrm{~V}$ range, decreases 10 dB per range.
Output: 0 to $\pm 1 \mathrm{~V}$ at 1 mA maximum for end-scale reading. Output level adjustable for convenience wihen used with recorders.
Output resistance: depends on setting of output level control. $<35 \Omega$ when output control is set to maximum.
Noise: 0.01 Hz to 5 Hz : same as voltmeter (referred to input). $>5 \mathrm{~Hz}:<10 \mathrm{mV}$ rms (referred to ourput).

General

Overload protection: the following voltages can be applied withour damage to instrument.
1 V to 1000 V range: 1200 V dc .
10 mV to 300 mV range: 500 V dc .
$3 \mu \mathrm{~V}$ to 300 mV range: $50 \mathrm{~V} d c$.
Operating temperature: instrument will operate within specifications from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Operating humidity: $<70 \% \mathrm{RH}$.
Storage temperature: $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$. 50 Hz to $400 \mathrm{~Hz},<1.5 \mathrm{~W}$. or 4 internal rechargeable batteries (furnished). $30 \cdot \mathrm{hr}$ operation per recharge. Operation from ac line permissible during recharge.
Dimenslons: $73 / 4^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (without removable feet), $8^{\prime \prime}$ deep ($197 \times 159 \times 203 \mathrm{~mm}$).
Weight: net $8.3 \mathrm{ib}(3,7 \mathrm{~kg})$: shipping $11 \mathrm{lb}(5 \mathrm{~kg})$.
Price: HP 419A, $\$ 450$.

VOLTAGE, CURRENT, RESHSTANCE

DC VOLT-OHM-AMMETER

1% accuracy vtvm is also ohmmeter, ammeter Model 412A

Features:
Versatile, measures voltage, resistance, current
ξ loating input
High input resistance
Use as a 60 dB amplifer
Individually calibrated meter minimizes tracking error

Description

The HP Model 412A is a multipurpose meter designed to measure dc voltage, current, and resistance with laboratory accuracy and yet be of great utility in production-line test-bench work. Simplicity of operation and low cost permit its use wherever de measurements are made.

Model 412A may also be used as a stable 60 dB amplifec which has an output proportional to meter indication.

There are only three controls; a lever-type function selector, a 13 -position range switch, and a lever-type polarity switch. The extreme stability of the 412A makes it easier
to use by eliminating the need for constantly re-zeroing the meter. The stability of the HP 412A is such that the usual front-panel, zero-set control has been eliminated.

The precision six-inch meter has two scales used for both voltage and current and a third scale which is calibrated in ohms. The meter face has a mirror back for greatest accuracy in reading.

Specifications

Voltmeter

Voltage range: pos. and neg, voltages from 1 mV to 1000 V full scale, 13 ranges.
Accuracy: $\pm 1 \%$ of full scale on any range.
Input resistance: 10 megohms $\pm 1 \%$ on $1 \mathrm{mV}, 3 \mathrm{mV}$ and 10 mV ranges; 30 megohms $\pm 1 \%$ on 30 mV range; 100 megohms $\pm 1 \%$ on 100 mV range; 200 megohms $\pm 1 \%$ on 300 mV range and above.
AC rejectlon: a voltage at power line or twice power line frequency 40 dB greater than full scale affects reading less than 1%. Peak voltage must not exceed 1,500 volts.

Ammeter

Current range: pos. and neg. cucrents from $1 \mu \mathrm{~A}$ to 1 A full scale, 13 ranges.
Accuracy; $\pm 2 \%$ of full scale on any range.
Input resistance: decreasing from 1000 ohms on $1 \mu \mathrm{~A}$ range to 0.1 ohm on $1 A$ range.
Ohmmeter
Resistance range: resistance from 1 ohm to 100 megohms center scale, 9 ranges.
Accuracy: $\pm 5 \%$ of reading at center scale.
Short circuit current; from $0.01 \mu \mathrm{~A}$ on the $\mathrm{X} 100 \mathrm{M} \Omega$ range to 10 mA on the $\mathrm{XI} \Omega$ range.
Amplifier
Voltage gain: 1000 maximum.
DC bandwidth: dc to 0.7 Hz on all voltage ranges.
Output: proportional to meter indication; 1 V at full scale; max. current, 1 mA (full scale corresponds to 1 on upper scale).
Output Impedance: less than 2 ohms at dc.
Noise: less than $2.0 \mu \mathrm{~V}$ rms referred to the input.
Drift: negligible.

General

Common terminal isolation: may be operated up to 500 V $d c$, or 130 V ac above ground.
Power: 115 or 230 volts $\pm 10 \%$, 50 to $60 \mathrm{~Hz}, 47 \mathrm{~W}$ max.
Dimenslons: cabinet: $71 / 2^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high, $10^{\prime \prime}$ deep ($191 \times 292 \times 254 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $5.7 / 32^{\prime \prime}$ high, $71 / 2^{\prime \prime}$ deep behind panel ($483 \times 134 \times 191 \mathrm{~mm}$).
Waight: net: $12 \mathrm{lbs}(5,5 \mathrm{~kg})$; shipping: $14 \mathrm{lbs}(6,4 \mathrm{~kg})$ (cabinet) ; net $12 \mathrm{lbs}(5,5 \mathrm{~kg}$) ; shipping: 20 lbs (9 kg) (rack mount).
Price: HP 412A, \$450 (cabinet).
HP 412AR, \$455 (rack mount).

Description

Hewlett-Packard 425A DC Microvolt-Ammeter makes measurements of extremely smail dc voltages and currents, even in the presence of relatively strong ac signals.

Since the 425 A measures de voltages from $1 \mu \mathrm{~V}$ to 1 V and de currents from 1 PA to 3 mA , it is an extremely useful tool in all branches of scientific measurement. For example, it can be used to study nerve potentials for the biologist and medical researcher and to study chemically generated emf, minute voltages in thermocouples, and current in ionization chambers.

Since currents as small as 1 pA can be measured directly, the Model 425A is valuable for measuring transistor currente and photomultiplier currents in ionization chambers. Thus this meter has great utility in physics research, as well as in electronics. Further, its current and voltage sensitivity permit measurement of both extromely high and very low resistances.

Model 425 A is provided with output terminals so that it may be used as a dc amplifer having $100 \mathrm{~dB}\left(10^{5}\right)$ voltage gain. Output from the amplifier is 1 V for an endscale deflection or 1 mA into approximately 1000 olims, so that it will operate either a potentiometer or galvanometer recorder to make permanent records of measurements.

Specifications

Microvolt-ammeter

Voltage range: pos. and neg. voltages from $10 \mu \mathrm{~V}$ end scale to I V end scale, 11 steps, 1, 3, 10 sequence.
Current range: pos. and neg. currents from 10 pA end scale to 3 mA end scale, 18 steps, $1,3,10$ sequence.
Input impedance: voltage ranges, 1 megohm $\pm 3 \%$; current range, depends on range, i megohm to 0.33 ohm .
Accuracy: within $\pm 3 \%$ of range; line frequency variations $\pm 5 \mathrm{~Hz}$ affect accuracy less than $\pm 2 \%$.

Amplifier

Gain: 100,000 maximum.
$D C$ bandwidth:
dc to 0.1 Hz on $10 \mu \mathrm{~V}$ range.
dc to 0.3 Hz on $30 \mu \mathrm{~V}$ zange. de to 0.7 Hz on $100 \mu \mathrm{~V}$ range and above.
Output: 0 to 1 V for end-scale reading, adjustable (5000 -ohm shunt porentiometer), 1 mA maximum at 1 V output.
Output impedance: depends on setting of output porentiom. eter: 10 olims when potentiometer is set for maximum output.
Noise: 0 to $1 \mathrm{~Hz}:<0.25 \mu \mathrm{~V}$ rms referred to inpur (noise amplitude approximates Gausian distribution. P.P noise value is $\langle 1.0 \mu \mathrm{~V} 95 \%$ of the time). $>1 \mathrm{~Hz}:<5 \mathrm{mV}$ ms referred to outpur.
Drift: after 15 minutes warm-up, drift is less than $\pm 4 \mu \mathrm{~V}$ per day refersed to input.
General
Power: 115 or (230 volts must be specified) $\pm 10 \%, 60 \mathrm{~Hz}$, to W; 50 Hz operation is a vailable as option 01 .

Dimensions: cabinet: $73 / 8^{\prime \prime}$ wide, $113 / /^{\prime \prime}$ high, $12^{\prime \prime}$ deep ($186 x$ $299 \times 305 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $11^{\prime \prime}$ deep behind panel ($483 \times 178 \times 279 \mathrm{~mm}$).
Welght: net $17 \mathrm{lbs}(7,7 \mathrm{~kg})$; shipping $18 \mathrm{lbs}(8,2 \mathrm{~kg})$ (cabinet) ; net 21 lbs ($9,5 \mathrm{~kg}$); shipping 29 lbs ($13,2 \mathrm{~kg}$) (rack mount).
Accessories avallable: 11021A 1000:1 Divider Probe, increases range of 425 A to 1000 volts; division accuracy $\pm 2 \%$, input resistance 10 megolms, $\$ 55$.
Price: HP 425A, $\$ 550$ (cabinet). HP 425AR, \$5ss (rack mount). HP $425 A$ Option 01, for operation from 50 Hz power, no extra charge.

VOLTAGE, CURRENT,

 RESISTANCE
MILLIOHMMETER

Convenient two probe measurements
Model 4328A

Description

The HP 4328A Milliohmmeter is a portable instrument for mea. surement of low resistances. It uses a Kelvin Bridge method to obtain high sensitivity. It has both current and voltage drives incorporated in one probe so only two probes are needed in the actual measurement. Maximum sensitivity is $20 \mu \mathrm{ohms}$, making it ideal for measuring the contact resistance of switches, relays and connectors; it is also useful for safe cesting of fuses and squibs.

A unique phase discriminator in the meter circuit permits accurate
resistive measurements on samples with a series reactance up to twice full scale resistance.

Specifications

Range: 0.001 to 100 ohms full scale in a $1.3,10$ sequence.
Accuracy: $\pm 2 \%$ of full scale. No additional error is caused by series reactance of samples up to 2 times full scale.
Measuring frequency: $1000 \mathrm{~Hz} \pm 100 \mathrm{~Hz}$.
Voltage across 5 a mple: $200 \mu \mathrm{~V}$ peak ar full scale.
Maximum voltage across sample: 20 mV peak in any case.
Superimposed DC: 150 V de maximum may be superimposed on samples from an external source.
Recorder output: 0.1 V dc ourput ar full scale meter deffection.

$\underset{\text { Range }}{\substack{\text { Pan ma) }}}$	$\underset{(\text { End }}{\text { Appliod Ourrent }}$	Maximam Olocipalion in samples (${ }^{(W)}$
0.001	150	23
0.003	50	8
0.01	15	2.3
0.03	5	0.8
0.1	1.5	0.23
0.3	0.5	0.08
1	0,15	0.023
3	0.05	0.008
10	0.015	0.0023
30	0.005	0.0008
100	0.0015	0.00023

General

Power requlrements; $115 / 230 \mathrm{~V}$ switch $\pm 10 \%$, 50 to 60 Hz , 1.5 W.

Weight: $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Dlmensions: $91 / 8^{\prime \prime}$ wide, $6.3 / 32^{\prime \prime}$ high, $11^{\prime \prime}$ deep.
Accessories furnished: Model 16005A Probe, 16006A Probe and 16007A Test Leads. Detachable Power Cord.
Price: HP 4328A, \$450: Option OI (rechargeable batcery opera(ion), add $\$ 25$.

DECADE CAPACITOR
 High accuracy from 40 pF to $1.2 \mu \mathrm{~F}$ Model 4440B

Description

The HP 4440B Decade Capacitor is a high accuracy instrument providing usable capacitances from 40 pF to $1.2 \mu \mathrm{~F}$. Yts 0.25% accuracy makes it an ideal aid for circuir design or ac bridge measure. ments. The 4440 B is also highly suited for production line testing and use as a working standard.

Use of silvered-mica capacitors in four decades of 100 pF provides higher accuracy, low dissipation factors and good temperature coefficients. An aur capacitor vernier provides 100 pF (from 40 pF to 140 pF) with resolution of 1 pF . Capacitors are housed in a double shield in such a way that increased capacicance from two terminals 10 three terminals is held to 1 pF .

Specifications

Capacitance: 40 pF to $1.2 \mu \mathrm{~F}$ in steps of 100 pF with a 40 pF to 140 pF variable air capacitor providing continuous adjustment to better than 2 p F between steps. $0.1 \mu \mathrm{~F} \times 11$ steps $+0.01 \mu \mathrm{~F} \times 9$ steps $+0.001 \mu \mathrm{~F} \times 9$ steps $+0.0001 \mu \mathrm{~F} \times 9$ steps +40 to 140 pF .
Direct reading accuracy: $=(0.25 \%+3 \mathrm{pF})$ at 1 kHz for threeterminal connection, capacitance increase for two-terminal connec. tion is less than 1 p F.
Resonant frequency: gpical values of the resonant frequency are 450 kHz ac $1 \mu \mathrm{~F}, 4 \mathrm{MHz}$ at $0.01 \mu \mathrm{~F}$ and 40 MHz ac 100 pF .
Dissipatlon factor: 0.001 maximum ac 1 kHz .
Temperature coefficient: $+70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Insulation resistance: 5 G ohms minimum, after 5 minutes at 500 $\mathrm{V} d \mathrm{c}$.
Maximum valtage: 500 V peak.
Weight: $51 / 2 \mathrm{lbs}(2,5 \mathrm{~kg}$)
Dimenslons: $11^{\prime \prime}$ wide (264 mm), $6^{\prime \prime}$ deep (152 mm), $3^{\prime \prime}$ high (76 mm).
Price: HP $4440 \mathrm{~B} \$ 260$.
Manufactured by Yokogawa.Hewlett-Packard Ltd., Tokyo

RESISTANCE METER Wide range for high resistance, low current Model 4329A

Description

The HP 4329A is a solid-state insulation resistance meter designed for easy, accurate and direct readings of the very high resistance values typically found in syntheric resins, porcelain, insulating oils and similar materials. It is also useful for measurements in electrical components like capacitors, transformers, switches and cables. Seven fully regulated de test volrages (between 10 and 1000 V) are provided as rest sources.

Selected scales are identified by illuminated indicators on the meter face. Selected resistance or current multiplying factors ace also illuminated for rapid, error-free measurement. Three resistance scales and one current scale are provided. The HP 4329A is instantly convertible from ungrounded- to grounded-sample operation via a simple relocation of the front panel ground strap from "guacd" to "+" position. The instrument cabinet itself is always at ground potential. Test voltage shorts or sample breakdown currents will not damage insrru. ment circuitry.

The HP 4329A also has a current measurement capability, Minute currents as low as 0.05 pA can be readily measured. The standard instrument package includes HP $\mathbf{6 1 1 7 A}$ Low Noise Test Leads: these are used in most types of measurement. An HP 16008A resis. tivity cell is also available for use with the high resistance meter, for those customers engaged in measurement of volume and surface resistivity of sheer samples.

Specifications

Current measurement
Measuring scale: 0.5×10^{-13} to $2 \times 10^{-5} \mathrm{~A}$ in 8 ranges.

Meter scale: 0 to 20 in 40 linear divisions.
Input resistance: 10^{\prime} to $10^{11} \Omega \pm 1 \%$, depending on range.
Accuracy: $\pm 5 \%$ of full scale defection (there can be an additional $\pm 3 \%$ error at the top decade).
General
Recorder output: 0 to 100 mV dc , proportional to meter deffection; 1 kS input resistance.
Power: $115 / 230 \mathrm{~V} \pm 10 \%, 50.60 \mathrm{~Hz}, 3 \mathrm{~W}$.
Dimensions: $61 / 2^{\prime \prime}$ high (166 mm), $7-13 / 16^{\prime \prime}$ wide (158 mm). $11^{\prime \prime}$ deep (277 mm).
Weight: 8 lbs $(3,5 \mathrm{~kg})$.
Accessory furnished: HP 16117A Low Noise Test Leads.
Price: HP 4329A, \$750.

Test voltage	$10 \mathrm{~V}=3 \%$	$25 \mathrm{~V} \pm 3 \%$	$50 V=3 \%$	$100 \mathrm{~V}=3 \%$	$250 V=3 \%$	$500 \mathrm{~V}=3 \%$	$1000 \mathrm{~V}=3 \%$
Measuring range	$\begin{gathered} 5 \times 105-2 \times 10140 \\ 8 \text { ranges } \end{gathered}$	$\begin{gathered} 1.25 \times 1085 \times 10140 \\ 8 \text { ranges } \end{gathered}$	$\begin{gathered} 2.5 \times 10 \mathrm{~s}_{-1} \times 1015 \Omega \\ 8 \text { ranges } \end{gathered}$	$\begin{gathered} 5 \times 106-2 \times 10158 \\ 8 \text { ranges } \end{gathered}$	$\begin{gathered} 1.25 \times 10^{7-5} \times 10150 \\ 8 \text { ranges } \end{gathered}$	$\begin{gathered} 2.5 \times 107-1 \times 1016 n \\ 8 \text { ranges } \end{gathered}$	$\begin{gathered} 5 \times 107-2 \times 1016 \pi \\ 8 \text { ranges } \end{gathered}$
Moter scale	0.5-20 (\times)	0,125-5 ()	$0.25-10$ (0)	0.5-20 (\times)	0.125-5 (0)	0.25-10 (∞)	0.5-20 (∞)
Overall acduracy*	5	1	2	5	1	2	5

"Equals $=10 \%$ of raading when salected scale does not excoed values shown in this specification.
Notes: spacificatlons stated are after Initiai of and full-scale caliuration. Up-rangling assuros greater accuracy when operating near full-scele dellection. Error de creases to about $=3 \%$ at the low-resistance end of each decsde, and $=5 \%$ at the center-scale of each oocade. There can be an additional $=3 \%$ error at the top decade of each test.

Model 16008A Resistivity Cell

Description

The HP 16008 A can safely, rapidly and conveniently measure the volume and surface resistivity of sheet insulation materials. Conversion from volume to surface resistivity measurement requires.operation of one switch only; no lead interchange or disconnection is necessary. Designed for use with the HP 4329A Resistance Meter (other voltage supplies and picoammeters may be used), the complete system allows direct measurement of volume resistivicy up to approximately $4 \times 10^{1 y} \Omega$ (on samples 0.1 cm thick) -and surface resistivity up to approximately $4 \times 10^{14} \Omega$. Test voltages up to 1000 V may be used. Excellent sample-to-electrode contact is maintained through use of a conducting plastic layer bonded to the inner elec. rode's outer surface. An interlock switch automatically disconnects the rest voltage when the cover is raised. Convenient low noise test leads are supplied for direct connection to the HP 4329A.

Specifications

Inner electrode: 50 mm .
Guard electrode: 30 mmo .
Auxiliary electrode: $100 \times 120 \mathrm{~mm}$.

Maximum sample slze: $125 \times 125 \times 7 \mathrm{men}$.
Maximum test voltage: 1000 V dc.
Dimensions: $2^{\prime \prime}$ high (49 mm), $7.13 / 16^{\prime \prime}$ wide $(198 \mathrm{~mm}), 61 / 9^{\prime \prime}$ deep (156 mm).
Weight: $3 \mathrm{lbs}(1,4 \mathrm{~kg}$).
Príce: HP 16008A, \$200.

Manufactured by Yokogawa-Hewlett-Packard Ltd., Tokyo

VOLTAGE, CURRENT, RESISTANCE

CLIP-ON MILLIAMMETER
 Measures current without interrupting circuit Model 428B and probes

Description

Direct current from 0.02 milliampere to 10 amperes can be measured with the HP 428B withour intermpting the circuits and without the error-producing loading of conventional methods.

For any measurement of de within its range, simply clamp the jaws of the 428 B around a wire and read.

This ease and speed of operation are unparalleled, especially for applications where many de measurements must be made. Wide current range of the 428 B will handle most signals directly. For even greater sensitivity, several loops may be put through the probe, increasing the sensitivity by the same factor as the number of loops.

In addition 10 making current measurements directly, the 428B is also valuable for measuring sums and differences of currents in separate wires. When the probe is clipped around two wires carry. ing current in the same direction, their sum is indicated on the meter; when one of the wires is reversed, their difference is measured. Thus, current balancing is possible by obtaining a zero difference reading.

Model 428 B provides an output voltage proportional to the measured current, which is useful for driving recorders or making low. frequency (de to 400 Hz) current measurements

Specifications

Current range: 1 mA to 10 A full scale, nine ranges
Accuracy: $\pm 3 \%$ of full scale $\pm 0.1 \mathrm{~mA}$, from $0^{\circ} \mathrm{C}$ to $59^{\circ} \mathrm{C}$. (When instrument is calibrated to probe.)
Probe inductance: less than $0.5 \mu \mathrm{H}$.
Probe Induced voltage: less than 15 mV peak (worst case at 20 kHz and harmonics).
Output: variable linear output level with switch position for calibrated 1 V into open circuit (cortesponds to full scale defer. tion). 1.5 V max. into open circuit in uncalibrated position. 0.73 $\pm .01 \mathrm{~V}$ into $1 \mathrm{~K} \Omega$ in calibrated position.
Noise: 1 mA range, $<15 \mathrm{mV}$ rms across $1 \mathrm{~K} \Omega$.
3 mA range, $<5 \mathrm{mV}$ rms across $1 \mathrm{k} \Omega$.
10 mA through 10 A ranges, $<2 \mathrm{mV}$ rms across $1 \mathrm{~K} \Omega$.
Frequency range: dc to 400 Hz (3 dB point).

AC rejection: signals above 5 Hz with peak value less than full scale affect meter accuracy less than 2%. (Except at 40 kHz car. rier frequency and its harmonics). On the 10 A range, ac peak value is limited to 4 A .
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ to 60 Hz , approx. 70 W .
Operatlag temperature range: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Probe Insulation: 300 V noximum.
Probe tip size: approximately $1 / 2^{\prime \prime}$ by $21,92^{\prime \prime}$; aperture diameter $0,32^{\prime \prime}$.
Dimansions: $71 / 2^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ bigh, $141 / 4^{\prime \prime}$ deep ($191 \times 292 \times$
272 mm) ; rack mount: $19^{\prime \prime}$ wide, $631 / 22^{\prime \prime}$ high, $13^{\prime \prime}$ deep (483 x $177 \times 330 \mathrm{~mm}$).
Welght: net $17 \mathrm{lbs}(7,7 \mathrm{~kg})$, shipping $19 \mathrm{lbs}(8,6 \mathrm{~kg})$ (cabinet): net $24 \mathrm{lbs}(10,8 \mathrm{~kg})$, shipping $33 \mathrm{lbs}(14,9 \mathrm{~kg})$ (rack mount).
Price: HP 428B, $\$ 650$ (cabinet).
HP 428BR, $\$ 655$ (rack mount).
Accessories available

3529A magnetometer probe

The HP 3529A Magnetometer Probe is useful in applications where determination must be made of the direction or magnitude of a magnetic field. It is useful in applications ranging from acoustical transducer design to investigations involving the Zeeman effect. Conversion factor is $1: 1$, producing a reading on the 4288 in milliamperes which is directly equal to the measured field strength in miliigauss. Range is 1 milligauss to 10 gauss with the 428 B . The bandwidth is ds to 80 Hz , and accuracy is $\pm 3 \%$ of full scale when the probe is calibrated with the instrument. Price: HP 3529A, $\$ 95$.

C11.3529A magnetometer probe

The C11-3529A is a special magnetometer probe used to convert the Hewlett-Packard 428A or 428B DC Milliammeter into a direcr reading magnetometer ($1 G=1 \mathrm{~mA}$ indication on $428 \mathrm{~A} / \mathrm{B}$ meter). The Cil.3529A Magnetometer Probe is specifically designed to measure the relative magnelic field strength of individual bar mag. nets on twistor memory cards used in the Western Electric Electronic Switching System (No. LESS). Refer to data sheet for further information. Price: HP CII-3529A, \$170.

VOLTAGE, CURAENT, RESISTANCE

456A AC current probe

Your conventional voltmeter or oscilloscope can measure curtent quickly and dependably-withour direct connection to the circuit under test or any appreciable loading to the rest circuir. The HP 456A AC Current Probe clamps around the current-carrying wire and provides a voltage output you can read on a voltmeter or scope. Model 456A's 1 mA to 1 mV conversion permits direct reading up to 1 ampere rms.

Specifications, 456A

Sersitivity: $1 \mathrm{mV} / \mathrm{mA} \pm 1 \%$ at 1 kHz .
Frequency response: $\pm 2 \%, 100 \mathrm{~Hz}$ to 3 MHz ; $\pm 5 \%, 60 \mathrm{~Hz}$ to $4 \mathrm{MHz} ;-3 \mathrm{~dB}$ at $<25 \mathrm{~Hz}$ and $>20 \mathrm{MrHz}$,
Pulse response: rise cime is $<20 \mathrm{~ns}$, sag $<16 \% / \mathrm{ms}$.
Maximum input: 1 A rms, 1.5 A prak; 100 mA aboves MHz .
Effect of de current: no appreciable effect on sensitivity and distortion from de current up to 0.5 A .
Input impodance: (impedance added in series with measured wire by probe) less than 50 milliohms in series with $0.05 \mu \mathrm{H}$ (this is approximately the inductance of $11 / 2^{\prime \prime}$ of hookup wire).
Probe shunt capacity: approx. 4 pF added from wire to ground.
Distortion at 1 kHz : for 0.5 A input at least 50 dB down; for 10 mA inputat least 70 dB down.
Equivalent input noise: < $50 \mu \mathrm{~A}$ rms ($100 \mu \mathrm{~A}$ when ac powered).
Output impedance: 220 ohms at 1 kHz ; approximately +1 V dc component; should work into laad of not less than 100,000 ohms shunted by approximately 2 S PF
Power: two Mallory TR 233R and one TR 234 batteries (1420.0005 and 1420.0006) ; battery life approximately 400 hours; ac power

supply optional, 115 or (230 V must be specified) $\pm 10 \% 5010$ 400 Hz 1 W.
Dimenstons: $5^{\prime \prime}$ wide, $11 / 2^{\prime \prime}$ high ($127 \times 38 \times 152 \mathrm{~mm}$). $6^{\prime \prime}$ deep: probe cable is s^{\prime} long; 2' output cable terminated with dual banana plug. Probe aperture: $8,32^{\prime \prime}(4 \mathrm{~mm})$ diamerer.
Weight: net $2 \mathrm{lbs}, 4 \mathrm{oz}(1 \mathrm{kB})$; shipping $3 \mathrm{Jbs}, 1002(1,6 \mathrm{~kg})$.
Accessory available: 456A-11A AC Supply for field installation, \$55. 11028A 100:1 Current Divider, \$48.
Price: HP 456A with batteries, $\$ 225$.
Option 01: ac supply installed in lieu of batteries, add 520 .

11039A capacitive voltage divider

For 400 and 410 series voltmeters. Safely measures power voltages to 25 kV ; accuracy $\pm 3 \%$. Division ratio, 1000:1. Input capacity, $15 \mathrm{pF} \pm 1$. Maximum voltage ratings (sea level) $60 \mathrm{~Hz}, 25 \mathrm{kV} ; 100 \mathrm{kHz}, 22 \mathrm{kV} ; 1 \mathrm{MHz}, 20 \mathrm{kV} ; 10 \mathrm{MHz}$, $15 \mathrm{kV} ; 20 \mathrm{MHz}, 7 \mathrm{kV}$. Usable for dielectric heating, power and ultrasonic voltages. Price: HP 11039A, s185. (HP 11018A should be used to connect the 110 serics voltmeter).

11074A voltage divider probe

For 100 Series voltmeters. Provides low-input capacitance and high-inpur resistance at the point of measurement. Division ratio $10: 1 \pm 2 \%$ (400 Hz reference), $10: 1 \pm 2 \%$ (100 kHz reference depends on adjustment of compensating capacitor). Bandwidth, de to 10 MHz . Maximum input voltage 1 kV rms.

Input impedance: $10 \mathrm{M} \Omega$ shunted by 10 pF (when connected to an input impedance of $10 \mathrm{M} \Omega$ shunted by not more than 25 pF). Price: HP 11074 A. $\$ 50$.

11096A high frequency probe

Converts de voltmeter with $10 \mathrm{M} \Omega$ input resistance to high frequency ac volmeter. Compatible voltnerers: HP 427A, HP 3430A, HP 3439A and HP 3-440A. Voltage range, 0.25 to 30 V ms; teansfer accuracy $\left(20.30^{\circ} \mathrm{C}\right) \pm 5 \%, 100 \mathrm{kHz}$ to 100 MHz . Usabie for relative measurements from 1 kHz to 1 GHz ; peak responding, calibrated to read rms value of a sine wave; inpur impedance, i $M \Omega$ shunced by 2 pF ; max. input. 30 V rms ac, 200 V dc; accessories provided include a straight dip, a hook tip, a ground clip, and a high frequency adapter that fits available HP adapters for BNC (HP 10218A); GR Type 874 (HP I0219A), Microdot connectors (HP 10220A) and that also fits a 50Ω tee (HP 11536A). Price: HP 11096A, \$15.

10501A Cable Assembly

$44^{\prime \prime}$ of $50-0 h m$ coaxial cable terminated on one end only with UG-88C/U BNC male connector; HP 10501A, $\$ 4$ each.

10502A Cable Assembly

$S^{\prime \prime}$ of 50.0 hm coaxial cable terminated on both ends with LG-88C/U BNC male connectors; HP 10502A, 86 each.

11086A Cable Assembly

$24^{\prime \prime}$ of 50 -ohm coaxial cable terminated on both ends with UG-88C/U BNC male connectors: HP 11086 A, $\$ 7$ each.

10503A Cable Assembly

4^{\prime} of 50 -ohn coaxial cable terminated on both ends with UG-88C/L BNC male connectors; HP 10503A, $\$ 7$ each.

11000A Cable Assembly

Dual banana plugs terminate a section of $50-0 \mathrm{hm}$ cable, 44" over-all; plugs for binding posts spaced $3 / 4^{\prime \prime}$; HP 11000A. SS each.

11001A Cable Assembly
Identical with 11000 A except dual banana plug on one end and UG-88C/U BNC male on the other; HP 11001 A , $\$ 6$ each.

11002A Test Leads

Dual banana plug to alligator clips, 5^{\prime}; HP 11002A, $\$ 8$ each.

11003A Test Leads

Dual banana plug to probe and alligator clip, s'; HP 11003A. \$10 each

11035A Cable Assembly

$12^{\prime \prime} 50$-ohm coaxial cable terminated on one end with a dual banana plug and on the other end with a UG-88C/U BNC male connector; HP 11035A, 56 each.

11500A Cable Assembly

6^{\prime} of 50 ohm coaxial cable terminated on both ends with UG-21D/U Type N male connectors; HP 11500A, \$15 each.

11501A Cable Assembly

6^{\prime} of $50-0 h m$ coaxial cable terminated with UG-21D/U Type N male and UG-23D/U Type N female; HP 11501 A , \$1s each.

Figure 1. Full rack width cabingts slack one alop the other.

Figure 2. Standard configurations include cabinets onethird and one half full rack width. Accessory hande 11057A is shown on hall.width instrument.

Figure 3. HP j051A Combining Case.

[^16]The Hewlen-Packard modular enclosure system provides a complete solution to instrument packaging and mounting problems. The system is in accord with EIA standard rack and panel dimensions, yer each enclosure is equally well suiced to bench or field use.

The matching enclosures offer an enviable combination of economy, strength and appearance. They are rugged enough to meet many of the stringent milicary requirements and present a rich, professional appearance which enhances the value of the instrument.

Two types of instruments

Basicaliy, instruments enclosed in the modular system fall into two classes:

1. Those units which require the full EIA rack width. This class of instruments mounts directly in racks with the two brackets and filler-strip included with the instrument. Feet and tilt stand also are provided with full-module instruments for bench use, and the instruments can be stacked conveniently for maximum utilization of available space. For semi-permanent stacking, joining brackets are available which effectively combine two instruments into a single physical unit. Control panel covers are also available for these instruments to protect them when they are transported.
2. Those units which do not need the full rack width. These instruments are standardized at one-half or one-third the width of the full module. Because of their size, they are easily portable and can be used readily in the field, as well as on the bench. Accessory handles 11056A (one-third module) and 11057A (one-half module) are attached easily to these instru. ments for added handling convenience. In addition, adapter frames are available to mount chese units in the standard EIA racks. The HP 1051 A, 1052A Combining Cases also can be used for a multi.instrument package that is both portable and easily rack mounted with the hardware provided. Both combining cases and rack adapter frames use blank panels to fill areas not used by instruments and accept one-third width drawers for convenient storage of leads, probes, etc. Model 1052A Combining Cases also accept cooling kits to maintain proper ambient temperature.
Characteristic of both classes of modular insrruments is ease of maintenance. Top and bottom covers, as nell as side panels, are removable to provide access to all adjust. ments and test points within the instruments.

Instrument case ($1 / 3$ module)

A rugged, high impact plastic instrument case for HP $1 / 3$ module instruments is now available. Instruments can be operated, stored or carried in the splash-proof case. A dual purpose tilt stand also serves as a carrying handle. At the rear of the case is an accessible compartment for the power cord; and in the front lid is a storage space for cables, etc. Refer to page 228 for specifications.

EASIC ACESSSOAIES vantinued

Versatile instrument packaging

11076A Instrument Case (see Figure 8)
Dimenslons: will accept $1 / 3$ module instrument $61 / 2^{\prime \prime}$ high, $11^{\prime \prime}$ deep.
Weight: net $3 \mathrm{lbs}(1,4 \mathrm{~kg})$; shipping $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Price: HP 11076A, \$45.

Specifications

1051A Combining Case (see Figure 3)

Accepts third or half-module instruments up to $111 / 4$ " (286 mm) deep.
Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep ($425 x$ $185 \times 337 \mathrm{~mm}$); hardware furnished for conversion to rack mount $19^{\prime \prime}$ wide, $6-31 / 32^{\prime \prime}$ high, $111 / 4^{\prime \prime}$ deep behind panel ($483 \times 177 \times 286 \mathrm{~mm}$).
Weight: net $11 \mathrm{lbs}(5 \mathrm{~kg})$; shipping $15 \mathrm{lbs}(6,8 \mathrm{~kg})$.
Price: HP 1051A, \$110.

1052A Combining Case (not shown)

Accepts third or half-module instruments up to $163 / 8^{\prime \prime}$ (416 mm) deep.
Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep (425 x $185 \times 467 \mathrm{~mm}$); hardware furnished for conversion to rack mount $19^{\prime \prime}$ wide, $6-31 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panel ($483 \times 177 \times 416 \mathrm{~mm}$).
Weight: net $13 \mathrm{lbs}(5,9 \mathrm{~kg})$; shipping $18 \mathrm{lbs}(8 \mathrm{~kg})$.
Price: HP 1052A, $\$ 120$.

Rack adapter frame (see Figure 4)

$3060-0797$ adapter to rack mount third- and /or half-mod. ule instruments up to $6.3 / 32^{\prime \prime}$ high (155 mm), $\$ 25$.
5060.0808 adapter to rack mount third- and/or half-module instruments up to $3^{\prime \prime}$ high (75 mm), $\$ 25$.

Modular enclosure accessories (see Figure 5)

Part Number	Control panel covers EIA panel halght (In.) (mm)		Prloe
5050-0826	3.15/32	88	\$22.50
5060-0827	$5-7 / 32$	133	\$25.00
5060.0828*	6.31/32	177	\$27.50
5050.0829	8.23/32	222	\$28.50
5060.0830	10.15/32	266	\$30.00
5060-0831	12.7/32	310	\$32.50

- Also fits HP 1051A and 1052A.

Joining brackets (see Figure 7)

5060.0215 Joining Bracket Kit for serni-permanently joining any two full-module instruments $111 / 4^{\prime \prime}$ (286 mm) deep behind the front panel, $\$ 20$.
5060-0216 Joining Bracket Kit for semi-permanently joining any two full-module instruments $163 / 8^{\prime \prime}$ (416 mm) deep behind the front panel, $\$ 25$.

Accessory handles (see Figure 2)

11056 A Handle for any one-third module instrument, $\$ 5$. 11057A Handle for any one-half module instrument, $\$ 5$.

11075A Instrument Case (see Figure 8)

Dimenstons: will accept $1 / 3$ module instrument $61 / 2^{\prime \prime}$ high, $8^{\prime \prime}$ deep.
Weight: net $3 \mathrm{lbs}(1,4 \mathrm{~kg})$; shipping $5 \mathrm{lbs}(2,3 \mathrm{~kg})$.

Figure. 5 instrument covers quickiy convent full-width cad. inets to easily carried portable units.

Figure 6. Combining case accessories.

Figure 7. Lolning brackets effectively weld instruments into a single physical unit.

Figure 8. Rugged Instrument case and tilt stand.

Digital voltmeters (DVM's) display measurements as discrete numerals, rather than as a pointer deflection on a continuous scale commonly used in ana\log devices. Direct numerical readout in DVM's reduces human error and tedium, eliminates parallax error and increases reading speed. Automatic polarity and range-changing features reduce operator training, measurement error and possible instrument damage through overload.

Digital instruments are available to measure ac and de voltages, do currents resistance and ratio. Other physical variables can also be measured by use of suitable transducers. Many have outputs which can be used to make permanent records of measurements with printers, card and tape punches, and magnetic tape equipment. With data in digital form, it may be processed with no loss of accuracy.
Most popular digital voltrmeters on the market today fit into one of the following categories: (1) ramp. (2) staircase ramp. (3) dual slope integrating, (4) integrating, (5) integrating and potentiometric, (6) successive approximation, and (7) continuous balance.
Types currently in use by HP are described below (refer to Table 1. p. 230).
Ramp Types: the operating principle of the ramp digital voltmeter is to measare the time a linear ramp takes to chaage from the input level to ground (or vice versa). This time period is measured with an clectronic time-interval counter and displayed on in-line indicat. ing tubes. The advantages of this type of instrument are low price and simplicity. Conversion of a voltage to a time interval is illustrated by the timing diagram in Figure 1. At the start of a mea. surement cycle, a ramp voltage is iniriated. The ramp is compared continuously with the voltage being measured; at the instant they become equal, a coincidence circuit generates a pulse which opens a gate. The ramp continues until

Figure 1. Voltage-tatime conversion.
a second comparator circuit senses that the ramp has reached zero volts. The output pulse of this comparator closes the gate.

The time duration of the gate opening is proportional to the input voltage. The gate allows pulses to pass to totalizing circuits. and the number of pulses counted during the gating interval is a measure of the voltage. Figure 2 illustrates the technique used in the HP 3440A Digital Voltmeter.

The 3440 A has an accuracy of $\pm 0.05 \%$ of reading with reading rates up to s per second. These features, coupled with its capability of $10 \mu \mathrm{~V}$ resolution, 4 -digit readout, and plug-in versatility, make it a popular and economical choice.

The HP 3430A is a 3 -digit DVM priced not much higher than an analog voltmeter.
The speed, convenience, and accuracy of digital readout now becomes a vailable at a moderate price for general-purpose applications in the Jaboratory, on production test stands, in repair shops, and at inspection stations. The new DVM has a foating inper, a feature not commonly
found in low cost digital voltmeters. An optional version of the instrument permits ratio measurements, a useful feature for normalizing the readings of $\mathrm{d} c$ transducer outputs and taking readings using an exrernal reference. A precision de amplifier output is an additional benefit of this model.
Referring to Figure 3, the 3430A makes voltage measurements by comparing the input voltage to an internally generated "staircase ramp" voltage. When the input and the staircase ramp voltages are equal, a comparator generates a signal to stop the ramp. Then the instrument displays the number of counts necessary to make the staircase ramp equal to the input. At the end of the sample, a reset pulse resets the staircase to zero and the measurement starts over. The display circuits store each reading until a new reading is completed, eliminating any blinking or counting during compuration. The sample rate is fixed at two samples per second.
Integrating types: an integrating digital voltmerer measures the true average of the input voltage over a fixed measur. ing period, in contrast to ramp-types

Figure 2. Block dlagram of HP 3440A Digital Voltmeter.

Figurg 3. Slock dlagram of HP 3430A Digltal Voltmeter.

Figure 4．Voltagerto－frequency conversion．
which measure the voitage at the end of the measuring interval．A widely．used technique to accomplish integration is the use of a voltage to frequency converter， as indicated in Figure 4．The circuitry functions as a feedback control system which governs the rate of pulse genera． tion，making the average voltage of the rectangular pulse train equal to the $d c$ input voltage．

The major advantage of this type of analog－to－digital conversion is its ability to measure accurately in the presence of large values of superimposed noise，be－ cause the input is integrated over the sampling interval．The reading repre－ sents a true average of the inpur voltage．
The HP 2402A Integrating Digital Voltmeter，which is in the 0.01%－ac－ curacy class，uses the voltage－to－fre－ quency conversion technique，achieving the ability to reject the effects of super－ imposed noise．A floated and guarded input circuit eliminates common－mode noise erior．Combined，these techniques yield effective common－mode rejection of 126 dB at any frequency．

This model measures the average value of the applied voltage over a $1 / 60$ second sample period．Used in a data system，it provides the benent of integration and in one second can make 43 separate 5 －digit measurements with a maximum resolu－ tion of 1 part in 130,000 ．When used on the bench without external triggering，it takes up to 10 readings per second．In addition，it has constant 10 －megohm in－ pur resistance and is designed for com－ pletely programmable operation within a digital data acquisition system．

DC voltage，ac voltage，resistance，fre－ quency and sange（or autorange）can all be selected by remote programming．The simplified block diagram illustrated in Figure s represents the basic functional components which enable the HP 2402A to accept analog signals and convert them to digital information．

Basically，the instrument consists of a voltage－to－frequency converter and a counter．A do voltage applied to an inte－ grating amplifier in the converter is changed to a pulse rate proportional to the applied voltage．$A C$ voltage and resistance inputs are converted to de voit－ age before being applied to the converter．

During the $1 / 60$－second interval，the output of the V / F converter is applied to the 10^{2} decade（see Figure 5）．An
interpolation technique is used after the sampling period when pulses are entered into the 10^{4} decade．These pulses are proportional to the charge remaining on the integrating capacitor aftec the $1 / 60$－ second sampling time．After the inter－ polation period，the counts present in all decades are displayed by in－line digital readout tubes．

The V / F converter is isolated from the counter by a shielding technique known as guarding，which isolates the input in． terconnected between the converter and counter sections by thru－guard trans． formers and thru－guard relays．Each sec－ tion has its own poxer supply．

The converter section includes atten－ uating and switching circuits in addition to the voltage－to－frequency convertet． The counter section includes a rime－base generator，decade dividers and control logic circuits in addition to the reversible counter．

The HP 2401C Integrating Digital Voltmeter is also in the 0.01% accuracy class，and uses the voltage－to－frequency conversion technique，achieving outstand． ing ability to reduce the effects of super． imposed noise；it achieves common－mode noise rejection by guarding．
This model applies especially well to measurements of extremely noisy signals． Measurements down to 99.999 mV full scale can be made withour an accessory amplifier．Complete remote－control ability makes it ideal for system applications．It can also be used as an electronic counter to measure frequency or period．

Integrating／Potentiometric Types：by using techaiques exploiting the best qual． ities of several systems，a totally aew result is achieved in the HP 3460 B ， Be － sides being an integrating－type voltmeter which continually measures the true av－ erage of the input voltage，it is also a potentiometric type providing high accu－

Figure 5．Block Dlagram Model 2402A DVM．
Table 1．Hewlett－Packard Digital Voltmeters．

Model（Typa）					$\begin{aligned} & 2 \\ & \frac{2}{6} \\ & \frac{5}{6} \end{aligned}$	$\begin{aligned} & \text { 呂 } \\ & \text { 喜 } \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{7} \\ & \hline \end{aligned}$	물								$\frac{7}{\frac{7}{4}}$		
Duat－stope； integrating																		
3450A（pg 241）	0.008	5	120	15	Δ	$\bar{\chi}$		A	\dagger	X	X	X	4	Δ	X	4	X	A
Integrating／ Potentiometric																		
K04／3460A（pg 250）	0.005	6	120	1		X				X	X	x	X	X	X		X	
3460B（pg 248）	0,004	5	120	15	＋	X		＋		X	X	X	X	X	X		X	
Integrating																		
HP－2402A（pg 244）	0.01	5	120	43	4	X		\pm		Δ	X	X	X	X	X	A	X	
HP－2401C（Pg 246）	0.01	5	300	1＊＊	\pm	X		\pm		＊	X	X	X	X	X		X	
Ramp																		
3440 （ pg 237 ）	0,05	4	105	5	\bullet	－	\cdots	－		x	X		X	X	X	－	X	
3439A（0g 236）	0.05	4	105	5	X	X	X	X		X	X			X		－		
3430 A（pg 234）	0.1	3	160	2		X			X		X							

－Optlonal，$=$ HP－2410日 AG／Ohms Converter：＋4P 3481A AC／Ohms Converter．
－ 4 digits／9 readings per sec； 3 digita $/ 50$ readings per sec．
a plug．in circult cards．piug－in drawer
tratio for ac，dc．ohms and ilmit test．
racy Erom precision resistance ratios and a stable reference voltage. A block diagram of the Integrating/Potentiometric Digital Voltmeter is shown in Figure 6.

The HP 3460B is a good choice for applications requiring extremely high accuracy ($\pm 0.004 \%$ of reading) and high speed with high resolution. The 3460 B takes up to 15 readings per second with s. digit resolution (1.20000 full scale). Since the instrument is guarded, all readings can be made in the presence of large common-mode signals. The integration characteristic also allows a maximum reading rate, even with noise superimposed on the signal.

To be useful as the central analog.todigital converter in an automatic systern, a DVM noust have several features which are not needed in a bench meter. Among these are biary-coded aecimal output and remote conirols. If system use is not intended, cost can be reduced by omitting these features.

The HP H04-3460A, which also uses the integrating/potentiometric technique, has a resolution of 1 part in $1,200,000$ and a sensitivity of $1 \mu \mathrm{~V}$ on the 1 volt range. Its measurement accuracy is 0.005% of reading.

Dual-Slope Integration Type: this entirely different technique is used in the HP 3450A Multi.Punction s-digit Voltmeter. The 3450A measures do voltages by the use of an integrator which produces a rime interval proportional to the average value of the applied do voltage. The time interva! determines the gate time of the counter, and therefore the number of pulses totalized. Thus, the number of pulses is proportional to the average of the do voltage measured.

This technique of integrating the input signal over a precise time interval takes care of normal-mode rejection (line frequency, noise and varying signals) without the use of inpur filters which reduce the speed of readings considerably.

During a precisely controlled time period of $1 / 10$ or $1 / 60$ of a second, selectable for optimum performance, the 3450 A integrates the input signal form. ing an up-slope. This voltage, stored after integration, is proportional to the average of the do input voltage. To start the down-slope a precise reference voltage of opposite polarity is switched to discharge the integrator. The zero crossing of the ourpur voltage is detected by a zero de. tect circuit. The counter is enabled to totalize pulses from a crystal oscillator during the discharge time or down-slope of the integrator. As the discharge time is proportional to the stored voltage, the number of pulses totalized is proportional to the input voltage.

After completion of the integration cycle, the input amplifier is disconnected and automatically zeroed before the next measurement is taken. This autozeroing

Figure 6. Block diagram of HP 34808 DVM.
effectively compensates for do drift and eliminates the need for a chopper ampli. fer and front panel zero controls.

For de voltage measurement the input is connected to the X input terminals (refer to Figure 7). For do ratio measurement the ratio is the voltage applied to the X terminals over the voltage applied to the Y terminals (X / Y). The ratio measurement is performed in the same manner as a do voltage measurement except the down-slope is not determined by the reference voltage but by the Y input voltage. The measurement sequence is as follows: 1) The Y input is measured to determine the proper range for Y. 2) This information is stored. The Y ranging is always performed automatically even if the instrument is switched to manual ranging. 3) The X input is applied to the integrator and the proper sange determined. (The range for X must be equal to or higher than that of Y.)
4) After the ranges for both inputs are determined, the X input will be enabled to charge the ineegrator. 5) Then, the Y input will be enatiled (on the proper range) to discharge the integrator. The front panel digital display is the ratio of X / Y.

The \mathbf{X} and the Y inputs are measured sequentially. The inputs are switched off and on in sequence. By switching both the high and the low of each input, complete isolation of X and Y and identical inpur impedances are achieved.

True ims ac to de converter: ac voltage
and ac ratio is a true ems responding measurement for frequencies from 45 Hz to 1 MHz . The input circuitry (shown in the block diagram Figure 8) consists of an operational amplifier whose gain is accurately controlled to achieve attenua. tion of the input signal. An as output from the input amplifier is sent to the modulator, and a second ourput is used as a trigger for the sync generator (nominally 5 Hz). The sync square-wave gen. erator is used to synchronize the modulator and demodulator to the input signal.

A i kHz oscillator drives the dc-tosquare wave converter which converts the dic output of the ac converter into a reference square rave. The amplitude of the square wave is proportional to the de output. The output of the modulator. at a nominals Hz rate, consists of a composite signal made up of one-half input signal and one-half reference square-wave (refer to waveshape in Fig. ure 8).

The AGC amplifier controls the gain of the sampling amplifier and the integrator. This keeps the rms value of the signal applied to the thermocouple constant and holds the gain of the system constant regardless of the level of the input signal. The output of the thermocouple varies between two levels, reflecting a difference in the rms value of the input and the reference signal. This error signal is amplified, and tro signals 180° out of phase are senc to the demodulator. The demodulator acts as a fullowave rectifier. The output pulses are amplified

Figure 7. Block diagram of the 3450 A Multi.Function Meter.

Figure 8. Ac-dc converter for the 3450A,
and integrated to develop the positive de voltage output. This dc voltage is continuously corrected ar nominally s times per second to insure a de voltage output proportional to the rms value of the inpur signal. From this true rms converter the 3450 A provides ac measurements and ac ratio as described for de measure. ments.
Ohms Converter: a 4 wire ohms mea. surement and a 4 terminal ohms ratio measurement can be made with a maximum current of 1 mA applied to the external resistor on the $10 \mathrm{k} \Omega$ range. This minimizes errors caused by self-heating of the unknown resistor.

Figure 9. Ohms converter for the 3450A.
A cursent source supplies three constant currents of $1 \mathrm{~mA}, 10 \mu \mathrm{~A}$ and $1 \mu \mathrm{~A}$ and an open loop voitage of 17 volts maximum. In ohms operation the X input is the sense tecminals, and the Y input is the current terminals. These must be connected for operation (refer to Fig. ure 9), and for optimum accuracy the Hi input for both should be connected to one end of the unknown resistor and the Lo for both to the other end of the un. known resistor. In ohms ratio the four terminals are used as in any other ratio operation with complete isolation between the X and Y inputs.
The resistance measurements are made by feeding a constant cursent through the unknown resistor and measuring the
resultant voltage across the resistor. This curtent source is similar to an emitrer follower with a constant ten volts across the emitter resistor. To increase measure. ment accuracy, the 3450 d reference volt. age is disabled, and the ohms reference voltage is used to discharge the integrator.

Limit Test: This operation provides Hi, Go or Lo indication according to wn preset limits. If the front panel digit readout is between the two preset limits, the Go indicator will light. If the reading is above the higher limit, the Hi indicator will light. and if the readout is lower than either limit, the Lo indicator will light. This function may also be used for ratio measurements.

Options for remoke operation, BCD output and rear input terminals can be obtained. Any combination of options can be purchased, or plug-in modules can be inserted at a later date. Refer to pages 241 through 243 for additional informa. tion and specifications.

Selecting a Digital Vottmeter: If the DVM is to be used in a data acquisition system, binary-coded decimal (BCD) output and remote programming ability are necessities. Compatibility with related equipment (see page 118) should be determined.

When selecting a digital voltmeter to make accurate measurements in the presence of noise, the DVM must discriminate the real signal from the noise appearing at its input terminals. Noise rejection by integration permits high accuracy in the presence of severe noise.

The integrating digital voltmeter reads the average value of the input signal over a fixed sample interval and firs into an ateractive price class.

Noise on the signal may be inexpensively reduced by equipping the digital voltmerer with a passive input filter. Ril. tering need not degrade volmeter accuracy, but it reduces measurement speed. Consideration of speed must be made if the digital voltmeter is to be used in data acquisition systems.

Common-mode pickup, emf's common to both high and low terminals, is fre. quently a severe measurement probiem. Guarding, which virtually eliminates the effects of common-mode noise, can be important. The ability to measure signals around zero may be needed, in which case inclusion of a bi-directional counter (HP $2401 \mathrm{C}, \mathrm{HP} 2402 \mathrm{~A}$ and HP 3460B) is desirable. Refer to Table 1-a Hew letrPackard DVM is available to meet mose application requirements.

High-Go-Low Comparator: Often with the use of a digital voltmeter. an operator must decide whether the number dis. played during each measurement lies be. tween two limits. Typical applications include assembly-line tests, sysiem check. out procedures, inspection, inserument calibration, circuit parameter testing, sorting, batching and matching components including integrated citcuits.

A moderately-priced Hi, Go, Lo semiautomatic system used in place of a manual arrangement can reduce operator fatigue, result in fewer measurement errors, reduce test time and permit opera. tion by less experienced operators.

Designed to bridge this gap, the HP Model 3434 A Comparator uses a technique similar to ramp-style digital volt. meters. It generates a linear ramp whose amplitude is compared to three analog voltages by three comparators. Two of these voltages are the limit voltages, and the other is the do voltage output from a signal-conditioning unit Signal-conditioning units are the same plug-in units that are used with the HP Model 3440A Digital Voltmerer. Functional capabiliies include ac volts. $d c$ volts, resistance and de current. Limirs can be selected automatically or manually. As many as 12 different pairs of limits can be preprogrammed and quickly selected by a 12 .position rotary switch or remorely by contact closures as test conditions change. The versatility and low cost of the 3434 A makes it attractive for automated testing on low volume production runs from 50 to 100 pieces, and fast enough (up to 1s decisions per second) to be used on high-volume lines as well. Refer to page 235 for further information on the HP 343 A Comparator.

HP 3434A used for production line testing of integrated circuits.

AC／DC Converters：the ac－to－dc con－ verter（Figure 10）typically produces a dc output voltage between 0 and $1 \mathrm{~V} d c$ proportional to the average value of the applied ac voltage calibrated in rms．

Figure 10．Typical ac／dc converter．

Ohms－to．Dc Converter：the ohms－to－ de converter，frequently an additional function of ac－to－dc converters，pro－ duces a de output voltage between 0 and 1 V de proportional to the value of the unknown resistance applied．Most ohms－ to－dc converters require a high input impedance dc preamplifier．

The HP 3461 AC／Ohms Converter DC Preamplifier has total compatibility rith the 3460 B ，and can measure ac voltages up to 1200 V mms ，and resistances up to 12 megohms．It is fully guarded，auto－ matic ranging on all functions，and is remotely programmable．

The compatible AC－ohms converter for the 2401C is the HP Model 2410 B ．

Plug．in $A C / D C$ Converters：the HP 3445A and 3446A Plug－ins are compan－ ions to the HP 3439A and 3440A Digital Voltmeters．

Analog Voltmeters used as $\mathrm{AC} / \mathrm{DC}$ Converters：connect any dc DVM with a 1 V dc range to the dc output of an analog voltmeter，such as the HP 400E／ EL．

True rms rueasurements from 10 Hz to 10 MHz can similariy be made by com－ bining any de digital voltmeter having a I－volt range with the HP 3400A RMS Voltmeter，

Typical specifications of Hewlett－ Packard ac－to－dc and ohms－to－de con－ verters are listed in Table 2.

Table 2．Hewlett－Packard AC／Ohms Converters／Preamplifiers．

Gonverter type （poter lo page）	Gompanion HP DVM	Rangas		$\begin{aligned} & \frac{\pi}{E} \\ & \text { 营 } \end{aligned}$	$\begin{aligned} & \text { 翌 } \\ & \text { 空 } \end{aligned}$	$\begin{aligned} & \text { 꿏 } \\ & \text { 菏 } \end{aligned}$				Calibration period（days）	Acoursoy of masturement at full soale $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$	
AC 10 DC												
3450A Option 001 True rms（pg．242）	Part of $3450 \mathrm{~A}$	$\begin{aligned} & 1 \text { to } 1000 \mathrm{~V} \\ & 4 \text { ranges } \end{aligned}$	X	x	X	＝＊	x	x	x	30	$\begin{aligned} & \text { True rms } \\ & (45 \mathrm{~Hz} \text { to } 1 \mathrm{MHz}) \\ & \neq 0.05 \text { to } 2.1 \% \end{aligned}$	No
$\begin{aligned} & \text { 2402A Option } 02 \\ & (\text { (pg 244) } \end{aligned}$	$\begin{aligned} & \text { Part of } \\ & 2402 A \end{aligned}$	$\begin{aligned} & 1 \text { to } 1000 \mathrm{~V} \\ & 4 \text { sanges } \end{aligned}$	X	X	X	＊＊	X	X	x	1806	$\begin{aligned} & (50 \mathrm{~Hz} \text { (0 } 100 \mathrm{kHz}) \\ & \pm 0.12 \text { to } \pm 0.31 \% \end{aligned}$	No
3461A（pg 249）	3460 B	$\begin{aligned} & 3101000 \mathrm{~V} \\ & 4 \text { ranges } \end{aligned}$	X	x	X		X	X	X	90	$\begin{aligned} & (50 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}) \\ & =0.07 \% \text { to } \pm 0.15 \% \end{aligned}$	Yes
2410B（pg 246）	24010	$\begin{gathered} \hline 0.1 \text { to } 1000 \mathrm{~V} \\ 5 \text { ranges } \\ \hline \end{gathered}$	$+$	X			X	X	X	508	$\begin{aligned} & (50 \mathrm{~Hz} 10100 \mathrm{kHz}) \\ & \pm 0.775 \% \text { to } 0.5 \% \\ & \hline \end{aligned}$	Yes
$\begin{gathered} 3445 \mathrm{~A} / 3446 \mathrm{~A} \\ (\mathrm{Pg} 240) \end{gathered}$	$3439 \mathrm{~A} / 3440 \mathrm{~A}$	$\begin{gathered} 10 \text { to } 1000 \mathrm{~V} \\ 3 \text { ranges } \end{gathered}$	K	X		X	X	X	X	90.6	$\begin{aligned} & (50 \mathrm{~Hz} 10100 \mathrm{kHz}) \\ & =0.1 \% \text { to } \pm 0.3 \% \end{aligned}$	No
457A＊（pg 252）		$\begin{gathered} 1 \mathrm{mv} \text { to } 1000 \mathrm{~V} \\ 4 \text { renges } \end{gathered}$		X							$\begin{gathered} (50 \mathrm{~Hz} \text { to } 500 \mathrm{kHz}) \\ \pm 1.05 \% \end{gathered}$	Yes
$\begin{aligned} & 3400 \mathrm{~A}^{*} \text { (true fms) } \\ & (\rho \mathrm{g} 2!2) \end{aligned}$	3439A／3440 A	$\begin{gathered} 1 \mathrm{mV} \text { to } 300 \mathrm{~V} \\ 12 \text { ィanges } \\ \hline \end{gathered}$									$\begin{aligned} & \{10 \mathrm{~Hz} \text { to } 10 \mathrm{MHz}) \\ & \pm 0.75 \% \quad 10=5.0 \% \end{aligned}$	Yes
$\begin{aligned} & 400 \mathrm{E} / \mathrm{EL} \cdot(\mathrm{avg}) \\ & (\mathrm{pg} 209) \end{aligned}$	3439A／3440A	$1 \text { mV to } 300 \mathrm{~V}$								365	$\begin{aligned} & (10 \mathrm{~Hz} \text { to } 10 \mathrm{MHz}) \\ & =0.5 \% 10=5.0 \% \end{aligned}$	Yes
OHMS to DC												
$\begin{aligned} & \text { 3450A Option } 002 \\ & (\mathrm{pg} 242) \end{aligned}$	$\begin{aligned} & \text { Part of } \\ & 3450 \mathrm{~A} \end{aligned}$	$\begin{gathered} \text { 100 } \frac{10}{} \text { 10MQ } \\ 6 \text { ranges } \end{gathered}$	X	X	X	＊＊	X	X	X	30	± 0.012 ¢0 0．102\％	No
$\begin{aligned} & \text { 2402A Option } 03 \\ & (\mathrm{pg} 244) \end{aligned}$	$\begin{aligned} & \text { Part of } \\ & 2402 A \end{aligned}$	$\begin{gathered} 1 \mathrm{k} \Omega \text { to } 10 \mathrm{M} \Omega \\ 5 \text { ranges } \end{gathered}$	X	X	X	＊＊	X	X	X	1806	$\pm 0.055 \%$	No
3461 A （pg 249）	34608	$\begin{gathered} 1 \mathrm{k} \Omega \text { to } 10 \mathrm{M} \Omega \\ 5 \text { ranges } \end{gathered}$	X	X	X		X	X	x	90	0．016\％to $=0.02 \%$	Yes
24108 （pg 246）	24010	$\begin{gathered} 100 \Omega \text { to } 10 \mathrm{M} \Omega \\ 6 \text { ranges } \end{gathered}$	\pm	X	X		X	X	X	90.	＝ 0.089%	Yes
3444 （pg 239）	3439A／3440A	$\begin{gathered} 1 \mathrm{k} \Omega \text { io } 10 \mathrm{M} \Omega \\ 5 \text { ranges } \end{gathered}$		X		X			X	906	$\pm 0.3 \%$ to $\pm 1.0 \%$	No
DC AMPEIFIERS												
3461A（08 249）	34508	$\begin{gathered} 0.1 \mathrm{Vdc} \text { to } 1 \mathrm{kV} \mathrm{dc} \\ 5 \text { ranges } \end{gathered}$	X	X	x		X	X	X	90	＝0．008\％ $10=0.011 \%$	Yes
2411A（ P 8246 ）	2401 C	＋1．+10 gain		X	X		X	X	X	1806	$\pm 0.03 \%$	No
3443A（pg 238）	3439A／3440A	$\begin{gathered} 100 \mathrm{mV} \text { to } \mathrm{kV} \\ 5 \text { ranges } \end{gathered}$	X	X		X	X	X	X	90b	$\pm 0.05 \%$ to $\pm 0.1 \%$	No
3444 （p8 239）	$3439 \mathrm{~A} / 3440 \mathrm{~A}$	$\begin{gathered} 100 \mathrm{mV} \text { to } 1 \mathrm{KV} \\ 5 \text { ranges } \end{gathered}$		x		X		X	X	908	$\pm 0.05 \% 10 \pm 0.1 \%$	No

[^17]
VOLTAGE, CURAENT. RESISTANCE

DC DIGITAL VOLTMETER 3 Digit DVM at the price of analog voltmeters Model 3430A

Description

The Hewlett-Packard 3430A DC Digital Voltmeter offers precision performance at an economical price. The 3430A may be used in the laboratory or for continuous service under rigorous operating conditions in the production area.

Designed for easy operation, the 3430A may be used by inex. perienced personnel. The inpur voltage is indicated by a large, easy-to-read display with the proper units shom by an annunciator. Polasity and decimal point are automatic.
The 3430 A is able to make full-scale de voltage measurements from $\pm 100.0 \mathrm{mV}$ to $\pm 1000 \mathrm{~V}$ with up to 60% over. ranging. To save costly frequenr calibration, the 3430 A maincains its \pm (0.1% of reading $+0.1 \%$ of range) accuracy for 90 days. This digital voltmerer has a 3 -digit display with 60% overranging indicated by a th digir. The chance of circuit loading is reduced by the $10 \mathrm{M} \Omega$ input resistance .

DC amplifier

A precision ($\pm 0.1 \%$) a.0alog de output is a vailable on the rear panel. This permits the 3430 A to be used as a de amplifier with a non-inverting voltage gain up to 100 .

Voltage ratio option

Three-terminal ratio measurements may be made with the option 01. A rear-panel switch permits eirher normal or ratio mode of operation. In the ratio mode, the voltmeter indication is proportional to the ratio of the input voltage ('ront terminals) to the reference voltage (rear terminals).

Specifications

Ranges

Voltage: $\pm 100.0 \mathrm{mV}, \pm 1000 \mathrm{mV}, \pm 10.00 \mathrm{~V}, \pm 100.0$ and $\pm 1 \mathrm{kV}$ f.s.
Overranging: 60% on all ranges except the 1 kV range. (indjcated by the fth digir).
Range selection: manual.

Performance rating

Accuracy: $\pm(0.1 \%$ of reading $+0.1 \%$ of range) for 90 days, $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$.
Accuracy over the temperature ranges of $0^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ is $\pm(0.25 \%$ of reading $+0.1 \%$ of range $)$.
Reading rate: fixed at 2 readings/s by internal trigger.

Input characteristics

inputs: floated binding posts on front panel may be operated up to $\pm 500 \mathrm{~V}$ de (350 V rms) above chassis ground.
input Resistance: $10 \mathrm{~m} \Omega \pm 3.0 \%$ on all ranges.
Effective common-mode rejection (EMCR): ECMR is the ratio of the common-mode signal to the resultant error in the reading.
$D C$ to $60 \mathrm{~Hz}:>90 \mathrm{~dB}$ on the 100 mV range, decreasing 20 dB per range.

AC normal-mode rejecton (ACNMR): ACNMR is the ratio of the ac normal-mode signal to the resultant error in the read. ing.
$60 \mathrm{~Hz}: 40 \mathrm{~dB}$ increasing $12 \mathrm{~dB} /$ octave.
Overload protection: = 1050 V may be applied on any range except the 100 mV range, where the limit is $\pm 700 \mathrm{~V}$. Overload is indicated by a lashing display.

DC amplifier

Gain (non-inverting): X 100 on the 100 mV range, X 10 on 1000 mV range, X 1 on 10 V range, X 0.1 on 100 V range, and X 0.01 on 1000 V range.
Output: $\pm 16 \mathrm{~V}$ dc maximum at 1 mA . maximum current.
Accuracy: $\pm 0.1 \%$ from $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$.
Response time: <0.9 s to 99.9% of final value.

Ratlo option (optlon 01)

Ratio: 0.1:1, 1:1, 10:1, 100:1, and 1000:1.
Overrange: 60% for reference voltage inputs $<1 \mathrm{~V}$. decreasing to 33% at 1.2 V
Range selection: manual by front panel range switch.
Ratio mode selection: manual by rear panel swirch.
Accuracy: $\pm(0.15 \%$ of reading $+0.1 \%$ of range) for 90 days from $15^{\circ} \mathrm{C}$ ro $35^{\circ} \mathrm{C}$.
Accuracy over the temperature ranges of $0^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$ and
$35^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ is $\pm(0.30 \%$ of reading $+0.1 \%$ of range $)$.
Input: 3 terminal with circuit ground common.
Front terminals: $\pm 100.0 \mathrm{mV}, \pm 2000 \mathrm{mV}, \pm 10 \mathrm{~V}, \pm 100$ V and $\pm 1000 \mathrm{~V}$ canges.
Rear terminals (reference voltage): 0.8 V to 1.2 V . Polarity selected manually by rear panel switch.
Displayed voltage ratio: front terminal voltage
|rear terminal volrage|
Input resistance: front terminals: $10 \mathrm{M} \Omega \pm 3 \%$.
Rear terminals: positive polarity, $50 \mathrm{k} \Omega \pm 2 \%$. Negative polarity, $511 \mathrm{k} \Omega \doteq 2 \%$.

General

Power: 115 V or $230 \mathrm{~V}=10 \%, 50 \mathrm{~Hz}$ to $400 \mathrm{~Hz},<20 \mathrm{~W}$.
Dimensions: $73 / 4^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (without removable feet), $11^{\prime \prime}$ deep ($197 \times 159 \times 279 \mathrm{~mm}$).
Weight: net $9.75 \mathrm{lb}(4.4 \mathrm{~kg})$, shipping $12 \mathrm{ib}(5.4 \mathrm{~kg})$.
Price: HP 3430A, $\$ 595$.
HP 3430A (option 01), voltage ratio, add $\$ 80$.

3434A with 11084A and 3444A plug.In

High-go-low

This versatile comparator compares the anknow'n quantity to preset limit pairs. If its value exceeds (more positive) the high preset limit, the HIGH or red light will glow. If its value is smaller (less positive) than the low preset limit, the LOW or yellow light will glow. If its value is between the preser limits, the GO or green light will glow. Contact closures which operate simultaneously with the corresponding (HIGH.GO.LOW') lights are available at an output connector. This information is presented until a new comparison has been completed.

If the main test control switch is replaced by a stepping switch or a scanner, the High-Go-Low outputs may be used as control signals to qutomate a system. The functions and ranges available depend on the plug-in utilized. (See Table page 236.) Refer to pages 238 through 240 for usable plug-ins. Refer to page 232 for applications of the 3434 A in producrion lines and for other applications including integrated circuit tests.

Specifications ${ }^{*}$

Functlons: provides HIGH-GO.LOW testing for de volts, ac voles, do cursent and ohms with the appropriate plug.in
(Table 1. page 236. The 3434A does not have auto-ranging). Ranges:

DC voltage: $100 \mathrm{mV}, 1000 \mathrm{mV}, 10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V .
$A C$ voltage: $10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V .
Resistance: $1000 \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1000 \mathrm{k} \Omega$ and $10 \mathrm{M} \Omega$.
DC current: $100 \mu \mathrm{~A}, 1000 \mu \mathrm{~A}, 10 \mathrm{~mA}, 100 \mathrm{~mA}$ and 1000 n A . Note: Ranges and functions depend on the plug.in.

Performance rating

Accuracy: (all accuracy specifications apply for 90 days from $+15^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$). Limits selected by manual thumb. wheels, Preset Programnier (1108-1A) renote preset or remote BCD .
DC voltages: $10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V ranges: $\pm(0.02 \%$ of setting $+0.03 \%$ of range).
100 mV and 1000 mV ranges: $\pm(0.05 \%$ of setring $+0.03 \%$ of range).
AC voltages: $10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V ranges 50 Hz to 20 $\mathrm{kHz}: \pm(0.08 \%$ of setting $+0.06 \%$ of range $) .20 \mathrm{kHz}$ to $50 \mathrm{kHz}: \pm(0.12 \%$ of range) .50 kHz to 100 kHz : linearly derated from $\pm 0.12 \%$ of range at 50 kHz to $\pm 0.3 \%$ of range at 100 kHz .
Resistance: $1000 \Omega, 10 \mathrm{kQ}, 100 \mathrm{k} \Omega$ and $1000 \mathrm{k} \Omega$ ranges; $\pm(0.2 \%$ of reading $+0.03 \%$ of full scale $) .10 \mathrm{M} \Omega$ range: $\pm(0.8 \%$ of reading $+0.03 \%$ of full scale $)$.

Current: $100 \mu \mathrm{~A}, 1000 \mu \mathrm{~A}, 10 \mathrm{~mA}, 100 \mathrm{~mA}$ and 1000 mA ranges: $\pm(0.15 \%$ of reading $+0.04 \%$ of full scaie $)$.
Limits selected by remote analog are improved as follows:
De voltage ranges: accuracy improved by $\pm 0.01 \%$ of range.
AC voltage ranges: accuracy improved by $\pm 0.02 \%$ of range (50 Hz to 20 kHz)
Resistance ranges: accuracy improved by $\pm 0.01 \%$ of range.
DC current ranges: accuracy improved by $\pm 0.01 \%$ of range.

Input characteristics

Inputs: 3 terminals permit foating measuremencs up to ± 500 $\mathrm{V} d c$ (350 V rms) with respect to chassis ground. Rear terminals in parallel are provided.
DC resistance: $10.2 \mathrm{M} \Omega$ on all dc ranges.
AC Impedance: 3445 A (piug-in input only) $10 \mathrm{M} \Omega / 20 \mathrm{pF}$ 3446 A (plug-in input). $10 \mathrm{M} \Omega / 35 \mathrm{pF}$; main frame input, $10 \mathrm{M} \Omega / 175 \mathrm{pF}$.
Response time: (limit change) 200 ms ; (range or function change) 40 ms ; (after trigger) $32 \mathrm{~ms}+150 \mathrm{~ms}$ to 6 s dependent on function and range.
Effective common mode rejection: at do for all ranges, 90 dB ; at 60 Hz for all ranges, (fitter in) 56 dB ; (filter out) 41 dB .
AC normal mode rejection: 100 mV and 1000 mV ranges (filer in or out) 30 dB at 60 Hz increasing at 6 dB /octave; $10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V ranges (filter in) 30 dB at 60 Hz increasing 12 dB /octave; (filer our) 15 dB at 60 Hz increasing $6 \mathrm{~dB} / o c t a v e$.
input signals
LImit selection modes: manual, preser, remote presct.remote BCD, remote analog.
General
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $+00 \mathrm{~Hz},<30 \mathrm{~W}$.
Dimensions: (full module) $163 / 4$ " wide, $g^{\prime \prime}$ high (without removable feet), $183 / 8^{\prime \prime}$ deep ($425 \times 127 \times 463 \mathrm{~mm}$). Rack mounting kit included (19").
Weight: net $18 \mathrm{lbs}(8 \mathrm{~kg}$); shipping $29 \mathrm{ibs}(13 \mathrm{~kg})$.
Price: HP 343-4A, basic unit, with the $11084 A$ programmer $\$ 1800$. HP 3434 A optional basic unit alone $\$ 1575$.
Plug-ins: HP 11084A Programmer, \$225; HP 3.441A Range Selector, \$40; HP 3442A Automatic Range Selecror, \$150: HP 3443A High Gain/Auro Range Unit, 8500: HP 3444A DC Multi-Function Unit, $\$ 575$; HP 34isA AC/DC Range Linit, $\$ 575$; HP 3H46A AC. DC Remote Unir, $\$ 600$.

- Refor to data sheet for complete specipications.

VOLTAGE, CURRENT, RESISTANCE

3439 A with 3442A plug-in

Interchangeable Plug-ins Increase Voltmeter Versatility

The HP Models 3439A and 3440 A are compact, accurate, rapid and multiple-function digital volmeters. The choice of automatic ranging, remote and manual operation is obtained by using the $3441 \mathrm{~A}, 3442 \mathrm{~A}, 3443 \mathrm{~A}, 3444 \mathrm{~A}, 3445 \mathrm{~A}$ or 3446 A plug-ins, which are interchangeable with any 3439 A or 3440 A . The basic voltmeter is solid-state with easy-to-service plug-in circuit cards mounted in the HewlettPackard modular enclosure.

DC voltages up to 999.9 V of either polarity are displayed in four significant digits with an accuracy of better than $\pm 0.05 \%$ of reading ± 1 digit and with the polarity of the applied signal indicated automatically, Modes of range selection available for the plug-ins include manual, remote and automatic. Refer to Tabie 1 for data. The bright, easyto read display reduces operator fatigue. Readout storage is another feature of the 3439 A and 3440 A with large rectangular digital display tubes which display the previous reading, changing only if the inpur voltage changes. A polarized light filter reduces the reflection of external light so that a good contrast results when the digits are lighted.

Accuracy and Speed

The 3439A and 3440A Digital Voltmeters have a de accuracy of better than $\pm 0.05 \%$ of reading ± 1 digit over the ambient temperature of $+15^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ with a line roltage variation of $\pm 10 \%$. In addition, specified accuracy is retained to 5 cte beyond full scale, a feature that permits 5 -digit resolution at the decade range change points. The $a c$ input filter has a rejection of 30 dB at 60 Hz and the response time to a step change is 450 ms to read 99.95% of final value without a range change.

The input signal pair may be foated up to 900 V above chassis ground without affecting accuracy. An additional feature which results in high accuracy is the constant 10.2 megohm impedance. This impedance presents a constant load on all voltage ranges.

Plug-in Units

Figure 1 illustrates the features obtained by using the

3441A, 3442A, 3443A, 3444A, 3445A or 3446A plug-ins with any 3439 A or 3440 A .

Plug. -im denctlon chart						
PJug- $3 \mathrm{n}^{*}$	3441 A	3442A	3443A	3444A	3445A	3446A
AC volts $10 \vee 101000$ V	* *	**	**	**	\checkmark	\checkmark
$\begin{aligned} & \text { DC volts } \\ & 10 \mathrm{~V} \text { to } 1000 \mathrm{~V} \end{aligned}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
DC volts 100 mV 101000 V			\checkmark	V		
OC amps				\checkmark		
Ohms				\checkmark		
Manual ranging	\checkmark	\checkmark	\checkmark	\checkmark	V	\checkmark
Auto-ranging		$\sqrt{ }$	\checkmark		\checkmark	
Flosting input	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Remote rangins		\checkmark	\checkmark		\checkmark	\checkmark
Remote function						\checkmark
-3439A and 3440A require a plugeln to operste. - Average response measurements: $100 \mu \mathrm{~V}$ to 300 volts, 50 Hz 50500 kHz use HP 457A; 1 mV to 300 volts, 10 KHz to 10 MHz use HP $400 \mathrm{E} / \mathrm{EL}$. True rms measurements: 1 mV to 300 volts, 10 Hz to 10 MHz , use HP 3400A.						

Table 1. Plugin Function chart.

BCD Recorder Output (3440A only)

Each of the four digits, with polarity, function and decimal location, is represented by four-iine, binary-coded decimal voltages in the 1-2-2.4 weighted code ($1-2-4.8$ available on special order). The decimal, polarity and the four digits are in parallel-coded form and are completely compatible with the HP 562A Digital Recorder which will print the information in 6 columns.

Performance

The operator can instantly verify the accuracy of the 3439 A and 3440 A by pressing a front-panel button. Typical performance on the 3440 A internal calibration source is better than $0.002 \% /{ }^{\circ} \mathrm{C}$ TC with stability typically better than $\pm 0.05 \%$ over a 3 month period. The linearity is approximately $\pm 0.01 \%$ for the 10,100 , and 1000 V ranges with 0.03% linearity full scale for the 100 mV and 1000 mV range. The stability of reading is approximately ± 1 count.

DIGITAL VOLTMETERS Interchangeable Plug.Ins Increase Versatility Models 3439A, 3440A

VOLTAGE, CURRENT, RESISTANCE

Specifications
(Main Frame HP 3439A and 3440A)

Model	HP 3440A	HP 3439A
Sample Rate:	s samples per second to 1 per 5 seconds with storage during samples and "Hold." In "Hold" a sample may be iniciated by applying a $+10 . \mathrm{V}$ pulse $20 \mu \mathrm{~s}$ wide or greater (ac coupled), or by contact closure.	Fixed at between 2 and 3 per second
DC Isolation:	Signal common may be Gloated up to 500 V de from chassis ground,	
Printer Output:	4 -line $\overline{B C D}(1-2-2-4) 6$ columns consisting of 4 digits of data, polarity, function and decimal. 4-line $B C D$ ($1-2.4-8$) " 1 " state positive is H02.3440A*. Im. pedance: $120 \mathrm{k} \Omega$ maximum, ach line. ' 0 " state leve! -24 V , " 1 " state level-1 V (both voleages are negative).	
Reference Levets:	Positive: approximately -2.5 V, 330 ohms sourte impedance. Negarive: approximately $-27 \mathrm{~V}, 920$ ohms source impedance.	
Print Command:	Step from -12 V to -2 V dc from a 100 ohm source.	
Hold-off Requirements:	Anywhere from +6 V to +15 V max. fron source impedance less than 2000 ohms (provided by HP 562A Digital Recorder).	
Remote Triggering:	+10 V pulse $20 \mu \mathrm{~s}$ wide or greater, or a contact closure.	
Power:		
Welght:	115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz , approximately 20 to 30 watls, depending upon plug-in.Net, $18 \mathrm{lbs}(8 \mathrm{~kg}$) ; Shipping, $23 \mathrm{lbs}(10,4 \mathrm{~kg})$.	
Dlmenslons:	$163 / 4{ }^{\prime \prime}$ wide $\times 5.7 / 32^{\prime \prime}$ high $\times 111 / 4{ }^{\prime \prime}$ deep ($425,5 \times 132.5 \times 285.6 \mathrm{~mm}$).	
Price:	\$1160	5950

-H02.3440A, price: $\$ 1220$. (requires modifled plug-|ns).
HP KOI-3440A Plug-in Extender. \$65.00.
(HP 3440A Only)
HP J74.562A/AR: Digital Recorder for use with HP 3440A ac. cepting $1.2 \cdot 2-4$ BCD code. (Floating Operation to $\pm 500 \mathrm{~V}$ dc.) Includes special print-wheel, 6 BCD column boards, input connector assembly with cable. Cabinet, $\$ 1693$; rack, $\$ 1668$.
HP J75.962A/AR: Same as J74-562A/AR except for single character function symbol. Cabinet, $\$ 1673$; rack, $\$ 1648$.
HP J76.562A/AR: Digital Recorder for use with HP 3440 A accepting 1-2-4.8 BCD code. (Floating operation to $\pm 500 \mathrm{~V} \mathrm{dc}$). Includes special printwheel, 6 BCD column boards, input connecror assembly with cable. Cabinet, \$1693: rack, \$1668.
HP J77-562A/AR: Same as J76-562A/AR except for single chaf. acter function symbol. Cabinet, $\$ 1673$; rack, $\$ 1648$.
Note:
If the 3440 A is used to drive an HP 562A Printer with a 20 d floating input to the 562 A , a special 3440 A is available. It allows 150 V de to exist between the 3440 A common and the low side of
the 2nd input. Up to 500 V de can exist berween the 3440 A common and chassis.

Data	Function	$\begin{gathered} \text { Logio } \\ 1-2.2 .4 \end{gathered}$	$\begin{gathered} \text { Lagle } \\ \text { 1-2-4-8 } \end{gathered}$	HP 56̌2A Prinl wheel		
				sid.	$\begin{aligned} & \text { } 75-562 A \\ & J 77-662 A \end{aligned}$	$\begin{aligned} & \hline J 74-662 A \\ & J 76.560 A \end{aligned}$
0	+ volts	0000	0000	0	+	+V
1	- volts	1000	1000	1	-	$-V$
2	+ amps	0100	0100	2	A	+A
3	-amps	1100	1100	3	\forall	-A
4	ac volts	0110		4	\sim	AC
5	ohms	1110	1010	5	Ω	Ω
6	ac volts		0110	6	\sim	AC
7	overrange		1110	7	*	**
8				8		
9	overrange	1111		9	*	**

PLUG-INS FOR 3439A, 3440A

Interchangeable plug ins used also for 3434A Plug-in Models 3441A, 3442A, 3443A

3441A Range Selector

The HP 3441A Range Selector is a plug-in unit with a range switch to manually select one of three voltage ranges; 10,100 , or 1000 volts.

3442A Automatic Range Selector

HP Model 3442A Automatic Range Selector is also available for use with the 3439A, 3440A Digital Voltmeters or the 3434A Comparator. The 3442A retains the manual cange selection and adds automatic and remore range features. Ten percent hysteresis is built into the automatic ranging function of the 3442A.

3443A High Gain/Auto Range Unit

HP Model 3443A High Gain/Auto Range Unit, avail. able for use with the 3439 A or 3440 A Digital Voltmeters or the 3434 A Comparator, features automatic or remote range selection from 100 mV to 1000 volts full scale. A front-panel, zero offset control enables the operator to obtain a zero indication at the DVM to compensate for the thermal offser voltages of exrernal connections. The 3443A has the same ranging capabilities as the 3442 A with the additional features of two added ranges and $10 \mu \mathrm{~V}$ resolution, making it ideal for thermocouple and transducer measurements.

Specifications, 3441A, 3442A

Voltage range: 4 -digit presentation of $9.999 \mathrm{~V}, 99.99 \mathrm{~V}$, and 999.9 V full scale with 5% overrange capability and over. range indicator.
Voltage accuracy: $\pm 0.05 \%$ of reading ± 1 digit including line voltage variations of $\pm 10 \%$ from nominal. A frontpanel adjustment on the 3440 A insures accuracy over the temperature range between $+15^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ and $\pm 0.1 \% \pm 1$ digit over the temperature range of $0^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Range selection: with 3441 A , manual. With 3442A: manual, automatic and remore range change. Speed: automatic (max.) achieves accurate reading in less than 1 second after new voltage is applied; remote (max.) will change range within 40 ms .
Voltrmeter input impedance: constant 10.2 megohms (to dc) all ranges.
Polarity: automaric indication.
Input filter characteristics: response time; less than 450 ms to a step function to within 99.95% of final value (with. out a range change).
Input filter ac relectlon: 10,100 and 1000 volt ranges: 30 dB at 60 Hz , increasing at 12 dB /octave.

Weight:

3441 A : net $1 \mathrm{lb}(0,45 \mathrm{~kg})$; shipping $4 \mathrm{lbs}(1,8 \mathrm{~kg})$.
3442 A : net $1.5 \mathrm{lbs}(0,7 \mathrm{~kg})$; shipping $4 \mathrm{lbs}(1,8 \mathrm{~kg})$.
Price: HP 3441, \$40; HP 3442A, \$150.
HP H01-3441A (plug-in for H02-3440A), $\$ 65$.
HP H02-3442A (plug-in for H02-3440A), $\$ 175$.

Specifications, 3443A

Voltage range: 4 -digit presentation of $99.99 \mathrm{mV}, 999.9 \mathrm{mV}$, 9.999 volts 99.99 volts, and 999.9 volts fuil scale with 5% overcange capability and overrange indicator.

Voltage accuracy:

9.999 V to 999.9 V full scale: $\pm 0.05 \%$ of reading ± 1 digit including line voltage variations of $\pm 10 \%$ from nominal. A front-panel adjustment on the 3440 A insures accuracy over the temperature range between $+15^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ and $\pm 0.1 \% \pm 1$ digit over the temperature range of $0^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
99.99 mV and 999.9 mV full scale: $\pm 0.1 \%$ of reading ± 1 digit including line voltage variations of $\pm 10 \%$ from nominal. A front-panel adjustment on the 3440 A insures accuracy over the temperature range between $+15^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ and $\pm 0.15 \% \pm 1$ digit over the temperature range of $0^{\circ} \mathrm{C}$ to $+15{ }^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Range selection: Manual, Automatic and Remote Range Change Speed: Automatic (max.) achieves accurate reading wichin 1.5 seconds after new voltage is applied; Remote (max.) will change range within 40 ms .
Voltmeter input impedance: constant 10.2 megohms (to dc) all ranges.
Polarity: automatic indication.
input filter characteristics: (to a step function to within 99.95% of final value without a range change) 10,300 , 1000 V dc ranges; response time $<450 \mathrm{~ms} .100,1000$ mV ranges; <1 second.
Input filter ac rejection: 10,100 , and 1000 volt ranges: 30 dB at 60 Hz increasing at 12 dB /octave. 100 and 1000 mV ranges: maximum of 40 mV and $400 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$ respectively at 60 Hz for less than 0.1% of full-scale error; allowable ac increasing at 6 dB per octave.
Weight: net $3 \mathrm{lbs}(1,35 \mathrm{~kg}$); shipping $5 \mathrm{lbs}(2,3 \mathrm{~kg})$.
Price: HP 3443A, $\$ 500$.
HP H02-3443A (plug-in for H02-3440A), $\$ 525$.

PLUG-INS FOR 3439A, 3440A Interchangeable plug-ins used also for 3434A

Plug-in Model 3444A

3444A DC Multi•Functlon Unit

The HP 3444 A DC Multi-Function Unit, available for use with the 3439A, 3440A Digital Voltmeters and 3434A Comparator, features volkage, current and resistance-measurement capabilities in one plug-in module.

This plug-in offers manual-ranging dc voltage, de current and resistance measuring capabilities. Full-scale ranges of 100 mV to 1000 V with $10 \mu \mathrm{~V}$ resolurion make this plug-in ideal for thermocouple and transducer measurements. Fullscale current ranges of $100 \mu \mathrm{~A}, 1,10,100$ and 1000 mA are available with a maximum sensitivity of 10 nA . Five resistance ranges of 1000 ohms to 10 megohms are provided.

Specifications, 3444A

Voltage range: 4 -digit presentation of $99.99 \mathrm{mV}, 999.9 \mathrm{mV}$, 9.999 volts, 99.99 volts, and 999.9 volts full scale with 5% overrange capability and overcange indicator.
Curyent range: 4 -digit presentation of $99.99 \mu \mathrm{~A}, 999.9 \mu \mathrm{~A}$, $9.999 \mathrm{~mA}, 99.99 \mathrm{~mA}$ and 999.9 mA with 5% overrange capability and overrange indicator.
Resistance range: 4 -digit presentation of 999.9 ohms, 9.999 k ohms, 99.99 k ohms, 999.9 k ohms and 9.999 megohms with 5% overrange capability and overrange indicator.

Voltage accuracy:

9.999 V to 999.9 V full scale: $\pm 0.05 \%$ of reading ± 1 digit including line voltage variations of $\pm 10 \%$ from nominal. A front-panel adjustment on the 3440 A in. sures accuracy over the temperature range between $+15^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ and $\pm 0.1 \% \pm 1$ digit over the temperature range of $0^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
99.99 mV and 999.9 mV fuil scale: $\pm 0.1 \%$ of reading ± 1 digit including line voltage variations of $\pm 10 \%$ from nominal. A front-panel adjustment on the 3440 A insures accuracy over the temperature range between $+15^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ and $\pm 0.15 \% \pm 1$ digit over the temperature range of $0^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

Current accuracy: $\pm 0.2 \%$ of reading ± 1 digit with line variations of $\pm 10 \%$ from nominal.
Resistance accuracy: $\pm 0.3 \%$ of reading ± 1 digit for all ranges up to the 10 megohm range with line variations of $\pm 10 \%$ from nominal. $\pm 1 \%$ of reading ± 1 digit on the 10 megohm range with line variations of $\pm 10 \%$ from nominal.

Ohmmeter current:

Range	Short oiroult ourren!
1 k	1 mA
10 k	$100 \mu \mathrm{~A}$
100 K	$10 \mu \mathrm{~A}$
1 M	$1 \mu \mathrm{~A}$
10 M	$0.1 \mu \mathrm{~A}$

Range selection: manual.
Voltmeter input Impedance: constant 10.2 megohms (to dc) all ranges.

Ammeter Input resistance:

Range	Input resistanes
$100 \mu \mathrm{~A}$	1000 ohms
$1000 \mu \mathrm{~A}$	100 ohms
10 mA	10 ohms
100 mA	1.3 ohms
1000 mA	0.4 ohms

Polarity: automatic indication.
Inout filter characteristics:
Voltage: less than 450 ms to 99.95% of final value for full-scale step function on 10,100 and 1000 volt ranges. Less than one sec to within 99.95% of final value for a full-scale step function on 100 and 1000 mV ranges.
Current: less than one sec to 99.95% of final value for a full-scale step function on all current ranges.
Resistance: 1000 ohms to 1 megohm; less than 1.0 sec to 99.95% of final value, 10 megohms; less than 5.0 sec to 99.95% of final value.
Input filter ac rejection:
Voltage: 10,100 and 1000 volt ranges; 30 dB at 60 Hz , increasing 12 dB /octave. 100 and 1000 mV ranges; maximum of 40 mV and $400 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$ respectively at 60 Hz for less than 0.1% of fuli-scale error; allow'able ac increasing at $6 \mathrm{~dB} /$ octave.
Current: p-p ripple current may be up to 40% of full-scale range at 60 Hz for less than 0.1% of full-scale error; allowable ac increasing at 6 dB /octave.
Welght: net $3 \mathrm{lbs}(1,35 \mathrm{~kg})$; shipping $5 \mathrm{lbs}(2,3 \mathrm{~kg})$.
Price: HP 3444A, \$575.
HP H02.3444A (plug-in for H 02.3440 A), $\$ 600$.

3445A

3446A

3445A AC/DC Range Unit 3446A AC/DC Remote Unit

The HP Model 3445A AC/DC Range Unit or the HP Model 34.46A AC/DC Remore Unir may be used with the 3439A. 3440A Digital Voltmeters or the 3434A Comparator for ac or de measurements. These solid-stare units have three full-scale ranges for both ac and de from 10 to 1000 volts. The ac conversion circuir of the $34+5 \mathrm{~A}$ and 3446 A produces a dc output voltage proportional to the average value of the applied ac voltage and is calibrated in ems. The table in the specifications illustrates the differences between the 3445A and 3446A Plug. ins.

Combining the HP 463A Precision Amplifier with the 344SA or 3446 A increases the sensitivity of either plug in from 10 volts full scale to as low as 10 mV full scale over a frequency range of 50 Hz to 100 kHz . Because the HP 463 A is a directcoupled amplifier it can be used to increase the de sensitivity with any 3441A, 3442A, 3445A or 3446A Plug-in with any 3439 A or 3440 A Digital Voltmeter. For further information refer to the 463A Data Sheet.

Specifications, 3445A, 3446A

Voltage range (ac \& dc): 4 -digit presentation of $9.999,99.99$, and 999.9 volts full scale with 5% overrange capability and overrange indicator.
Voitage accuracy (8C): from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ including line voltage variations of $\pm 10 \%$ from nominal.
\% Reading \% Full Scale Chart (± 2 counts)

60 Hz	20 kHz		50 kHz	100 kHz
10 V to 1 KV Full Scale	$\begin{gathered} \pm 0.1 \\ \mathrm{rdg} \end{gathered}$	$\begin{gathered} =0.1 \\ \text { f.s. } \end{gathered}$	$\begin{gathered} =0.1 \text { to }=0.3 \\ \text { inearly derated } \\ \text { f.s. } \end{gathered}$	

$\pm 0.005 \% /{ }^{\circ} \mathrm{C}$ T.C. applies from $0^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C}$ (use $+20^{\circ} \mathrm{C}$ as zero T.C. reference point) and from $+30^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$ (use $+30^{\circ} \mathrm{C}$ as zero T.C. reference point).

Voltage accuracy (dc): $\pm 0.05 \%$ of reading ± 1 digit including line voltage variations of $\pm 10 \%$ from nominal. A frontpanel adjustment on the 3440 A insures accuracy over the temperature range between $+15^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ and $\pm 0.1 \%$ \pm I digit over the temperature range of $0^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Response speed (ac): achieves specifined accuracy within 3 sec when on proper range. Allow an extra second for recovery if overloaded.
Floating measurements: signal common may be floated up to 500 V dc above chassis ground.
Input impedance:
10 megohms shunted by 20 pF nominal on all ac ranges; 10.2 megohms on all dc ranges.

Input fliter characteristics (dc):
Response time: $<450 \mathrm{~ms}$ to 99.95% of final value for a step function.
AC rejection: 30 dB at 60 Hz . increasing $12 \mathrm{~dB} / 0 \mathrm{ctave}$.
Remote selection: remote selection is made by contact closure to ground through <100 ohms. Change will be completed $<40 \mathrm{~ms}$. (Refer to rable for modes available.)

	3446 A	3448 A
Input Terminals	Plug-In only	Plug-in \& Main Frame selected by Front Panel Swilch
Range Selection	Manual, Automatic Remote	Manual, Remote
Function Selection	Manual	Manual, Remota
Input Impedance (nominal)	10 magohms / 20 pF	Plug-in Input: 10 mesohmis/35 pF Main-Frame input: 10 megohms/175 pF

Polarity: automatic indication.
Weight: net $2.75 \mathrm{lbs}(1,24 \mathrm{~kg})$; shipping $5 \mathrm{lbs}(2,3 \mathrm{~kg})$.
Prlce: HP 3445A, \$575; HP 3446A. \$600. HP H02-3445A (plug-in for H02-3440A), $\$ 600$.

MULTI-FUNCTION METER DC, AC voltage, ohms, limit test, all with ratio 3450A

 VOLTAGE, CURRENT, RESISTANCE

The Hewlett-Packard Model 3450A Multi-Function Meter is a five digit integrating digizal voltmerer. The basic instrument measures de voltage and de voltage zatios. Added measurement capability is achieved by the addition of plug in options. all of which can be easily installed in the field.
The 3450A uses a dual-slope integration technique and is fully guarded. All of its capabilities are contained in $33 / 8$ inches of rack height and require no cooling fan. Refer to pages 231 and 232 for technical information.

Specifications
 DC voltage

Full range display: $\pm 100.000 \mathrm{mV}, \pm 1.00000 \mathrm{~V} . \pm 10.0000 \mathrm{~V}$. $\pm 100.000 \mathrm{~V}, \pm 1000.00 \mathrm{~V}$. Overranging: 20% on all ranges. Range selectlon: manual or automatic. Remore optional.

Performance

Accuracy: $24 \mathrm{hr}\left(23^{\circ} \mathrm{C}=1^{\circ} \mathrm{C},<50 \% \mathrm{RH}\right.$. This accuracy is seferenced to the calibrating source).

Ranga	Spaotlication
1 V thru 1000 V	\pm (0.003% of reading $+0.001 \%$ ol range)
100 mV	\pm (0.003% of reading $+0.004 \%$ of range)
$30 \mathrm{Day}\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$:	
Range	Speothallon
1 V thru 1000 V	$\Rightarrow(0.008 \%$ of reading $+0.002 \%$ of range $)$
100 mV	\pm (0.008% of reading $+0.01 \%$ of range)

Temperature coefficient ($0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$): $\pm(0.0004 \%$ of reading $+0.0003 \%$ of range) per ${ }^{\circ} \mathrm{C}$.
Measuring speed:

Titcgratlon Perlod	Reading Poriod (wlthout range ohange)	Autorange Thmo (por range ohange)
$1 / 10 \mathrm{~s}$	380 ms	380 ms
$1 / 60 \mathrm{~s}$	65 ms	65 ms

Instrument reads within specifed accuracy when triggered coincident with step input voltage.

Input characteristics
Input resistance:

Range	Spealioatlon		
100 mV JV			
and 10 V		\quad	$>1010 \Omega$
:---:			

Common-mode rejection (CMR): CMR is the ratio of the peak common-mode voltage to the resultant pesk normal-mode volrage with $1 \mathrm{k} \Omega$ unbalance ir either lead.
DC: $>140 \mathrm{~dB}, \mathrm{AC}$ (at 60 Hz) : $>120 \mathrm{~dB}$.
Normal-mode relectlon (NMR): NMR is the ratio of the peak normal-mode signal to the resultanc error in reading. Sum of dc input and peak normal-mode signal must not exceed 140% of sange.

DC ratio
Full range dlsplay: $\pm 1.00000, \pm 10,0000, \pm 100,000, \pm 1000.00$. Ratlo capability

 in ovarrange candikian OVorlood condition

Overranglng: 20\% on all ranges.
Range selectlon: manual or automatic for X input. Remote optional for X input. Automatic for Y inpur.

Performance

Aecuracy (30 day, $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$): $\pm(0.01 \%$ of reading $+0.002 \%$ of range $+\frac{\mathrm{Y} \text { range }}{\mathrm{Y} \text { voltage }} \times 0.002 \%$ of range $)$
Temperature coefficlent $\left(0^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right): \pm(0.0006 \%$ of read. ing $+0.0003 \%$ of tange) per ${ }^{\circ} \mathrm{C}$.

Measuring speed:

Integration Porbod	Anading Parlad (without range ohange)	Autorange Tims (per range ohange) Yinput X input
$\mathrm{l} / 10 \mathrm{~s}$	840 ms	380 ms 840 ms
$1 / 60 \mathrm{~s}$	210 ms	$65 \mathrm{~ms} \quad 210 \mathrm{~ms}$

Input characteristles
Input conflguratlon: isolated 4-terminal, guarded. No common ground necessary between signals.
Input resistance: same as DC VOITAGE for both X and Y inputs.
Common-mode rajection (CMA): same as DC VOLTAGE for both X and Y inputs.
Normal-mode rejection: same as DC VOLTAGE for X input.

AC voltage (Option 001)

True RMS-responding (45 Hz to 1 MHz)
Full range display: $1.00000 \mathrm{~V}, 10.0000 \mathrm{~V}, 100.000 \mathrm{~V}, 1000.00$
Overranging: 20% on all ranges (1500 V peak on 1000 V range).
Range selection: manual of automatic. Remote optional.

Performance

Accuracy (30 day, $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$):
Max. 1500 V peak.

Stability ($24 \mathrm{hr}, 23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}, 10 \mathrm{mV}$ to 500 V);

Froquency Range	Spposfration
45 Hz to 200 Hz	\pm (0.03\% of reading $+0.003 \%$ of range)
200 Hz 105 kHz	\pm (0.01\% of seading $+0.002 \%$ of sange)
5 kHz 10.100 kHz	$\pm(0.03 \%$ of reading $+0.003 \%$ of range)

Measuring spesd:

$\begin{gathered} \hline \begin{array}{c} \text { Integratton } \\ \text { Pertod } \end{array} \\ \hline \end{gathered}$	Readling Pertod (w)thoul range changa)	Autoranga Thrie (par ranpe change)
1/10s	2.7 s	2.7 s

lostrument reads within specified accuracy in one reading from 10% to 100% of range for crest factors up to $4: 1$.
Temperature coeffleient $\left(0^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$:

Frequaney Range	Coefillolont$\Rightarrow(\%$ af reading $+\%$ af rengb $)$ per ${ }^{\circ} \mathrm{C}$	
45 Hz to 100 Hz	0.003\%	0.001\%
100 Hz to 200 Hz	0.002\%	0.0005%
200 Hz to 5 kHz	0.001%	0.0004%
5 kHz 1050 kHz	0.002%	0.0005%
50 kHz to 200 kHz	0.003\%	0.001\%
200 kHz to 500 kHz	0.01%	0.001\%
500 kHz to 1 MHz	0.02\%	0.002\%

Input characteristics

Input Impedanca

Front terminals: $2 \mathrm{M} \Omega$ shunted by $90 \pm 10 \mathrm{pF}$ in series with $0.1 \mu \mathrm{~F}$.
Rear terminals: $2 \mathrm{M} \Omega$ shunted by $135 \pm 15 \mathrm{pF}$ in series with $0.1 \mu \mathrm{~F}$.
Crest factor: 7:1 (1500 V peak max).
Common-mode rejection (CMR): same as DC VOLTAGE.

AC ratio (Option 001)

True RMS-responding
Full range display: $1.00000,10.0000,100.000,1000.00$.
Ratio capabllty: overranging: 20% on all ranges.

ERIIIS Ratio measuremant possible only if Y input in in ovarranga condition.
O., Overload condition

Range selaction: manual or automatic for X input. Remote optional for X input. Automatic for Y input.

Performance

Accuracy (30 day, $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$): $\pm(0.02 \%$ of reading $+0.01 \%$ of range + sum of measurement accuracy of each input).
Temperature coefficient ($0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$): 200 Hz to 5 kHz : $\pm\left(0.002 \%\right.$ of reading $+0.001 \%$ of range) per ${ }^{\circ} \mathrm{C}$.
Measuring speed:

$\begin{aligned} & \text { Intepration } \\ & \text { Perfod } \end{aligned}$	$\begin{aligned} & \text { Reading Poflod } \\ & \text { (without range change) } \end{aligned}$	Autbrange Time (per range change)	
		Y Input	X Input
1/10 s	8.15	2.75	8.15

Input characteristics

Input configuration: isolated 4 -terminal, guarded. No common ground necessary between signals.
Input impedance: same as $A C$ VOLTAGE for both X and Y inputs.
Crest factor: 5:1.
Common-mode rejection (CMR): same as DC VOLTAGE for both X and Y inputs.

Ohms (Option 002)

Full range display: $100.000 \Omega, 1.00000 \mathrm{k} \Omega, 10.0000 \mathrm{k} \Omega, 100.000$ $\mathrm{k} \Omega, 1000.00 \mathrm{ks}, 10000.0 \mathrm{k} \Omega$.
Overrangling: 20% on ail ranges.
Range selectlon: manual or automatic. Remote optional.

Performance

Accuracy (30 day, $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$):

Range	Spasificaton
100 ת	$\pm(0.01 \%$ of reading $+0.01 \%$ of range)
$1 \mathrm{k} \Omega, 10 \mathrm{k}, 100 \mathrm{k}$?	$\pm(0.01 \%$ of reading $+0.002 \%$ of range)
$1000 \mathrm{k} \Omega$	$\pm(0.02 \%$ of reading $+0.002 \%$ of range)
$10000 \mathrm{k} \Omega$	$\pm(0.1 \%$ of reading $+0.002 \%$ of range)
Stabllity ($24 \mathrm{hr}, 23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$):	
Rsoge	8peothoastion
$100 \cap$	\pm (0.004\% of reading $+0.004 \%$ of range)
$\begin{aligned} & \text { I k } \Omega \text { through } \\ & 10000 \mathrm{k} \Omega \end{aligned}$	$\pm(0.004 \%$ of reading $+0.001 \%$ of range $)$

Temperature confficient ($0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$):
$\pm(0.0006 \%$ of reading $+0.0003 \%$ of range $)$ per ${ }^{\circ} \mathrm{C}$.
Measuring speed:

Integration Perlod	Readiny Period (w/thout range shango)	Autorange Tlme (per range changa)
1/10 s	380 ms	380 mls
1/60 s	$\begin{gathered} 65 \mathrm{~ms} \\ \text { (165 } \mathrm{ms} \text { on } 10 \mathrm{M} \Omega \text { range }) \end{gathered}$	$\begin{gathered} 65 \mathrm{~ms} \\ \text { (165 ms on } 10 \mathrm{M} \Omega \text { (ange) } \\ \hline \end{gathered}$

Instrument reads within specified accuracy when triggered coincident with step input resistance at terminals.

Input characteristics
Input configuration: 4-wire, guarded.
Current through resistance:

Range	Signal Currerll
$100 \Omega_{1} 1 \mathrm{k} \Omega, 10 \mathrm{kI}$	1 mA
$100 \mathrm{k} \Omega, 1000 \mathrm{k} \Omega$	$10 \mu \mathrm{~A}$
$10000 \mathrm{k} \Omega$	$1 \mu \mathrm{~A}$

Common-mode rejection (CMR): same as DC VOLTAGE.
Normal-mode rejection: same as DC VOLTAGE.
Overload protection: $\pm 200 \mathrm{~V}$ peak for X or Y input.
Ohms ratio (Option 002)
Full range display: $1.00000,10.0000,100.000,1000.00$. (For ohms ratio specifications refer to Data Sheet.)

Limit test (Option 003)
Applicable to: DC, DC RATIO, AC, AC RATIO, OHMS and OHMS RATIO. No degradation in performance of above six functions.

Limit selection

Two A-digit limits (with 20% overranging), including polarity, are selectable in 1-2-4.8 BCD form with external closure to ground through $<3 \mathrm{k} \Omega(2.8 \mathrm{~mA}$ max) or application of -0.5 V to +2.5 V for the " 0 " state as show below.

Stal	Voltage
${ }^{\prime 0} 0^{\prime \prime}$	$-0.5 \mathrm{~V} 10+2.5 \mathrm{~V}$
${ }^{\text {" }} \mathrm{l}$ "	$+5.5 \mathrm{~V} 10+12 \mathrm{~V}$

Limits must be on same range and same polarify.
Output signals
Llmit indications: HI, GO, LO front-panel lighes defined as follows: $\quad \mathrm{High}$ Limit $\leq \mathrm{HI}$

$$
\begin{aligned}
& \text { Lower Limit } \text { GO } \\
& \text { LO LHigh Limit } \\
& \text { <Lower.Limit }
\end{aligned}
$$

Digital display: 5 digits plus overrange.
Digital output: 9 columns of information including HI, GO, LO decisions are available in 4 -line $1-2 \cdot 4.8$ " 1 " state positive BCD form with DIGITAL OUTPUT (Option 004).

Digital output (Option 004)

Print command: dc coupled. Print level: 0 V .12 mA max current. Print hold off level: -0.5 V to +2.5 V .9 mA max current.
BCD outputs: 4 -line BCD (2-2-4.8) " 1 " state positive, 9 columns of information, as follows: 2 columns for function and polarity, 1 column for range, 6 columns for digital data.

BCD levels:

State	Vollage	Output Charaotertstlas
" 0 "	-0.5 V to +2.5 V	12 mA max sink current
" 1 " 5	$5.5 \mathrm{~V} 10+12 \mathrm{~V}$	$12 \mathrm{k} \Omega$ source resistance

BCD reference levels:

Ref Level	Volinge	Source Reasictance
Negative	+1 V	$3 \mathrm{k} \Omega$
Positive	+6 V	$10 \mathrm{k} \Omega$

Storage: BCD sigaal levels for previous reading are held until print command of next reading is initiated.
Scanner advance: -12 V pulse. 20 ms minimum before start of next reading.

Remote control (Optlon 005)

All remote control lines are selected by an external closure to ground through $<3 \mathrm{k} \Omega(2.8 \mathrm{~mA}$ max) or application of -0.5 V to +2.5 V for the " 0 " state as shown below.

State	Voltagg
" 0 "	$-0.5 \mathrm{~V} 10+2.5 \mathrm{~V}$
" 1 "	+5.5 V to +12 V

Remote controls

Program external trigger: selects external trigger in remote operation (normal trigger is selected if this line is not programmed).
"External trigger: actuated by external contact closare or application of " 0 " state as shown above for a duration of $1 \mu \mathrm{~s}$ miniroum with at least 20 ms in " 1 " state before " 0 " state.

* 1/60 s Integration period: (normal integration period is $1 / 10 \mathrm{~s}$).
- 100 ms delay: adds 100 ms delay between trigger and skart of measurement for source settling time.
* $10 \mathrm{M} \Omega$ input sesistanca: selects $10 \mathrm{M} \Omega$ input resistance on dc $100 \mathrm{mV}, 1 \mathrm{~V}$. and 10 V ranges (normal input resistance on these $d c$ ranges is $>10^{10} \Omega$).
Program function: 4 line cade selects desired function.
Program remote: disables all front-panel controls except INT and MANUAL/EXTERNAL trigger.
Front-panel lockout: disables all front-panel controis.
Remote range: 4 -line code selects desired range.
Remote ratlo range: 3 -line code selects desired ratio range.
Remote decimal: 4-line code selects desired decimal location independent of actual range.

General

Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, unless otherwise specified.
Power: 115 V or $23 \mathrm{~V} \pm 10 \%$, 50 Hz to $400 \mathrm{~Hz}<75 \mathrm{~W}$ in-
cluding all options under normal environmental conditions.
Dimensions: $163 / 4$ " wide, $33 / 8^{\prime \prime}$ high (without removable feet), $193 / 8^{\prime \prime}$ decp ($425 \times 86 \times 491 \mathrm{~mm}$).
Weight: basic instrumeak: net 31 lb $(14,1 \mathrm{~kg})$. Including all options: net $36 \mathrm{lb}(16,3 \mathrm{~kg})$. Shipping: $50 \mathrm{lb}(22,7 \mathrm{~kg})$.
Accessorles furnished: rack mounting kit for 19" rack.
Accessories available: HP 11133A rear inpur cable assembly, 830: HP 11112A Limit Selector, \$150.
Price: HP 3450A (includes DC and DC RATIO) $\$ 3150$. Option 001 AC Converter (adds AC, AC RATIO) add $\$ 1250$. Option 002 OHMS Converter (adds OHMS, OHMS RATIO)
add $\$ 400$.
Option 003 LIMIT TEST (adds Limit Test Capability)
add \$ 350.
Option 004 DIGITAL OUTPUT (BCD 1-2-4.8 code)
add $\$ 175$.
Option 005 REMOTE CONTROL
add $\$ 225$.
Option 006 REAR INPUT TERMINALS (add Front/Rear selector switch, rear terminals and 11133A Cable Assembly)
add $\$ 50$.
-These remole capabilities are included in the basic 3450A and do not require
the addition of Option 005.

VOLTAGE, CURRENT. RESISTANCE

The 2402A Integrating Digital Voltmeter combines 43 meas. urement per second sampling rate and the precision and measurement flexibility expected from a laboratory instrument with the programming and electrical output features necessary for data acquisition systems use. It achieves high speed and high accuracy at low levels, without preamplifiers.

Instrument design virtually eliminates errors caused by exrraneous noise without imposing any restrictions on the grounding of the signal source, recording device, or programmer, or upon the measuring speed of the instrument. The controls and input/output features of the 2402 A permit maximum versatility of application, yet the instrument is straightforward to use.

High accuracy in a DVM is of little practical value unless this accuracy can be maintained in the presence of noise and under the far from ideal conditions of everyday use. The 2402A is average-reading, which greatly reduces the effects of superimposed noise. A floated and guarded input circuit eliminates common mode noise error. Combined, these techniques yield effective common mode noise rejection greater than 126 dB (2 million to 1) at any frequency, including dc.

The 2102 A reads the average value of the applied voltage over a $1 / 60$ second sample period, and provides maximum rejection of superimposed noise as 60 Hz ($1 / 50$ second optional). Since no input filters are employed, it provides both noise rejection capability and rapid accurate response to step input required for data acquisition system applications. Superimposed
noise rejection holds for combined signal plus noise amplitudes 10130% of fuil scale.

The 2402A features a guard that completely isolates the floating measuring circuit from the chassis, breaking the common mode loop. To take a practical example of the 2402 A noise rejection, the combined effect of guarding and averaging at 60 Hz is such that a 100 V peak-to-peak common mode potential wiil not cause a discemible error in reading on any range.
$A C$ voltages to 750 V peak can be measured on four ranges from 1 V to 1000 V when the 2402 A is equipped for optional ac voltage measurement. It is adapted for ac voltage measurement by installation of plug-in ac-to-dc converter and control boards. The converter is average-reading and is calibrated in rms with respect to sinusoidal inpur. The de voltage input connectors are also used for as input. The same guard provides common mode rejection for ac and de voltage measurements. The overload detection circuit of the basic 2402 A protects the ac converter.

Resistance measurements to 13 megohms can be made on five ranges from $\mathrm{lk} \Omega$ to $10 \mathrm{M} \Omega$ when the 2402A is equipped with this oprion. It is adapted for resistance measurement by installation of piug-in ohms-to-dc converter and control boards and a f-wire guarded rear panel connector. The converter is installed inside the guard, assuring freedom from common mode effects.
The 2402A may be equipped for (requency measurements to 199.99 kHz . Frequency measurement is a plug in option.

Cover flips up to protect controls in systems use.

2402A Integrating Digital Voltmeter

Specifications

(For $\pm 10 \%$ line voltage variation and 6 months operation, assuming daily calibration against internal standard after 30 -minute warm-up.)

DC voltage measurement

Noise rojection: overall effective common mode rejection: (ratio of common mode signal to its effect upon readings) : 160 dB at dc , decreasing to 126 dB above 30 Hz (infinite rejection cusp gives 168 dB effective cmr at $60 \mathrm{~Hz} \pm .15 \%$). Overall rejection combines common mode rejection and superimposed noise rejection.
Input eircuit: type: floated and guarded signal pair. Signal low and guard may be floated up to 500 V above chassis ground with up co 1000 V input signal (maximum low.to-guard voltage is 50 V).

Ranges: 100 mV and $1,10,100$, and 1000 V full scale selected by front panel switch, external programming or autoranger.
Overranging; to 130% of full scale, except on 1000 V range. Self protected on any range against input voltage to 1000 V .
Protective circuits reset automatically for each new reading.
Input impedance: greater than $1000 \mathrm{M} \Omega$ on 100 mV . I V and 10 V ranges; $10 \mathrm{M} \Omega$ on 100 and 1000 V ranges.
Internal calibration standard: (independent of measuring circuit). Derived from stabilized reference diode operating in a constant temperature oven; maintain specified accuracy for 6 months.
Accuracy: (source impedance $10 \mathrm{k} \Omega, 43$ measurements per sec.
$\pm 10 \%$ line voltage variation.)

	$1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$	800 mV
Short term (24 hour) Aceuracy (at $25 \pm 1^{\circ} \mathrm{C}$)	$.003 \% \mathrm{rdg} \pm .003 \%$ is (.006\% rdg in overrange)	$.003 \% \mathrm{rdg}=.005 \% \mathrm{fs}$ (.008\% rdg in overrange) Below 30 mV accuracy improves to $3 \mu V=.009 \%$ rdg.
Long term (f months) Aoburacy (at $25=1^{\circ} \mathrm{C}$)	$.01 \% \mathrm{rdg}=.003 \% \mathrm{rs}$ (. 013% rdg in overrange)	$.01 \% \mathrm{rdg} \pm .005 \% \%$ (. 015% rdg in overrange) Below 30 mV accuracy improves $103 \mu V \pm .015 \%$ rdg.

TEMP EFFECT	Per ${ }^{\circ} \mathrm{C}$ ohane from Callbrale temperature	
$\begin{aligned} & 15 \text { to } 40^{\circ} \mathrm{C} \\ & 10 \text { ot } 16^{\circ} \mathrm{C} \text { or } \\ & 40 \text { to } 50^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & .0015 \% \text { rdg } \pm .0006 \% \text { is } \\ & .002 \% \text { rdg } \pm .0006 \% \text { is } \end{aligned}$	$\begin{aligned} & .0015 \% \mathrm{rdg} \pm .00015 \% \text { is } \\ & .002 \% \mathrm{rdg} \pm .00015 \% \text { is } \end{aligned}$

Measurement speed: to 43 measurements per second when trig. gered externally. Selfetriggers at speeds continuously adjustable from 1 measurement every 10 seconds to 10 per second.
Resolutlon: 1 pert in 130,000 on 6 -digit display: 100 mV range displays readings to $1 \mu \mathrm{~V}$.

AC voltage measurement option

Common mode rejection: 160 dB at dc , decreasing to 120 dB at 60 Hz and 6 dB per octave for noise frequencies above 60 Hz , with $1 \mathrm{~K} \Omega$ between low side of source and low side of input.
Input circult: floated and guarded signal pair. Signal low and guard may be lloated up to 500 V above chassis ground with maximum input voltage applied.
input voitage limitations: 240 V peak on 1 V range 750 V peak on all other ranges.
Input impedance: $1 \mathrm{M} \Omega \pm 1 \%$ shunted by 200 pF (maximum).
AC only operation: frequency range: 50 Hz 10100 kHz .
Ranges: 1, 10, 100, and 1000 V full scale, selected by front parel switch, external progranming or autoranger.
Overranging: to 130% of full scale, except 750 V peak, on 1000 V range
Accuracy (with respect to standard used for calibration):

Alomal ${ }_{\text {a }}^{\text {frequen }}$ (1)	${ }_{60} \mathrm{~Hz}^{\text {d }}$		10 kHz	10 kHz	300 kHs
	Prde \% $\mathrm{T}_{\text {a }}$		\%rd\% \% 1	\%rdy \% is	\%dy \% b
Abcuracy (at $25=1^{3} C$)	. 09.05	. 08 . 03	. $06 \quad .03$. 09.05	. 3.09
Respense error (1)		. 05	. 02	. 02	. 02
Rippla error (3)	. 03	. 02	- -	- -	- -
Tamperalure Offent (a) (Pay ${ }^{\circ} \mathrm{C}$ ohange in amblent from $2^{2} 5^{\circ} \mathrm{C}$, over 10 to : $60^{\circ} \mathrm{C}$ range)	. 004.003	. 004.003	. 004.003	. 007.003	. 013.003

(1) Straight line inlergolation holds for lequencles betwesn points.
(3) Applicable only to step input (recelved from data systom signal scanner) or autorange operation.
(3) Ripple arror decraasas is dB pee oclave above 85 Kz , is zero at 60 Hz because or superimposed nolse re eccion of bzsicicinstrument.
(1) Assumes calibration of 2402 A against internal standatd at $25^{\circ} \mathrm{C}$ amblent. Calioration of 2402A at operating tempersture decresses \% rog tamperature effict .0003\%.

AC on DC operation: maximum de component: $\pm 200 \mathrm{~V}$ on any range.
Ranging: must start from 1000 V range, proceeds to lower range as required.
Peak input: ac plus de to 100% of full scale, except 750 V peak maximum on 1000 V range.
Measurement speed: to 1.9 externally-riggered measerements pet second. Self-triggered measurement rate adjustable from 1 mea. surement every 10 seconds to 1.6 per second.

Resolution: 1 part in 130,000 on 6.digit display; $10 \mu \mathrm{~V}$ on 1 V range.

Resistance measurement option

Noise rejection: measurement circuit enclosed in same guard as de circuit, reducing effect of ac common mode noise when guard is connected to low side of test resistance. Double-shielded cable extends guard to test resistance.
Input circult: guarded, modified four-terminal circuit; unknorn re. sistor can be either grounded or foating.
Ranges: $1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$, and $10 \mathrm{M} \Omega$ full scale, selected by front panel switch, extemal programming or optional autaranger.
Overranging: to 130% of full scale. Self-protected on all ranges against up to 50 V across resistance input.
Absolute accuracy:

Restatanee ranye		Ω	10 kS	$100 \mathrm{k} \Omega$	1 Mn		
Measurement current	1		1 mA	$100 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$		
Aoouracy at $25^{\circ} \mathrm{C}$	\% rdg $=\%$ is		. $013 \% \mathrm{rdg} \pm .003 \%$ is			\% rdg $\pm \%$ fs	
	. 016	. 003				. 025	. 005
$\begin{aligned} & \text { Temperature (1) } \\ & \text { ofleot } \end{aligned}$	$.004 \% \mathrm{rdg}=.003 \%$ is per ${ }^{\circ} \mathrm{C}$ diference of amblent with respect to $25^{\circ} \mathrm{C}$ over 10 to $50^{\circ} \mathrm{C}$ range						

(1) Calioration ol 2402 A agalnst Internal standard at operating temperature decreases $\%$ dg temperature elfiect $.0015 \%$ per ${ }^{\circ} \mathrm{E}$. to 0025% rdg per ${ }^{\circ} \mathrm{C}$.
Measurement speed: to 8 externally triggered readings per sceond. Self-riggered measuremenc rate is adjustable from 1 measurement every 10 seconds to 4.5 per sccond.
Resolution: 1 part in 130,000; ,018 on $1 \mathrm{k} \Omega$ range.

Frequency measurement option

Frequency range: 5 Hz at $199,899 \mathrm{kHz}$.
Gate tlme: 1 second; provides 1 Hz resolution
Accuracy: (± 1 count ± 1 time base stability); time base aging rate: 2 ppriper weck over 20 io $30^{\circ} \mathrm{C}$, time base temperature effect: 100 ppm over range 10 to $50^{\circ} \mathrm{C}$.
Input
Amplitude range: . 1 to 100 V rms.
Pulse or square wave input: negative 1 to 100 V amplitude,
$2 \mu_{\mathrm{s}}$ minimum duration, 50% maximum duty cycle.
Impedance: I MS shunted by 150 pF .
Maximum voitage: 150 V peak dc plus ac or pulse.

Autorange option

Range selection: DC voltage ranges; each time autoranger is programmed, it starts on 1 V range to take advantage of fast up-rang. ing. While autoranging is continuously programmed, autoranger starts at range selected ior previnus reading, sequences to higher or lower range as required. AC voltage ranges; autaranger starts at 1000 V range, sequences to lower range as required. Up-ranges at 110% of full scale, down-ranges at 10.2%.

General

Display and system intertace: 6 -digit display, $B C D$ output and program inputs. Polarity, decimal, measurement units, calibration. and overload conditions indicared automatically and included in output as function and decimal digits.
Operating conditions: specifications apply for ambienc temperaiures 10 to $50^{\circ} \mathrm{C}$, relative humidity to 90% at $40^{\circ} \mathrm{C}$, altitude to 15,000 feet.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 30$ to $60 \mathrm{~Hz}, 150 \mathrm{~W}$.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $191 / 2^{\prime \prime}$ deep behind panel (425 x 133 $\times 494 \mathrm{~mm}$); hardware furnished for $19^{\prime \prime}$ wide rack mount.
Weight: net $49 \mathrm{lbs}(22,2 \mathrm{~kg})$; shipping $56 \mathrm{lbs}(25,4 \mathrm{~kg})$.
Price: 2402A for DC measurements, $\$ 4800$: AC adds $\$ 450$; resist. ance adds $\$ 750$; frequency adds $\$ 350$; autoranging adds $\$ 250$.

VOLTAGE, CURRENT RESISTANCE

INTEGRATING DVM
Precise measurements despite severe noise Model 2401C

The 2401 C Integrating Digital Voltmeter combines the precision and measucement flexibility of a laboratory instruntent with system programming and elecrical output

Design features virtually eliminate theasurement errors due. to extraneous noise superimposed on the signal, withour restriction on grounding of the signal source, recorder, or pregramming device. Signals as small as a few per cent of full scale can be accurately measured even in the presence of noise approaching three times full scale.

The 2401 C measures the average value of the applied volt. age over one of three fixed crystal-cootrolled sample periods. Reversing counter circuits permit signals to be integrated around zero wirt full instrument accuracy.

Operation of the optional auto-ranger is extremely fast-34 msec maximum tange change time. The 2.101 C with auroranging finds excellent application at high sampling rates with varying input signals and at rapid scanning rates when employed in multi-channel systems with widely varying signal levels. The auto-ranger also will select proper range of optional preamp and ac/ohms converter at reduced ranging speeds.

The 2401C is designed for fully automatic operation within a digital data acquisition system. Measurement function, volt. age range, sample period. sampling rate and integration interval all can be selected by external circuit closures to ground. While the measurement circuit of the 2301 C is guarded, all remote control lines and electrical outputs are referred to chassis ground and do not interfere nith the guard.

AC/Ohms measurement

The Model 2410 BAC /Ohns Converter enables ac voltages and resistances to be measured aith the 240iC Digital Voltmeter. AC voltages up to 750 V peak and resistances up to 10° ohms are converted to proportional de voltages between 0 and I volt. Optionally, either the ac voltage or resistance converter section may be omitred from the 2410 B .

Guarded data amplifier

The $2411 \mathrm{~A} / 2401 \mathrm{C}$ combination offers a full scale input range of 10 mV with overranging to 30 mV , ideal for measuring outputs of sources such as thermocouples and strain gages. The low zero drift and noise contributed allow excellent accuracy to be obtained in low level measurements.

Specifications, 2401C

DC voltage measurements, nolse relection: overall effective common mode rejection: 140 dB at all frequencies 160 dB at dc (0.1 second sample period); superimposed noise rejection: more than 20 dB at 35 Hz for 0.1 second sample period, increases 20 dB per decade increase in frequency, infinite rejection at frequen. cies evenly divisible by 10.

Input clrcult: type: floated and guarded signal pair, may be operaled up to 500 V above chassis ground; ranges: 5 from 0.1101000 V f.s., selection by front-panel swith or remote circuit closure to ground, polarity sensed automatically; overranging: to 300% f.s. excep! 1000 V range; overload: range automatically switched to 1000 V at 310% f.s., resel by next read command; input impedance: $10 \mathrm{M} \Omega$ on $10.100,1000 \mathrm{~V}$ ranges, $1 \mathrm{M} \Omega$ on i V range. $100 \mathrm{k} \Omega$ on $0.1 \cdot \mathrm{~V}$ range. $<150 \mathrm{FF}$ on all ranges.

Absolute accuracy: 0.01% of reading $\pm 0.005 \%$ f.s. ± 1 digit at $25^{\circ} \mathrm{C}$; temperature coefficient 0.001% of reading per ${ }^{\circ} \mathrm{C}, 10$ to $40^{\circ} \mathrm{C}$.

Internal calibration source: $\pm 1 \mathrm{~V}$ standard for self-calibration: maintains rated accuracy for 6 months after initial calibration to 0.002% at $25^{\circ} \mathrm{C}$.

Measurement speed: fixed sample periods of $0.01,0.1$ or 1 s selected by front-panel switch or remote circuit closure to ground.

Resolution: depends on sample period; max. $1 \mu \mathrm{~V}$ per digit.
Auto-ranger (optionai) voltage ranges: automatically selects range from 5 input ranges of standard instrumenc (0.1 V ro 1000 V f.s.). 34 ms max. range change time. Also selects appropriate gain set. ting (X_{1} in X 10) when 2401 C is used with 2411A Amplifier.

DC voltage integration: input signal is integrated over selected sample period; using fixed sample period, integral is average of input.

Frequency measurements: $s \mathrm{~Hz}$ in 300 kHz , op pianally to 1,2 MrHz : gate time 0.01. $0.1,1 \mathrm{sec}$ ur manual: accurary: $\pm 1 \mathrm{count}=$ time base accuracy; time base: stability at constane temperalure ($\pm 5^{\circ} \mathrm{C}$) is $\pm 2 / 10^{6} /$ week, remperature effect $\pm 100 / 10^{11}$ (Ner range 10 to $50^{\circ} \mathrm{C}$. provisions for external ume base: display time: variable from 0.2 to 7 sec, or held until reset: input senstivity: 0.1 to 100 V ems: impedance: I Mrs shumued by is pF .

Period measurements (optional): 1,10 , and 100 pertods: $\& \mathrm{~Hz}$ to 10 kHz : display is direaly in ms: resolution referred eo single period: 1 period, $100 \mu \mathrm{sec}$; 10 perieds. $10 \mu \mathrm{~s}$: 100 perinds, $1 \mu \mathrm{sec}$: accuracy is ± 1 count \pm time base accuracy \pm trigger error dilided by number of periods. Sensitivity and impedance same as frcquency measurements.

General

Dlsplay: 6 digit in-line digital-tube readout; polarity; decimal point. function and overload condition indicated automatically,
Recording outputs: $B C D$ output provided for function and polarity. 1 digit: data, 6 digits: decimal pmin, 1 digit.
External programming: circuit closures to ground
Operating conditions: specifications apply for ambient temperatures 10 to $50^{\circ} \mathrm{C}$, relative bumidity to 95% at $40^{\circ} \mathrm{C}$.
Power: 115 or $250 \mathrm{~V} \pm 10 \%$, 50 to $60 \mathrm{~Hz}, 150 \mathrm{~W}$.
 ($485 \times 177 \times 467 \mathrm{~mm}$).
Weight: net, 48 lbs (22 kg) ; shipping, 57 lbs ($25,7 \mathrm{~kg}$).
Price: 2401C, $\$ 4100$.

V-TO-F CONVERTER
 Accurate bipolar, low-level dc V-to-F conversion
 Model 2212A

VOLTAGE, CURRENT, RESISTANCE

The HP 2212 A is a compact Voltage-to. Frequency Converter, well suited to low-level signal applications. Low input drift and high common mode rejection (114 dB at 60 Hz) are achieved without a chopper by differential circuirs. The VFC produces an output pulse train with a rate directly proportional to the magnitude of an applied de voltage. Puise rate rises linearly and instantaneously from 0 to 100,000 pulses per second as the de inpur level is increased from zero to full scale. The 2212A provides ourstanding linearity, stability and noise immunity

The ourput of the HP 2212A, when connected to an elecrronic counter provides a convenient method of making digital measurements of $d c$ voltages; the converter provides a polarity signal. This converter counter combination can be connected
directly to a digital printer or through an output coupler to other common digital recording devices.

The converter counter combination integrates $d s$ voltages over any period of time and can therefore be used to read the average of the input over a selected sample period, or over an externally-controlled period. This provides accurate de measurements in the presence of noise superimposed on the signal. Combining the VFC with a new HP 5321 B all.fC Counter, (page 620) provides an Integrating DVM with .01, 1, 1 and 10 sec sample periods.

The modular package with self-contained power supply allows the 2212A to be used in both bench and systems applica. tions. An inexpensive combining case is available to mount 10 instruments side-by-side in only $51 / 4^{\prime \prime}$ of $19^{\prime \prime}$ rack panel space.

Specifications

Specifications include $\pm 10 \%$ line voltage variation, hoid for 1 $\mathrm{k} \Omega$ max. source resistance, any unbalance, and assume daly calibration after specified warmup.
DC voltage ranges: 3 ranges; 0 to $10 \mathrm{mV}, 100 \mathrm{mV}, 1 \mathrm{~V}$. Vernier option, (10 -turn potentiometer) extends range to x 3.5 , for any setting. Overrange: to 250% of full scale, all ranges. In. strument is sensitive to positive and negative inputs; polarity indication and output signal provided.
Accuracy: 'Worst case' accuracy of pulse rate over 1 -second sample period with respect to the source used for calibration is as follows:

	. 017	. 1 V	1 V
	\% $\mathrm{rdg}=\%$ \% s	\% $\mathrm{rdq}=\%$ \% ${ }^{\text {s }}$	\% rdg $=$ \% fs
Stsbllity	. 07 . 06	. 05 . 0.15	. 02 . 011
Linearity	01	01	. 01
Tomp. Coelf.	. 004 . 017	. 004 4 .0035	. 004 . 0022

Internal calibration source: 1 V standard for self-calibration. Accurate to within $\pm 0.02 \%$ for six months; remp. coeff of $\pm 0.005 \%$ per ${ }^{\circ} \mathrm{C}\left(0^{\circ}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$.
Differential input impedance: $1000 \mathrm{M} \Omega$ shunted by $0,001 \mu \mathrm{~F}$. Common mode rejection: 120 dB at $\mathrm{dc} ; 114 \mathrm{~dB}$ at 60 Hz .
Common mode return: From input common to output common, 1 megohm, max.
Normal mode rejection: More than 40 dB at 55 Hz with 1 second sample period; increases 20 dB per decade increase in ooise frequency. Infinite rejection cusp every cycle.
Slewing: $10^{\circ} \mathrm{V} / \mathrm{sec}$ rti (referred to input) with dc offser caused by slew limiting less than 0.1% of peak ac, provided 250% of full scale is not exceeded.

Maximum irput signal: $\pm 11 \mathrm{~V}$, signal plus common mode Combined input up to $\pm 20 \mathrm{~V}$ will nor damage instrument.
Output (dc coupled): 0 to 100 kHz fs , overranging to 250 kHz ; s Ma available; short circuit will not damage instrument.
Settling time: $100 \mu \mathrm{sec}$ to within 0.01% of final pulse rate.
Overload recovery: $200 \mu \mathrm{sec}$ to 0.01% of final pulse rate for signal to 10 times full scale. Less than 5 ms for signal plus common mode input up to 20 V .
Polarity indication: electrical and visual for + and - .
Operating conditions: Ambient temperatures from 0° to $55^{\circ} \mathrm{C}$; relative humidity to 95% at $40^{\circ} \mathrm{C}$.
Warmup: operates immediately after turn-on, but requires $11 / 2$ hours in free air, 30 minutes in portable case or combining Case (plus 1 hour additional warmup for each $10^{\circ} \mathrm{C}$ difference between storage temperature and operating ambient) for specified accuracy and zero drift.
Rellability: predicted MTBF (with 90% confidence) is 10,000 hours when operated at $25^{\circ} \mathrm{C}$ ambient.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 9 \mathrm{~W}$ approx.
Dimensions: $18 / 10^{\prime \prime}$ wide, $47 / 9^{\prime \prime}$ high, $15^{\prime \prime}$ deep ($39.7 \times 123.8 \times$ 381 mm).
Weight: net $4 \mathrm{lb}(1,8 \mathrm{~kg})$, shipping $61 / 2 \mathrm{lb}(2,9 \mathrm{~kg})$.
Accessories available: mating rear connector, mating sear connector with power cord, inpur/output cable; combining case: contains up to 10 instruments in $51 / 4^{\prime \prime}$ of $19^{\prime \prime}$ rack space (mating connectors furnished), includes power cord and fan; portable case: holds two VFC's (mating connectors furnished) and includes power switch, pilot light, power cord and fan.
Price: HP 2212A Voltage-to-Frequency Converter, $\$ 1100$.

VOLTAGE, CURRENT, RESISTANCE

DIGITAL VOLTMETER
$\pm 0.004 \%$ accuracy, lab precision, systems speed Model 3460B

The Hewlett-Packard Model 3460B is a full five-digit digital voltmeier which combines in one instrument the benefits of high accuracy, high speed, and high noise rejection. The unique method by which the potentiometric and integrating techniques are combined in this instrument is primarily responsible for this combination of outstanding feaures. A unique two-sample system enables is independent readings to be made in one second at this accuracy. Integration during the second of these two samples plus guarding results in excellent effective common-mode rejection and ac normalwode rejection characteristics. Voltage ranges and integration periods can be selected by contact closures to ground.

DC Voltage Specifications*
Ranges
Full range dlsplay: $\pm 1.00000 \mathrm{~V}$; $\pm 10.0000 \mathrm{~V} ; \pm 100.000 \mathrm{~V}$; $\pm 1000.00 \mathrm{~V}$.
Overranging: 20% on all ranges.
Range selection: manual, automatic or remote.
Performance rating
Accuracy (accuracy applies orer a temperature range of $25^{\circ} \mathrm{C}$ $\pm 9^{\circ} \mathrm{C}$):
90 day calibration cycle: $\pm(0.004 \%$ of reading $+0.002 \%$ of range).
180 day callbration cycle: \pm (0.007% of reading $+0.003 \%$ of range).
Stability: $\pm(0.002 \%$ of reading $+0.001 \%$ of range) 24 hr , constant temperature $\pm 1^{\circ} \mathrm{C}$.
Temperature coefficlent: $\pm(0.0002 \%$ of reading $+0.0001 \%$ of range) per ${ }^{\circ} \mathrm{C}$ (from $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$).
Reading perlod
$10,100,1000 \mathrm{~V}$ ranges: $<66 \mathrm{~ms} ;$ I V range: <1s0 ms .
Integration period: $1 / 10$ s ($1 / 60$ second selectable by external contact closure to ground on 10,100 and 1000 V ranges).
Response time: reads within specified accuracy when triggered coincident with step input roltage.
Autorange time: 33 ms per range change. Remote ranging time: 8 ms.

Input characteristics
Input resistance: 1 V and 10 V ranges, $>10^{10} \Omega$ within $\pm 5 \%$ of null, otherwise $10 \mathrm{M} \Omega \pm 0.03 \%$; 100 V and 1000 V range. $10 \mathrm{M} \Omega \pm 0.03 \%$.
Isolation parameters: floated and guarded input terminals; guard can be operated up to $\pm 500 \mathrm{~V}$ peak with respect to chassis ground, low can be operated up to $\pm 50 \mathrm{~V}$ peak with respect 10 guard.
Noise rejection: overall effective common-mode rejection (ratio of indicated error voltage to common-mode voltage) i4s dB at all frequencies (0.1 s sample period); common-mode rejection 160 dB at $\mathrm{d} c, 120 \mathrm{~dB}$ at 60 Hz with 1000 n between low side of input and the point where the guard is connected; superimposed noise rejection; $>20 \mathrm{~dB}$ at 55 Hz for 0.1 s sample period increased 20 dB per decade of frequency; infinite rejection ai frequencies divisible by 10 (0.1 s sample period) or 60 ($1 / 60 \mathrm{~s}$ sample period).
-For complete specifications refor to Oata Sheet.

Remote contral

Range selection: remote: all ranges can be selected by a contact closure to ground with impedance of <1000 for a period >100 ms. Automatic: automatic mode of range selection can be programmed bry a contact closure 10 ground with impedance <1005 ?.
D/A converter reset: contact closure to ground of $<100 \Omega$.
Trigger hold-off: hold-off voltage is +3 to +10 V wich a maximum current of 6.3 mA (provided by an external device).
Input resistance: $10 \mathrm{M} \Omega \pm 0.03 \%$ can be programmed by contact closure to ground of $<100 \Omega$.

Recorder data

BCD outputs: 4 -line $\operatorname{BCD}(1 \cdot 2 \cdot 4 \cdot 8)$ " 1 " state posilive, 9 columns of information: function, decimal, overload, and 6 digit data.

General

Operating temperature: instrument will operate within specifications from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ unless otherwise specified.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
RFI: conducted and radiated leakage limits are below those specified in Mil-I-6181D.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to $60 \mathrm{~Hz}, 60 \mathrm{~W}$.
HP 3460 B is available on special order for operation with power. line frequencies between 50 Hz and 400 Hz .
Dimensions: $163 / 4$ " wide, $s^{\prime \prime}$ high (without removable feet), $193 / 8^{\prime \prime}$ deep ($425 \times 127 \times 492 \mathrm{~mm}$).
Weight: net $38 \mathrm{lbs}(17,6 \mathrm{~kg})$; shipping, $52 \mathrm{lbs}(23,5 \mathrm{~kg})$
Accessories furnished
HP 11065 A 6 - ft rear input cable, guarding preserved; $\$ 15$.
HP 1108SA remote control cable, $\$ 30$: rack mount kit for 19 " rack.
Accessories available: HP 3461A AC/Ohms Converter-DC Preamplifier; HP $562 \mathrm{~A} /$ AR Digital Recorder (refer 10 page 237 for special versions) ; HP 5050A Digital Recorder.

Optlonal Filter
An optional programmable filter can be added (as indicated in the table below) to increase the ac normal-mode rejection by 26 dB at 60 Hz (24 dB at 50 Hz). With this added rejection the 3460 B accommodates as normal-mode signals up to 100% of range (peak value).
When using the filter, 725 ms is added 10 the reading period and 363 ms is added to the auto-range time listed in the 3460 B specifications.
Price: HP $3460 \mathrm{~B}, 1$-2.4-8 BCD " 1 " state positive. $\$ 3800$.

Opllame	日CO Oodo(41 " atafe pasitiva)		84614 Compailifity	Firer	Adsumaal Pites
	1-2-4.4	1-2-2-4			
001		X			N / C
002	X		X		\$150
003		X	X		\$150
004	X			X	\$250
00.5		X		X	\$250
008	X		X	X	5400
007		X	X	X	5400

HP H50.3460B, optimum noise rejection for 50 Hz line frequency (3560B Options apply), $\$ 3860$.

The Model 3460B Digital Volumeter and 34618 AC/Ohms Con. vecter de Preamplifer combine to provide a multiple-function inscrument system capable of making high-accuracy de voltage, ac voltage (average responding) and resistance measurements.
The $3460 \mathrm{~B} / 3461$ A combination is a fully programmable multifunction digital voltmeter. These feazures make the $34608 / 3461 \mathrm{~A}$ multi-funccion parkage in ideal choice for systems applications.

Combined Specifications

(3450B option 02 or 03 and 3461A)

DC voltage

The 3461 A provides a 0.1 V range and can be used on the 1 V and 10 V ranges when $10^{10} \Omega$ input impedance is tequired (accuracy is slightly demoted). The 3461 A Bypass mode can be selected when de accuracy of the 3460 B alone is desired.
$A C$ voltage
Ranges: full range, $1.00000 \mathrm{~V}, 10.0000 \mathrm{~V}, 100.000 \mathrm{~V}, 1000.00 \mathrm{~V}$. Overranging: 20% all ranges from 50 Hz to 100 kHz .
Range selection: manual, automatic or remote.
Performance rating
Accuracy, 90 dag calibration rycle; temp range of $25^{\circ} \mathrm{C} \pm 9^{\circ} \mathrm{C}$.

Frequenay	Speotioniton
50 Hz to 100 Hz	$\pm(0.08 \%$ of reading $+0.02 \%$ of
100 Hz to 10 kHz	$\pm(0.07 \%$ of reading $+0.01 \%$ of range $)$
10 kHz to 20 kHz	$=(0.08 \%$ of reading $+0.02 \%$ of ran
20 kHz to 100 kHz	$\pm(0.15 \%$ of reading or 0.1% of range
Stablity: $\pm(0.012 \%$ of reading $+0.006 \%$ of range) 24 hr C.T. $\pm 1^{\circ} \mathrm{C}$.	
Temperature coefficient: $\pm(0.0022 \%$ of reading $+0.0006 \%$ of range) per ${ }^{\circ} \mathrm{C}$ for temps of $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$	
Reading period: ACF (above 200 Hz), < 550 ms : $\mathrm{ACN},<1.2 \mathrm{~s}$	
Autorange time: $\mathrm{ACF},<44 \mathrm{~s} \mathrm{~ms}$; $\mathrm{ACN},<1.1 \mathrm{~s}$ (per rang change).	
Input characteristics	
input: foated and guarded input terminals.	
Impedance: front panel, $5 \mathrm{M} \Omega \pm 0.1 \%$ shunted by $<50 \mathrm{pF}$.	
	ms

Ranges: full range display of $1.00000 \mathrm{k} \Omega, 10.0000 \mathrm{k} \Omega, 100.000 \mathrm{k} \Omega$, $1.00000 \mathrm{M} \Omega, 10.0000 \mathrm{M} \Omega ; 20 \%$ overranging, all ranges.
Range selection: manual, automatic or remote.
Performance rating

Renge	Speotitastion
$\ldots \mathrm{k} \Omega 10100 \mathrm{k} \Omega$	\pm (0.012\% of reading $+0.004 \%$ of range)
1 Mn and $10 \mathrm{M} \Omega$	$\pm(0.018 \%$ of reading $+0.004 \%$ of range $)$
Stability: (24 hr , constant remperature $\pm 1^{\circ} \mathrm{C}$).	
Range	Speolinastlon
\% k 10100 kn	$\pm(0.004 \%$ of reading $+0.002 \%$ of range)
IMS and 10Ma	$\pm(0.005 \%$ of reading $+0.002 \%$ of range $)$

Temperature coefficlent:

Range	Coeffiolent por ${ }^{\circ} \mathrm{C}$
$1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$	$\pm(0.0007 \%$ of reading $+0.0002 \%$ of range $)$
Mת and $10 \mathrm{M} \Omega$	$\pm(0.0012 \%$ of reading $+0.0002 \%$ of range $)$

Derate the above specifications by these temperature coefficients for opecation in temp range of $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Reading perlod: $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ range, $<150 \mathrm{~ms} ; 10 \mathrm{M} \Omega$ range $<66 \mathrm{~ms}$.
Input characteristics
Input configuration: resistance measurements are made by a 4 . terminal guarded system.
Current through unknown resistance: sbort-dircuit current is from 1 mA on the $1 \mathrm{k} \Omega$ range to $1 \mu \mathrm{~A}$ on the $10 \mathrm{M} \Omega$ range.
Remote control
Function and range selection
Remote: selected by contact closure to ground, <1000.
Automatic: programmed by closure to ground, <1000.

Recorder data

Print command and BCD outputs: provided by the 3460 B .

General

Effective common-mode rejection and normal-mode rejection: $\mathrm{dc}>160 \mathrm{~dB}$ (all functions); ac $>139 \mathrm{~dB}$ (dc a dod ohm functions).
Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ unless otherwise specified.
RFI: conducted and radisted leakage limits are below those specified in MIL-I-6161D.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz} 1060 \mathrm{~Hz}, 95 \mathrm{~W}$ (34608 and 3461 A with all functions). Available on special order for operation with power-line frequencies berween 50 Hz and 400 Hz .
Dimensions: $163 / 4^{\prime \prime}$ wide, $33 / 8^{\prime \prime}$ high (without removable leet). $183 / 8$ " deep ($425 \times 86 \times 467 \mathrm{~mm}$).
Welght (3461 A): net $24 \mathrm{lbs}(11,2 \mathrm{~kg}$); shipping $33 \mathrm{lbs}(14,9 \mathrm{~kg}$).
34608 Option 02 or Option 03 accessories fumished: reier to 3460 B specifications.
3461A accessories furnished
HP 11065 A volis rear input cable assembly; $\$ 15$.
HP 11090 A ohms rear input cable assembly (only with standard 3461A and 3461A Option 03); $\$ 30$.
HP 11091A output cable assembly: $\$ 30$.
HP 11002A interiace legic cable assembly: $\$ 30$.
HP 11093A remote control cable assembly; $\$ 15$.
Rack mounting kit for $19^{\prime \prime}$ rack.
Accessories avallable
HP Part No. $5060-6026$ joining bracket kit for combining 3460B and 3461A.
Refer to 3460 B specifcavions for other actessories.
Price: HP 34608 Option 02 or Option 03, $\$ 3950$.
HP 3461 A, AC/Ohms Converter.DC Preamp, $\$ 2400$.
HP 3461A Option 02 AC/DC Converter, \$1700.
HP 3461 A Option 03 Ohms/DC Converter.DC Preamp, $\$ 1930$.

Features

Resolution: 1 part in 1.2×10^{6}
Sensitivity: $1 \mu \mathrm{~V}$
Accuracy: 0.005% of cetading
Guarding reduces the effects of common-mode noise (CMR) by 160 dB at dc
Four ranges to ± 1000 volts full scale, selected by pushbuttons, automatically or remotely
20% overrange capability on all ranges - offering fullscale display within specified accuracy (measures up to 1200 V dc).

Description

The HP Model H04-3460A Potentiomerric Integrating Digital Volmeter is an integrating, guarded digital voltmeter offering high accuracy, resolution, and stability in the presence of noisy signals while retaining a constant input impedance. It offers a resolution of a part in $1,200,000-$ four times more resolution than any other digital volrmeter in its price range. Additionally, the H04.3460A DVM has a sensitivity of $1 \mu V$ and an accuracy of 0.005% of reading or $\pm 0.0005 \%$ of full scale. The potentiometric-integrating technique used so successfully in the HP 3460B is also used in the H04-3460A. Using this DVM, measurements from 100 millivolts to 1200 V can be made with better than 0.005% of reading accuracy.

The H04-3460's combination of 1 ppm resolution, high accuracy, constant input impedance, and 20% overcanging provide new measurement capabilities. A front-panel zero adjust is provided to compensate for any thermals in connections to external circuitry.
Typical examples where 1 ppm resolution and high accuracy can be used are in semiconductor research and testing and calibration of de standard power supplies and transfer standards.

Null oneasurements can be performed wth $1 \mu \mathrm{~V}$ resolution. BCD output capability permits recording of data and remote programmability permits system applications. Transducers and load cell performance can be monitored for incremental changes in their outputs. Accurate determination of Zener diode breakdown voltages as a function of temperature can be made by utilizing the excellent short-term stability of the H04-3460A.

The H04.3460A offers a maximum teading rate of 1.1 seconds/reading on all ranges. The 20% overranging capability on all ranges offers full-scale display within specified accuracy; up to 1200 volts on the 1000 volt range.

Another feature is the constant 10 megohms impedance on all ranges. Four input ranges of $1.000000,10.00000$, 100.0000 , and 1000.000 may be selected by front-panel pushbuttons with automatic or remote control left to the option of the operator. The front-panel input terminals are gold-flashed binding posts to reduce thermal electric ef. fects. The guarded front or rear input terminals may be seiecred by a front-panel switch. A decimal point is automatically positioned so that the display reads directly in volts. The H04.3460A is fuily programmable. Permanent test records of all readings including polarity, decimal location and overload are available by using HP Model 562A printer. The H04-3460A is designed for fully automatic operation with digital acquisition systems.

Programming the H04-3460A

The HP H04.3460A is designed for fully automatic operation within a digital data acquisition system. Voltage range can be selected by extemal circuit closures to ground.

To simplify system cabling, input connections can also be made at the rear of the instrument. All remote control lines and electrical outputs are referced to chassis ground and do not interfere with the guard.

Recording Output

1-2-4-8* binary-coded decimal voltages (ground refecenced) are produced for each measurement and for indication of measurement function, voltage range and polarity. A complete printed record of the HP H04.3460A output information can be obtained by using an HP Model 562A/ AR or 5050A Digital Recorder.

Specifications

Ranges:

Automatic or manual full-scale presentation of $\pm 1.000000, \pm 10.00000, \pm 100.0000$, and ± 1000.000 (up to 20% overrange indicated with 7 th digit). Range selection may be made automatically, remotely or manually.

[^18]
Performance rating:

Absolute voltage accuracy.* $\pm 0.005 \%$ of reading or $\pm 0.0005 \%$ of full scale whichever is greater over a temperature range from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ for a period of 90 days.
Voltage accuracy temperature coetflelent: $\pm(0.0002 \%$ of reading $/{ }^{\circ} \mathrm{C}+0.0001 \%$ of full scale $/{ }^{\circ} \mathrm{C}$) over a temperature range of $0^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Shork term stabllity: $\pm 0.002 \%$ of reading or $\pm 0.0004 \%$ of full scale, whichever is greater at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ and relative humidity up to 50% for a period of 24 hours.
Long term stability: $\pm 0.008 \%$ of reading or $\pm 0.001 \%$ of full scale, whichever is greater at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ and relative humidity up to 50% for a period of 6 months.
Response time:
On Fixed Range-read's within specified accuracy when triggered coincident with step input voltage.
Reading Period-1.1 s minimum on $1,10,100,1000$ volt ranges.
Polarity Selection-No delay.
Automatic Range Selection- 60 ms per range change (180 ms maximum).
Remote Range Selection- 8 ms .

Isolation parameters:

Inputs: floated and guarded signal pair (special goldplated binding post on front panel or connector on rear panel are selected by front-panel switch). Guard may be operated up to $\pm 500 \mathrm{~V}$ de with respect to chassis ground (350 volts rms). Low may be operated up to $\pm 50 \mathrm{~V} \mathrm{dc}$ with respect to guard.
Common mode rejection: ratio of common mode signal to resultant superimposed signal: 160 dB at de with 1 k ohm between the low side of the input and the point where the guard is connected, 120 dB at 60 Hz under the same conditions.
More than 160 dB effective common mode rejection at all frequencies.
Input characteristics:
Inqut resistance: constant 10 megohms $\pm 0.03 \%$ all ranges.
Input impedance: 40 pF in parallel with 10 megohms at front panel.
Superimposed nolse rejection:

Input:
Range selection:
Automatic: pushbutton selector or a switch closure to ground with impedance <100 ohms provides autorange operation. 60 ms is required per range change (180 ms max).
Remote: a switch closuce to ground with impedance <100 ohms for a period $>100 \mu \mathrm{sec}$ selects range desired.
Manual: pushbutton selector.
External read command:

Trloger	Open Ckt Voltage	Tripger Level	Duratom	Load
Positive going Direct coupled	-10 V	$+10 \mathrm{to}+30$	$\begin{aligned} & >100 \mu \mathrm{~s} \\ & 10 \mathrm{~ms} \end{aligned}$	
Negative going Direct coupled	$+10 \mathrm{~V}$	$\begin{gathered} \text { Vdc } \\ -10 \text { to }-30 \end{gathered}$	$>100 \mu 5$	$\begin{gathered} 2 \mathrm{~mA} a \mathrm{al} \\ -10 \mathrm{~V}, 5 \mathrm{~mA} \\ \mathrm{at}-30 \mathrm{~V} \end{gathered}$
AC coupled		$20 \mathrm{Vp}-\mathrm{p}$ with rise	$\begin{aligned} & >100 \mu \mathrm{~s} \\ & <10 \mathrm{~ms} \end{aligned}$	6 k ohms in parallel
(Either Polerity)		$\begin{aligned} & \text { time } \\ & 10 \mu \mathrm{~s} \end{aligned}$		$\begin{gathered} \text { with } 25 \mathrm{pF} \\ 0.01 \mu \mathrm{p} \\ \text { coupling } \\ \text { capacitor used) } \end{gathered}$

Voltmeter reset: switch closure to ground through <100 n assures minimum reading period.
Trigger hold off: hold off level is +3 to +10 voles with a maximum current of 6.3 mA . (Pcovided by HP Model 562A Digital Recorder.)

Output:

Print command: dc coupled.
BCD outputs: 4 -line $\mathrm{BCD}(1-2-4-8) 9$ colvmns consisting of polarity, overload and decimal location, and 7 digits of data (HP H04-3460A Option 01 is available for 1-2-2-4 BCD).

Operational features:

Input terminals-binding posts on front panel or connector on rear panel (high, low and guard). Selectable by frontpanel switch
Trigger selection: front-panel selection of local or remote.
Overload indicator: indicates when input voltage is higher than 120% of range selected.
Sample indicator: indicates when instrument is digitizing.

General

Power: 115 or 230 volts $\pm 10 \%$, 50 to $60 \mathrm{~Hz}, 60$ watts. The HP H04-3460A is available on spacial order for operation with power line frequencies between 50 and 400 Hz .
Dlmensions: 163/4" wide, $5^{\prime \prime}$ high (without removable feet), $213 / 8^{\prime \prime} \operatorname{deep}(425 \times 127 \times 543 \mathrm{~mm}$)
Welght: net $38 \mathrm{lbs}(16 \mathrm{~kg})$; shipping $43 \mathrm{lbs}(19.6 \mathrm{~kg})$. Accessortes furnished:

Rack Mounting Kit includes 3 printed circuit extender boards.
HP 11065A: 6^{\prime} rear input cable, guarding preserved, terminated end mates with H04-3460A. \$15.
HP 11069A: Remote Control Cable. $\$ 20$.
Price: HP H04-3460A, \$4800; Option O1 (1-2.2.4 BCD output), no additional charge.

[^19]
AC TO DC CONVERTERS

Economical AC to DC converters

Models 457A, 400E, 3400A

Model 457A is an average-responding, rms calibrated ac-to-dc converter. Thus, a one-volt rms sine wave input provides a one-volt de output.

A frequency range from 50 Hz to 500 kHz is covered with conversion accuracy of $\pm 1 \mathrm{mV} \pm 0.75 \%$ of full scale; from 50 Hz to 30 kHz , accuracy is $\pm 1 \mathrm{mV} \pm 0.3 \%$ of full scale.

Specifications, 457A
Input range: $100 \mu \mathrm{~V}$ to 300 V rms, in 4 decade ranges corresponding to $1,10,100$ and 1000 V rms full scale; overranging to 200% of full scale, all ranges except 1000 V .
Frequency range: 50 Hz to 500 kHz .
Accuracy: $\pm 0.3 \% \pm 1 \mathrm{mV}$ from 50 Hz to $50 \mathrm{kHz} ; \pm 0.75 \%$ $\pm 1 \mathrm{mV}$ from 50 kHz to 500 kHz .
Floating Input: permits measurement of ac voltages at $d c$ potentials of $\pm 500 \mathrm{~V}$ above power-line ground.
Output: 0 to 1 Vdc , responding to average value of ac input, with output calibrated as rms value of sine wave; input step attenuation of $1,10,100$ or 1000 .
Output impedance: 10,000 ohms.
Input impedance: 1 megohm, shunted by 30 pF .
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ to 400 Hz , approx. 31 W .
Dimensions: $163 / 4^{\prime \prime}$ wide, $33 / 4^{\prime \prime}$ high, $133 / 4^{\prime \prime}$ deep (426 x $95 \times 324 \mathrm{~mm}$).
Weight: net $12 \mathrm{lbs}(5,4 \mathrm{~kg})$; shipping $20 \mathrm{lbs}(9 \mathrm{~kg})$.
Accessories available: 1110A Current Probe, $\$ 100$; 10100B Feed-Through Termination (100 $)$, $\$ 18$; I 1000A Cable, $\$ 5 ; 11001$ A Cable, $\$ 6$.
Price: HP 457A, $\$ 500$.

Two Hewlett-Packard analog voitmeters provide a de output voltage that is directly proportional to the meter current and may be used as ac-to-dc converters. By connecting a de digital volmeter to the de output of these instruments, an economical ac digital voltmeter is available. The output roltage of the $\mathrm{HP} 400 \mathrm{E} / \mathrm{EL}$ and 3400 A is I V dc for fuilscale deflection.
The HP 3400A may be used as a true rms ac/de converter. Typical de output accuracy is $\pm 0.75 \%$ of full scale from 50 Hz to 1 MHz . For additional information, refer to page 212 .

The $400 \mathrm{E} / \mathrm{EL}$ may be used with 0.5% accuracy as an $a c / \mathrm{dc}$ converter in its frequency range from 100 Hz to 500 kHz . For complete specifications, refer to page 209.

AC/DC Converter Output
400E/EL output: 1 V dc at full-scale defection, proportiona!
to meter deflection (linear output for Models $400 \mathrm{E} / \mathrm{EL}$).
Output resistance: 1000 ohms.
Response time: 2 seconds to within 1% of value.
Price: HP 400E, $\$ 325$; HP 400EL, $\$ 335$.
3400A output: -1 V de at full-scale deflection, proportional to meter deffection (from $10 \cdot 100 \%$ of full scale).
Output resistance: 1000 ohms.
Price: HP 3400A, \$525.

IMPEDANCE AND PHASE MEASUREMENTS

IMPEDANCE

Impedance measurements are concerned with the magnitude and the nature of the opposition of a component or network to the flow of ac current. Not only is a measure of the total opposition to current flow desired, but it is also important to determine the ratio of reactance to resistance and whether the reactance is inductive or capacitive.

At frequencies below 100 MHz , these qualities are most easily determined by measuring the voltage resulting from the flow of a known ac current into the component or network under test. The voltage amplitude indicates the absolute value of the impedance.

The nature of the reactance can be determined by comparing the phase difference between the current and voltage waveforms at the point of measurement. With the magnitude and phase angle θ thus determined, the ratio of reacrance X to resistance R and whether the reactance is inductive or capacitive can be determined (see diagram Fig. 1).

Such measurements must be made at several frequencies if the component or network is to be fully characterized.
In the past, measurements of imped. ance ar RF frequencies and above required several pieces of test equipment and were timenconsuming, requiring many steps to acquire the desired information at each discrete frequency. Re. cently developed instruments from Hew. lett-Packard, however, have greatly simplified the measurement of impedance over a broad range of frequencies. With these instruments, it is possible to make sweep frequency plots of the absolute value of impedance $|Z|$ and phase angle (θ) vs. Erequency and in so doing
acquire complete coverage within the frequency band of interest.

Vector impedance meters

Direct readout of $|Z|$ and θ are presented on adjacent meters by the remark. able new HP 4800A Vector Impedance Meter and the HP 4815A RE Vector Im. pedance Meter.

The 4800A (Fig. 2) which operates in a frequency range from 5 Hz to 500 kHz , requires only that frequency (and range) be selected; the unknown is connecred across front-panel terminals. The magnitude of Z is read in ohms directly on
same time, the voltage response of the test circuit is sensed and converted by a second sampling channel, located within the same probe, to read out directly in impedance. A phase detector monitors the difference between the voltage and current channels to yield the phase angle of the impedance vector. One probe both excites the test circuit and measures its impedance and phase angle.
Operating range of the 4815A is 500 kHz to 108 MHz , l to 100,000 ohms, 0 to 360° phase angle.
The 4815A provides all of the convenience of "probe and read" measure. ments. In use, the probe is connected directly into the circuit to be evaluated,

Figure 2.
one meter, while the second meter, centered on zero, indicares phase angle and, by needle deflection, whether the reactance is capacitive or inductive.
Outpurs at the rear provide de ana. \log signals proportional to meter deflec. tions for Z, θ, and frequency for convenient recording. The operating range of the Model 4800 A is 1 ohm 1010 meg . ohms, $\pm 90^{\circ}$ phase angle.
In the Model 4815A RF Vector Imped. ance Meter, an internal IC oscillator sup. plies a low-level excitation signal to the circuit under test through a convenienk probe attached to a s-foot cable. A sampling AGC loop maintains the excitation constant at 4 microamps. At the
frequency is selected, and complex impedance is read. This method allows a straightforward adapeation to various jigs and fixtures for special measure. ments.
Where only component values are to be determined, a quick-mount adapter is provided to allow rapid measurements. For critical component applications, the unit to be evaluated may be mounted directly in its working circuit and its value determined in its actual environment, at the frequency of interest.
Analog output of frequency, magnitude, and phase angle are provided so that these values may be recorded on an X-Y reconder.

VOLTAGE, CURRENT, RESISTANCE

VECTOR IMPEDANCE METER Quickly, easily measure Z \& $\theta, 5 \mathrm{~Hz}$ to 500 kHz Model 4800A

Advantages:

Reads impedance and phase angle directly
Easy to operate, no balancing or nulling Versatile, plug-in measuring terminals Reliable, solid-state circuits
The HP 4800 A Vector Impedance Meter will raake fast measurements of impedance to 10 megohms and phase to $\pm 90^{\circ}$ of unknown two-terminal networks. Measurement can be made at a particular frequency or over a continuous range from 5 Hz to 500 kHz . The instrument may be mechanically swept to produce continuous measurements over its full frequency range. Analog outputs of frequency, impedance, and phase are available for X.Y recording. The instrument provides the design engineer with an easy-to-use, one-instrument method for checking components and circuits.

Specifications

Frequency characteristics
Range: 5 Hz to 500 kHz in five bands: 5 to $50 \mathrm{~Hz}, 50$ to $500 \mathrm{~Hz}, 0.5$ to $5 \mathrm{kHz}, 5$ to $50 \mathrm{kHz}, 50$ to 500 kHz .
Accuracy: $\pm 2 \%$ from 50 Hz to $500 \mathrm{kHz}, \pm 4 \%$ from 9 to $50 \mathrm{~Hz}, \pm 1 \%$ at 15.92 on frequency dial from 159.2 Hz to $159.2 \mathrm{kHz}, \pm 2 \%$ at 15.92 Hz .
Monitor output: level: . 2 volt rms minimum; source im. pedance: 600 ohms nominal in series with $50 \mu \mathrm{~F}$.
Impedance measurement characteristics
Range: 1 ohm to 10 megohms in seven ranges: 10 ohms, 100 ohms, 1000 ohms, 10 k ohms, 100 k ohms, 1 megohm, 10 megohms full scale.
Accuracy: $\pm 5 \%$ of reading.
Phase angle measurement characteristics
Range: $0^{\circ} \pm 90^{\circ}$; Accuracy: $\pm 6^{\circ}$; Callbration: increments of 5°.

Direct inductance measurement capabilitles

Range: $1 \mu \mathrm{H}$ to $100,000 \mathrm{H}$, direct reading at decade multiples of 15.92 Hz .

Accuracy: $\pm 7 \%$ of reading for Q greater than 10 from 159.2 Hz to $159.2 \mathrm{kHz} ; \pm 8 \%$ of reading for Q greater than 10 at 15.92 Hz .

Direct capacitance measuroment capablities

Range: 0.1 pF to $10,000 \mu \mathrm{~F}$, direct reading at decade multiples of 15.92 Hz .
Accuracy: $\pm 7 \%$ of reading for D less than 0.1 from 159.2 Hz to $159.2 \mathrm{kHz}, \pm 8 \%$ of reading for D less than 0.1 at 15.92 Hz .

Measuring Terminal Characteristles

Configuratlon: electrical: both terminals above ground, ground terminals provided for shielding convenience; mechanical: binding posts spaced $3 / 4$ " at centers.
Waveshape: sinusoidal.
External Oscillator Requirements: $0.9 \mathrm{~V} \pm 20 \%$ into 20 k ohms.

Recorder outputs:

Frequency: level, 0 to 1 volt nominal; source impedance, 0 to 1000 ohms nominal; proportional to frequency dial rotation.
Impedance: level, 0 to 1 volt nominal; source impedance, 1000 ohms nominal.
Phase angle: level, $0 \pm .9$ volt nominal; source imped. ance, 1000 ohms nominal.

Accessorles furnished: 13525A Calibration Resistor, 00610A Terminal Shield.

Dimenslons: $163 / 4^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep (426 x $133 \times 467 \mathrm{~mm}$).
Weight: net $24 \mathrm{lbs}(10,8 \mathrm{~kg})$, shipping $30 \mathrm{lbs}(13,5 \mathrm{~kg})$.
Power: 105 to 125 V of 210 to $250 \mathrm{~V}, 50$ to $400 \mathrm{~Hz}, 27 \mathrm{~W}$.
Price: HP 4800A, $\$ 1,650$.

RF VECTOR IMPEDANCE METER Quickly, easily measure Z \& θ, 5 to 108 MHz Model 4815A

 IMPEDANCE
Advantages:

Direct reading of impedance and phase
Convenient probe for in-circuit measurements
Self calibration check provides measurement confdence
Analog outputs for data recording
Low-level test signal minimizes circuit disturbance
The HP 4815A RF Vector Impedance Meter provides all of the convenience of "probe and read" measucements. In use, the probe is connected directly into the circuit to be evaluated, frequency is selected, and complex impedance is read. This type measurement allows a straightforward adaptation to various jigs and fxtures for special measurements. Where only component values are to be determined, a quick-mount adapter is provided to allow rapid measurements. For critical component applications, the unit to be evaluated may be mounted directly in its working circuit and its value determined in its actual environment, at the frequency of interest.

Specifications

Frequency

Range: 500 kHz to 108 MHz in five bands: 500 kHz to $1.5 \mathrm{MHz}, 1.5$ to $4.5 \mathrm{MHz}, 4.5$ to $14 \mathrm{MHz}, 14$ to 35 $\mathrm{MHz}, 35$ to 108 MHz .
Accuracy: $\pm 2 \%$ of reading, $\pm 1 \%$ of reading at 1.592 and 15.92 MHz .
RF monitor output: 150 mV minimum into 50 ohms.

impedance magnitude measurement

Range: 1 ohm to 100 k ohms; full-scale ranges: 10,30 , $100,300,1 \mathrm{k}, 3 \mathrm{k}, 10 \mathrm{k}, 30 \mathrm{k}, 100 \mathrm{k}$ ohms.

Accuracy: $\pm 4 \%$ of full scale $\pm\left(\frac{\mathrm{f}}{30 \mathrm{MHz}}+\frac{\mathrm{Z}}{25 \mathrm{k} \text { ohms }}\right)$ $\%$ of reading, where $f=$ frequency in MHz and Z is in ohms; reading includes probe residual impedance.
Callbration: linear meter scale with increments 2% of full scale.

Phase angle measurement

Range: 0 to 360° in two ranges: $0 \pm 90^{\circ}, 180^{\circ} \pm 90^{\circ}$. Accuracy: $\pm\left(3+\frac{\mathrm{f}}{30 \mathrm{MHz}}+\frac{\mathrm{Z}}{50 \mathrm{k} \text { ohms }}\right)$ degrees: where $\mathrm{f}=$ frequency in MHz and Z is in ohms.
Calibration: increments of 2°.
Adjustments: front panel serewidriver adjustments for Magnitude and Phase Zero.

Recorder outputs

Frequency: 0 to 1 volt from 0 to 1 k ohm source, proportional to dial rotation.
Impedance magnitude: 0 to 1 volt from 1 k ohm source.
Phase angle: 0 ± 0.9 volt from 1 k ohm source.
Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $183 / 4^{\prime \prime}$ deep ($426 \times$ $185 \times 476 \mathrm{~mm}$).
Weight: net $39 \mathrm{lbs}(17,6 \mathrm{~kg})$, shipping $55 \mathrm{lbs}(24,8 \mathrm{~kg})$
Power: 105 to 125 V or 210 to $250 \mathrm{~V}, 50$ to $400 \mathrm{~Hz}, 50 \mathrm{~W}$.

Accessories furnished:

1. 00600A Probe Accessory Kit: contains BNC Type " N " adapter, Probe Socket, 00601A Component Mounting Adapter, 2 probe center pins, probe ground assembly.
2. Rack Mount Kit.

Price: HP 4815 A, $\$ 2650$.

C, R, L, D, \& Q MEASUREMENTS

Impedance bridge

Analysis of capacitors, inductors, and resistors for low-frequency applications is commonly made with a universal bridge. Universal bridges have considerable versatility, being able to measure not only resistance, capacitance, and inductance over wide ranges, but also the Q of inductances and the dissipation
factor ($\frac{1}{\mathrm{Q}}$) of capacitors.
The HP Model 4260A bridge measures resistance values from 10 milliohms to 10 megohms, inductances from 1 microhenry to 1000 henry, and capacitances from 1 pF to $1000 \mu \mathrm{~F}$.
Q is measured, in the series confgura. tion, from 0.02 to 20 ; Q of R in parallel with L is measurable in a range from 8 to 1000 . The dissipation factor (D) of capacitors is measured from 0.001 to 0.12 for series C and R, and from 0.05 to 50.0 with parallel C and R. The accuracy of D and Q measurements is $\pm 5 \%$, or better.
Inside the bridge is a driving oscillator. operating at 1 kHz . Other frequencies within a range of 20 Hz to 20 kHz may be used to drive the bridge.
A generalized ac impedance bridge is shown in Fig. 1. The bridge is driven by an ac source across the corners OQ . When the voltage across arm OP equals the voltage across arm OS, the output voltage, expressed across the detector connected to P and S, is zero. The bridge is balanced, or nulied; the product of the impedance across $O S$ and that across $P Q$ is equal to the product of the im. pedance across $S Q$ and that across $O P$.

Figure 1, Genaralized ac bridga contiguration. $O Q$ is bridge driving voltege. $O S$ is fixed by value of unknown component ond setting of RANGE switch. OP is determined by $R_{\text {(}}$ (gl and $R_{D O}$ controls and C_{T}. When balanced, voltage across PC is zero.

Now the value of any of the four im. pedances can be calculated if the othen three are known.

An internal de supply is used for measurements of resistance and an internal $1 . \mathrm{kHz}$ oscillator drives the bridge for measurements on capacitors and inducrors.
Null procedure in Hewlett-Packard's new Model 4260A Universal Bridge uses a Feedback control system to make one of the bridge adjustments auromatically. C or L can be read directly, after balancing the bridge with only one adjustment of the CRL control.
The dissipation factor for capacitors (D) or quality factor for inductors (Q) is found with only two adjustments; there is no "chasing" of the null through further alternate adjustments of any interacting controls.

Q meters

The Q of a resonant circuit, comprising a variable known capacitor (C_{1}) containcd in the Q meter and an external inductor (L_{x}), is measured by impress. ing a signal of known voltage (E_{1}) and variable known frequency in series in the circuit, and measuring the voltage ($\mathrm{E}_{\boldsymbol{\sigma}}$)

Figure 2. Q Meter.
across the capacitor when the circuit is resonated to the chosen frequency of the impressed voltage. Q of the circuit is the ratio E_{9} / E_{1}. With E_{t} know'n, the voltmeter measuring E_{q} can be calibrated directly in Q . By inserting low impedances in series with the inductor L_{x}, or high impedances in parallel with the capacitor Co. the constants of unknown circuits or components may be measured in terms of their effect on the original circuit Q and tuning capacitance.

To calibrate these meters, HewlettPackard provides Q standards which are standard inductors of calibrated Q .

There are two Q meters in the HP family. Model 260 A is for the frequency range 50 kHz to 50 MHz which may be exiended down to 1 kHz by using a suitable external oscillator with a Model 00564 A Coupling Unit. Model 190A serves the range 20 MHz to 260 MHz .

RX meter

The HP Model 250B RX Meter directly preseats the parallel resistive and reactive constituents of Z, for two-terminal networks, in the range from 0.5 to 250 MHz .

Figure 3. RX Meter.

The output of the 0.5 to 250 MHz test oscillator (F_{1}) is fed into a Schering bridge. When the impedance to be measured is connected across one arm of the bridge, the equivalent parallel resistance and reactance unbalance the bridge, and the resulting voltage is fed to the mixer. The output of the 0.6 to 250.1 MHz oscillator (F_{2}), tracking 100 kHz above F_{1}, also is fed to the mixer, resulting in a 100 kHz difference Irequency proportional in level to the bridge unbalance. This is amplified selectively to provide desired balance sensitivity. When the bridge R and C controls are nulled, their respective dials accurately indicate the parallel impedance components of the test sample.

The instrument's range of measurement is 15 to 100,000 ohms for parallel resistance (0 to 15 ohms by indirect means) for C , and $0.001 \mu \mathrm{H}$ to 100 mH for L.

Advantages:

Electronic AUTOBALANCE - single control null
Digital Readout for C, R, L
Direction Indicators for fast range selection and balance

Measurements of C, R, L, D (dissipation factor of capacirors), and Q are easily made with the new Model 4260A Uni. versal Impedance Bridge.

The readout for C, R and L is digital with the decimal point automatically positioned. Units of measurement and the equivalent circuit automatically appear with a trist of the function switch. There are no multipliers or confusing non-linear dials which need inrerpolation.

Operation is simple. Set the function knob for the parameter to be measured, adjust the range switch for an on scale indication, and obtain a null with the CRL control. There are no interacting controls to adjust and readjust. There are no false nulls. A unique electronic AUTOBALANCE circuit solves all these problems. Components with low Q or high Q are as easy to measure as those without loss
For D or Q measurements, switch out of AUTO and turn the DQ control until another null is obtained. Only one ad justment is needed for each measurement.
Five bridge circuits are incorporated in the 4260A; each is composed of stable, high-quality components for good accuracy and linearity. An internal 1 kHz drives the bridge.
Nulling is easy. Illuminated pointers ($<C$ CRL $>$) automatically rell whether a null is up- or down-scale. Both range and CRL controls can be set watching these pointers.
Components may be biased by connecting a battery to the rear terminals. An external oscillator and detector can be used for measurements in the $20 \mathrm{~Hz} \cdot 20 \mathrm{kHz}$ range

The compact modular cabinet is ideal for bench use; and it may be rack mounted using accessory hardware. A tilt stand is provided to raise the viewing angle; it also serves as a convenient carrying handle.

Specifications

Capacitance measurement

Capacitance

```
Range: 1 PF to \(1000 \mu \mathrm{~F}\), in 7 ranges.
Accuracy:
\(\pm(1 \%+1\) digit \()\), from 1 nE to \(100 \mu \mathrm{~F}\).
\(\pm(2 \%+1\) digit \()\), from 1 pF to 1 nF and \(100 \mu \mathrm{~F}\). to \(1000 \mu \mathrm{~F}\).
Dissipation factor
Range:
LOW D-(of series C) : 0.001 to 0.12 .
HIGH D-( of parallel C) : 0.05 to 50.
Accuracy: for \(C>100 \mathrm{pF}\).
LOW D-(of series C) : \(\pm(5 \%+0.002)\) or \(\pm\) ONE DIAL DIVISION, whichever is greater.
HIGH D-1/D (of parallei C): \(\pm(5 \%+0.05)\) or \(\pm\) ONE DIAL DIVISION of LOW Q dial, whichever is greater.
```


Inductance measurement

```
Inductance
Range: \(1 \mu \mathrm{H}\) to 1000 H , in 7 ranges.
```


Accuracy:

$$
\begin{aligned}
& \pm(1 \%+1 \text { Digit), from } 1 \mathrm{mH} \text { to } 100 \mathrm{H} . \\
& \pm(2 \%+1 \text { Digit }), \text { from } 1 \mu \mathrm{H} \cot \mathrm{mH} \text { and } 100 \mathrm{H} \text { to } 1000 \mathrm{H} .
\end{aligned}
$$

Quality factor
Range:
LOW Q-(of series L) : 0.02 to 20.
HIGH Q-(of parallel L) : 8 to 1000.

Auto-balance

Eliminates need for DQ adjustments in parailel C and series L measurements at 1 kHz .
Accuracy: for $\mathrm{D}<1$ and $\mathrm{Q}>1$ add $\pm 0.5 \%$ to C and L accuracy; specifications.

Resistance measurement

Range: 10 militiohms to 10 megohms, in 7 ranges.
Accuracy:
$\pm(1 \%+1$ digit $)$, from 10 ohms to 1 megohm.
$\pm(2 \%+1$ digit $)$, from 10 milliohms to 10 ohms and 1 megohm to 10 megohms; for greater accuracy in this high range, Model 419A is recommended.

Oscillator and detector

Internal oscillator: $1 \mathrm{kHz} \pm 2 \%, 100 \mathrm{mV} \mathrm{rms} \pm 20 \%$.
Internal detector: iuned amplifier at 1 kHz ; functions as a broad. band amplifier for measurements with external oscillator.

Genera)

Power: 115 or 230 volts $\pm 10 \%, 50-60 \mathrm{~Hz}$, approx. 7 watts.
Dimensions: 7.25/32" wide, $6.17 / 32^{\prime \prime}$ high, $11^{\prime \prime}$ deep (190×160 $\times 279 \mathrm{~mm}$).
Weight: net, $11 \mathrm{lbs}(5 \mathrm{~kg}$) ; shipping, $15 \mathrm{lbs}(6,8 \mathrm{~kg})$.
Optional accessories:
HP 419A for accurate R measurements <10 ohms and $>1 \mathrm{M}$ ohms.
HP 204 B for measurements $20 \mathrm{~Hz} \cdot 20 \mathrm{kHz}$.
HP 140A/1400A or external cuned null detector with 90 dB gain and $Z_{\text {in }}>10 \mathrm{k}$ ohms for measurements $20 \mathrm{~Hz} \cdot 20 \mathrm{kHz}$.
Price: Model 4260A Universal Bridge, $\$ 550.00$.
Manufactured by Yokogawa Hewlett-Packard Lrd., Tokyo.

VOLTAGE, CURRENT. RESISTANCE

RX METER

Self-contained rf bridge, 500 kHz to 250 MHz Model 250B

The HP 250B RX Meter is a completely self-contained instrument for use in measuring the equivalent parallel resistance and capacitance or inductance of two-terminal networks. The instrument's design includes an accurate, continuously tuned oscillator, high-frequency bridge, amplifier detector and null/RF level indicator.

The oscillator, which is carefully designed to minimize temperature effects, is mounted inside a rigid casting in order to obtain a high degree of accuracy, stability and low leakage. A long-life sub-miniature triode is used, and the unit is carefully shielded to avoid any leakage of signal to the amplifier-detector by any path other than through the
bridge. The high-frequency bridge is also mounted inside a casting and is specially designed to minimize the effects of coupling between arms

Connections to the unknown impedance are arranged for almost zero lead length. Convenient, easily adjusted bridge balance controls are provided on the front panel. Controls are also provided for adjustment and indication of the relative RF signal level at the test terminals. A connector on the rear panel provides an IF output for a sensitive tuned volrmeter for improved resolution when nulling during reduced signal level operation.

Specifications

Radlo frequency characteristics

RF range: total range: 500 kHz to 250 MHz ; number bands: 8; band ranges: 0.5 to $1 \mathrm{MHz}, 1$ to $2 \mathrm{MHz}, 2$ to 4 MHz , 4 to $9 \mathrm{MHz}, 9$ to $21 \mathrm{MHz}, 21$ to 48 MHz , 48 to $110 \mathrm{MHz}, 110$ to 250 MHz .
RF accuracy: $\pm 2 \%$.
RF callbration: increments of approximately 1%.

Resistance measurement characteristics

Resistance range: 15 to 100,000 ohms.
Resistance accuracy: $\pm\left[2+\frac{\mathrm{F}}{200}+\frac{\mathrm{R}}{5000}+\frac{\mathrm{Q}}{20}\right] \%$ $\pm 0.2 \mathrm{ohm} ; \mathrm{F}=$ frequency (MHz), $\mathrm{R}=\mathrm{RX}$ Meter R_{p} reading (ohms), $\mathrm{Q}={ }_{\omega} \mathrm{CR} \times 10^{-19}$, where $\mathrm{C}=\mathrm{RX}$ Meter C_{p} reading (PF).
Resistance callbration: increments of approximately 3% throughout most of range.

Capacitance measurement characterlstics

Capacitance range: 0 to 20 pF (may be extended through use of auxiliary coils).
Gapacltance accuracy: $\pm\left(0.5+0.5 \mathrm{~F}^{2} \mathrm{C} \times 10^{-5}\right) \%$ $\pm 0.15 \mathrm{pF} ; \mathrm{F}=$ frequency (MHz), $\mathrm{C}=\mathrm{RX}$ Meter C_{p} reading (PF).
Capacitor calibration: 0.1 pF increments.

Inductance measurement characteristics
Inductance range: $0.001 \mu \mathrm{~h}$ to 100 mh (actual range de. pends upon frequency; auxiliary resistors emploged).
Inductance accuracy: basic accuracy is capacitance accuracy given above.
Measurement voltage level
RF: 0.05 to 0.75 V approx, depending on Irequency, with SET RF LEVEL control in NORMAL position. RF level adjustable to below 20 mV ; relative level indicated when SET RE LEVEL switch is depressed.
DC: 0 V ; (external do current up to a 50 mA , may be passed through RX meter terminals).
Accessorles available: 00515A Coax Adapter Kit (designed to permit connection to the RX meter bridge circuit of any coaxial transmission line or fixture fitted with a Type "N male connector), \$50; 13510A Transistor Test Jig (provides a convenient means for measuring Y parameters $Y_{11 b}, Y_{1 L e}$, and $Y_{2 \text { 2ee }}$ of transistors on the RX meter over the frequency sange of 500 kHz to 250 MHz), \$195.
Physical characteristics
Dimenslons: $20^{\prime \prime}$ wide, $103 / 8^{\prime \prime}$ high, $131 / 2^{\prime \prime}$ deep (508 x $264 \times 343 \mathrm{~mm}$).
Welght: net $40 \mathrm{lbs}(18 \mathrm{~kg})$; shipping $50 \mathrm{lbs}(22,5 \mathrm{~kg})$.
Power: 105 to 125 volts or 210 to 250 volts, 50 to 400 $\mathrm{Hz}, 60$ watts
Price: HP 250B, \$2050.

The direct-reading expanded scale of the HP 260A Q Meter permits measurement of Q down to 10 and also permits reading of very small changes in Q resulting from the variation of the test parameter.

The Q meter was first designed and introduced as a means of measuring the Q or "figure of merit" of coils. Improved models and broadened applications have kept pace with new measuring needs, and today the Q meter is recognized as a flexible general.purpose device with a large number of uses.

Circuit technique

The Q merer consists of a self contained, continuously variable, stable oscillator, whose controlled and measured output is applied in series with a series-tuned, resonant circuit. A vacuum cube voltmeter with high input impedance is connected across the internal variable capacitor portion of the tuned circuit to measure the reactive voltage in terms of circuit Q . The coil portion of the tuned circuit is connected externally and represents the unknown to be measured. By inserting low impedances in series with the coil or high impedances in parallel with che capacitor, the parameters of unknown circuits or components can be measured in terms of their effect on the circuit Q and resonant frequency.

Usefulness, special features of the 260A

The 260 A is typical of these instruments. It is useful for direct reading of circuit Q on its parallax-free meter. From such measurements, the distributed capacitance, effective inductance and self-resonant frequency can be determined. On capacitors, capacitance from 0.1 pF to $100 \mu \mathrm{~F}$ and Q from 10 to 10,000 can be evaluated from measurements made with and without the component connected. Capacitor selfresonant frequency also can be determined.

Effective RF resistance, inductance or capacitance, and Q of resistors also may be determined, and, used on IF and RF transformers, the 260 A will measure effective impedance, Q, coefficient of coupling, mutual inductance and frequency response. The Q meter also is useful for making measure. ments of dielectric constant and dissipation factor on insulating materials,

The HP 260A utilizes a rugged thermocouple operating at half rated power; oscillator output is factory-adjusted to avoid overload. Both these features guard against accidental thermocouple overload. Through the use of an internal regulating transformer and an electronically regulated power supply, the operation of the instrument is not affected by normal power line fluctuations.

Teflon insulation has been provided for 260 A terminals. providing mechanical stability and low electrical loss The oscillator output is controlled by varying the screen grid voltage of the oscillator tube to obtain smooth operation, as well as good waveshape. A 0.02 -ohm annular insertion resistor is used to improve 260A accuracy. Provision is made for use of an external oscillator to supply the Q meter through a matching transformer (HP 00564A) to provide operation below 50 kHz down to 1000 Hz . A scale also is provided to read inductance directly at selected frequencies.

Radlo frequency characteristics

RF range: total range: 50 kHz to $50 \mathrm{MHz}, 1 \mathrm{kHz}$ to 50 kHz (with external oscillator); number bands: 8; band ranges: 50 to $120 \mathrm{kHz}, 120$ to $300 \mathrm{kHz}, 300$ to $700 \mathrm{kHz}, 700$ to $1700 \mathrm{kHz}, 1.7$ to $4.2 \mathrm{MHz}, 4.2$ to $10 \mathrm{MHz}, 10$ to 23 MHz , 23 to 50 MHz .
RF accuracy: $\pm 2 \%$.
RF calibration: increments of approximately 1%.
Q measurement characteristics
Q range: rotal range: 10 to 625 ; low range: 10 to 60 : \triangle range: 0 to 50.
Q accuracy: $\pm 5 \%, 50 \mathrm{kHz}$ to $30 \mathrm{MHz} ; \pm 10 \%, 30 \mathrm{MHz}$ to 50 MHz (for circuit Q of 250 read directly on indicating meter).
Q calibration: main scale: increments of 5 from to to 250: lor scale: increments of 1 from 10 to $60 ; \Delta$ scale: incre. ments of 1 from 0 to $50 ; \mathrm{XQ}$ scale: increments of 0.1 from 1 to 1.5 and increments of 0.5 from 1.5 to 2.5 .
Inductance measurement characteristics
L range: $0.09 \mu \mathrm{H}$ to 130 mH , (effective inductance), direct reading ar six specific irequencies.
L accuracy: $\pm 3 \%$ (for resonating capacitance $>100 \mathrm{pF}$ and inductance $>5 \mu \mathrm{H}$).
Resonaking capacitor characteristics
Capacitor range: main: 30 to 460 pF ; vernier: -3 ro +3 pF .
Capacltor accuracy: main: $\pm 1 \%$ or 1 pF , whichever is greater; vernier: $\pm 0.1 \mathrm{pF}$.
Capacitor calboration: main: 1 pF increments 30 to 100 pF . spFincrements 100 to 460 pF ; vernier: 0.1 pF increments.
Physical characteristics
Mounting: sloping front cabinet, for bench use.
Finish: gray arinkle, engraved panel (ocher finishes avail. able on special order).
Dimensions: $211 / 4^{\prime \prime}$ wide, $113 / 4^{\prime \prime}$ high, $10^{\prime \prime}$ deep ($540 \times 298 \times$ 254 mm).
Weight: net $40 \mathrm{lbs}(18 \mathrm{~kg}$); shipping $55 \mathrm{lbs}(24,8 \mathrm{~kg})$.
Power: 260A: 95 to $130 \mathrm{~V}, 60 \mathrm{~Hz}, 65 \mathrm{~W} ; 260 \mathrm{AP}: 95$ to 130 V , $50 \mathrm{~Hz}, 65 \mathrm{~W}$.
Accessories available: 00103A Inductors, 00513/00518A Q Standards, 00364A Coupling Unit.
Price: HP 260A, AP, $\$ 1350$.

Q METER ACCESSORIES

Q standards, inductors, coupling transformer Models 00513A, 00518A, 00103A, 00564A

00103A Inductors

The HP 00103A Inductors are designed specifically for use in the Q circuit of the 160 A and 260A Q Meters, for measuring the RF characteristics of capacitors, insulating materials, resistors, etc. Price: HP 00103A, \$25 each; HP 00127A, set of 16 inductors for $260 \mathrm{~A}, \$ 360$: HP 00128A, set of 17 inductors for $160 \mathrm{~A}, \$ 380$.

Specifications, 00103A

$\underset{\text { moded }}{\text { HP }}$	Induotance	Approx. resomant Irequancy for tuning oapaoitance of:			$\operatorname{Approx}_{0}$	Capaci-tance pF
		400 pF	100 pF	50 pF		
00103-A1	$1 \mu \mathrm{H}$	8	16	20 MHz	180	6
$00103 .{ }^{2}$	$2.5 \mu \mathrm{H}$	5	10	14 MHz	200	6
$00103 \cdot \mathrm{A5}$	$5 \mu \mathrm{H}$	3.5	7	10 MHz	200	6
00103-A11	$10 \mu \bar{H}$	2.5	5	7 MHz	200	6
$00103 \cdot A 12$	$25 \mu \mathrm{H}$	1.5	3	4.5 MHz	200	6
00103 -A15	$50 \mu \mathrm{H}$	1.1	2.2	3 MHz	200	6
00103-A21	$100 \mu \mathrm{H}$	800	1600	2000 kHz	200	6
00103-A22	$250 \mu \mathrm{H}$	500	1000	1400 kHz	200	6
00103 -A25	$500 \mu \mathrm{H}$	350	700	1000 kHz	170	7
00103.A31	1 mH	250	500	700 kHz	170	?
00103-A32	2.5 mH	150	300	450 kHz	170	8
$00103 \cdot A 35$	5 mH	110	220	300 kHz	160	8
00103.A41	10 mH	80	180	200 kHz	140	9
00103.442	25 mH	50	100	140 kHz	110	9
		100		35 pF		
$00103 \cdot A 50$	$0.5 \mu \mathrm{H}$	20 M		35 MHz	225	5.5
00103-A51	$0.25 \mu \mathrm{H}$	30 MH		50 MHz	225	5.5
00103 -A52	$0.1 \mu \mathrm{H}$	45 M		75 MHz	225	3.5

00513A Q Standards

HP 00513A Q Standards are shielded reference inductors which have accurately measured and highly stable inductance and Q characteristics. Specifically designed for wse with the 160 A and $260 \mathrm{~A} Q$ Merers, the Q standards are particularly useful as a means for checking the overall operation and accuracy of these instruments, as well as for providing precisely known supplementary Q circuir inductance desirable for many impedance measurements by the parallel method. Price: HP 00513A, \$125 each.

Nominal values lor HP 09613A			
L-250 $\mu \mathrm{H}$		Cd-8 pF	
-	0.5 MHz	1 MHz	1.5 MHz
Q ${ }^{\text {a }}$	190	250	220
Qi	183	234	200

Actual values of all these quantitios are marked on the name plate of the Q standard; with the unit in the Q circult, approximate resonant frequencles of 500,1000 and 1500 xHz are obtained with tunine cadacitances of 400 . 100 and 50 pF , respectively.

00518A Q Standards

HP 00518A Q Standards, used in conjunction with the 00513 A Q Standards. provide frequency coverage from 50 kHz 1050 MHz - the entire range of the 260 A Q Meter. These units are useful as precision inductors and as a fast, convenient means for checking the overall operating accuracy of Q meters. Price: HP 00518A, $\$ 125$ each; HP 00538A, set of five 00518 A and one 00513A, $\$ 675$.

Specifications, 00518A

HP model	$00518-\mathrm{A} 1$	$00518-\mathrm{Az}$	$00518-\mathrm{A} 3$	$00518-\mathrm{A4}$	$00518-\mathrm{A5}$
Inductance	$0.25 \mathrm{\mu H}$	$2.5 \mu \mathrm{H}$	$25 \mu \mathrm{H}$	2.5 mH	25 mH
Low freq. data: Frequency	15 MHz	5 MHz	1.5 MHz	150 kHz	50 kHz
Resonating C	420 pF	395 pF	440 pF	440 pF	400 pF
Indicated Q	175	195	175	170	90
Middle-freq. data Frequency	30 MHz	10 MHz	3 MHz	300 kHz	100 kHz
Resonating C	100 pF	95 pF	105 pF	100 pF	85 pF
Indicated Q	235	235	225	180	130
Migh freq. data : Frequency	45 MHz	15 MHz	4.5 MHz	450 kHz	150 kHz
Resonating C	40 pF	40 pF	45 pF	40 pF	35 pF
Indicated Q	225	205	230	135	125

(Table shows nominal values)

00564A Coupling Transformer

The 00564A Coupling Transformer Unit is designed to couple the output of an external oscillator into the 160 A or 260 A Q Meter for the purpose of extending the operation range of the Q meter to the low frequency region. By means of the coupling unit and an auxiliary oscillator, the Q meter may be operated down to a low-frequency limit of 1 kHz . The oscillator should supply a variable voltage of 22 volts maximum into an impedance of 500 ohms. Price: HP 00564A, $\$ 50$.

Q METER, INDUCTORS Direct Q measurements, 20 to 260 MHz
 Models 190A, 00590A

 VOLTAGE, CURRENT,RESYSTANCE

190A Q Meter

The HP 190A Q Meter finds applications similar to those described for the 260A Q Meter (page 259), but in the VHF range of frequencies. This instrument does not have a thermocouple, but employs a special coupling impedance to introduce voltage across the series-tuned, resonant circuit. This voltage, as well as the reactive voltage developed across the internal Q capacitor, is measured by two highimpedance, low input capacitance vacuum tube voitmeters and indicated on a single front-panel parallax-free meter.

Specifications, 190A

Radio frequency characteristics

RF range: total range: 20 to 260 MHz ; number bands: 4; band ranges: 20 to $40 \mathrm{MHz}, 40$ to $80 \mathrm{MHz}, 80$ to 160 $\mathrm{MHz}, 160$ to 260 MHz .
RF accuracy: $\pm 1 \%$.
RF callbration: increments of approximately 1%.

Q measurement characteristics

Q range: total range: 5 to 1200 ; low range: 10 to 100 ; \triangle range: 0 to 100
Q accuracy: $\pm 7 \% 20$ to $100 \mathrm{MHz} ; \pm 15 \% 100$ to 260 MHz (for circuit Q of 400 read directly on indicating meter).
Q calibration: main scale: increments of 10 from 50 to 400; low scale; increments of 2 from 10 to $100 ; \triangle$ scale: increments of 2 from 0 to $100 ; \mathrm{XQ}$ scale: increments of 0.1 from 0.5 to 3.5 , increments of 0.5 from 1.5 to 3.

Resonating capacitor characterlstics
Capacltor range: 7.5 to 100 pF .

Capacitor accuracy: $\pm 0.2 \mathrm{pF}, 7.5$ to $20 \mathrm{pF} ; \pm 0.3 \mathrm{pF}$, 20 to 50 pF ; $\pm 0.5 \mathrm{pF}, 50$ to 100 pF .
Capacitor callbration: 0.1 pF increments.
Accessories available: 00590A Inductors.
Pinysical cheracterlstics
Dlmensions: $141 / 4^{\prime \prime}$ wide, $101 / 8^{\prime \prime}$ high, $101 / 2^{\prime \prime}$ deep ($362 \times$ $257 \times 267 \mathrm{mra}$).
Weight: net $25 \mathrm{lbs}(11,3 \mathrm{~kg})$; shipping $32 \mathrm{lbs}(14,4 \mathrm{~kg})$ Power: 190A: 95 to 130 volts, $60 \mathrm{~Hz}, 55$ watts; 190 AP : $115 / 230$ voles, 50 Hz , 55 watts.
Price: HP 190A, AP, $\$ 1475$.

00590A Inductors

HP 00590A Inductors are designed specifically for use in the Q Circuit of the 190A Q Meter for measuring the radiofrequency characteristics of capacitors, resistors, and insulating materials. They have general usefulness as reference coils and may be used for periodic checks to indicate any considerable change in the performance of the Q meters.

Specifications, 00590A

HP model	Inductance $\mu \mathrm{H}$	Capacltance of	Approx. ressmant freq. MHz	Approx. Q	Appax. disbibulad C, F
$00590 \cdot \mathrm{Al}$	0.05	95-7.5	70-230	350	1.5
00590-A2	0.1	95-7.5	50-160	320	1.7
$00590 \cdot \mathrm{A3}$	0.25	100-7.5	$30-100$	380	2.3
00590-A4	0.5	80-7.5	25-70	360	2.3
00590.A5	1.0	60-7.5	20-50	350	2.9
00590-A6	2.5	15-8.0	20-30	330	2.9

Price: HP 00590A, $\$ 25$ each; HP 00591A, complete set of six $\$ 130$.

SOLID-STATE DEVICES

DIGITAL/RF; OPTOELECTRONIC; NUMERIC DISPLAYS:

Digital \& RF products

Hot Carrier Diodes. Extremely fast turn-on, turn-off times. Excellent forward and reverse characteristics. Especially useful for RE mixer/detector applications. Matched pairs and quads. New low prices.

Step Recovery Diodes. Time domain specified for pulse generation and shaping. Full specs on ramping and rounding parameters. For generation of test waveforms, fast clock pulses, odd numbered harmonics, special drive waveforms, sharp linear triangular reaveforms. Glass, metal-ceramic, special packages.

New, Low-cost, Hot Carrier Dlode. 100 picosecond switching time. 70-volt breakdown. Low turn-on voltage at 410 mV at 1 mA . Ideal for subnanosecond switching and sampling applications. Has silicon remperature capabilities and turn. on equal to germanium. 55 C in 1000 quantities.

Optoelectronic devices

PIN Photodiodes. Ultrafast lighr detectors for visible and nearinfrared radiation. Unusually good response to blue and violet. Excellent dynamic range. Low noise. HP $9082 \cdot\{200$ series.

GaAs Infrared Sources. Radiates high-intensity, narrow band, infrared light. Weil suited for use in card and tape readers, encoders and similar applications. HP 5082.4100 series.

Photon Coupled isolators. A wide bandwidth DC coupling device combining a GaAs emitter and silicon PIN diode. Small, light-weight, rugged, and about half the price of electromagnetic transformers. Isolation up to 200 V dc. HP $5082-4300$ series.

Solid State Vislble Light Source. Compatible with integraced circuits. GaAs phosphide diodes offer long life, shock and vibration resistance. Free from catastrophic failure. Wide choice of package styles.

Solid state numeric displays

For information display where space and reliability are critical considerations. Combines advantages of very small size and brightness adequate for full daylight viewing. Switching logic circuit integral with display module. HP 5082.7000 .

Ministrips, lids, beamleads, chips

Most of our conventional diode types are available now as chips or in ministrip, beamlead or LID configurations.

PHOTOCONDUCTORS; MICROWAVE

Photoconductor devices

Photocells. For switching, chopping and control circuit applications. Hermetically sealed packages. Stabilized and selected for long life, seliability. Several types available. HP $5082-4600$ series.

Photocontrolted Resistors. Lamp/phorocell combinations ideally suited for applications where single or multi-pole switch. ing is required with high isolation between drive and signal circuits. Or for applications needing electrically controlled resistances.

Photochoppers. Four-cell (modulator/demodulator) and twocell (modulator only) versions available for use with both high impedance or low impedance signal sources. Low noise and offset with high stability and efficiency. HP $\$ 082.4511$ series.

Mlerowave products

Solld State Swltches. All the way from ds to 18 GHz , SPST or SPDT. Positive or negative. Stripline or coaxial. Reflective or absorptive. Fast or slow. MIL Spec. Any connector style. For ECM, Radar, Lab checkout, etc. HP $33500 / 600$ series (SPST); HP 33006/7 (SPDT).

Limiter Modules. Operate between 400 MHz and 12.4 GHz . Typical SWR 1.5:1. Protect sensitive receiver elements against power surges. MLI spec. HP 33701/33711.

Pin Absorptlve Modulators. Hybsid integrated. Combine broad bandwidth, wide dynamic range, low VSWR. For sweep generator leveling, receiver AGC, distance measuring systems. Phased array radar. Mil spec. HP 33000A/B; HP 33001A/8: HP 33008A/B.

Step Recovery Diodes \& Modules. Complete, modular, shunt mode impulse circuits. Hermetically sealed. Contain all matching elements, driving inductance. Comb output useful for measuring spectral behavior of components, antennas, receivers, filters, etc. Also discrete diodes use tested and design optimized. MIL spec. HP 33002/3/4/s.

Mlxer/Detectors, Diodes \& Modules. Versatile modules designed as low-pass filters for use with broadband microwave equipment. ECM, reconnaisance receivers, test equipment, missile guidance systems. Disecere diodes from L through Ku Band. MIL spec. HP 33801A/B; 33802A/B; 33803A/B.

PIN Diodes. For modulating and switching microwave signals. High voltage, high speed, low intermodulation products. Surface-passivated for improved stabiliry and reliability. MIL spec. Wide package option. HP $5082-3000$ series.

Want more information?

Complete, detailed, product literature, application information and prices are as near as your phone. Call any HewlectPackard sales office for information or assistance. Or . . write or call Hewlett-Packard, 620 Page Mill Road, Palo Alto, California 94304 ; (415) 321.8510.

Advantages:

Wide-band, low-noise, flat response
Excellent balance of ports
Low insertion loss
Low intermodulation products
Rugged, environmentally type.tested
Models for printed circuit mounting
Various connector options available

Uses:

As a mixer for extracting the sum or difference of two frequencies with a bigh degree of carrier suppression which greatly reduces filter requirements
As a phase detector with specified low-noise that permits phase or frequency stability measurements on the high-est-quality signal sources
As a suppressed carrier modulator with 45 dB typical carrier rejection at HF
As a puise modulator or spectrum generator with precise turn-on and turn-off characreristics
As a current-controlled attenuator
As a frequency doubler for very flat-response, low-noise frequency doubling
The double balanced mixers in this series offer an outstanding combination of high performance, versatility, and economy. These advantages are made possible by using specially de. veloped transformers and carefully selected hot carrier diodes produced by Hewletr-Packard. The main differences between the five models are their frequency range and packaging, as detailed in the specifications.

Figure 1. Ring modulator.

Figure 2. Typical conversion loss at $25^{\circ} \mathrm{C}$. The lower traquency input f_{l} was at $+7 d B m$, the higher f_{2} at $-3 d B m$.

The newest mixer in this group is the 10534 C , a miniature version of the 10334 B . This tiny device has a base area of only 0.14 square inch to minimize circuit board space and for design and production convenience the leads are arranged the same as on flatpack integrated circuits.

Besides being mixers, these devices may be used as phase detectors, pulse and amplitude modulators, or current controlled atrenuators. The function performed is determined by the connections made at the input-output ports (L, R, and X in Figure 1).

When used as a mixer, the inputs are connected at L and R while the oukput (sum and difference of input frequencies) is available at X . This function is widely used in receivers, tuned voltmeters, and wave analyzers. Figure 2 shows typical and specified values for conversion loss* in the 10514A and B. The noise specifcations are identical to the conversion loss curves because excess noise contributed by the diodes is insignificant above 50 kHz .

As a current controlled attenuator the RF input is placed at L, the control signal at X , and the RF output ar R . Attenuation is inversely proportional to the control current, as shown in Figure 3. Note the wide range of linear attenuation.

Amplitude and pulse modulation can be produced with almost the same connections as for the attenuator. Again L is the RF input and R the outpur, but now a modulating signal is inserted at X .

Operation as a phase detector is possible because the X port

Figure 3. Typieal attenuation at $25^{\circ} \mathrm{C}$. L to R vs. $D C$ ' $X^{\prime \prime}$ control.
is dccoupled. With the same frequency at the R and I ports, the output at X will be a dc voltage. This output voltage will go to zero when the input signals are 90° out of phase; it will be a maximum at 0° and 180° phase difference.

Having a de coupled port also makes possible the use of the mixers as balanced modulators in communication systems. The output modulation product of the L and X ports consists of sidebands displaced plus and minus the modulation frequency from the carrier with the carrier suppressed. Thus, it is possible to make an inexpensive and broadband two tone generator by combining the mixer with an audio and an RF signal source.

Optional connector of four types are available for the 10514 A and 10534 A for added versatility.
*Conversion loss is the power ratio (In dB) betwoen the svallable input power at the ${ }^{\circ} R$ port sind one of the output sldobands, with 502 source and load impedances and $+7 d B m$ input at L port.

Figure 4. Typlcal balance at $25^{\circ} \mathrm{C}$. f_{L} at X with f_{h} references $f_{R}=4$ at 0 dBm. ll level +7 dBm.

Specifications, 10514A/B, 10534A/B/C

	10514A		10614E		10534A		105848, 10584C	
Input/output frequencies:	"L" and "R" ports: 200 kHz to 500 MHz ; "X" port: do to 500 MHz .				"L" and "R" ports: 50 kHz to 150 MHz ; " X " port: dc to 150 MHz .			
Maximum input:	$\Delta 0 \mathrm{~mA}$ (damage level).				40 mA (damage level).			
Impedance:	Designed for and specified in $50 n$ system.				Designed for and specified in a 50Ω syslem.			
Mixer conversion loss (single sideband):	7 dB max for fL and f_{5} in the 500 kHz to 50 MHz range and fx from dc to 50 MHz . 9 dB max for $f \mathrm{~L}$ and ft_{p} in the 200 kHz to $500 \mathrm{MHz}_{2}$ range and fo from dc to 500 MHz .				6.5 dB max for f_{L} and f_{R} in the 200 kHz to 35 MHz range and fx from de to 35 MHz . 8.0 dB max for f_{L} and f_{R} in the 50 kHz to 150 MHz range and fx from de to 150 MHz .			
Noise performance (single sideband):	7 dB max noise figure for f_{L} and f_{R} in the 500 kHz to 50 MHz range and tx in the 50 kHz to 50 MHz range. 9 dB max noise figure for $\left\{\mathrm{L}\right.$ and I_{R} in the 200 kHz to 500 MHz range and $\{x$ in the 50 kHz to 500 MHz range.				35 MHz range and fx in the 50 kHz to 35 MHz range. 8.008 max noise figure for f_{L} and f_{R} in the 100 kHz to 150 MHz range and $\mathrm{f} x$ in the 50 kHz to 150 MHz range.			
Noise phase datector	Less than 100 nV per root cycle max at output for lix at 10 Hz .				Less than 100 nV per root cycle max at output for fx at 10 hz .			
Typical conversion compression:	By f_{R} alone: 0.3 dB for 1 mW level. 8y $i_{R 2}$ signal presence interiering with $I_{R 1}$ signal: 1 dB for $\mathrm{f}_{\mathrm{R} 2}$ level of 1 mW ; 10 dB for $\mathrm{f}_{\mathrm{R} 2}$ level of 10 mW .				By f_{8} alone: 0.3 dB for 1 mW level. By $f_{R 2}$ signal presence interfering with f_{R} signal: 1 dB for $\mathrm{f}_{\mathrm{R} 2}$ level of $1 \mathrm{~mW}, 10 \mathrm{~d} 8$ for $\mathrm{f}_{\mathrm{R} 2}$ level of 10 mW (ft level at 5 mW).			
Intermodulation:	Typical intermodulation product production with IL level of 5 mW and i_{R} at 20 mV .				Typical intermodulation product production with fl tevel of 5 mW and f_{R} at 70 mV . $\mathrm{f}_{\mathrm{g}}=21 \mathrm{MHz}$ and $\mathrm{f}_{\mathrm{R}}=20 \mathrm{MHz}$.			
	Product	Leval*	Ptoduot	Level*	Produo	Leval*	Produos	Level*
	$2 f_{L} \cdot f_{R}$ $3 \mathrm{~h} \cdot 2 \mathrm{fR}$ $4 h_{L} \cdot 3 h_{k}$ 5 h - 4 f f $6 h_{L}$-5f 7LL-61R	$30 \mathrm{d8}$ 70 dB 70 dB 90 98 dB 100 dB	$\begin{aligned} & 2 f_{R}-f_{L} \\ & 3 f_{R} \cdot 2 f_{L} \\ & 4 f_{R}-3 f_{L} \\ & 5 f_{R}-4 f_{L} \\ & 6 f_{R}-5 f_{L} \\ & 7 l_{R}-66 f_{1} \end{aligned}$	$\begin{array}{r} 65 \mathrm{~dB} \\ 65 \mathrm{~dB} \\ 85 \mathrm{~dB} \\ 90 \mathrm{~dB} \\ 100 \mathrm{~dB} \\ 100 \mathrm{~dB} \end{array}$	$2 h_{L} \cdot i_{R}$ $3 h_{L}-2 f$ $4 \mathrm{H}_{\mathrm{L}} \cdot 3 \mathrm{if}$ $5 f_{L} \cdot 4 f_{R}$ 6f: 5fR $7 \mathrm{fL} \cdot 6 \mathrm{f}$	40 dB $65 d 8$ 65 dB $85 d 8$ 90 dB $95 d B$	$\begin{aligned} & 2 f_{R} \cdot f_{L} \\ & 3 f_{R} 2 f L \\ & 4 f_{R} \cdot 3 f_{L} \\ & 5 f_{R} \cdot 4 f_{L} \\ & 6 R_{R} \cdot 5 f_{L} \end{aligned}$	65 dB 65 dB 90 dB 90 dB 95 dB 95 dB
	*Referred 10 fx level.				*Referred to fx level.			
Typical pulse modulator pesformance (oulse input " x " port, sutput at " 8 "):	Rise or fall timet: 1 nanosecond. Pulse widith: no restriction. On-ott ratlo: 35 dB . Saturation pulso ampltude: 10 mA with $\mathrm{fL}=5 \mathrm{~mW}$. Maximum Ingut: 40 mA (damage level.) Modulafion souree: either + or - polarity turns swith on: amplitude between pulses, within 2 mV of 0 V . Winarity: output is linear over a 30 dB range at 500 MHz ; betler at lower frequencias.				Rise or fall times: 2 nanoseconds. Pules whdth: no restriction. On-olf rallo: 35 dB . Saturation pulse amplitude: 10 mA with $\mathrm{fl}=5 \mathrm{~mW}$. Maximum Inpur: 40 mA (damage level.) Modulation source: elther + of - polarily turns switch on; amplitude between pulses, within 2 mV of 0 V . Linaarly: output is linear over a 30 dB input current range at 150 MHz ; better at lower frequencies.			

High performance simplffes many design tasks
Models 10514A, B; 10534A, B, C

30514A			105148		106344		105348	
Mixer balance:	10514A				10634A, B			
	Mixer Balanoe tor	In Frequenoy Ranges (MHz)		Referenced $t 0$	Mlxer Balance for	In Fraquanoy Ranges (MHz)		Refer anced 10
			$I_{L}, I_{A}: 0.2-500$ tx: do-E00			$\begin{aligned} & \text { L, }\left\{\begin{array}{l} \text { fa: }: 0.06-35 \\ f_{x:}: 00-35 \end{array}\right. \end{aligned}$	$\begin{aligned} & \text { It. In: } 0.035-160 \\ & \text { fx: do-150 } \end{aligned}$	
	flat R flat X if at L f_{R} at X fxat L Px at R	40 dB 40 dB 4588 25 dB 35 dB 25 dB	30 dB $20 d 8$ 30 dB 15 dB 15 dB 156 B	$\begin{aligned} & f_{L} \\ & f_{L} \\ & f_{R} \\ & f_{p} \\ & f_{X} \\ & f_{x} \end{aligned}$	$\begin{aligned} & f_{L} \text { at } R \\ & \text { fi at } X \\ & \text { fr at } L \\ & \text { in at } X \\ & \text { fx at } L \\ & \text { fX at } R \end{aligned}$	40 dB 35 dB 40 dB 20 dB 35 dB 20 dB	30 dB 20 dB 30 dB 15 dB 20 dB 12 dB	$\begin{aligned} & \hline f_{L} \\ & f_{L} \\ & f_{R} \\ & f_{R} \\ & f_{x} \\ & f_{1} \end{aligned}$
	10614B				105340			
		In Frequenay Fanges (M Hz)		Refor. anced \{0	Mlyar Balanoo for	In Frequenoy Ranges (MHz)		Relar. eroed 10
	Balance for		$\begin{gathered} \mathrm{I}_{1} f_{\mathrm{A}}: 0.2-600 \\ \mathrm{x}_{\mathrm{x}}: d 0-560 \end{gathered}$					
	$f L$ at i f_{L} at X f_{R} at L f_{n} at X fxat L fxat R	40 dB 40 dB 45 dB $25 d 8$ 35 dB 25 dB	$\begin{aligned} & 25 \mathrm{~dB} \\ & 15 \mathrm{~dB} \\ & 25 \mathrm{~dB} \\ & 15 \mathrm{~dB} \\ & 15 \mathrm{~dB} \\ & 15 \mathrm{~dB} \end{aligned}$	$f l$ f_{L} f f f_{R} $f x$ $f x$	flat R $f L$ siX i_{R} at L ipat X fxat L fxat R	35 dB 35 dB $35 d 8$ $20 d 8$ $35 d 8$ $20 d 8$	$\begin{aligned} & 25 \mathrm{~dB} \\ & 25 \mathrm{~dB} \\ & 25 \mathrm{~dB} \\ & 15 \mathrm{~dB} \\ & 25 \mathrm{~dB} \\ & 12 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \hline f_{L} \\ & f_{L} \\ & f_{R} \\ & f_{R} \\ & f_{x} \end{aligned}$
Connectors:	Female BNC.		0.040 -inch pins for printed circuit board mounting.		Female BNC.		10534B: 0.40 inch pins 10534C: 0.009×0.020 inch leads	
Enviranmental:	Mixer has b meet its $-20^{\circ} \mathrm{C}$ to + five cycles of midity. Comp MIL•-6181D has been operatling tes $+75^{\circ} \mathrm{C}$ ex pea'k-to-peak 4-Inch bench to 25,000 fee	type tested to acifications over $5^{\circ} \mathrm{C}$ and through $0^{\circ} \mathrm{C}$ and 95% hunce with the rigid RFI specificstion monstrated. Noninclude $-40^{\circ} \mathrm{C}$ to sure, 0.060 linch bration at 55 Hz , rop, and altitude	Type tasted to m mental specificatio 18400F Class 1 ; Class 1; and MIL-5 Condilions includa ing temp $-54^{\circ} \mathrm{C}$ humidity 95% at + tion to $500 \mathrm{~Hz}=10$ simulated hammer operating altitudo The 10514 B is not maet RFI requirem is intended for use circuits.	environof MIL.E. L-T-21200 O Class 2. non-opera. $+75^{\circ} \mathrm{C}$; $0^{\circ} \mathrm{C}$; vibra. g's; shock 1500 g's: ,000 fest. esigned to ts since it on printed	Mixer has be meet its sp $-20^{\circ} \mathrm{C}$ to + five cyeles of midity. Compli MIL-1-61810 has been de operating lests $+75^{\circ} \mathrm{C}$ expos peak-to-peak 4 -inch bench 10 25,000 leet.	n type tested to ecifications over $65^{\circ} \mathrm{C}$ and through $0^{\circ} \mathrm{C}$ and 95% huance with the rigid RFI specification monstrated. Noninclude $-40^{\circ} \mathrm{C}$ to ure, 0.060 inch + vibration to 55 Hz , rop, and altitude	Type tasted to me mental specification 16400F Class 1: Class 1; and MIL-54 Conditions Includs: ting temp $-62^{\circ} \mathrm{C}$ operating temp $+75^{\circ} \mathrm{C}$; humidity $65^{\circ} \mathrm{C}$: vibration to 10 g 's; shock simu mer lest 1500 g's altitude 50,000 leet. is not dasigned to quirements since use is on printed	anviron. of MILL-E. IL-T-21200 00 Class 2. nanopera$+85^{\circ} \mathrm{C}$; $-54^{\circ} \mathrm{C} \quad 10$ 95% at $500 \mathrm{~Hz}_{2} 10$ ated harn. operating The 105348 eet RFI re. intended ircuits.
Lead temperature (during soldering):	Does	apply.	$265^{\circ} \mathrm{C}\left(509^{\circ} \mathrm{F}\right) \mathrm{max}$ greater than $1 / 32$ seating suriace for max.	distances ach from seconds	Does	ot apply.	$285^{\circ} \mathrm{C}\left(509^{\circ} \mathrm{F}\right)$ max greater than $1 / 32$ seating surlace for max.	distances nah from seconds
Dimensions:	$\begin{aligned} & 2.3 \mathrm{in} \times 0.6 \mathrm{i} \\ & 43 \mathrm{~mm}) . \end{aligned}$	$1.7 \text { in }(59 \times 15 x$	1.63 in $L \times 0.70$ H seated (0.63 in	$x 0.43$ in (h pins).	$\begin{aligned} & 2.3 \text { in } \times 0.6 \text { in } \\ & 43 \mathrm{~mm}) . \end{aligned}$	$1.7 \mathrm{in}(59 \times 15 \times$	105348: 1.63" long $\times 0.43^{\prime \prime}$ high seated with pins). 105340: $0.40^{\prime \prime}$ long $\times 0.40^{\prime \prime}$ high.	$0.70^{\prime \prime}$ wide (0.63* high $0.35^{\prime \prime}$ wide
Weight:	2.102	grams).	$0.502(14$	ms).	2.102	grams).	$\begin{aligned} & 1053 A B: 0.5 \text { oz (14 } \\ & 1053 A C: 0.053 \text { OZ }(l, \end{aligned}$	ams). grams).
$\text { Price: } \begin{array}{r} \quad 1.4 \\ 5.9 \\ 10-24 \end{array}$		85 78	$\$ 65$ 65 55			$\begin{aligned} & \$ 70 \\ & 63 \\ & 58 \\ & \hline \end{aligned}$	$10534 B\left\{\begin{array}{l} \$ 50 \\ 50 \\ 40 \end{array}\right.$	$10534 \mathrm{C}\left\{\begin{array}{l} 560 \\ 60 \\ 50 \end{array}\right.$
Options	Option 01, T $\$ 5$. Option 02, 0 tors, add $\$ 25$ Option 03, No. 50.043.0 Option 04. No. 51-043-0	connectors, add No, 211 connec- alectro screw-on , add \$5. sealectro snap-on , add $\$ 5$.			Option 01, TN $\$ 5$. Option 02, OS lors, add \$25. Option 03, S No. 50.043 .000 Option 04, No. 51-043-00	connectors, add 1 No. 211 connec. salectro sciew.on 0 , add $\$ 5$. aalectro snap-on 0 , add $\$ 5$.		

*Contact Hewlett-Packard for prices of larger quanttlies.

MICROWAVE SOLID STATE DEVICES

Small, reliable system components

Hewlett-Packard's seazch for ultra-reliable instrument components has led to the development of the 35800 family of transistor chips and the 35000 series of hybrid integrated circuits. The 35800 devices are planar, NPN transistors optimized for linear high frequency and microwave applications to 6 GHz . The 35000 series of microcircuits includes a family of amplifiers constracted from vacuum-deposited layers of metals and metal oxides and the microwave transistors mentioned above. Transistors and amplifiers utilize materials and processes selected to ensure long life and stable performance characteristics. The result is a new family of components with attractive features for systems where performance, size, and reliability are important considerations.

Technology

In the course of developing ultra-celiable microwave transistors and microcircuits, many new advances in processing techniques were implemented. A gold contact system was developed to provide very reliable connections to the base and emitter regions of the microwave transistors. This contact system also permits high-temperature assembly techniques $\left(400^{\circ} \mathrm{C}\right)$ without the detrimental oxidation that oc. curs with aluminum contacts. The majority of the passive components of the microcircuits use tantalum-based thin films. Unique processing techniques provide both capacitors and resistors that are stable to $400^{\circ} \mathrm{C}$ for maximum reliability and performance stability.

Transistors with guaranteed high frequency characteristics

For the first time in the history of the solid state components industry, the microwave parameters of unpackaged transistors are guaranteed by complete testing of every device. Measuring the reflection and transmission coefficients that the transistor produces in a 50Ω system (i.e. the microwave scattering parameters, see p. 465) determines the device's performance in any linear circuit. For a slight additional charge, the measured data for each device can be supplied at a variety of bias points and frequencies from 500 MHz to 6 GHz .

High performance microcircuit amplifiers

The 35000 series of hybrid integrated ampligers covers the frequency range from 10 kHz to 2 GHz , providing gain up to 40 dB and output power levels up to 200 mW . These amplifers are well-suited to applications such as broadband IF's in radar and telecommunication receivers; RF distribution systems such as community antenna television and studio-transmitter links; and preamplification in radionavigation, telemetry, radar, and radio astronomy receivers. They are also useful for increasing the output of low-power signal generators and frequency synthesizers, as well as increasing the sensitivity of oscilloscopes, voltmeters, and other high frequency measuring instruments. For further information, contact a Hewlett-Packard Sales Office.

Characteristics

Transistor chips

Devjea Type	Typloal oharatertisiles					Wlde Band Applloaltons
	$\begin{gathered} \mathbb{f}_{\text {max }} \\ (\mathrm{GHz}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{h}_{1} \\ (\mathrm{OH}) \end{gathered}$	SfB^{12}			
			$\begin{gathered} 1 \mathrm{GHz} \\ \text { (dB) } \end{gathered}$	$\begin{gathered} 2 \mathrm{GHI} \\ \text { (dB) } \end{gathered}$	$\begin{gathered} 3 \mathrm{CHI} \\ (\mathrm{~dB}) \end{gathered}$	
35800A	6.0	4.0	-	5.2	2.0	Osc,-Ampl.
35801A	4.3	3.5	-	3.3	-	Osc.-Ampl.
35802A	3.0	3.0	5.2	-	-	Osc.-Linear

Hybrid integrałed amplifiers

Device Type	Frequeroy Range	Gain (dB)	Output Leval (1 dB Gsiln Camp.)	Package/ Connectors
35000A	$0.1-100 \mathrm{MHz}$	30	+5 dBm	Flat Plug-In
35001A	$0.1-100 \mathrm{MHz}$	20	+ 19 dBm	Flat Plug In
35002A	$0.01-400 \mathrm{MHz}$	20	+7d8m	OSM
35003A	$0.01-400 \mathrm{MHz}$	20	+23 dBm	OSM
35004A	$0.01-1,3 \mathrm{GHz}$	25	$+16 \mathrm{dBm}$	OSM
35005A	$0.1-2.0 \mathrm{GHz}$	40	$+16 \mathrm{dBm}$	OSM

BASIC INSTRUMENTS FOR MICROWAVE MEASUREMENTS

Hewlett-Packard offers a complete line of microwave test equipment from which systems can be assembled for making accurate reflection, transmission, frequency and power measurements. Measurement techniques and equipment functions are discussed briefly in the following para. graphs. More detailed information is a vailable in Application Notes 64, 65, and 84, complimentary copies of which are available from Hewlett-Packard sales offices.

Impedance measurements

Impedance-matching a load to its source is one of the most important considerations in microwave transmission syscems. If the load and source are mismatched, part of the power is ceffected back along the transmission line toward the source. This reflection not only prevents maximum power transfer, but also can be responsible for erroneous mea. surements of other parameters or even cause circuit damage in high-power applications.
The power reflected from the load interferes with the incident (forward) power, causing standing waves of voltage and current along the line. The ratio of standing-wave maxima to minima is directly related to the impedance mismatch of the load. The standing.wave ratio (SWR), therefore, provides a valuable means of determining impedance and mis-match.

Slotted ine techniques

Standing.wave ratio can be measured directly with a slotred line in a setup like the one shown in Figure I. The slotted

figure 1. Typical setup for SWR and impedance measurements in cosx using HP 805C slotted Line.
line is placed immediately ahead of the load in test, and the source is adjusted for $1-k \mathrm{~Hz}$ amplitude modulation at the desired microwave frequency. The slotied line probe is loosely coupled to the RF field in the line, thus sensing relative am. plitudes of the standing-wave pattern as the probe is moved along the line. The ratio of maxima to minima (SWR) is displayed directly on the SWR meter.
While this method works very well for single-frequency testing, ir is very time-
consuming for broadband applications. The number of discrete measurements necessary to ensure complete coverage across a frequency range is determined by the degree of confidence requited that a sharp resonance or hole does not exist, and for a high confidence factor, the number of measurements must be very high.

The solution to broadband measurements is the swept-frequency technique. This method provides continuous coverage accoss the frequency range of interest. Measurements of SWR of coaxial devices operating below about 2 GHz and of waveguide devices is accomplished with the reflectometer (Figure 3). How ever, the low directivity of coaxial directional couplers operating above 2 GHz seriously limits accuracy in coax at these higher frequencies.

The swept slotted line

A measuring system which combines the speed and convenience of swept-frequency measurements and the inherent accuracy of the slotted line can be built around the 817 A Slorted Line System (page 282). The 817A consists of an 816 A Cozxial Slotted Line, 809 C Car. riage and 448A Slotted Line Sweep Adapter and can be used throughout the range from 1.8 to 18 GHz . The signal source is a sweep oscillator and the read. out device is an oscilloscope.
The measurement technique is much the same as for fixed-frequency measure. ments. A derecring probe is moved along the slotred line a distance of at least one half wavelength at the lorest Erequency so that both maximum and minimum voltages of the standing wiaves are sampled. However, instead of the plot being a single vertical line, which wrould be the case in a fixed-frequency measure. ment, it is a smear or envelope as shown in Figure 2. At any given frequency, the ratio of the maximum and minimum am. plitude of the envelope is the SWR.
Measurement of low SWR requires sensitive readout devices to resolve the maxima and minima adequately. Therefore, the signal source must be leveled

Figure 2. Multi-sweep slotted line measurement. Vertical scale $0.5 \mathrm{~dB} / \mathrm{cm}$ (SWR $=$ $1.12 / \mathrm{cm}$).
to keep the entire plot on scale. The 448A, comprising a slotred section and two matched detectors, effectively levels the sweeper output and monitors the standing waves in the 816A Slotted Line. No additional probe is required for the 816A.

A storage oscilloscope such as the HP 141A is ideal for these measurements. A plot of SWR can be generated in a few seconds and retained on the CRT for evaluation or photography. Time-exposure photography and a conventional oscilloscope such as the HP L\{0A can also be used. The HP 1416A SweptFrequency Indicator, a plug-in for both the 140 A and 141 A Oscilloscopes, provides additional convenience with its logarithmic calibration. No zero-level reference is needed, and SWR is indicated directly in $d B$ when the detector is operated in its square-law region. An X.Y recorder such as the Moseley 70358 can also be used to plot measurements.

Accuracy of slotred line measurements is limired primarily by the residual SWR of the line itself, 1.01 in waveguide and 1.02 to 1.06 in coax depending upon the frequency and type of connector. How. ever, there are other considerations. Peneuration of the detector probe into the line should be kept to a minimum to prevent standing waves due to the probe itself. Elimination of hamonics from the signal source is also important. HP 360,362 , and 8430 filters are excellent for this purpose.

Reflectometer techniques

The reflection coefficient (ρ) of a device or system is anorher useful term in establishing the impedance match of microwave devices. The following rela. rionships of ρ and SWR are frequently used in impedance work:

$$
|\rho|=\frac{E_{\text {reciectud }}}{E_{\text {ipcident }}}=\frac{S W R-1}{S W R+1} .
$$

The amplitude of reflected voitage with respect to the incident voltage is given in terms of dB return loss by the expression: $d B=-20 \log _{x \mid}|\rho|$. For example, if the refected signal from a test device is 26 dB below the incident signal level, the reflection coefficient of the device is calculated as 0.05 . In a like manner, any reflection coefficient from zero to one can be determined by a measure of the return loss.

The refection coefficient of a load can be measured by separating the incident and reflected waves propagated in the transmission line connecting the source and load. The reflectometer uses direc-

IMPEDANCE MEASUREMENTS

tional couplers to accomplish this sepa. ration in borh waveguide and coaxial systems. Reflectometers permit continuous oscilloscope displays or permanent X.Y recordings of reflection coefficient across complete operating bands.

Incident power in the improved reflec. tometer is held constant by the leveling action of the srreep oscillator and crystal detector sampling the incident wave from the forward couples. With incident power held constant, only the relative amplitude of the reflected wrave need be measured to determine reflection coefficienr. This technique permits better accuracy than older systems, and fast sweep speeds enabling the use of oscilloscope displays. See Figure 3.

Flgure 3. Typlcal Wavegulde Reflectometer

Reflectomefer calibration

To calibrate the refectometer, a short circuit is placed at the output port, thus reflecting all of the incident power. The derector in the reverse-arm coupler samples the reflected power and provides a proportional dc voltage for readout. By placing a calibrated attenuator ahead of the detector, specific amounts of return loss may be pre-inserted for calibration of the oscilloscope or recorder gain. The attenuator is then returned to zero, the short removed and the test device connected and measured on the pre-calibrated display.

Calibration also is possible without the pre-insertion attenuator if the detector law is known and the vertical response of the readout device is constant. Calibration levels with this technique are established with the RF turned off (correspondiag to no reflection), then with all of the power reflected by a sliding shorr. Reflections falling between these limits are then read from the oscilloscope graticule or directly from calibrated transparent overlays such as furnished with Hewlett-Packard Application Note 65. The HP 140A Oscilloscope with its 1416A plug-in eliminates the need for overlays. With logarithmic calibration, the $140 \mathrm{~A} / 1416 \mathrm{~A}$ provides return loss di. rectly in $\cdot \mathrm{dB}$.

Reflectometer calculator

Time-consuming calculations of return loss and conversion of ρ to SWR may be elimidated by using an Hewlett-Packard Refectometer Calculator. This slide-ruletype aid provides continuous scales of p, SWR and recurn loss, which may be positioned under a cursor for instant conversion of terms. Other useful information such as ambiguity in reflectometer measurements, mismatch loss and phase and amplitude mismatch errors are included on the calculator. It may be obtained from your Hewlett-Packard field engineer upon request.

Reflectometer accuracy
The overall measurement accuracy of leveled retectomerer systems such as described here may be closely approximated by considering the various sources of error separately, then taking the rms a verage. These efrors may be classified as being due to imperfect components comprising the reflectometer as follows:

1) directional couplers
2) detectors
3) attcnuator used in calibration
4) display or readout instrument.

One of the primary errors introduced by directional couplers is the directivity signal. Directivity of a coupler refers to its ability to distinguish between forward and reverse power flowing in the main arm. Since refiectometry is based on the separation of incident and reflecked power by use of the directional couplers, high directivity is essential to accurate mea. surements. Any incident power passing to the reverse coupler auxiliary output (because of imperfect directivity) will add in unknown phase with the actual reflected signal from the load in test. The result is an ambiguity in the voltage level at the reverse coupler output. The ambiguity caused by reverse coupler direc. tivity can be determined in terms of reflection coefficient by substituting the directivity (in dB) into the return loss equation given earlier. Thus, for a reverse coupler directivity of 40 dB , the ambiguity in ρ is ± 0.01.
The ambiguity caused by the forwand coupler directivity also must be considered, particularly when measuring lacge refections. If directivity is not infinite, part of the signal reflected from the test load will appear at the auxiliary arm output of the forward coupler. This directivity signal adds vectorially with the incident signal, producing an ambiguity in the incident porver level. The ambiguity is proportional to the magnitude of load reflection and forward
coupler directivity and may be calculated as follows:

$$
\begin{aligned}
& \Delta \rho= \pm \rho\left(\log ^{-1} \frac{\mathrm{~dB}}{20}\right) \\
& \text { where } \mathrm{dB}=\text { coupler directivity } \\
& \rho=\text { refection coefficient } \\
& \text { of rest load. }
\end{aligned}
$$

Primary factors to be considered in the detectors are frequency response, devia. tion from square law and mismatch. Using HP 423A or 424A Crystal Detec. tors, frequency response is rypically fiat to within $\pm 0.2 \mathrm{~dB}$ per octave and deviation from square law less than $\pm 0.2 \mathrm{~dB}$ over a 20 dB dynamic range. These two errors can be evaluated in terms of reflection coefficient ambiguity by alternacely adding and subtracting the $d B$ value to the return loss actually measured. The errors caused by these two factors can be eliminated by using the pre-insertion attenuator for initial system calibration. Error due to mismatch between HP is2 Waveguide Couplers and 424A Detectors is typically less than $\pm 3 \%$ of the ρ measured. This includes the rotal effects of derector mismatch in the incident coupler used for leveling feedback and the reverse arm measuring reflected voitage from the load.
The use of a pre-insertion attenuator for calibration eliminates some derector errors but introduces error of its own. The dial accuracy of the attenuator and mismatch considerations lead to the fol. lowing expression for the error introduced in the measured reflection coefficient:

$$
\Delta \rho=\rho\left(1-\rho \rho^{0.02} \pm 0.015\right)
$$

where $\rho=$ reflection coefficient of the test load.
When the attenuator is not used for calibration, the readout or display devite causes error in the measured ρ. The ef. fects of nonlinearity, instability and reso. lution are factors which must be considered. When using HP 130 C or 140 A Oscilloscopes for measuring small ratios (≈ 1), accuracies of 2% are reasonable. Ratios of $30 \mathrm{~dB}(\rho \approx 0.03)$ can be determined with about 4% accuracy.

The total effects of these errors can be conservatively estimated with the follow. ing equations:

1. Using the 382A attenuator pre-insertion technique, $\Delta \rho= \pm(0.01$ + 0.05ρ).
2. Using the straightforvard oscilloscope technique, $\Delta \rho= \pm(0.011$ +0.04 p).
A more complete discussion and error analysis of reflecrometer systems is in.

MICROWAVE TEST EQUIPMENT

cluded in Hewlett-Packard Application Note 65, "Swept Frequency Techniques."

Attenuation measurements

Attenuation is defined as the decrease in porer (at the load) caused by insecting a device between a Z_{0} source and load. Under this condition, the measured value is a property of the device alone so that this is the "ideal system" in which to make measurements. The term Z_{0} is used to describe a unity SWR condition where the load and source impedances equal the transmission line impedance.

There are three common methods for measuring RF attenuation: 1) square. law detection with audio substitution, 2) linear detection with If substitution, and 3) direct $R F$ substirution using attenuators calibrated by either of the first two methods. Accurate square-larv measurements over a range of 30 dB in a single step are possible using modern crystal detectors such as the HP 423A coaxial, and 424A waveguide series. With partial RF substitution this range can be extended to about 45 or 50 dB . With direct RF substitution a 45 or 50 dB range is possible using the same detecrors withour square-law loading. The 423A and 424 A detectors are well suited to swepr.frequency attenuation tests with either method 1) or method 3) above because of their hat frequency response and low reflection coefficient.

A number of factors affect the range and accuracy of attenuation measurements, each of which must be evaluated for rhe particular method being used. The measuring system must have low source and load reflections to minimize mismatch error. Pads or isolators can be used to minimize source mismatch, but closed loop leveling is more effective. By leveling the output power of the source at the point of measurement, source im. pedance is effectively maintained close to Z. With this sechnique, impedance variations in intervening cables, connectors, and adapters are effectively eliminated since they are within the leveling loop.

Low reflection from the readout crystal detector is important for reducing mis. match error at the load in the measure. ment system. All Hewletr-Packard detectors are swept-frequency tested to assure low reflection through their frequency ranges.

Square-law detection technique

Figure 4 shows a w'aveguide system for swept attenuation measurements of 30 to 40 dB . Source power is leveled using a

Figure 4. Squapt attenuation system for measuraments up to 40 dB with oscilloscope.
single 752 series $10 \cdot \mathrm{~dB}$ directional cous. pler in the ALC loop. Coupling variation versus frequency in the leveling loop causes leveled poryer variation of about 1 dB at the point of test device insertion. This power variation is nearly equal to, but opposite, the coupling variation of the readout coupler. The net variation in readout calibration is therefore mutually compensated to within about 0.3 dB in X-band, depending primarily on coupler tracking.

With the 86908 sweeping the frequency range of interest, a zero- dB reference level is established on the oscilloscope without the resr device in the system. The device is then inserted as indicated in Figure 4 and its attenuation versus frequency derermined by the amplitude decrease from the CRT reference level previousiy established.

Oscilloscope readout of attenuation measurements is especially useful for viewing broadband performance of test devices while adjustments are being made, or for rapid testing applications.

Figure 5 shows a typical coaxial sys-

Figure 5. Typical Casial Setup for SquareLaw Attenuation Measurement.
tern for measuring attenuation by squarelaw derection. The procedure and $d y$ namic range are the same as for the waveguide system. In the 0.96 to 12.4 GHz range the HP 780 series directional detectors are a convenient means of deriving a leveling signal for the sweep oscillator.

RF substitution technique

Swept attenuation measurements up to 45 or 50 dB can be made using the RF pre-insertion, X-Y recorder system shown in Figure 6. The leveling arrangement is identical to that shown in Figure 4, but coupler tracking and detector errors are eliminated by plorting a calibration grid on the $X \cdot Y$ recorder ptior to the actual measurement. In addition to being leveled, the sweeper is internally ampli. tude-modulated at 1 kHz to drive the ${ }_{4} 15 E$ SWR Meter. Tine 41sE, after amplifying the $1 . \mathrm{kHz}$ signal, feeds a proportional de voltage to the recorder Y . input. The do sweep voltage from the 8690 B drives the recorder X -input directly.

Calibration lines are plotted by setting in specific values of attenuation on the 382A near the anticipated test device attenuation and triggering single 30 -second sweeps. The 382 A is then set to 0 dB and the rest device inserted as shown in Fig. ure 6. A final sweep is triggered and attenuation of the tesi device plotted over the calibration grid.

The system does nok rely on squarelaw performance in the readour detector because of the calibration grid plotted with known attenuation levels set by the 382A. For this reason, the option 02 square-law load is not connected to the 424A readout detector and higher sensitivity is obtained.

IF substitution technique

The IF substitution rechnique of attenuation measurement involves conversion of the microwave frequency to a constant, much lower frequency for which very accurately calibrated attenua. tors are available. These are the principles used in the HP 8405A Vcctor Voltmeter and HP 8410A Network Analyzer. With the vector voltmeter, accurate attenuation measurements can be made

FREQUENCY MEASUREMENTS

Figure 6. RF preingertion technique for swept attenuation measurements.
over more than 90 dB from 1 to 1000 MHz . The 8410A Network Analyzer has a range of more than 60 dB from 0.1 to 12.4 GHz . For more information about these instruments see the Network Ana. lyzer section of this catalog.

Frequency measurements

There are two general classes of frequency measuring devices-active and passive types. Electronic counters, transfer oscillators, and frequency converters are examples of active types. These instruments measure frequency well into the microwave region with accuracies of a few parts in 10^{8}. More information about active frequency-measuring instry. ments is contained in the frequency sec. tion of this catalog.

Where the accuracy of active devices is not required, passive devices offer direct readout ar a considerable saving in cost. Passive transmission-type frequency meters, such as the HP 532, 536A, and 537 A are two-port devices that absorb pact of the input power in a tunable cavity. When the cavity is tuned to resonance, a dip occurs in the transmitted power level. This dip can be observed on a meter or oscilloscope display of the detected RF voltage. Frequency is then read from a calibrated dial driven by the cavity tuning mechanism.
The accuracy of cavity frequency meters depends upon the cavity Q, dial calibration, backlash, and effects of temperature and humidity variations. The Hewlett-Packard waveguide and coaxial passive frequency meters achieve accuries of a few parts in 10^{4}.

Instrumentation

Hewlett-Packard offers a broad line of the coaxial and waveguide accessories required in the measurement of impedance, attenuation, frequency, and other microwave characteristics. Included in the line are directional couplers, thermistor
mounts for power meters, frequency meters, slotted lines, detectors, pads, loads, filters, adapters, and other devices and accessories useful in microwave mea. surements. This instrumentation is tabulated on the following pages for quick and easy reference. Frequency ranges and the page on which each item is described in detail are included in the tables. In the case of waveguide equipment, typical measurement setups are shown with the tables. In general, the setup shown for one band can be duplicated in other bands.

Slotted lines

Slotted lines covering the coaxial and waveguide frequency ranges are available for SWR measurements. Residual SWR is minimal for highest measurement accuracy. Hewlett-Packard SWR merers, probes, and detectors complete the SWR measurement setup.
For coaxial systems, the 817A permits the slotted line technique to be used for swept SWR measurements. This method presents SWR versus frequency directly on an oscilloscope. High measurement accuracy is attainable due to the low residual SWR of the slotted line.

Directional couplers

Hewlett-Packard offers both coaxial and waveguide directional couplers. Coaxial couplers are available in single and dual styles in the 770 and 780 series. The coupler-detector combination of the 780 series gives improved performance to sweep oscillator leveling applications. In the 770 and 780 series, the new 779D and the 778D are high performance, multi-octave couplers that bring convenience and economy to broadband applications.
In waveguide couplers, the 752 series covers the spectrum from 2.6 to 40 GHz in full band models. Available with coupling of 3.10 , or 20 dB , these units are
swept-tested for borh coupling and directivity. Directivity in most cases exceeds the $40 \cdot \mathrm{~dB}$ specification by a substantial margin; however, on special order, couplers can be selected to exceed the directivity specification in a particular frequency range. Coupling attenuation is tabulated and supplied with each 752.

Detectors

The $423 \mathrm{~A}, 8470 \mathrm{~A}$, and 8472 A coaxial crystal detectors, and the 424A series of waveguide detectors, offer the optimum in detectors for swept SWR and attenuation measurements. These detectors are ideal for sweep oscillator leveling ap. plications because of their lat frequency response. Also, the flat frequency response of the individual detector elimi. nates the need for matched pairs in most applications. Where extremely closely matched frequency response is required, selecied pairs can be provided.

Attenuators

Attenuators for a wide variety of functions in microwave measurements are available in both coaxial and waveguide versions. For coaxial systems, the 8490 series provides tested, economical, high. performance fixed attenuators that cover dc to 18 GHz . These attenuators are available in $3-, 6-10 ., 20-30-, 40-, 50-$ and $60 \cdot \mathrm{~dB}$ versions with a choice of Type N. APC. 7 and miniature connectors. The 354 A is a 0 . to $60 \cdot \mathrm{~dB}$, ds to 12.4 GHz coaxial step attenuator that uses the simple, effective principles of the fixed attenuators.
Waveguide attenuators are available in the 375 series of utility variable flap attenuators and the 382 series of precision rotacy vane attenuators. The 375 series is useful for controlling power applied to a system or for padding source mismatch, and the 382 attenuators with their accurate calibration and wide range are valuable in calibration and for compara. tive measurements.

Waveguida construction

Many Hewletr-Packard waveguide in. struments are made of die-cast aluminum to attain maximum dimensional and pro. duction stability. A broaching technique for cutting the internal waveguide dimensions to very close tolerances can be used on die-cast aluminum. A broach is a long cutting bar similar to a file that is pulted through the casting to cut the interior surfaces. The linear cutting stroke of the broach eliminates minor surface irregularities resulting ftom use of the milling process. Whereas typical tolerance of milled waveguide tubing is

MICROWAVE TEST EQUIPMENT

MEASUREMENTS
$\pm .003$ inch, precision broaching allows internal dimensions to be controlled to $\pm .001$ inch or less.
The broaching process is very important for instruments such as slotted lines, high directivity directional couplers, sliding loads, and sliding shorts. Smalier colerances on internal waveguide dimensions provide low SWR so maximum accuracy can be obtained in waveguide setups.

Flanges

Each flange of a waveguide instrument is machine lapped after initial sanding belt surface preparation. This process, in addition to ensuring smooth surfaces to obtain the best possible mating, provides a slightly convex surface so that only the innermost area of the mating flanges makes contact. Thus, the tightest possible contrection is made between waveguide instruments with the result that leakage is minimized.

Power measurements

Power measurements are basic at microwave frequencies. Unlike voltage and current levels along a transmission line, microwave power remains constant with position of measurement in a lossless line and can easily be related to circuit performance. Newly developed instrumentation for convenient measurement of phase, gain, and impedance at microwave frequencies is also available. See page 461.

Bolometrle power meters

Below 10 milliwatts, power is usually measured with bolometers (temperaturesensitive resistive elements) in conjunetion with a balanced bridge. There are two general rypes of bolomerers: thermis. tors, whose resistance decreases with temperature (negative temperature coef. ficient), and barretters, which have a positive temperature coefficient. Thermis. tors are most commonly used because they are more rugged, both physically and electrically, than barretters. These bolometer elements are mounted in devices that present an impedance match to microwave transmission lines, either coaxial or waveguide. Such devices are appropriately termed bolometer mounts and allow a bias connection to the bolometer element, as well as a proper entry point for RF. The bolometer is connecred as one leg of a Wheatstone bridge through the bias connection, and bridge excitation is applied. The do or ac bridge excitation biases the bolometer element to balance the bridge. When the unknown

Figure 7. Block diagram of HP 432A Powar Meter. Dual bridge provides proper blas to ther. mistor mount to correct for temperature variation and reduce zero drift.
microwave power is applied to the bolometer, the resulting temperature rise causes the element's resistance to change. unbalancing the bridge. Withdrawing a like amount of bias power from the element rebalances the bridge. The amount of bias removed is displayed on a meter.

Automatic bolometer bridges

There are a number of bolometer bridge desigas which provide various degrees of accuracy, speed, and convenience.

The Hewlett-Packard Model 432A Power Meter is a remperature-compensated, automatically balanced thermistor bridge of versatile design. Operating with any of the HP teroperature-compensated thermistor mounts, the 452 A automatically maintains bridge balance and reads substitured bias power to a basic accuracy of $\pm 1 \%$ of full scale. The 432A power ranges of 10 microwates to 10 millisuatts (full scale) encompass virtually all levels involved in small sig. nal microwave porver measurement.

Since all bolometer elements are tem-perature-sensing devices, they are unable to distinguish between applied power level chagges and environmental temperature changes. As bolometer bridge sensitivity is increased, even minute temperature variations can unbalance the bridge. This results, if uncompensated, in "zero drift" of the power meter and erroneous power measurements.

A dual bridge arrangement, as shown in Figure 7 is used in the 432A to com. pensate for variations in temperature at the thermistor mount. The thermistor mounts used with the 432A have two thermistor elements. The two are in close thermal proximity and are affected equally by changes in ambient temperature. Thus R_{D} responds to both ambient
temperature and applied RF power; Re, isolated from the RF power, responds only to ambient temperature. Each element is connected to its own bridge circuit in the power meter, which automatically controls bias power. This arrangement compensates for temperature changes, thus reducing zero drift in the 432 A by a factor of 100 over uncompensated meters. Another advantage of the 432A design is that when zeroed on the most sensitive range, the meter may be switched to any other powes range withour re-zeroing (zero-carryover is within 1% on all ranges). A dc output proportional to the meter deffection is available for recording purposes or control of external circuits such as power meter leveling of microwave sweep oscillators and signal generators.

Compensated thermistor mounrs available for the 432 A include the 478 A (10 MHz to 10 GHz) and the 8478 A (10 MHz to 18 GHz) Coaxial Mounts. The 486A Waveguide Series collectively cover the waveguide bands from 2.6 to 40 GHz . All mounts have low SWR over their frequency ranges without tuning.

Non-temperature-compensated bridgas

The HP Model 430C Powes Meter operates with a number of non-tempera-ture-compensated barretter or thermistor mounts such as the HP 477B Coaxial and 487 Waveguide Series. The 478A, 8478B, and 486 A Thermistor Mounts also can be operated in a non-temperature-compensated mode with the 430 C using the 11528A Adapter. This permits utilization of the 430 C Power Meter in waveguide bands not covered by the 487 series of mounts. Accuracy of the 430 C in measuring substituted power is $\pm 5 \%$ of full scale.

Calorimetric power meters

Bolometer elements cannot be used for direct power measurement at levels above 10 to 50 milliwatts because of their physical size. Calibrated directional couplers or attenuators are sometimes used to reduce the power level to the bolometer's range; however, this also reduces overall accuracy because of the additional tolerances on coupling factor or altenuator calibration. Where better accuracy is desired, calorimetric techniques provide a more useful result.

Calorimetric power meters dissipate the unknown potwer in a resistive termination that is matched to the transmission line or source impedance. The temperature rise caused by the power dissipation is then measured by a temperature sensor which is calibrated against known amounts of de power. Calorimetric power meters fall into two categories-dry and fluid. Dry calorimeters depend upon a static thermal path between the dissipative load and the temperature sensor. This arrangement often requires several minutes for the termination and sensor to reach equilibrium, making measuremenis time-consuming and too sluggish for tuning circuit parameters for optimum output.

Fluid calorimeters such as the HP 434A utilize a moving stream of oil to transfer heat quickly to the sensing element. An amplifier-feedback arrangement, in conjunction with the series oil fow system as shown in Figure 8 reduces measurement time in the 434 A to less than 5 sec onds for full-scale response. The physical size of the termination and the fow rate of liquid passing over the termination are primary factors which determine the maximum power that may be dissipated by a fluid calorimeter. The HP 434A covers the important range of 10 mW to 10 watts.

Figure 8. Simplified diagram of HP 434A Calorimetric Power Meter, showling oil flow path.

Peak power measurement

A frequent requirement in microwave work is the measurement of peak power in a periodic pulse. This may be done by various indirect techniques using bolometers or calorimeters. Hewlett-Packard produces a versatile instrument that conveniently measures peak power direct. ly in the 50 MHz to 2 GHz region. This instrument (the 8900 B) utilizes a video comparator technique to bring a known dc voltage, supplied by the 8900 B , in a known impedance to a level which is equal to the pulse being measured. This allows simple measurements of peak pulse power with a basic accuracy of 1.5 dB even when the waveform is not rectangular. A custom calibration chart increases accuracy to 0.6 dB for critical applications.

Application Note 64

Complete information on the theory and operation of bolometers and bridges, along with other types of power meters, is included in a comprehensive application note available from Hewlett-Packard. Application Note 64 contains up-to-date information on virtually all aspects of microwave power measurement, including detailed descriptions and illustrations of instruments, techniques, error analysis and applications. Sources of measurement error and systematic methods for error-reduction allow selection of the best procedure for a specific application. Application Note 64, entitled "Micro. wave Power Measurement", is available on request through your HP sales office.

Steps toward better accuracy

The fundamental standards of microwave power lie in de or low frequency ac voltage and resistance standards which may be accucarely measured and used for comparison or substitution. Other factors, such as impedance matching and efficiency of the sensing device, play an im. portant cole in the overall measurement accuracy.

The basic accuracy of HP power measuring equipment satisfies the requirements of most applications without complicated set-ups requiring extensive manual operations and calculation. Should greater accuracy be required, the versatility and stability of HP equipment allows easy enhancement of its basic accuracy in a step-by-step manner until the degree of accuracy needed is achieved.

Tuners: Certainily one of the most important steps for higher accuracy is the elimination of mismatch loss with a tuner. Hewlett-Packard bolometer mounts and calorimeter input systems are designed and tested for good broad. band impedance match (low $S W R$) to common microwave transmission lines. However, source SWR must also be con. sidered in any power measurement, and
the combination of source and load SWR can produce serious mismatch errors. To eliminate mismatch error, HP 870A Waveguide Series or 872A Coaxial Slidescrew Tuners may be used ahead of the bolometer or calorimeter input.

Effective Effciency and Calibration Factor: A bolometric power meter can only measure power that is absorbed by the bolometer element, not that which is dissipated elsewhere in the mount or reflected by the mount (SWR). Furthermore, the spatial distribution of current and resistance within the element is slightly different for microwave frequencies and the dc (or low-frequency ac) which is actually measured by the meter. The effects of these sources of error are measured at certain frequencies during the manufacture of the Models 478 A and 486A mounts and presented on their nameplates as Calibration Facror and Effective Effciency. Calibration Factor is the ratio of substituted bias power in the power meter to the microwave power incident on the mount. Effective Efficiency is the ratio of substituted bias power in the power meter to the microwave power absorbed by the mount. Although direct traceability to NBS (National Bureau of Standards) is not yet available in certain bands, the extensive tests and cross. checks conducted by HP on literally thousands of mounts assure a uniformly high level of efficiency in all mounts. The HP E31-8690 Series of power calibration systems provides these data in either coax or naveguide. In addition, the mounts are swept-frequency resred, so the effects of even sharp resonances on efficiency are revealed and eliminated.

Instrumentation: HP 432A power meters provide a basic accuracy of $\pm 1 \%$ in substituted power to the thermistor. The DVM outpur of the HP 432A al. lows connection of a digital voltmeter (such as the HP 3440A) for high reso. lution readout of power. Rear panel connectors also allow direst measurement of voltages in the bridges; the computed substituted de power reduces instramentation error to less than $\pm 0.2 \%+0.5$ ${ }_{\mu}$ W. A Power Meter Calibraror, the HP 8477 A , will soon be available for the HP 432A.

The 434A Calorimetric Power Meter basic accuracy is $\pm 5 \%$ of full scale, which includes both instrumentation error and efficiency. The built-in calibration source provides a 0.1 watt dc check point accurate to 1% for convenient verification of the 434A calibration. In. strumentation uncertainty can be substantially reduced by calibrating the 434A on the range to be used with an external de test set. The HP K02-434A de Test Set provides calibration power levels in convenient steps from 2 mW to 10 W , accurate to $\pm 0.5 \%$ of output.

COAXIAL INSTRUMENTATION
For coaxial systems operating to 18 GHz

MICROWAVE TEST EOUIPMENT

The swept-frequency system illustrated on the right permits rapid measurement of attenuation (in this example a variable attenuator is being calibrated). The transmission characteristics of the system are accounted for in the initial calibration which is based on the G382A Attenuator.

Complementary Equipment

HP Instrument	Frequency Range (GHz)
8616A Signal Generalor	1.8 to 4.5
86I6B Signal Source	1.8 to 4.5
618C Signal Generalor	3.8 to 7.6
8690B Sweep Oscillator	
8692A RF Unit	2 to 4
8632B RF Unit	2 to 4
8693A RF Unit	4 to 8
8693B RF Unit	4108

S. and G-band Equipment

HP Modal	Description	Aocuresy	Range	$\begin{aligned} & \text { SWR } \\ & \text { (max) } \end{aligned}$	Powor (watts)	Lenoth		$\underset{\text { Page }}{\substack{\text { Parenoe }}}$	Prloe
						(In)	(mm)		
S281A	Adaptsr, waveguide-to.coax					$21 / 2$	64	312	\$65
G281A				1.26		21/8	54	312	\$50
G347A	Noise source, wavegulde	$\pm 0.5 \mathrm{~dB}$	15.2 dB	1.2		19	483	314	\$310
S382C*	Altenuator, precision variable	$\begin{gathered} =1 \% \text { or } 0.1 \delta \mathrm{BB} \\ 1050 \mathrm{~dB} \\ =2 \% \text { above } 50 \mathrm{~dB} \end{gathered}$	01050 dB	1.2 below 3 GHz 1.15 above 3 GHz	10	251/4	641	305	\$1120
G382A		$\begin{aligned} & \pm 2 \% \text { or reading } \\ & \text { or } 0.1 \mathrm{IB} \text { whichever } \\ & \text { is greater } \end{aligned}$	0 to 50 dB	1.15	15	$31 / 8$	803	305	\$550
6424A	Crystal datector	sensitivily: $>0.4 \mathrm{mV} / \mu \mathrm{W}$	sensitivity: $0.4 \mathrm{mV} / \mu \mathrm{W}$	$1.35{ }^{-}$	100 W pk 15 mW avg	2-1/16	52	307	\$185
S486A	Thermistor mount, compensated		0.001 to 10 mW	1.35		3	76	288	\$240
G486A				1.5		4	102	288	$\$ 210$
G532A	Frequency meter, direcl reading	$\begin{gathered} \text { dial }: \pm 0.033 \% \\ \text { overall: }:=0.065 \% \end{gathered}$				63/4	159	308	\$400
$\begin{array}{\|l\|} \hline G 752 A \\ G 752 C \\ G 7520 \\ \hline \end{array}$	Directional couplers, mult - hole	$\begin{gathered} \text { mean: } \pm 0.4 \mathrm{~dB} \\ \text { variation }: \pm 0.5 \mathrm{~dB} \end{gathered}$	$\begin{aligned} & 3 \mathrm{~dB} \\ & 10 \mathrm{~dB} \\ & 20 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.05 \\ & 1.05 \end{aligned}$	$\begin{gathered} 2 \\ \text { (in sux. } \\ \text { gulde) } \end{gathered}$	$\begin{aligned} & 341 / 2 \\ & 33 \\ & 33 \end{aligned}$	$\begin{aligned} & 876 \\ & 838 \\ & 838 \end{aligned}$	299	\$325
C810B (809C) (444A)	Sioted section, waveguide (Carriage for 810B) (Detector probe for 809C)			1.01		$101 / 4$	280	$\begin{gathered} 283 \\ (284) \end{gathered}$	$\begin{aligned} & \$ 140 \\ & \$(\$ 200) \\ & (\$ 55) \end{aligned}$
G910A	Termination, low power			1.04	2	65/3	168	310	\$70
G914A	Maving load	load refiection: $<0.5 \%$	$>1 / 2$ wavelength	1.01	2	201/2	521	310	\$120
G920A	Adjustable short		$>1 / 2$ wavelength			7-13/16	199	310	\$125
11540A	Waveguide stand							312	\$3
11541A	S-band waveguide clamp							312	\$3
11542A	G-band waveguide clamp							312	\$3

*Degree dial 0 to 90° in 0.01° increments.

WAVEGUIDE INSTRUMENTATION
Quality equipment for microwave measurements
Quality equipment for microwave measurements
J.band, 5.30 to 8.20 GHz

In the illustration leveled output power from the sweep oscillator is obtained through use of the J752 Directional Couplers in the configuration shown. The J424A Crystal De. tector, with its extremely flat frequency response, provides the error voltage to the ALC input of the sweep oscillator. The power delivered at the output port of the J752D Coupler is flat to better than $1 / 2 \mathrm{~dB}$, and the high directivity of the coupler makes the leveling loop virtually immune to load SWR.

Complementary equipment

HP Instrument	Frequency Range (GHz)
618C Sígnal Gsnerator	3.8 to 7.6
620B Signal Generator	7 to 11
86900 Sweep Oscillator	-
8693A RF Unil	4108
86938 RF Unit	4108
H01.8693B RF Unit	3.7108 .3
493A Microwave Amplifier	4108
8733A P IN Modulator	3.7108 .3
8733 B PIN Modulato!	3.7108 .3

J-band equipment

$\begin{gathered} \text { MP } \\ \text { Model } \end{gathered}$	Description	Absuraoy	Range	$\begin{gathered} \text { SWR } \\ \text { (max.) } \end{gathered}$	Power (watts)	Length		$\begin{gathered} \text { Page } \\ \text { reference } \end{gathered}$	Prloo
						(1m)	(mm)		
J281A	Adapter, wavegulde-to-coax			$\begin{gathered} 1.25 \\ 5.3 \text { (to } 5.5 \mathrm{GHz} \text {) } \end{gathered}$		2	51	312	\$45
3347A	Noise source, waveguide	$\pm 0.5 \mathrm{~dB}$	15.2 dB	I. 2		19	483	415	\$300
J382A	Attenuator, precision variable	$\pm 2 \%$ of reading or 0.1 dB whichever is greater	01050 dB	1.15	10	25	635	305	\$415
J424A	Crystal detector	response $=0.2 \mathrm{~dB}$	$\begin{gathered} \text { sensitivity } \\ >0.4 \mathrm{mV} / \mu \mathrm{W} \end{gathered}$	1.35		1/1/8	48	307	\$185
J486A	Thermistor mount, compensated		0.0011010 mW	1.5	100 W pk 15 mW avg	$33 / 8$	86	288	\$200
1532A	Frequency meter, direct reading	$\begin{gathered} \text { dial : } \pm 0.033 \% \\ \text { overall }:=0.065 \% \end{gathered}$				61/4	159	308	\$375
$\begin{aligned} & \mathrm{J752A} \\ & \mathrm{J752C} \\ & \text { 1752D } \end{aligned}$	Directional couplers, multi-hole	mean : $\pm 0.4 \mathrm{~dB}$ variation: $\pm 0.5 \mathrm{~dB}$ (5.85 to 8.2 GHz)	$\begin{aligned} & 3 \mathrm{~dB} \\ & 10 \mathrm{~dB} \\ & 20 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.05 \\ & 1.05 \end{aligned}$	$\begin{gathered} 1 \\ \text { (in aux. } \\ \text { guide) } \end{gathered}$	$\begin{gathered} 261 / 2 \\ 25.9 / 16 \\ 25.9 / 16 \end{gathered}$	$\begin{aligned} & 673 \\ & 649 \\ & 649 \end{aligned}$	298	\$220
$\begin{aligned} & 1810 \mathrm{~B} \\ & (809 \mathrm{C}) \\ & (444 \mathrm{~A}) \end{aligned}$	Stotted secilion, waveguide (Carriage for 8108) (Detector probe for 809C)			1.01		10\%	260	$\begin{array}{r} 283 \\ (284) \\ (284) \\ \hline \end{array}$	$\begin{aligned} & \$ 125 \\ & (\$ 200) \\ & (\$ 55) \end{aligned}$
J885A	Waveguide phase shilter	lesser of 3° or 10%	$-360^{\circ} 10+360^{\circ}$	1.35	10	251/8	638	311	\$650
1910A	Terminatlon, low power			1.02	1	81/8	206	310	\$55
3914A	Moving load	load reflection: $<0.5 \%$	$>1 / 2$ wavelength	1.01	2	151/2	394	310	\$100
3920A	Adjustable short		>1/2 Wavelength			61/4	159	310	\$100
11540A	Waveguide sland							312	\$3
11543A	Waveguide clamp.							312	\$3

WAVEGUIDE INSTRUMENTATION
 Quality equipment for microwave measurements H -band, 7.05 to 10 GHz

The setup shown here is a swept-frequency system for measuring the directivity of a directional coupler. The coupler nearest the 8690 B is part of a leveling lonp that minimizes test signal amplitude variations. The X . Y recorder plots directivity as a function of frequency. For calibration, the coupler under test is connected as shown with the main line terminated in a low-refection fixed load, and the 382 A is used to simulate values of directivity. For the measurement, the 382 A is set to zero, the coupler is reversed, and the fixed load is replaced by a sliding load. With the oscillator sureeping slowly, the load is moved rapidly to phase the load reflection with the directivity signal and thus provide a way of separating the two signals for high-accuracy measurements.

Complementary equipment

HP Inslrament	frequency Aange (GHz)
6208 Signal Generstor	71011
8690B Sweep Oscillator	-
H02-8694A RF Unit	7 to 11
H02-8694B RF Unit	7 to 11
495A Microwave Ampllfier	7 to 12.4
8734A PIN Modulator	7 to 12.4
8734B PIN Modulator	71012.4

H-band equipment

$\underset{\text { Model }}{\text { MP }}$	Desorlption	A00urasy	Range	$\begin{aligned} & \text { SWR } \\ & (\text { max }) \end{aligned}$	Powar (watts)	Lentth		$\begin{gathered} \text { Payg } \\ \text { ralerenoes } \end{gathered}$	Prloo
						(Im)	(mm)		
H281A	Adapter, waveguide-lo-coax			1.25		176	41	312	\$40
HX292B	Adapter, waveguide-to-waveguide		8.21010 GHz	1.05		$11 / 2$	38	312	$\$ 40$
H347A	Noise source, waveguide	± 0.588	15.6 dB	1.2		16	406	314	\$275
H382A	Attenustor, precision variable	$\pm 2 \%$ of reading, or 0.1 dB , which. ever is greater	0 to 50 dB	1.15	10	20	508	305	$\$ 385$
H424A	Crystal detector	response: $\pm 0.2 \mathrm{~dB}$	$\begin{gathered} \text { sensitivity } \\ >0.4 \mathrm{mV} / \mu \mathrm{W} \end{gathered}$	1.35		1-9/16	40	307	\$175
H486A	Thermistor mouni, compensated		0.001 to 10 mW	1.5		33/8	86	288	\$195
4532A	Frequency meter, direct reading	$\begin{aligned} & \text { dial: } \pm 0.040 \% \\ & \text { overall: } \pm 0.075 \% \end{aligned}$				61/4	159	308	\$325
$\begin{aligned} & \begin{array}{l} 4752 \mathrm{~A} \\ \mathrm{H} 752 \mathrm{C} \\ \mathrm{H} 752 \mathrm{C} \end{array} \end{aligned}$	Orrectional couplers, multi-hole	$\begin{gathered} \text { mean: } \pm 0.4 \mathrm{~dB} \\ \text { variation: } \pm 0.5 \mathrm{~dB} \end{gathered}$	$\begin{aligned} & 3 \mathrm{d8} \\ & 10 \mathrm{~dB} \\ & 20 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.05 \\ & 1.05 \end{aligned}$	$\begin{gathered} 1 \\ \text { (in aux. } \\ \text { guide) } \end{gathered}$	$\begin{aligned} & 189 / 818 \\ & 171 / 2 \\ & 17 / 2 \end{aligned}$	$\begin{aligned} & 473 \\ & 445 \\ & 445 \\ & \hline \end{aligned}$	299	\$165
$\begin{aligned} & \mathrm{H} 810 \mathrm{~B} \\ & (809 \mathrm{C}) \\ & (444 \mathrm{~A}) \end{aligned}$	Slotted sections, waveguide (Carriage for 810B) (Delector probe for 809C)			1.01		101/4	260	$\begin{aligned} & 283 \\ & (284) \\ & (284) \end{aligned}$	$\begin{gathered} \$ 110 \\ (\$ 200) \\ (\$ 55) \\ (\$) \end{gathered}$
H910A	Termination, low power			1.02	1	5-9/16	141	310	\$45
H914A	Moving load	load reflection: $<0.5 \%$	>1/2 wavelength	1.01	1	$111 / 2$	267	310	\$80
H920A	Adjustable short		$>1 / 2$ wavelength			41/8	124	310	$\$ 85$
11540A	Waveguide sland							312	\$3
11544A	Waveguide clamp							312	\$3

MICROWAVE TEST EQUIPMENT

The variation of phase shift with attenuation of the X382A Precision Variable Attenuator is measured in this setup. The new HP 8410A Network Analyzer permits this measurement to be made quickly and easily on a swept-frequency basis.

Complementary equipment

HP Instrumanl	Frequanay range (GHz)
620B Signal Generator	7 to 11
626A Signal Generator	10 to 15.5
8690B Sweep Oscillator	--
8694A RF Unit	8 to 12.4
8694B RF Unit	8 to 12.4
495A Microwave Amplifier	7 to 12.4
8734A PIN Modutator	7 to 12.4
8734B PIN Modutator	7 to 12.4

X-band equipment

$\underset{\text { Mredal }}{\mathrm{HP}}$	Doucipition	Adeuriay	Range	$\begin{aligned} & \text { 8WR } \\ & \text { (max.) } \end{aligned}$	$\begin{aligned} & \text { Powar } \\ & \text { (witld) } \end{aligned}$	Length		Pape floforaper	Prica
						(II)	(mm)		
X281A	Adapter, waveguide to-cosx			1.25		11/3	35	312	\$35
X2818	Adipter, wavegulde-to.cosx			1.25		11/8	35	312	570
HX2928	Adapter, wavaqulde-to-wavegulde		8.2 to 10 GHz	1.05		11/2	38	312	\$40
M $\times 2928$	Adsprer, wavequide. to wavagulde		10 to 12.4 GHz	1.03		21/7	60	312	550
X347A	Noiso source, wavagulde	-0.4d8	15.7 d	1.2		141/2	375	314	\$225
X362A	Low-pass filter	insertion loss passband: <10B slopband: >40 dB	passband: 8.2 to 12.4 GHz stopband: 16 to 37.5 GHz	passband		5.11/32	136	306	\$325
X375A	Atanvatos, Ilad	$\begin{aligned} & =108 \mathrm{at}<10 \mathrm{dg} \\ & \times 2 \mathrm{dBai}>10 \mathrm{~dB} \end{aligned}$	0 to 20 dB	1.15	2	7.3/16	183	305	\$110
X382A	Aftenuator, precision varlable	8^{\prime} 'atar	01050 dB	1.15	10	153/2	397	305	\$310
X424A	Crystal detector	response: 00.3 dB	$\begin{gathered} \text { sens } \mathrm{lllvily} \\ >0.4 \mathrm{~m} V / \mu \mathrm{w} \\ \hline \end{gathered}$	135		1\%	35	307	\$155
X4858	Dateclar mount (less datector)			$\begin{gathered} \text { with barretter } \\ 1,25 \end{gathered}$		6.7/16	164	294	5100
X485A	Thermistor mount, compensaled		0.001 to 10 mW	1.5		236	54	288	\$165
X48) ${ }^{\text {8 }}$	Thermistor mount, broadband		0.01 to 10 mW	1.5		1.3/15	30	289	\$100
X532B	Frequency meler, direcl rasding	$\begin{gathered} \text { didf: } \mathbf{c} 0.05 \% \\ \text { ovarall: } \pm 0.08 \% \end{gathered}$				4K	114	308	\$225
$\begin{aligned} & \times 7524 \\ & \times 7520 \\ & \times 7520 \end{aligned}$	Oirectlonal couplers, multhiole	$\begin{aligned} \text { mesa: } 0.4 \mathrm{~dB} \\ \text { arlatlon: }=0,5 \mathrm{~dB} \end{aligned}$	$\begin{array}{r} 3 \mathrm{dg} \\ 10 \mathrm{~dB} \\ 20 \mathrm{~dB} \end{array}$	$\begin{aligned} & 1.1 \\ & 1.05 \\ & 1.05 \end{aligned}$	$\begin{gathered} 1 \\ \text { (in aux. } \\ \text { guide }) \end{gathered}$	$\begin{aligned} & 15 .-11 / 16 \\ & 15 \cdot 11 / 16 \\ & 15-11 / 16 \end{aligned}$	$\begin{aligned} & 424 \\ & 399 \\ & 399 \end{aligned}$	299	\$145
$\begin{aligned} & \text { X8108 } \\ & (8096) \\ & (444 \mathrm{~K}) \end{aligned}$	Stotled section, wavegulde (Carriage for 8108) (0 etaclor prode for 809C)			1.01		103/4	260	$\begin{aligned} & 283 \\ & \left(\begin{array}{l} 2849 \\ (284) \end{array}\right. \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{\$ 9 0}\left(\begin{array}{c} (\$ 200 \\ (\$ 55) \\ (\$ 2 \end{array}\right) \end{gathered}$
X8704	Tunor, slide scraw	$\begin{aligned} \text { figerilon loss } \\ <20 B a(20: 1 \text { SWR } \end{aligned}$	corrects swi of 20			53/2	140	311	\$150
X885A	Wavequide phase shilter	$\begin{gathered} <2^{3} \text { at } 8.2 \text { bo } 10 \mathrm{GHz} \\ \text { of } 00 \% \\ <3^{\circ} \text { at } 10 \text { to } 12.4 \mathrm{GHz} \\ \text { or } 10 \% \end{gathered}$	$-360^{\circ} 10 \div 360^{\circ}$	1.95	10	15\%	397	311	\$475
X9108	Termbnalion, low power			1.015	1	$61 / 2$	168	310	\$35
X913A	Termination, high dower			1.05	500	91/2	241	310	\$125
X914日	Moving load	$\begin{gathered} \hline \text { load reflection: } \\ <0.5 \% \\ \hline \end{gathered}$	>1/4 wavelength	1.005	1	1046	257	310	560
X923A	Adiustable shofl		> \% Whatength			13	330	310	\$75
X9308	Wavegulde shorting swlich	$\begin{gathered} \text { inserlion loss "Open": } \\ <0.05 d 8 \end{gathered}$		$\begin{array}{\|l\|} \hline \text { "Open' } 1.02 \\ \text { "\$hortad": }>125 \\ \hline \end{array}$		3.11/16	94	310	\$180
8735A	PIN modulator		3508	$\begin{aligned} & 1.7 \text { (min. ateen.) } \\ & 2(\text { max. atten. }) \\ & \hline \end{aligned}$	1	6\%	171	300	\$350
87356	PIN modulator		80 dB	$\begin{aligned} & \hline 20(\mathrm{~min} . \text { aten. } \\ & 2.2(\mathrm{max}, \text { дtim. }) \\ & \hline \end{aligned}$	1	20\%2	267	300	\$575
11504A	Flexible waveguide					12	305		535
11540A	Wavaguide stand							312	$\$ 3$
11545 A	Havagulde clamp							312	$\$ 3$
X8747A	Waveguide transmission-reflection unit lor 8410A Network Analyzer	$\begin{aligned} & \text { Uacking: } \pm 0.2 \mathrm{ab} \\ & \text { olrectlvily: }>40 \mathrm{db} \end{aligned}$		Residual: 1.01		47	1194	475	\$1400

MICROWAVE TEST EOUIPMENT

WAVEGUIDE INSTRUMENTATION
Quality equipment for microwave measurements P-band, 12.4 to 18 GHz

The conventional swept-frequency refectometer in the illusuration is being used to examine the reflection characteristics of the P382A Attenuator. The flat írequency response and excellent square law characteristics of the P424A Crystal Detectors provide accurate measurement results, with the added advantage that reflection characteristics can be displayed directly on the oscilloscope CRT.

Complementary equipment

HP Instrument	Frequency Range (GHz)
626A Signal Generator	10 to 15.5
628A Signai Generator	15 to 21
8690 B Sweep Oscillator	-
8595A RF Unit	12.4 to 18

P-band equipment

$\underset{\text { Modal }}{H P}$	Descrutian	Asourscy	Range	$\begin{aligned} & \text { SWR } \\ & \text { (max.) } \end{aligned}$	Powar (watis)	Length		$\begin{gathered} \text { Page } \\ \text { referanoe } \end{gathered}$	Prise
						(in)	(mm)		
P281日	Adapler, waveguide.lo-coax		12.4 to 18 GHz	1.25		13/8	35	312	885
MP292B	Adapter, waveguide-to-waveguide		12.4 to 15 GHz	1.05		23/6	60	312	\$40
NP292A	Adapter, waveguide-to-waveguide		15 to 18 GHz	1.05		23/4	60	312	840
P347A	Noise source, waveguide	= 0.5 dB	15.8 dB	1.2		143/4	375	314	$\$ 275$
P362A	Low-pass filler	insertion loss, pass- band: $<1 \mathrm{~dB}$ stopband: $>40 \mathrm{~dB}$	$\begin{aligned} & \text { pass: } 12.4 \text { to } 18 \mathrm{GHz} \\ & \text { stop: } 23 \text { to } 54 \mathrm{GHz} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { passband } \\ \hline 1.5 \end{array}$		3-11/16	94	306	\$350
P375A	Allanuator, ilap	$\begin{aligned} & \pm 1 \mathrm{dBat}<10 \mathrm{~dB} \\ & =2 \mathrm{dBa}>10 \mathrm{~dB} \end{aligned}$	01020 dB	1.15	1	71/4	184	305	\$135
P382A	Allenuaior, precision variable	$\pm 2 \%$ of reading or 0.1 dB , whichever is greater	0 to 50 dB	1.15	5	121/2	318	305	\$340
P424A	Crystal detector	response: $\pm 0.5 \mathrm{~dB}$	$\begin{gathered} \text { sensitivity } \\ >0.3 \mathrm{mV} / \mu \mathrm{W} \end{gathered}$	1.5		15/16	24	307	\$195
P486A	Thermistor mount, compensated		0.001 to 10 mW	1.5	$\begin{aligned} & 100 \mathrm{w} \mathrm{pk} \\ & 15 \mathrm{~mW} \text { avg } \end{aligned}$	21/2	64	288	\$220
94878	Thermistor mount, broadband		0.01 to 10 mW	1.5		13/16	21	289	\$135
P532A	Frequency meter, direct reading	$\begin{aligned} & \text { dial: }=0.068 \% \\ & \text { overall: }=0.1 \% \end{aligned}$				41/2	114	308	\$275
$\begin{aligned} & P 752 A \\ & P 752 C \\ & P 252 D \\ & \hline \end{aligned}$	Directional couplers, multi-hole	$\begin{gathered} \text { mean: }=0.4 \mathrm{~dB} \\ \text { variation: } \pm 0.5 \mathrm{~dB} \end{gathered}$	$\begin{aligned} & 3 \mathrm{~dB} \\ & 10 \mathrm{~dB} \\ & 20 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.05 \\ & 1.05 \end{aligned}$	$\begin{gathered} 1 \\ (\text { in aux. } \\ \text { guide) } \end{gathered}$	$\begin{aligned} & 1313 / 4 \\ & 121 / 4 \\ & 121 / 2 \end{aligned}$	$\begin{aligned} & 349 \\ & 311 \\ & 311 \end{aligned}$	299	\$170
$\begin{aligned} & \text { P810B } \\ & (809 C) \\ & (444 A) \end{aligned}$	Slotted section, waveguide (Carriage ior 810B) (Detector orobe for 809C)			1,01		101/4	260	283	$\begin{gathered} \$ 110 \\ (\$ 200) \\ (\$ 55) \end{gathered}$
P870A	Tuner, slide screw	insertion loss: $<2 \mathrm{~dB}$ at 20:1 SWR	corrects swr of 20			5	127	311	\$160
P885A	Waveguide phase shifter	\|lesser of $\pm 4^{\circ}$ or 10%	$-360^{\circ} 10+360^{\circ}$	1.35	5	12-5/16\|	312	311	\$675
P910A	Termination, low power			1.02	1	$43 / 8$	111	310	\$40
P914A	Moving load	load reflection: $<0.5 \%$	> $1 / 2$ wavelength	1.02	0.5	$9 \% / 4$	248	310	\$75
P920B	Adiustable short		$>1 / 2$ waveleneth			51/2	146	310	\$125
P932A	Harmonic mixer				0.1			312	\$250
11503A	Flexible waveguide, P-band					12	305	-	\$48
11540A	Waveguide stand							312	\$3
11546A	Waveruide clamo							312	$\$ 3$
P8747A	Waveguide Iransmission-reflection unit for 8410 A Network Analyzer	Tracking: $\pm 0.75 \mathrm{~dB}$ Directivity: $>40 \mathrm{~dB}$		Hesidual: $1,1$		35	889	475	on request

MICROWAVE TEST EOUIPMENT

Illustrated here is a typical system for fixed-frequency measurement of standing wave ratio in K-band.

Complementary Equipment

HP Instrumemt	Frequancy Range (CHz)
626A Signal Generator and 938A Frequency Doubler Set	20 to 26.5
628A Signal Generator and 940A Frequency Doubler Set	26.51031
628A Signal Generator and 940A Freauency Doubler Set	30 to 40
8696A RF Unit	18 to 26.5
8697A RF Unit	26.51040

K- and R-band equipment

$\operatorname{HP}_{\text {Model* }}$	Desoription	Ademraby	Range	$\begin{aligned} & \text { SWR } \\ & (\max) \end{aligned}$	Power (watts)	Length		Pafg Aelerenoe	Prlor
						(ln)	(mm)		
K362A	Low-pass filtei	insertion loss, passband: $<1 \mathrm{~dB}$ stopband: $>40 \mathrm{~dB}$	$\begin{aligned} & \text { pass: } 18 \text { io } 26.5 \mathrm{GHz} \\ & \text { stod: } 311080 \mathrm{GHz} \end{aligned}$	passtand 1.5		2\%	64		
R362A		$\begin{aligned} & \begin{array}{l} \text { nsertion toss, pass } \\ \text { band }:<2 \mathrm{~dB} \\ \text { stopband: }>35 \mathrm{~dB} \end{array} \end{aligned}$	$\begin{aligned} & \text { pass : } 26.5 \text { to } 40 \mathrm{GHz} \\ & \text { stop: } 47 \mathrm{to} 120 \mathrm{GHz} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { passband } \\ 1.8 \end{array}$		1\%/	42	306	W35
X382A	Attenuator, precision variable	$\pm 2 \%$ of ceading	0 to 5048	1.15		7\%	194	305	\$525
8382 A		ever is greater			1	63/1	162	305	\$550
K422A	Crystal detector	freq. resp: $=2 \mathrm{~dB}$ sens: $0,3 \mathrm{mV} \mathrm{dc} /$ μ WCW		2.5		2	51	307	$\$ 230$
R422A				3					$\begin{gathered} \text { (matched } \\ \text { pair) } \end{gathered}$
K486A	Thermistor mount, compensated				100 Wpk	3	76		\$330
R486A			0.001 to 10 mW	2	15 mW avg	3	76	288	\$395
K532A	Frequency melsr, direct reading	$\begin{gathered} \text { dial: }: \pm 0.077 \% \\ \text { overall: } \pm 0.11 \% \end{gathered}$							\$350
R532A		$\begin{gathered} \text { dial: }: \pm 0.083 \% \\ \text { overall: }=0.12 \% \end{gathered}$				472	114	308	\$ 400
$\begin{aligned} & \hline \text { K752A } \\ & \text { K752C } \\ & \text { K7520 } \\ & \hline \end{aligned}$	Directional couplers, multi-hole	$\begin{aligned} & \text { mean: }=0.7 \mathrm{~dB} \\ & \text { variation }: \pm 0.5 \mathrm{~dB} \\ & (\pm 0.6 \mathrm{~dB}, \mathrm{R} 752 \mathrm{D}) \end{aligned}$	$\begin{array}{r} 3 \mathrm{~dB} \\ 10 \mathrm{~dB} \\ 20 \mathrm{~dB} \\ \hline \end{array}$	$\begin{aligned} & 1.1 \\ & 1.05 \\ & 1.05 \end{aligned}$	$\begin{gathered} 0.5 \\ \text { (in aux. } \\ \text { Ruide) } \end{gathered}$	$\begin{aligned} & 105 / 8 \\ & 9-15 / 16 \\ & 9.15 / 16 \end{aligned}$	$\begin{aligned} & 270 \\ & 252 \\ & 252 \\ & \hline \end{aligned}$	299	\$200
$\begin{aligned} & \text { R752A } \\ & \text { R } 752 \mathrm{C} \\ & \mathrm{Q7520} \end{aligned}$			$\begin{aligned} & 3 \mathrm{~dB} \\ & 10 \mathrm{~dB} \\ & 20 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.05 \\ & 1.05 \end{aligned}$		$115 / 18$ $85 / 8$ $83 / 4$	295 219 222		\$250
K8158	Slotted section, wavegulde								\$525
R815B				1.01		7-9/16	192	283	\$525
$\begin{aligned} & (814 B) \\ & (446 B) \end{aligned}$	(Carriage for 815B) (Detector probe for 814B)							284	$\begin{aligned} & \$ 525 \\ & \$ 225 \end{aligned}$
K9148	Moving load	$\begin{aligned} & \text { load seflection: } \\ & <0.5 \% \end{aligned}$	$>1 / 2$ wavelength	1.01	0.5	61/8	156	310	\$275
R9148						54/	130		
K9208	Adjustable short		$>1 / 2$ waveiength			51/2	140	310	\$155
R 9208						41/2	114		\$175
11540A	Waveguide sland							312	\$3
11547A	K-band Waveguide clamp							312	\$3
11548A	R-band Waveguide clamp							312	83

SLOTTED LINES; DETECTORS
Precision tools for measurements to 40 GHz Models 805C.817A; 440A-447B, 448A

817A Coaxial Swept Slotted Line System

The 817A is a fully tested, complete swept slotted line system that enables you to make accurate swept-frequency SWR measurements in coax from 1.8 to 18 GHz , The 817 A system consists of an 816A Coaxial Slotted Line, an 809C Carriage with an 11558A Baseplate, and a 448A Slotted Line Sxreep Adapter, These items are discussed individually in the succeeding paragraphs. The 817 A is provided with Type N female and APC-7 sexless connectors. On an optional basis, both Type N male and female connectors are available.

Specifications, 817A

(System consists of 816A Slotred Line, 800C Carriage with 11558A Baseplace, and 448A Slorted Line Sweep Adapter)
Frequency range: 1.8 to 18 GHz .
Impedance: $50 \Omega \pm 0.2 \Omega$.
Output connector: APC-7 or Type N female, depending upon which end of the 816A is connected to the load (also see option below). Type N connector is stainless steel and mates compatibly with Type N connectors whose dimensions conform to MIL-C-39012 or MIL-C-71.
Residual SWR and (reflectlon coasficient)
APC-7 connector:
1.8 to $8 \mathrm{GHz}: 1.02$ (0.01).

8 to $12.4 \mathrm{GHz}_{2} 1.03$ (0.015).
12.4 to $18 \mathrm{GHz}: 1.04$ (0.02) .

Type N connector:
1.8 to $8 \mathrm{GHz}: 1.04$ (0.02).

8 to $12.4 \mathrm{GHz}: 1.05(0.024)$.
12.4 to $18 \mathrm{GHz}: 1.06$ (0.029).

Maximum power: 2 W average (limited by $6 \cdot d \mathrm{~B}$ pad in 448A).
Accessories furnished: 11512 A N -male short, 11565 A APC . 7 short.
Dimenslons (maximum envelope): $131 / 2$ in. long, 7 in , wide, 7 in . high ($343 \times 178 \times 178 \mathrm{~mm}$).
Weight: net $143 / 4 \mathrm{lb}(6,6 \mathrm{~kg})$; shipping $22 \mathrm{lb}(9,9 \mathrm{~kg})$.

Complementary equipment

HP 8690B Sweep Oscillator with 8692A/B through 8695A RF Unit (page 423).
HP 141A Oscilloscope with 1416A Swept-Frequency Indicator plug-in (page 513).
HP 905A Sliding Load (page 309).
HP 909A Termination (page 309).
Price: Model 817A, $\$ 925$.
Option 22: Type N male connector in lieu of APC-7, less $\$ 15$.

816A Coaxial Slotted Section, 1.8-18 GHz
The 816A enables you to make 5 wept-frequency slotted line measurements from 1.8 to 18 GHz in coaxial systems (HP 448A is required; see below). High accuracy is ensured with the low residual SWR of the 816 A . Thus, you can take advantage of the complete coverage offered by the sweptfrequency technique. Fixed-frequency measurements from 1.8 to 18 GHz can also be made using HP 447B Probe (see below). With its broad frequency range, the 816 A covers the extremely important X-band (8.2 to 12.4 GHz). In addition, it extends the range of coaxial slotted line measurements through P-band (12.4 to 18 GHz), where there is an increasing use of coaxial devices.
Model 816A consists of two parallel planes and a rigid center conductor. This configuration virtually eliminates slot radiation and minimizes the effect of variation in probe penetration and centering. It also provides greater mechanical stability. The 816A is fitted with one APC. 7 and one Type N female connector. On an optional basis, the APC-7 can be replaced with a Type N male connector, or both connectors can be APC-7's. Other combinations are available on special order.

Specifications, 816A

Carrlage: fits HP 809 C Carriage.
Frequency range: 1.8 to 18 GHz with 447 B probe.
Impedance: $50 \Omega \pm 0.2 \Omega$.
Connectors: one APC-7, one Type N female (stainless steel, compatible with connectors conforming to MIL.C. 39012 and MIL-C-71); either end can be connected to the load.

Residual SWR and (reflection coefflclent): 1.02 (0.01) to 8 $\mathrm{GHz}, 1.03$ (0.015) to $12.4 \mathrm{GHz}, 1.04(0.02)$ to 18 GHz for APC-7 connector; $1.04(0.02)$ to $8 \mathrm{GHz}, 1.05$ (0.024) to $12.4 \mathrm{GHz}, 1.06$ (0.029) to 18 GHz for N female connector.
Slope and irregularities: 0.1 dB per half wavelength, 0.2 dB maximum cumulative when adjusted on 809 C Cacriage. Length: $93 / 4 \mathrm{in}$. 248 mm).
Weight: net $11 / 4 \mathrm{lb}(0,6 \mathrm{~kg})$; shipping, $3 \mathrm{lb}(1,4 \mathrm{~kg})$.
Accessories furnished: 11512A. Type N male short; 11565A APC. 7 short.
Price: HP 816A, \$250.
Option 22: Type N male connector in lieu of APC.7 (11512A N -male, 11511 A N -female shorts supplied), less $\$ 15$.

448A Slotted Line Sweep Adapter, 1.8-18 GHz
The HP 448A permits accurate swepl-frequency SWR measurements in coax from 1.8 to $18 \mathrm{GHz}_{2}$ with the 816 A Slotted Section. The 448A includes a short slotted line section and two matched detectors with adjustable probes. One detector fits in the slotted section of the 448 A , and its output levels the signal source. The other detector monitors the standing waves in the HP 8i6A Slotted Section.

Specifications, 448A

Frequency range: 1.8 to 18 GHz .
Maximum power: 2 W average (limited by pad in leveling detector).
Equipment supplied: one fixed slotted section, one pair of matched detectors with adjustable probes.
Sloted tine connectors; Type N, one male, one female, stainless steel (compatible with connectors conforming to MIL. C. 39012 and MIL-C-71).

Detector output connector: BNC female.
Weight: net $14 \mathrm{oz}(0,39 \mathrm{~kg})$; shipping $2 \mathrm{lb}(0,9 \mathrm{~kg})$.
Price: HP 448A, \$400.

810B, 815 B Slotted Sections, $3.95-40 \mathrm{GHz}$

The 810 B Waveguide Slotted Sections also are designed for use with the 809C Carriage. Each is a precision-manufactured section of waveguide in which a small longitudinal slot is cut. A traveling probe on the 809C Carriage samples the waveguide's electric field along the slot and permits precise plotting of variations along the entire length of probe travel. Ends of the slots are tapered to reduce SWR to less than 1.01. The waveguide sections are broached and checked with precision gauges for careful control of guide wavelength. Broaching is essentially a linear cutting stroke which eliminates even the minor surface irregularities inherent with milling cutters. Six waveguide sizes are available.

The 815B Waveguide Slotted Sections are designed to fit the 814 B Carriage. Like the lower-frequency slotted sections, each $815 B$ is precision-manufactured, broached and checked with precision gauges for careful control of guide wave. length. The slot is tapered to insure a low SWR.

Specifications, 810 B

$\underset{\text { Modal }}{\text { MP }}$	Frexuency range (GH1)	Fita wavogulde stre		Equlyalent tlange	Prloo
		Hom. 00 (ln_{2})	EIA		
G810B	3.95-5.85	2×1	WR187	UG407/U	\$140
J810B	5.30-8.20	$11 / 2 \times 1 / 2$	WR137	UG441/U	\$125
H8108	7.05-10.0	$1 / 4 \times 9 / 8$	WR112	UG138/U	SIt0
X8108	8.20-12.4	$1 \times 1 / 2$	WR90	UG135/U	\$90
P8108	12.4-18.0	0.702×0.391	WR52	UG419/U	\$110

Carriage: fits 809 C Carriage.
Length of all sections: $1014^{\prime \prime}(260 \mathrm{~mm})$.
Slope and irregularities: slot discontinuity sesults in SWR <1.01.

Specifications, 815B

	HP K815B	HP Re168
Frequanay range (GHz);	181026,5	26.5 to 40
Ratidual SWR:	1.01	1,01
Equivalent thange:*	UG595/U	U6599/U
Fits wavegulde sila:	$\begin{aligned} & \text { (in.) } 1 / 2 \times 1 / 4 \\ & \text { (EIA) } W R 42 \end{aligned}$	$\begin{gathered} 0.360 \times 0.220 \\ \text { WR28 } \end{gathered}$
Ovarsti langth:	$7.9 / 16^{\prime \prime}(192 \mathrm{~mm})$	7-9/15" (192 mm)
Prlab:	\$525	\$525

(UG381/U) $11516 A, \$ 40$ each.

The HP 440A is a tunable, easy-to-use instrument for detecting RF energy in coaxial systems (2.4 to 12.4 GHz) or, in conjunction with the HP 442 B , in waveguide or coaxial slotted sections. Just one adjustment is required for turing. Crystals or bolometers may be used interchangeably in the same holder. A built-in RF bypass is provided. The detector (not supplied) can be a 1 N 21 or 1 N 23 Crystal or 821 Series Barretter. Input connector is Type N male; detector output BNC female. Price: HP 440A, $\$ 100$.

SLOTTED LINES; DETECTORS ranmunal

Precision tools for measurements to 40 GHz Models 805C - 817A; 440A-4478; 448A

809C, 814B Carriages
The Model 809 C Carriage is a precision mechanical assembly which operates with five HP 810 B Waveguide Slotted Sections (3.95 to 18 GHz) and with HP 816A Coaxial Slotted Section (1.8 to 18 GHz). The carriage eliminates the cost of a probe carriage for each frequency band. Sections can be interchanged in seconds. The 809C is designed for use with the HP 444A or 447B Untuned Probe, the HP 442B Broadband Probe, or 448A Slotted Line Sweep Adapter. The carriage has a centimeter scale with a vernier reading to 0.1 mm , and provision is made also for mounting a dial gauge if more accurate probe position readings are required. Price: HP 809C, \$200.

The HP 814B Carriage, also a precision assembly, is designed for ase with the HP K and R815B Waveguide Slotted Sections (18 to 40 GHz) and HP 446B Untuned Probe. The carriage is equipped with a dial indicator for accurate reading. Slotked sections are easily interchanged. Price: HP $814 \mathrm{~B}, \$ 525$.

442B, 444A, 446B, 447B Probes
Model $442 B$ is a probe whose depth of penetration into a slotted section is variable. Held in position by friction, it may be fixed in place by a locking ring. Sampled RF appears ar a Type N jack. It can be connected to a 440A Detector Mount to form a sensitive and converient tuned RF detector for HP 810 B waveguide slotted sections. The 442 B fits the

809C Carriage. Frequency range is 2.6 to 12.4 GHz . Price: HP 442B, $\$ 50$.

The 444A Untuned Probe, for use with HP 810 B Waveguide Slotted Sections, consists of a crystal, plus a small antenna in a convenient housing. The probe is held in position by friction or may be fixed by' a locking ring. No tuning is required, and sensitivity equals or exceeds many elaborate single- and double-tuned probes. The 444A fits the 809 C Carriage or other carriages with a $3 / 4 \mathrm{in}$. (19 mm) mounting hole. Frequency range is 2.6 to 18 GHz . Accessory furnished: 11506 A Probe Extension Kit. Price: HP 444A, 555.
The HP 446B is a broadband detector and probe which consists of a modified 1 N 53 silicon diode in a carefully designed shielded housing. No tuning is required, and probe penetration may be varied quickly and easily. Designed for use with the 814 B Carriage, the 446 B has a frequency range of 18 to 40 GHz . Price: HP $446 \mathrm{~B}, \$ 225$.

Model 447 B consists of a crystal diode detector plus a small antenna probe for sampling energy in HP 816A Coaxial Slotted Lines. The untuned probe is extremely sensitive over its frequency range of 1.8 to 18 GHz . Such performance is achicved through the use of a unique, easily replaced diode package developed by Hewlett-Packard. The 447B firs HP 800 C . Carriage or other carriages with a $3 / 4 \mathrm{in}$. (19 mm) mounting hole. Price: HP 447B, \$125.

805C Slotted Line, $500-4,000 \mathrm{MHz}$
Model 805 C is a coaxial slotted line with an integral probe circuit tunable from 500 to $4,000 \mathrm{MHz}$. The slotted line consists of two parallel planes and a rigid center connector. This configuration results in negligible slot radiation, minimum sensitivity to variation in probe depth or centering, and greater structural stability.

Specifications, 805C

Frequency range: 500 to $4,000 \mathrm{MHz}$; minimum frequency determined by usable length of $141 / 2 \mathrm{in}$. (368 mm).
Impedance: 50@.
Residual SWR: less than 1.04:1.
Stope: 0.2 dB or less.
Connectors: Type N , one male, one female; either end may be connected to the load.
Callbration: metric, cm and mm ; vernier reads to 0.1 mm .
Detector probe: tunable; detector may be 1 N 21 B Crystal (supplied) or 821 series barretter or selected $1 / 100-\mathrm{amp}$ instrument fuse.
Accessories furnished: 11511A Shorting Jack; 11521A Shorting Plug.
Accessory available: 11510A Carrying Case, $\$ 65$.
Price: HP 805C, 5550.

RATIO METER
 Simplified reflection coefficient measurements Madel 416B

MIICROWAVE
TEST EOUIPMENT

Advantages:

Eliminates amplitude-variation error
Operates accurately over 20:1 incident power range Use:

Reflection coefficient messurements over broad frequency range, independent of RF power level
The HP 4168 is designed for use with unleveled sweep oscillators and signal sources in the measurement of reflec. tion coefficient. The ratio meter provides valid results inde-
pendent of incident power variations as high as 20:1. Either swept- or fixed-frequency measurements can be made using the Model 4168, and a high-impedance output on the rear of the instrument permits swept-frequency measurements to be presented on an oscilloscope or preserved on a graphic recorder. The panel meter is calibrated in percent reflection and equivalent SWR.

The $416 B$ operates with either crystals or bolometers, and a panel switch permits selection of 4.3 or 8.7 mA bias for bolometers. Positive bolometer protection is provided.

Specifications

Meter presentation

Reflection coefficient (\%): four ranges, $100 \%, 30 \%$, 10% and 3% reflection, equivalent to reflection coeff. cients of $1,0.3,0.1$ and 0.03 .
Equivalent SWR: two ranges, 1.06 to 1.22 and 1.2 to 1.9 . DB: for use with both reflection coefficient and equivalent SWR scales; scale calibrated 0 to -10 dB ; with ranging, spans 0 to -40 dB in four $10-\mathrm{dB}$ steps.
Accuracy: crystal, $\pm 3 \%$ of full scale; bolometer, same as crystal except $\pm 5 \%$ for incident input voltage belore 1 mV .
Callbration: square law for use with crystal detectors or barretters.
Frequency: $1000 \mathrm{~Hz} \pm 40 \mathrm{~Hz}(\pm 20 \mathrm{~Hz}$ for bolometer detectors when incident input voltage is $\langle 1 \mathrm{mV} \mathrm{mms}$).
Input voltage (for full-scale deffection):

	Crystal	Bolometer
Incident channel	3 to 100 mV rms	0.3 to 10 mV rms
Reflected channel	$3 \mu v$ to 100 mV ms	$0.3 \mu v$ to 10 mV rms

Input impedance (both channels): crystal, approximately 75 $k \Omega$; bolometer, approximately 500Ω (High Bolo) or 1000Ω (Low Bolo).

Excess incident attenuatlon: provision for 10 dB increase of incident channel sensitivity for reflectometers using couplers with different coefficients; under certain circumstances, accuracies can be improved by this procedure.
Output
Open circuit voltage: approx. 10 V de at full scale.
Source Impedance: $100 \mathrm{k} \Omega ; 8 N C$ type connector.
Bolo blas: high range, 8.7 mA ; low range, 4.3 mA ; bias variable approximately 10% by means of rear-panel control; positive bolometer protection.
RF power monltor: level indicator monitors input amplitude (and frequency, indirectly) to ensure proper operating range for the instrument and for crystal detectors.
Power: 115 or 230 volts $\pm 10 \%, 50$ to $60 \mathrm{~Hz}, 115$ watts.
Dimensions: cabinet: $203 / 4^{\prime \prime}$ wide, $123 / 4^{\prime \prime}$ high, $147 / 8^{\prime \prime}$ deep ($527 \times 324 \times 378 \mathrm{~mm}$); rack mount: $19^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $14^{\prime \prime}$ deep behind panel ($483 \times 267 \times 356 \mathrm{~mm}$).
Wolght: net $34 \mathrm{lb}(15,3 \mathrm{~kg})$, shipping $45 \mathrm{lb}(20,3 \mathrm{~kg})$ (cabinet) ; net $27 \mathrm{lb}(12,2 \mathrm{~kg})$, shipping $41 \mathrm{lb}(18,5 \mathrm{~kg})$ (rack mount).
Accessories avallable: 10503A Cable Assembly, \$7; 11001A Cable Assembly, $\$ 6$.
Price: HP 416B, \$675 (cabinet) ; HP 416BR, \$660 (rack mount).

MICROWAVE TEST EQUIPMENT

POWER METER; THERMISTOR MOUNTS Increased accuracy; automatic zero Models 432A, 478A, 486A, 8478A

432A in 11076A Carrying Case

The new 432A Power Meter, together with the 478A, $8478 B$ and 486 A Thermistor Mounts, enables you to conveniently make even routine microwave power measurements with standards lab accuracy from 10 MHz to 40 GHz . The 432A replaces the successful 431C Power Meter. It has 1% accuracy on all canges, a dc bridge circuit, and an automatic zero feature that brings new time-saving convenience to otherwise tedious power meter measurements.
The 432A was designed to operate with thermistor mounts already in use in many installations-the same mounts designed for use with the 431 C Power Meter. Therefore, you can incorporate the new meter with all its advantages directly into these applications without costly mount replace. ment.
With this power meter you can measure power levels from -30 dBm to $+10 \mathrm{dBm}(1 \mu \mathrm{~W}$ to 10 mW$)$. This $40 \cdot \mathrm{~dB}$ measurement range is covered in seven $5 \cdot \mathrm{~dB}$ sreps. The meter face is calibrated in both milliwatts and dBm with a $10-\mathrm{dB}$ full scale dynamic range.
Automatic zerolng: a unique circuit allows you to zero the 432A by merely depressing a toggle switch. The time required is so short that the meter can be zeroed easily before each reading if desired, eliminating possible inac-
curacy caused by thermistor drift. This feature offers ad-
vantages not found in any previous instruments.
DC bridge circuit: four notable advantages stem from the
use of de rather than the conventional 10 kHz bias current in the bridge circuits:
First, because there is no signal emission from the cable or mount, you can make measurements in extremely sensitive circuits without affecting their operation;

Second, meter zeroing is independent of the impedance connected to the RF terminal of the thermistor mount. The mount need not be connected to the signal source during the meter zeroing process;
Third, measurements are not affected by capacitive changes caused by movement of the thermistor mount cable; and,
Fourth, the specified accuracy of 1% is maintained even on the most sensitive range (10 mW or -70 dBm full scale) because the ecror due to thermoelectric effecr is reduced to a negligible level.
Higher accuracy: the 432 A offers you 1% accuracy on ail power canges over a wide temperature range, 0° to $55^{\circ} \mathrm{C}$.
Even higher accuracy, $0.2 \% \pm 0.5 \mu \mathrm{~W}$, can be attained by measuring the output voltage of the thermistor bridges (test points are available on the rear panel of the 432A) with a digital voltmeter and computing the corresponding RF power.
The instrument accuracy is maintained through the utilization of the Effective Efficiency and Calibration Factor* data on each thermistor mount. A front panel control on the 432 A is set to the required Calibration Factor or Effective Efficiency to automatically account for the losses introduced in the mount.
More tlexibility: the 432A is truly portable because it is smail ($1 / 3$ module), light, and can be battery-operated. With the optional battery installed, you can operate the 432A for 24 hours without recharging. A built-in power supply makes recharging easy. A carrying case is available as an accessory.

You can use optional thermistor mount cables up to

20 feet long and still maintain 1% accuracy without special matching of the bridge circuit. Cables up to 200 feet long can be used if the cable is matched to the bridge circuit.

Due to the exceptional temperature stability of the power meter/thermistor mount, operation over extended time periods is practical without resetting the meter to zero. Thus, long term power level recording is possible. This temperature stability results from the use of dual self-balancing bridges (of which the thermistor mount is a part) in a dc feedback amplifier. One bridge senses the RF power and the other corrects the meter for changes in ambient temperature, A high percentage of feedback ensures extremely stable amplifier operation.

Speciflcations

Instrument type: automatic, self-balancing power meter for use with temperature-compensated thermistor mount.
Power range: 7 ranges with full-scale readings of 10,30 , 100 , and $300 \mu \mathrm{~W}, 1,3$, and 10 mW ; also calibrated in dBm from -20 dBm to +10 dBm full scale in $5 \cdot \mathrm{~dB}$ steps.
Accuracy: $\pm 1 \%$ of full scale on all ranges ($+0^{\circ}$ to $+55^{\circ} \mathrm{C}$).
Callbration factor control: 13-position switch normalizes meter reading to account for thermistor mount Calibration Factor*. Range 100% to 88% in 1% steps.
Thermistor mount: external temperature-compensated ther* mistor mounts required for operation (HP 486A, 8478B, and 478A series; mount resistance 100 or 200 ohms).
Meter: taut-band suspension. individually computer-calibrated, mirror-backed scales. Milliwatt scale more than $41 / 4^{\prime \prime}$ (108 mm) long.
Zero carryover: less than 0.25% of full scale when zeroed on most sensitive range.
Fine zero: automatic, operated by toggle switch.
Recorder output: 1.000 volt into open circuit corresponds to full-scale meter defiection (1.0 on $0-1$ scale) $\pm 0.5 \%$; 1000 ohm output impedance, BNC connector.
RFI: meets all conditions sperified in MIL-I-G181D.
Power: 115 or 230 V ac $\pm 10 \%, 50$ to $400 \mathrm{~Hz}, 21 / 2$ watts. Optional rechargeable battery provides up to 24 hours continuous operation. Automatic battery recharge.
Weight: net, $61 / 2 \mathrm{lb}(3 \mathrm{~kg})$. Shipping, $91 / 4 \mathrm{lb}(4,2 \mathrm{~kg})$.
Welght with optional battery pack: net, $91 / 4 \mathrm{lb}(4,2 \mathrm{~kg})$. Shipping, $12 \mathrm{lb}(5,5 \mathrm{~kg})$.
Dimensions: $51 / 8^{\prime \prime}$ widc, $63,32^{\prime \prime}$ high, $11^{\prime \prime}$ deep (130 x $155 \times 279 \mathrm{~mm}$).
Accessories furnished: $5-\mathrm{ft}(1,42 \mathrm{~m})$ cable for HerlettPackard temperature-compensated thermistor mounts; $71 / 2 \mathrm{ft}(2,29 \mathrm{~m})$ power cable, NEMA piug.

[^20]
Accessorles avallable:

00415-606 Rechargeable Battery Pack for Geld installa. tion, $\$ 80$.
5060-0797 Rack Adapter Frame, $\$ 25$ (holds three instruments the size of the 432A).
8477A Power Meter Calibrator.
11076A, Carrying Case, $\$ 45$.

Combining cases:

$1051 \mathrm{~A}, 111 / 4^{\prime \prime}$ (286 mm) deep, $\$ 110$.
$1052 \mathrm{~A}, 163 / 8^{\prime \prime}(416 \mathrm{~mm})$ deep, $\$ 120$.

Options

01: Rechargeable battery installed, provides up to 24 hours continuous operation, add $\$ 100$.
Note: Thermistor mount cable impedance is part of the 432 A input bridge circuit. For cables over 20 feet long the bridge is matched to specific cable options, so the various cables should not be interchanged.

09: 10 -foot ($3,05 \mathrm{~m}$) cable for 100 -ohm or 200 -0hm mount, add $\$ 25$.
10: 20 -foot ($6,10 \mathrm{~m}$) cable for 100.0 hm or 200 .ohm mount, add $\$ 50$.
11: 50 -foot ($15,24 \mathrm{~m}$) cable for 100 -ohm or 200 -ohm mount, add $\$ 100$.
12: 100 -foot $(30,48 \mathrm{~m})$ cable for 100 -ohm or 200 -ohm mount, add $\$ 150$.
13: 200 - Foot ($60,96 \mathrm{~m}$) cable for 100 -ohm or 200 -ohm mount, add \$250.
Price: Model 432A, \$495.

8477A Power Meter Calibrator

The 8477A Power Meter Calibrator produces highly accurate do voltages for verifying full-scale calibrations (for all ranges) plus meter tracking of the 432A Power Meters simply by connecting three cables between the power meter and the calibrator; no additional instruments or charts are needed.

MICROWAVE TEST EOUIPMENT

THERMISTOR MOUNTS

Compensated mounts reduce drift
Models 478A, 8478B and 486A

478A, 8478B, and 486A Thermistor Mounts

The HP 432A Power Meter was designed to operate with these thermistor mounts. Each is supplied with Calibration Factor and Effective Efficiency Data, permitting power measurements to be made with absolute accuracy. The data, provided at several points across each band, are traceable to the National Bureau of Standards to the extent allowed by the Bureau's facilities. Thus, mount losses and reflections (that part of the incident power which does not reach the power-seasing thermistor) can be accounted for under all measurement conditions.

The calibration data at points not yet on the NBS schedule are based on interim standards established at Hewlett. Packard after years of designing, manufacturing, and testing thermistor mounts. Literally thousands of tests and measurements have gone into the development of these standards, including cross-checks against NBS-calibrated mounts wherever possible. Thus efficiency data are provided at many points in addition to those on the NBS schedule to facilitate interpolation and help you to make more accurate power measurements more easily. For easy access, these data are affixed directly to each mount.

Both Calibration Factor and Effective Effciency Data are furnished to provide complete measurement flexibility. Calibration Factor is used as the correction factor for general applications when a tuner is not used; Effective Efficjency is used whenever a tuner is part of the measurement system.

These mounts are temperature-compensated for low drift, permitting measurement of microwave power as low as one microwatt. Thus, the 432A can be zeroed with the mount disconnected from the RF system if the RF power cannot be turned off.

Models 478A and 8478 B are designed for 50 ohm coaxial systems. They operate over frequencies from 10 MHz to 10 and 18 GHz respectively. Each presents a good 50 -ohm match over its frequency range, and no tuning is required.

The subject of power measurements is covered in detail in Hewlett-Packard Application Note 64, "Microwave Power Measurement." This comprehensive note discusses principles of operation, techniques of measurement, interpretation of results, and accuracy considerations, Application Note 64 is available upon request from any Hewlett-Packard Field Office.

Specifications

$\underset{\text { Modd }}{\text { HP }}$	Froquentoy range, $\mathbf{O H z}$	$\begin{aligned} & \text { Maximum } \\ & \text { SWR } \end{aligned}$	Operating resistanoes (0hms)	Pruce
478A	$\begin{gathered} 10 \mathrm{MHz} \text { to } \\ 10 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 1.75,10 \text { to } 25 \mathrm{MHz} \\ 1.3,25 \mathrm{MH} \text { 10 } 7 \mathrm{GHz} \\ 1.5, \text { to } 10 \mathrm{GHz} \end{gathered}$	200	\$165
8478B2	$\begin{gathered} 10 \mathrm{MHz} \text { to } \\ 18 \mathrm{GHz} \end{gathered}$	$1.75,10$ to 30 MHz $1.35,30$ to 100 MHz $1.1,0.1$ to 1 GHz $1.35,1$ to 12.4 GHz $1.6,12.4$ to 18 GHz	200	\$3004
S486A	2.60 to 3.95	1.35	100	\$240
G486A	3.95 to 5,85	1.5	100	\$210
J486A	5.30 to 8.20	1.5	100	\$200
H486A	7.05 to 10.0	1.5	100	\$195
X486A	8.20 to 12.4	1.5	100	\$165
M486A	10.0 to 15.0	1.5	100	\$250
P486A	12.4 to 18.0	1,5	100	\$220
K486A ${ }^{3}$	18.0 to 26.5	2.0	200	\$330
R486A3	28.51040 .0	2.0	200	$\$ 395$

$112528 A$ Adspter adapts mount to 430 Serles Power Metar (thermistor circult unbalenced, no temperature compensation), $\$ 10$.
${ }^{2} 11527 \mathrm{~A}$ Adapter adapts 8478 B to 4314/日 Power Meters (thermistor circult unbalanced), \$25.
${ }^{2}$ Circular flange adepters; K-bend (UG-425/U) HP 11515A, \$35 each; R-band UG.381/U) YP 11516A, \$40 each.

- Optlon 11, furnlshed with APC-7 RF connector, add $\$ 25$.

MICROWAVE POWER METER Reads directly in mW and $\mathrm{dBm}, 0.01$ to 10 mW Models 430C; 477B, 487 Thermistor Mounts

MICROWAVE TEST EQUIPMENT

The HP 430C reads RF power directly in dBM or mW— and completely eliminates tedious computation and troublesome adjustments during operation. The instrument may be used at any frequency for which there are bolometer mounts -and measurements are entirely automatic.

In measuring power, HP 430 C uses a bolometer at either 100 - or 200 ohm levels. Power is read directly in milliwatts, 0.01 to 10 mW , or in dBm from -20 to +10 . Higher powers may be measured by adding attenuators to the system. Directional couplers also may be used to sample energy.

When used in an appropriate bolometer mount, instrument fuses are generally satisfactory for measuring power at frequencies up to 4 GHz . Barretters and thermistors can be used for measucements at much higher frequencies, up to 12.4 GHz for barretters (in HP mounts) and up to 40 GHz for certain thermistors.

Hewlett-Packard waveguide bolometer mounts for the 430 C are available covering, collectively, the frequency spectrum from 2.6 to 40 GHz . In addition, the Model 477 B Thermistor Mount covers the frequency spectrum from 10 MHz to 10 GHz .

Specifications, 430C

Power range: 5 canges, front-panel selector; full-scale readings of $0.1,0.3,1,3$, and 10 mW ; also continuous readings from -20 to +10 dBm .
External bolometer: frequency range depends on bolometer mount; bolometers can operate at resistance levels of 100 or 200 ohms and can have positive or negative temperature coefficients; any dc bias current up to 16 mA is available for biasing bolometers; de bias current is continuously adjustable and independent of bolometer resistance and power level range.
Accuracy: $\pm 5 \%$ of full scale.
Power: 115 or $235 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 90 \mathrm{~W}$.
Dlmenslons: cabinet: $71 / 2^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high, $141 / 4^{\prime \prime}$ deep ($191 \times 292 \times 362 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $131 / 8^{\prime \prime}$ deep behind panel ($483 \times 178 \times 333 \mathrm{~mm}$).
Weight: net $14 \mathrm{lb}(6,3 \mathrm{~kg})$, shipping $16 \mathrm{lb}(7,2 \mathrm{~kg})$ cabinet) ; net $18 \mathrm{lb}(8,1 \mathrm{~kg})$; shipping $27 \mathrm{lb}(12,2 \mathrm{~kg})$ (rack mount).
Accessory avaliable: 11528 A Adapter, adapts HP 478A, 486A, 8478B Thermistor Mounts for use with 430C, $\$ 10$.
Prlce: HP 430C, $\$ 345$ (cabiner); HP 430CR, $\$ 355$ (rack mount).

477B Thermistor Mount

This coaxial thermistor mount, designed for use in 50 ohm systems with the HP 430 C , covers 10 MHz to 10 GHz with a SWR of less than 1.5 . It requires no tuning and employs long-time-constant elements that ensure measurement accuracy-even for low duty cycle pulses. In addition, it is not susceptible to burnout even at 1 watt peak.

Specifications, 477B

Frequency range: 10 MHz to 10 GHz .
Reflection coefficlent: full range, <0.2 (1.5 SWR, 14 dB return loss) ; 50 MHz to $7 \mathrm{GHz},<0.13$ (1.3 SWR, 17.7 dB return loss).

Power range: 0.01 to 10 mW (with HP 430C).
Element: 200 -ohm, negative temperature coefficient thermistor included; approx. 13 mA bias required.
RF connector. Type N male.
Price: HP 477B, \$95.

487 Waveguide Thermistor Mounts

Hewlett-Packard Series 487 instruments, for use with HP 430 C Power Meters, collectively cover frequencies from 5.3 to 18 GHz . Each 487 series mount covers the full frequency range of its waveguide band and requires no tuning. The long time constant of the mount makes it ideal for measuring average power of low duty cycle pulses. Burnouts are virtually impossible. All models may be used to measure a maximum average porver of 10 mW .

Specifications, 487

HP Modid	Maximum SWR	Frequenny range* GHz	Prloe
J487B	1.5	$5.3-8.2$	$\$ 90$
H487B	1.5	$7.05-10.0$	$\$ 80$
X487B	1.5	$8.2 \cdot 12.4$	$\$ 100$
P487B	1.5	$12.4-18.0$	$\$ 135$

* HP 486A Waveguide Tharmistor Mounts are avallable in S. through R-band (2.6 to 40 CHz); I1528A Adapter required

MICROWAVE TEST EQUIPMENT

PEAK POWER CALIBRATOR

Power measurements, 50 to 2000 MHz , to $\pm 0.6 \mathrm{~dB}$ Model 8900B

Features

Measures true peak power $\pm 0.6 \mathrm{~dB}$ absolute
Measurement completely independent of repetition rate and pulse width ($>0.25 \mu \mathrm{sec}$)
Readily standardized against external bolometer or calorimeter
Incorporates wide-band (7 MHz) detector output for pulse monitoring

The HP 8900B Peak Power Calibrator provides a convenient means for measuring the peak RF power of pulses in the range from 50 to 2000 MHz . The power level is read out directly on the panel meter and is completely independent of repetition rate and pulse width (>0.25 $\mu s e c)$. The instrument consists basically of a precision terminated input circuit, diode detector, de reference supply, meter and a chopped video output system.

In operation, the RF signal is applied to the input circuit, which, through a power splitter, feeds the diode detector. The demodulated diode output and the output of the dc reference supply are simultaneously fed to the video output through a mechanical chopper. In making a measurement, a suitable external oscilloscope is connected to the video out. put, and the de reference voltage is adjusted so that it is exactly equal to the peak value of the demodulated pulse.

Panel meter readout

The level of the required de reference voltage is then indicated on the panel meter, calibrated to read peak RF power. The diode is operated in a biased condition for maximum stability of calibration. Provision is made, how-
ever, for readily standardizing the instrument against an external bolometer or calorimeter by simply connecting to a rear-panel output in place of a standard termination.

Specifications

Radio frequency measurement characterlstics
RF range: 90 to 2000 MHz .
RF power range: 200 mW peak full scale (may be readily increased through) use of external attenuators or direc. tional couplers).
RF power accuracy: $\pm 1.5 \mathrm{~dB}$ ($\pm 0.6 \mathrm{~dB}$ with custom calibration curve furnished with instrument).
RF power precision: 0.1 dB .
RF pulse width: $>0.25 \mu \mathrm{~S}$.
RF repetition rate: 1.5 MHz maximum.
RF Impedance: 50 ohms.
RF vewr: <1.25.
Monitor output
Level: >0.2 volt for 20 mW input (nominal).
Impedance: 150 ohms nominal.
Bandwidth: $>7 \mathrm{MHz}$.

Physical characterlstics

Dimensions: $73 / 4^{\prime \prime}$ wide, $61 / 8^{\prime \prime}$ high, $11^{\prime \prime}$ deep (197x $156 \times 279 \mathrm{~mm}$).
Weight: net $10 \mathrm{lbs}(4,5 \mathrm{~kg})$; shipping $13 \mathrm{lbs}(5,9 \mathrm{~kg})$.
Power: 105 to 125 or 210 to 250 volts, 50 to 60 Hz .
Price: HP $8900 \mathrm{~B}, \$ 625$ (includes calibration curve).
Option 01: calibrated and offset for use with 8925A DME/ ATC Test Ser; no additional charge.

RUGGEDIZED POWER METER Accurate power measurements, 10 MHz to 40 GHz
 Model C34.431C

MICROWAVE
TEST EQUIPMENT

The Power Meter C34-431C-a militarized version of the highly successful 431C Power Meter-was specially developed by Hewlett-Packard as the Wattmeter Absorption CT495 for the Navy and Army Deparments of the Ministry of Defence, U.K. While it fully retains the electronic accuracy of the 431C, the Model C $34-431 \mathrm{C}$ has been ruggedized to meet the climatic, shock and vibration tests of DEF.133, Table N.1 (where applicable). In addition, the C34.431C has the important advantage that it can function in 75 -ohm coaxial systems.

The Power Meter C34-431C, together with its companion 478A, 486A and 84788 Thermistor Mounts, enables you to make microwave power measurements with standards-laboratory accuracy. You have complete confidence in the accuracy of your measurements because all sources of error are taken into consideration. Thermistor Mount efficiency, stated as both Effective Efficiency and Calibration Factor, is given with each 478A, 486A and 8478 B Thermistor Mount, and the C34.431C itself affords high instrumentation accuracy (better than $1 \mathcal{F}_{6}$ of full scale on most ranges) - thus the characteristics of the measurement system are known from thermistor mount input to power meter readour.

Thermistor mount efficiency plays a very significant role in determining overall measurement accuracy, and the C34. 431C provides a convenient method of using the efficiency data imprinted on each mount. The C34.431C includes a front-panel Calibration Factor control, calibrated from 88% to 100% in 1% steps, which nomalizes the meter reading to allow for the efficiency correction factor of the mount. Simply set the control and read the meter; no calculations are required.

Specifications

Instrument type: automatic self-balancing power meter.
Power range: 8 -position switch provides null and 7 ranges with full-scale readings of $10,30,100$, and $300 \mu \mathrm{~W}, 1$, 3, and 10 mW ; also calibrated in dBm from -20 dBm to +10 dBm fuil scale in $5 \cdot \mathrm{~dB}$ steps.

Accuracy:

$\left(+20^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right)$
$\pm 1 \%$ of full scale ($100 \mu \mathrm{~W}$ range and above),
$\pm 1.5 \%$ of full scale ($30 \mu \mathrm{~W}$ range),
$\pm 2 \%$ of full scale ($10 \mu \mathrm{~W}$ cange).
$\left(0^{\circ} \mathrm{C}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
$\pm 3 \%$ of full scale (all ranges)
Calibration factor control: 13 -position switch normalizes meter reading to allow for thermistor mount Effective Efficiency or Calibration Factor. Range: 88% to 100% in 1% steps.
Thermistor mount input: external tempertaure.compensated thermistor mounts required for operation (HP 478A, 486 A or 8478 B). Connection through 6 -contact socket (Pleassey Mk.4).
Mount resistance control: 4 -position switch permits operation with mounts of different operating resistances. Range: 100 ohm ($W G$), 200 ohm (50Ω coax), 300 ohm (75Ω coax) and 200 ohm balanced (coax).

Meter: taut-band suspension; individually calibrated mirror. backed scales with calibration in $\mathrm{mW}(0-1$ and $0-3)$ and dBm (-10 to 0)
Zero carryover: Jess than 1% of full scale when zeroed on most sensitive range (. 01 mW).
Zero balance: continuous control above zero point. Range below zero is equivalent to at least 2% of full scale.
DC calibration input: permits dc substitution method of power measurement and precise de calibration of instrument with HP 8420B Power Meter Calibrator. Connection through female coaxial connector (BNC).
Power supply: 115 or 230 volts $\pm 10 \%, 50$ to $400 \mathrm{~Hz}, 2.5$ watts. Connection through 3 -contact plug (Plessey Mk.4). As option, rechargeable 24 -volt battery provides up to 24 hours continuous portable operation.

Dimensions:

Height: $12.6^{\prime \prime}(31.9 \mathrm{~cm})$-with feet $13.1^{\prime \prime}(33.3 \mathrm{~cm})$.
Width: $8.6^{\prime \prime}(21.7 \mathrm{~cm})$.
Depth: $9.7^{\prime \prime}(24.5 \mathrm{~cm})$ —with feet $10.2^{\prime \prime}(25.9 \mathrm{~cm})$.
Weight: net, $15 \mathrm{lb}(6,8 \mathrm{~kg})$; with battery $17.5 \mathrm{lb}(7,9 \mathrm{~kg})$. Shipping, $20 \mathrm{lb}(9,1 \mathrm{~kg})$; with bathery $22.5 \mathrm{lb}(10,2 \mathrm{~kg})$.
Price: HP Model C34-431C (NSN: 6625-99-519-8443), excluding Thermistor Mount Cable and Power Cable, $\$ 810$ at factory in Scotland. (Available only in Western Europe.)
Option 01: HP 00415-606 Rechargeable Battery Pack installed, $\$ 110$. ($\$ 100$, at factory in Scotland).
Avallable: HP 15527A Thermistor Mount Cable (NSN: $6625 \cdot 99-520-0905$), $s(t)(152 \mathrm{~cm})$ long, with 6 -contact female connector (Amphenol) and 6 -contact plug (Plessey Mk.4), \$30.00.
HP 8120-0601 Power Cable (NSN: 5995.99-940-0491), $9 \mathrm{ft}(274 \mathrm{~cm})$ long, with 5 -amp 3 -contact (round) plug and 3.contact socket (Plessey Mk.4), \$3.00.
HP 15529A Power Cable, $7.5 \mathrm{ft}(229 \mathrm{~cm}$) long, with 3 prong plug (NEMA) and 3-contact socket (Plessey Mk.4), \$3.00.
HP 8402B Power Meter Calibrator, $\$ 475.00$.

CALORIMETRIC POWER METER
 Just connect, read power 10 mW to 10 watts Model 434A

With the 434A, measurement is literally as simple as connect. ing to a 50 ohm Type N front-panel terminal and reading power directily. The instrument has only two simple front-panel controls and is ideal for use by nontechnical personnel.

Model 434A fills the important range between bolometertype microwave power merers such as HP 432A and conventional calorimeters whose lower range is approximately 10 watts. But, unlike previous cumbersome and costly equipment suggested for this range, the HP 434 A is completely self-con. tained and requires no external detectors. In addition, the wider frequency response permits the unit to be conveniently calibrated by the application of a known de power.

Rapid response time

Model 434A employs a self-balancing bridge and a highefficiency heat transfer system to and from an oil stream to provide a full-scale response time of 5 seconds or less. This fast reaction, a fraction of the response time needed by ordinary calorimeters, means the 434A quickly follows small power changes, such as may be encountered in tuning.

Basically, the Model 434 A consists of a self-balancing bridge Which has identical temperaturesensitive resistors (gauges) in
two legs, an indicating meter and two load resistors, one for the unknown input power and one for the comparison power. The input load resistor and one gauge are in close thermal proximity so that heat generated in the inpur load resistor heats the gauge and unbalances the bridge. The unbalance signal is amplifed and applied to the comparison load resistor which is in close thermal proximity to the other gauge so that the heat generated in the comparison load resistor is transferred to its gauge and nearly rebalances the bridge.
The meter measures the power supplied to the comparison load to rebalance the bridge. The characteristics of the gauges are the same, and the heat transfer characteristics from each load are the same, so the power dissipated in each load is the same, and the meter may be calibrated directly in input power.
The power measurement is accurate because the flow rates through the two heads are the same and the oil enters the heads at nearly the same temperature. To ensure constant temperatuie and to bring the streams to nearly the same temperature, they are passed through a parallel-flow heat exchanger just before entering the heads. Identical flow sates are obtained by placing all elements of the oil system in series.

Specifications
input power range: seven meter tanges; full-scale readings of 0.01 , $0.03,0.1,0.3,1,3$ and 10 watts; meter scale also calibrated fron - 10 to 0 dBW , providing continuous readings from - 30 to +10 dBW ; power range can be extended upward with attenuators or directional couplers.
Maximum Input power: 1 kW peak; 10 wams average.
Frequency range: $d c$ to 12.4 GHz .
Accuracy: within $\pm 5 \%$ of full scale; includes dc calibration and RF termination efficiency but not mismatch loss; greater accuracy can be achieved through appropriate techoiques.

Estlmated attainable accuracy

	Upper ranges	Two lowest ranges
DC	0.5%	2%
0 to 1 GHz	1%	3%
1 to 4 GHz	2%	4%
f to 10 GHz	3%	5%
10 to 12.4 GHz	4%	5%

DC Input resistance: 50 ± 5 olms at Type N input jack.
Reflection coefficient: de to $5 \mathrm{GHz},<0.13$ ($1.3 \mathrm{SWR}, 17.7 \mathrm{~dB}$ return loss): 5 to $11 \mathrm{GHz},<0.2$ (1.5 SWR, 14 dB return loss): 11 to $12.4 \mathrm{GHz},<0.26$ ($1.7 \mathrm{SWR}, 11.7 \mathrm{~dB}$ return loss).
Meter response time: less than 5 seconds for full-scale deficction. Internal callibrator: $100 \mathrm{~mW} d c \pm 1 \%$ into 45 to 55 ohns.

Power: 115 or 230 voles (specify) $\pm 10 \%, 50$ to 60 Hz approxi. mately 180 watrs with no input, 200 watts with 10 watts input.
Dimenslons: cabiner: $203 / 4^{\prime \prime}$ wide, $123 / 4^{\prime \prime}$ high, $14^{\prime \prime}$ deep (527 X $324 \times 3>6 \mathrm{~mm}$) : rack mount: $19^{\prime \prime}$ wide, $10-15 / 32^{\prime \prime}$ high, $131 / 2^{\prime \prime}$ deep behind panel ($483 \times 266 \times 343 \mathrm{~mm}$).
Weight: net $49 \mathrm{lb}(22,1 \mathrm{~kg})$, shipping $59!b(26,6 \mathrm{~kg})$ (cabinet) : net $43 \mathrm{lb}(19.4 \mathrm{~kg})$, shipping $56 \mathrm{lb}(25,2 \mathrm{~kg})$ (rack mount).
Accessories available: 281A,B Waveguide-to-Coax Adapters (see page 312); K02.4j4A DC Test Set (for more accurate pover measurements), $\$ 1025$.
Price: HP 434A, $\$ 1750$ (cabinet): HP 434AR, $\$ 1735$ (rack mount).

SWR METER
 Reduced noise for greater usable range
 Model 415E

The Hewlett-Packard Model 415E SWR Meter is a low. noise tuned amplifier-voltmeter calibrated in AB and SWR for use with square-law detectors. It is an extremely useful and versatile instcument, measuring SWR, attenuation, gain, or any other parameter determined by the ratio of two signal levels. The standard tuned frequency is 1000 Hz and is adjustable over a range of about 7% for exact matching to the source modulation frequency. Amplifier bandwidth is also adjustable, from 15 to 130 Hz . The narrow bandwidth facilitates single-frequency measurements by reducing noise, while the widest setting accommodates a sweep rate fast enough for oscilloscope presentation.

The 415 E has a very low noise figure, less than 4 dB . This represents a 6 to 10 dB improvement over other SWR meters. Equally significant is the fact that the noise figure has been optimized for source impedances presented by detectors most often used with SWR meters. As a result the 415E has greater measurement range because the reduction in noise permits the measurement of lower-level signals for a given signal-to-noise ratio.

A precision $60 \cdot \mathrm{~dB}$ attenuator with an accuracy of 0.05 $\mathrm{dB} / 10 \mathrm{~dB}$ assures high accuracy in attenuation measurements. In addition, an expand-offset feature allows any 2 . dB range to be expanded to full scale for maximum resolution. Linearity on the expanded ranges is $\pm 0.02 \mathrm{~dB}$, permitting full utilization of the increased resolution; high accuracy is possible on the normal scales as well, for linearity is limited only by meter resolution. The meter itself has individually calibrated, mirror-backed scales plus a rugged taut-band movement for full realization of the inherently high accuracy, resolution, and linearity of the instrument.

The Model 415 E operates with either crystal or bolometer detectors. Both high and low-impedance inputs are available for crystal detectors (see page 307), optimum crystal source impedances being 50 to 200 and 2500 to 10,000 ohms respectively. For operation with bolometers, the 415 E provides precise bias currents of 4.5 and 8.7 mA into 200 ohms, as selected at the front panel. This bias is peaklimited for positive bolometer protection.

Both ac and dc outputs are provided for use of the 415 E as a high-gain tuned amplifier and with recorders. The solid-state 415 E can be operated with an internaily mounted battery pack (optional extra) for completely portable use or to eliminate ground loops,

Specifications

Sensitivity: $0.15 \mu \mathrm{~V}$ rms for full-scale defection at maximum bandwidth ($1 \mu \mathrm{~V}$ rms on high impedance crystal input).
Noise: at least 7.5 dB below full scale at rated sensitivity and 130 Hz bandwidth with input terminated in 100 or 5000Ω; noise figure less than 4 dB .
Range: 70 dB in $10-$ and $2-\mathrm{dB}$ steps.
Accuracy: $\pm 0.05 \mathrm{~dB} / 10 \cdot \mathrm{~dB}$ steps; maximum cumulative error between any two $10 . \mathrm{dB}$ steps, $\pm 0.10 \mathrm{~dB}$; maximum cumulative error between any two $2-\mathrm{dB}$ steps, $\pm 0.05 \mathrm{~dB}$; linearity, $\pm 0.02 \mathrm{~dB}$ on expand scales, determined by inherent meter resolution on normal scales.

Input: unbiased low and high impedance crystal (50-200 and $2500 \cdot 10,000 \Omega$ optimum source impedance respectively for low noise); biased crystal (1 V into $1 \mathrm{k} \Omega$); low and high current bolometer (4.5 and $8.7 \mathrm{~mA} \pm 3 \%$ into 200Ω), positive bolometer protection; input connector, BNC female.
Input frequency: 1000 Hz adjustable 7%; other frequencies between 400 and 2500 Hz available on special order.
Bandwidth: rariable, $15-130 \mathrm{~Hz}$; typically less than 0.5 dB change in gain from minimum to maxinum bandwidth.
Recorder output: 0.1 V dc into an open circuit from 1000Ω source impedance for ungrounded recorders; output connector, BNC female.
Amplifier output: 0-0.3 V rms (Norm), 0-0.8 V rms (Expand) into at least $10,000 \Omega$ for ungrounded equipment; output connector, dual banana jacks.
Mater scales: calibrated for square-law detectors; SWR: 1.4, 3.2-10 (Norm); 1-1.25 (Expand). dB: 0-10 (Norm); 0.2 .0 (Expand); battery: charge state.

Meter movement: kaut-band suspension, individually calibrated mirror-backed scales; expanded dB and SWR scales greater than $41 / 4 \mathrm{in}$. (108 mm) long.
RFI: conducted and radiated leakage limits are below those specified in MIL-I-6181D.
Power: $115-230 \mathrm{~V} \pm 10 \%, 50-400 \mathrm{~Hz}, 1 \mathrm{~W}$; optional rechargeable battery provides up to 36 hr continuous operation.
Dimensions: 7 25\%se in wide, 6% in. high, 11 in deep from panel ($190 \times 155 \times 279 \mathrm{~mm}$).
Weight: net, $9 \mathrm{lb}(4 \mathrm{~kg}), 11 \mathrm{lb}(5 \mathrm{~kg})$ with battery; shipping, $10 \mathrm{lb}(4,5 \mathrm{~kg}), 13 \mathrm{lb}(6,3 \mathrm{~kg})$ with battery.
Accessory avaliable: 11057 A Handle, fits accoss top of instrument for carrying convenience, $\$ 5$.
Combining cases: $1051 \mathrm{~A}, 111 / 4 \mathrm{in}$. (286 mm) deep, $\$ 110$; $1052 \mathrm{~A}, 163 / 4 \mathrm{in}$. (416 mm) deep, $\$ 120$.
Price: HP Model 41 SE, $\$ 375$.
Optlons: O1. rechargeable battery installed, add $\$ 100 ; 02$. rear-panel input connector in parallel with front-panel connector, add $\$ 15$.

MICROWAVE TEST EOUIPMENT

SWR INDICATOR; MOUNTS
For convenient SWR measurements Models 415B; 476A, 485B

415B Standing Wave Indicator

Similar to the HP 415E, this meter is a tuned voltmeter Cor SWR measurements with HP slotted lines and detector mounts. It also is useful as a null indicator for bridge measurements, with a $200 \mathrm{k} \Omega$ input circuit for this use.

A $60-\mathrm{dB}$ attenuator adjustable in $10 \cdot \mathrm{~dB}$ range steps provides a calibrated range of 70 dB . An output is provided for use with a recording milliammeter, and a special $5-\mathrm{dB}$ attenuator is incorporated to increase resolution through use of the upper portion of the logarithmic meter scale.

Inputs include a 200 -ohm termination with bias of 4.3 or 8.7 mA for bolometers, unbiased for crystals, or a 200 kn load for null measurements. A jack and monitor cable are provided for connecting an external milliammeter to measure bolometer current.

Specifications, 415B

Input: "Bolo" (200 ohms), bias provided for 8.7 or 4.3 mA bolometer or $1 / 100 \mathrm{amp}$ fise ; "Crystal" (200 ohms) for crystal rectifier; "Crystal" ($200 \mathrm{k} \Omega$) high impedance for crystal rectifer as null detector; BNC connector.
Sensitivity: $0.1 \mu \mathrm{~V}$ ac 200 ohms for full-scale deflection.
Noise: at least 5 dB below full scale when operated from 200 -ohm resistor at room temperature.
Frequency: $1000 \mathrm{~Hz} \pm 2 \%$; other frequencies, 315 to 2020 Hz , available on special order; should not be harmonically related to power line frequency.
Bandwidth: 30 Hz (nominal).

Range: 70 dB ; input altenuator provides 60 dB in $10-\mathrm{dB}$ steps, ac. curacy $\pm 0.1 \mathrm{~dB}$ per $10-\mathrm{dB}$ step; maximum accumulative error, $\pm 0.2 \mathrm{~dB}$.
Scale selector: "Normal", "Expand" and "- 5 dB ".
Output: jack provided for recording milliammeter having 1 mA full. scale deflection and internal resistance of 1500 ohms or less.
Meter scales: SWR 1 to $4, S W R 3$ to 10 , expanded SWR 1 to 1.3 ; dB 0 to 10 , expanded $d B 0$ to 2.
Power: 115 or 230 vols $\pm i 0 \%, 50$ to 60 Hz , 55 watts.
Dimensions: cabinet: $71 / 2^{\prime \prime}$ wide, $113 / /^{\prime \prime}$ high, $121 / 2^{\prime \prime}$ deep (191 x $299 \times 318 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $6.31 / 32^{\prime \prime}$ high, $1018^{\prime \prime}$ deep behind front pancl ($483 \times 177 \times 276 \mathrm{~mm}$).
Weight; net $14 \mathrm{lb}(6,3 \mathrm{~kg})$, shipping $15 \mathrm{lb}(6,8 \mathrm{~kg})$ (cabinet) : net $17 \mathrm{lb}(7,7 \mathrm{~kg})$, shipping 27 lb ($12,2 \mathrm{~kg}$) (rack mount).
Accessorles avallable: plug.in filters (specify frequency): 4158. 42 B (315 to 699 Hz), 560 , and 415B-42C (700 to 2000 Hz), \$50; 10501A Cable Assembly, \$4; 10503A Cable Assembly. \$7.
Prlce: HP 415B, $\$ 310$ (cabinet); MP 415BR, $\$ 320$ (rack mount).

476A Bolometer Mount

Model 476 A Bolometer Mount covers the 10 MHz to I GHz frequency range with very low standing-wave ratios. The inherently good square-law characteristics of the bolometers used make the 476A especially useful for calibrating attenuators when used with an HP 415 Series Meter.

Specifications, 476A

Nominal impedance: so ohms.
Reflection coefficient: 50 to $500 \mathrm{MHz}, \leq 0.07$ (1.1s SWR, 23.1 dB return loss): 25 to $1000 \mathrm{MHz}, \leq 0.11$ ($1.25 \mathrm{SW} \mathrm{R}, 19.1 \mathrm{~dB}$ return loss) ; 10 to $25 \mathrm{MHz}, \leq 0.2$ (1.5 SWR, 14 dB return loss).
Maximum power level: 10 mW
Bolometer element: four 8.25 mA instrument fuses (supplied with mount) ; operating level is approximarely 200 ohms, positive temperature coefficient.
Replacement elements: Part \#2110-0024, $\$ 1.50$ each.
Weight: net $1 / 2 \mathrm{ib}(0,3 \mathrm{~kg})$; shipping $2 \mathrm{lb}(0.9 \mathrm{~kg})$.
Price: HP 476A, $\$ 85$.

485B Detector Mounts

The HP 4858 Detector Mounts (5.3 to 12.4 GHz) permit the accurate matching of waveguide sections to a bolometer element. The mounts are tuned by a variable short, and they can be used with a barrettec or, where SWR is not critical, with a silicon crystal.

Specifications, 485 ${ }^{1}$

$\underset{\text { MPodel }}{\text { HP }}$	Frequenoy range (GHz)	Maximum SWR ${ }^{2}$	Fits wavapuide alive		Length		Prices
			(in.)	(E1A)	(kn.)	(mm)	
1485B3	$\begin{aligned} & 5.85-8.2 \\ & 5.50 \cdot 5.85 \\ & 5.30-5.50 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.35 \\ & 1.50 \end{aligned}$	$11 / 2 \times 3 / 4$	WR137	83/8	213	\$120
H48583	$7.05 \cdot 10$	1.25	11/4 $\times 1 / 6$	WR112	63/8	162	\$100
X485B3	$8.2 \cdot 12.4$	1.25	$1 \times 1 / 2$	WR90	6-7/16	163	$\$ 100$

iDotector elements are not supplied
With Naroa N821 barreller
'May use IN21 or iN23 for maximum delection sensitivity where SWR is not critical

MICROWAVE TEST EQUIPMENT

The HP 716B Supply offers superior regulation, noise, ripple and hum characteristics, plus the broad capability of powering at least 250 types of klystrons. Beam and reflector voltages are closely regulated and continuously adjustable, using calibrated controls accurate to within $\pm 2 \%$ on beam voltage and to within $0.5 \% \pm 1$ volt on repeller volkage. In addition, a regulated de filament supply minimizes residual FM and AM from the klystrons.

The reflector supply can be internally modulated with a sawtooth for FM or with a square wave for on-off opera. tion. The positive excursion of the square wave is clamped to the reflector voltage, simplifying setup and minimizing double moding. Sawtooth and external modulation are accoupled to the reffector. A protective diode prevents the $k l_{y}$ stron refector voltage from becoming positive with re-
spect to the cathode. Special circuitry eliminates turn on transients that could be harmful to the klystron. Relays disconnect the beam supply to prevent klystron failure should the flament voltage drop below 1 volt or rise above 9 volts. The flament circuit in the 7168 is protected against voltage surges up to 800 volts. These relays also disconnect the supplies whenever a klystron filament short circuits.

The HP 715A, designed to operate many types of lowpower klystrons, offers a regulated 250 -to- 400 volt bean voltage, a 0 -to-900 volt regulated reflector supply and a 6.3 volt ac filament supply. The refector supply can also be square-wave modulated internally at the nominal frequency of 1000 Hz , externally modulated or sine-wave modulated at the power line frequency. Klystron protection is built in.

Specifications, 715A
Specifications, 716B

Reflector supply	0 to 900 V neg. with respect to beam supply, calibrated voltage con. trols; regulation within $1 \%=10 \%$ line voltage variation; ripole $<10 \mathrm{mV}: 10 \mu \mathrm{~A}$ max.	010800 V neg. with respect to beam supply, accuracy $\pm 0.5 \%$ of dia! reading $=1 \mathrm{~V}$. line regulation better than 0.05% r ripole $<500 \mu \mathrm{~V}$
Beam supply	250 to 400 V regative with respect to chassis ground, calibrated voltage controls; current 30 mA max. at $250 \mathrm{~V}, 50 \mathrm{~mA}$ max. at 400 V ; reguation beller than 1%, no load to full ioad or for $\pm 10 \%$ normal line voltage variation; cipple less then 7 mV	25010800 V negative with respeci to chassis ground, accuracy $\pm 2 \%$ of dial reading; current 100 mA max.: line regulation better than 0.1% : load regulation better than 0.05% : ripple less than 1 mV
Filament supply	$6.3 \mathrm{Vac}, 1.5 \mathrm{amp}$ maximum	6.3 V dc, adjustable nominally between 5 and 9 volts, isolated from ground; curcent 0 to 2 amps: 2 amps max, available to 6.5 V , decreasing to approx. 150 mA at 9 V , ripple $<2 \mathrm{mV}$; line regulation better than 1% with $=10 \%$ line change
internal modulation	Square wave: $1000 \pm 100 \mathrm{~Hz}$, adjustable; 0 to $110 \mathrm{~V} p . p$, negative from reflector voltage; less than $10 \mu \mathrm{sec}$ rise and decay times: sinusoídal power line írequancy. o to $350 \mathrm{VD} \cdot \mathrm{p}$	squere wave: 400 Hz to $2.5 \mathrm{kHz} ; 0.1 \%$ short-term stabilty; 10 to at least $150 \vee \mathrm{p} \cdot \rho$. negative from reflector voltage: $5 \mu \mathrm{sec}$ rise time; external sync of internal square wave 10 V peak, $500 \mathrm{k} \Omega$ nominal input impedance; sawloolh: 75 Hz nominal, 0 to at least 150 V nominal D- ρ. ac-coupled to reflector
Externa modulation	terminals provided; inpur impedance 100 k ?	max, input $200 \mathrm{Vp} \cdot \mathrm{p}$; input impedance $500 \mathrm{k} \Omega$, 100 pF nominal
Oscilloscope output		with intennal square-wave modulation: I V p.p min. for scope sync. 600 ohms oulput impedance; with inlernal sawloolh modulation: $10 \mathrm{Vp-p}$ min. lor scope sweep, $50 \mathrm{k} \Omega$ oulput impedance
Meter	monitors bearn current 01050 mA	monitors beam currenio 0100 mA
Power	$115 \mathrm{~V} \pm 10 \%$, 50 to $60 \mathrm{~Hz}, 200 \mathrm{~W}$	115/230 V switch $\pm 10 \%, 50$ 10 60 Hz , 20010350 W
Dimensions	$71 / 8^{\prime \prime}$ wide, $11 / 2^{\prime \prime} \mathrm{high}, 133 / 4^{N}$ deep ($187 \times 292 \times 349 \mathrm{~mm}$)	$1614^{\prime \prime}$ wide, $6.25 / 32^{\prime \prime}$ nigh, $16 / 8^{\prime \prime}$ deep ($425 \times 172 \times 416 \mathrm{~mm}$); hardwarg furnished for rack mounling
Weight	net 19 los ($8,6 \mathrm{~kg}$) : shipping 24 los ($10,8 \mathrm{~kg}$)	net $46 \mathrm{lbs}(20,7 \mathrm{~kg})$; shipping $62 \mathrm{lbs}(28,3 \mathrm{~kg})$
Accessories furnished	715A-16C shielded output cable, for connection to klystron	6 ' cable, lerminated end mates with 7168 (ane furnished with insloument') HP Stock No. 00716-61601. $\$ 25$
Price	HP 715A, $\$ 400 ; 501050 \mathrm{~Hz}$ imput	HP 716B, \$925

[^21]

778D dual dírectional coupler

The HP 778D is a 200 dB dual directional coupler with a frequency range of 100 MHz to 2 GHz . High directivity (36 dB below 1 GHz , 32 dB above) and close tracking (iypically 0.7 dB and 4°) of the auxiliary arms make it ideal for refectometer measurements of complex reflection coefficient. Maximum errors in such measurements ate:

Fraq Range (OHz)	Maximum Magnlluda Error $\Delta \Gamma_{\mathrm{L}}$			
	5wept Frequenay		Fixed Frequenay	
0.1-1	$\pm 0.015+0.02 \mid \Gamma_{L}$	+0.05\| $\Gamma_{L}{ }^{(2)}$	\pm (0.015 +0.05	$\left.\Gamma_{L}\right\|^{2}$
1-2	$\pm 0.025+0.02 \mid \Gamma_{L}$	+0,05\| $\Gamma_{L} \mid 2$	$\pm 0.025+0.05$	$\left.\Gamma_{L}\right\|^{2}$

Maximum phase error $= \pm \sin { }^{11}\left(\Delta \Gamma_{L} / \Gamma_{L}\right)$
$\left|\Gamma_{\mathrm{L}}\right|=$ reflection coefficient of unknown.
Errors include directivity, source match, and tracking, but do not include any detection errors. They are also based on the following conditions: auxiliary arms terminated in matched loads, the mean of open- and shost-circuit readings set to 1.0 , and the short-circuit phase measured over a band of frequencies and the mean set to 180°.
Although the coupling factor increases 6 dB /ocase below 100 MHz , directivity remains 36 dB . Thus, the coupler can be used below 100 MHz as well as above.
To accommodate test devices with Type N or APC-7 connectors, a choice of TEST PORT (RF output) connectors is available as in. dicated in the specifications. With an APC-7 TEST PORT connector the coupler can be adapted to other types of connector. Adapters to OSM曷, TNC, NC. GR900, and others are available.
$\$ 80 \mathrm{mnl}$-Spectra, Inc.

779D directional coupler

Representing the latest achievement in broadband coaxial couplers, the HP 779D spans more than two ocraves from 1.7 to 12.4 GHz with $30 . \mathrm{dB}$ directivity below 8 GHz and $26 . \mathrm{dB}$ w 12.4 GHz . With increased coupling factor (typically 24 dB) but directivity still 30 dB , the 779 D is useful down to 500 MHz . Upper frequency useful. ness exteads to 18 GHz with a like increase in coupling factor and directivity reduced to about 15 dB .

The 779D is normally supplied with Type N connectors on a! ports, as detailed in the table of specifcations below. These connectors are stainless steel for long wear and are compatible with all connectors whose dimensions conform to MIL-C-39012 or MIL-C. 71. On special order, a precision 7 mm APC. 7 connector can be suppiied on any, or all, port(s).

778D, 779D Specifications

$\begin{array}{\|c\|} \hline \text { HP } \\ \text { Model } \end{array}$	Frequency Range (BH)	Couping Altemuation	Coupting Varlation	Direetwity	SWH	$\begin{aligned} & \text { Max } \\ & \text { Inpul } \end{aligned}$	Conneotors?	Lencth In (mm)	Prleo
7780	0.1-2	20 dB nominal	$\pm 1 \mathrm{dBl}$	Inc, port: $36 \mathrm{~dB}, 0.1-1 \mathrm{GHz}$, $32 \mathrm{~dB}, 1-2 \mathrm{GHz}$ Refl. oort: 30 dB	1.1 all ports	50 W avg, 10 kW pk	Priline ${ }^{3}$: N -male input, N.female output Aux arms: N.fernale	$\begin{aligned} & 163 / 2 \\ & (425) \end{aligned}$	$\begin{aligned} & \$ 450 \\ & 0 \text { pt } 11: \$ 475 \\ & 0 \rho t 12: \$ 50 \end{aligned}$
7790	1.7-12.4	$20 d 8 \pm 0.5 \mathrm{~dB}$	$< \pm 0.75 \mathrm{~dB}$	3048 min, 1.7-8 GHz^{2} 26 dB min, $8-12.4 \mathrm{GHz}$	1.1 all ports	50 W	Prilines: N -màle input N -fermale output Aux arms: N -female	$\underset{\substack{71 / 4 \max _{(197)} \\ \hline \\ \hline \\ \hline}}{ }$	$\begin{gathered} \$ 550 \\ 0 \text { Opt 010: } 5550 \end{gathered}$

[^22]4 Optlon 0lOz W.lemale input, N.male output. Also, APC-7 on any ar all oort(s) on special arder.

770 Dual Directional Couplers

The economica! HP 774D-777D Couplers cover frequency spreads of more than two-to-one, each centered on one of the important VHF/UHF bands. With their high directivity, these couplers are ideal for reflectometer applications. Reflectometers can save appreciable time in the design and manufacrure of broadband anrennas, ECM equipment, television receivers and transmitters, etc. The close tracking of the auxiliary arms makes these couplers particulariy useful for reflectometers driven by externaily-leveled sweep oscillators such as the HP 8690 series. The forward signal is detected and used to level the output of the sheep oscillator while the reflected signal, after detection, is applied to a display device such as an oscilloscope or graphic recorder. Changes in the leveled power due to the coupling variation in the forward arm are virtually cancelled by a similar coupling variation in the reverse arm.

The couplers are also capable of materially improving the speed and accuracy of power measurements because of their accurate coupling and low SWR. The units are capable of handling fairly high amounts of power and have low insertion loss so they can be permanently installed in coaxial lines for continuous monitoring. Also, a fower meter can be alternately connected to the "incident" and "refected" ports to aid in adjusting for maximum forward power.

780 Direcłional Detectors

The HP 780-series Directional Derectors are directional couplers with built-in crystal delectors. The couplers have fat frequency response and good directivity, while the detectors
also have good frequency response plus high sensitivity. The configuration of the directional detector reduces the number of ambiguities over the standard system of separate coupler and detector and makes possible tighter correlation between main-arm power and detected signal.

The directional detector is well-suited to closed-loop leveling applications, for it permits establishment of a leveledpower point anywhere in a system irrespective of the characteristics of intervening cables, connectors, etc.

These directional detectors can also be used to monitor power, with a voltmeter or oscilloscope indicating detected output. For applications where conformance to square law is important, facrory-selected load resistors can be supplied.

The $786 \mathrm{D}, 787 \mathrm{D}, 788 \mathrm{C}$, and 789 C are strictly coaxial devices, both RF connectors being Type N . The X781A is a hybrid, having a Type N RF input connector and a waveguide cover flange RF output. The X781A is intended for monitoring or leveling the output of a signal source with a coaxial output when it is being used to drive a waveguide system.

Detector elements can be replaced without special tools or procedures. Type N connectors are stainiess steel for long wear.

790 Directional Couplers

The 790 Directional Couplers are ultra-flat, high direc. tivity coupless which are ideal for power-monitoring applications in coaxial systems. Output coupling (ratio of output power from main and auxiliary arms) is specified rather than coupling factor. Thus, no corection factor is required to account for insertion and coupling losses in the main arm.

Specifications, 774D-777D

HP Model	7740	76 D	778D	777 D
Frequency range	21510450 MHz	450 to 940 MHz	940101900 MHz	$1900{ }^{\circ} 104000 \mathrm{MHz}$
Minimum directivity ${ }^{\text {P }}$	40 dB	4068	40 dB	30 dB
Coupling attenuation (each auxiliary 8rm)	20 dB	20 dB	20 dB	20 dB
Accuracy of coupling (each auxiliary arm)	mean cougling leval within 0.5 dB of specified values			
Max. coupling variation (50 ohm terminations)	$\pm 1 \mathrm{~dB}$	$\pm 1 \mathrm{d8}$	$=1 \mathrm{~dB}$	$\pm 0.4 \mathrm{d8}$
Auxilisry arm tracking ${ }^{2}$	-	-	$\leq 0.3 \mathrm{~dB}$	$\leq 0.5 \mathrm{~dB}$
Mox. primary line SWR1 (50.0 hm terminations)	1.15	1.15	1.15	1,2
Max. auxiliary arm SWR (50.0 hm terminations)	1.2	1.2	1.2	1.25
Power-handling capacliy	50 watts avg. 10 kW peak			
Primary line insertion loss	0.3 d8 max.	0.4 dB max.	0.35 dB max .	0.75 dB max.
Primary line connectors	Type N , one male, one female ${ }^{3}$			
Auxiliary arm connectors	Type N , female ${ }^{3}$			
Accessoríes available	11511A Type N Female Shorting Jack, \$4; 11512A Typs N Male Shorting Plug, \$5			
Length	$9-1 / 16^{\prime \prime}(230 \mathrm{~mm})$	$9.1 / 16$." 233 mm)	$6.5 / 16^{\prime \prime}$ (161 mm)	8-7/8" (225 mm)
Shipping weight	$41 \mathrm{lb}(1,8 \mathrm{~kg})$	$41 \mathrm{D}(1,8 \mathrm{~kg})$	310 ($1,4 \mathrm{~kg}$)	$3 \mathrm{lb}(1,4 \mathrm{~kg})$
Price	\$225	\$225	\$225	\$275

Measured with HP 907A SIlding Termination or H01.909A Termination.
i Maximum change In the coupling curve of ona auxllary arm relatlve to the other,
'Compatidia with connectors whose dimensions conform to MIL.C. 39012 or MIL.C-71.

Specifications, 780 Series

HP Model	Frequeroy rango (OHz)	Freq. resp. (da) 1	Low-levelsons.$(\mu \mathrm{V} / \mu \mathrm{WcW})$	Dleoo. tlvity (dB)	Equilv. souroe SWR2	$\begin{aligned} & \text { Max. } \\ & \text { SWR } \end{aligned}$	Max Inpul (W, peak or avg.)	Max. Insertion toss (dB)	Lenyth		Shipaling welght		Prico
									(In)	(mm)	(1b)	(X O)	
7850	0.96 to 2.11	± 0.2	>4	30	1.13	1.15	10	0.4	6	152	2	0,9	\$300
7870	1.9104 .1	± 0.2	>4	26	1.16	1.15	10	0.5	4/8/8	124	2	0,9	\$300
788 C	3.7 to 8.3	± 0.3	>40	20	1.25	1.20	1	0.8	4/8	124	2	0,9	\$325
789 C	8.01012 .4	± 0.5	>20	17	1.25	1.40	1	1.2	118/8	295	2	0,9	\$350
X781A	8.0 to 12.4	± 0.5	>20	17	1.07	1.25	1	1.2	153/8	400	2	0,9	\$350

- Includes couplar and detector vaplatlon with frequency as read on a mater calibra led for square-law detectors (e.g., KP 4 I5E SWR Meter).
; The apparent refiection coetlicient at the outout of an RF generating systom, using a directlonal detector ln a tlosed-loop levelling system.
${ }^{3}$ Type N connectors máte compatioly with connectors whose dimenslons contorm to MiL.C. 39012 or Mil.C. 71.

For all models

Detector output impedance: $15 \mathrm{k} \Omega$ max. shunted by approx. 10 pF .
Detector element: supplied.
Noise: $<200 \mu \mathrm{~V}$ peak-to-peak with CW power applied to produce 100 mV output.
Detector output polarity: negative.
Detector output connector: BNC female.
RF connectors: ${ }^{3}$ Type N , one male (input), one female (789C: both female); X781A: input, Type N female;
output, precision cover flange, fits $1^{\prime \prime} \times 1 / 2^{\prime \prime}$ waveguide (EIA WR90).

Options

2. Furnished with load resistor for optimum square law characteristics at $24^{\circ} \mathrm{C}\left(75^{\circ} \mathrm{F}\right),< \pm 0.5 \mathrm{~dB}$ variation from square law over a range of at least 30 dB from low level up to 50 mV peak output (working into external load $>75 \mathrm{k} \Omega$); sensitivity rypically one-fourth of unloaded sensitivity; add $\$ 20$.
3. Positive polarity detector output; no additional charge.

Specifications, 790 Series

HP Model	Frequency range (aHz)	Masn outbut ooupling (da) 1	Outgut ooupling variation (dB) ${ }^{2}$	Dlsec. tivily (dB) ${ }^{2}$	Equiv. sourse matah2, 3	Max. primary Hine SWR	Max. aux. arm SWR	Max. Input (W)	Max. Insertion loss (d ${ }^{(1)}{ }^{6}$	Length		Shloping welght		Prise
										(1n)	(mm)	(lb)	(kg)	
796D	0.96102 .11	$20=0.5$	$=0.2$	30	1.13	1.152	1.202	50	0.4	6	152	2	0,9	\$200
797D	1.9 to 4.1	$20=0.5$	± 0.2	26	1.16	1.152	1.252	50	0.5	47/1	124	2	0.9	\$200
798 C	3.7 to 8.3	10 ± 0.3	± 0.3	20	1.25	1.20	1.20	10	0.8	4\%	124	2	0,9	\$225

For all models; RF connectors: primary line: type $N_{\text {, one }}$ male (input), one female; auxiliary arm: type N female. ${ }^{5}$
idiference in de between power out of primary line and auxiliary arm.
Swepthreguency tested.
'Sweptirequency tested.

- Includes loss due to coupling.
s7ype N connectors mate compatibly with connectors whose dimensions coniorm to MIL.C.39012 or MIL.C.71.

The HP 752 Directional Couplecs are important tools in waveguide measurements. They can be used to monitor power, measure reflections, mix signals, or isolate signal sources or wavemeters.

Each coupler has an overall directivity of better than 40 dB (including reflection from built-in termination and Alange) over its entire range. Performance characteristics are unaffected by humidity, temperature or time, thus making these units especially useful in microwave "standards" measurements. Coupling factors are 3,10 and 20 dB ; mean coupling accuracy is $\pm 0.4 \mathrm{~dB}$ ($\pm 0.7 \mathrm{~dB}$ for K . and R . bands) ; and coupling variation vs frequency is $\pm 0.5 \mathrm{~dB}$ ($\pm 0.6 \mathrm{~dB}$ for R752D).

Used together and connected back to back, two couplers are most useful with the HP 8690B Sweep Oscillator (see Signal Sources) in broadband reflection and SWR measurements. One directional coupler samples power traveling toward the load, and the detected sample can be used to
maintain a constant forward power. The output of the auxiliary arm of the second coupler, which samples power reflected from the load, is then a direct indication of reflection coefficient and swr. After detection, this signal can be viewed on an oscilloscope or permanently recorded on an $x \cdot y$ recorder. The HP 424A Series Crystal Detectors are ideal for use with the 752 couplers.

In the system described above, the variation in coupling with frequency of the two couplers tends to cancel. This cancellation effectively improves the leveling of the signal source and increases the accuracy of the measurement. For applications in which the actual variations in source output must be minimized, matched pairs of couplers for the leveling loop are available on special order. The pair comprises a 3 - and 10 or $20-\mathrm{dB}$ coupler. The $3-\mathrm{dB}$ coupler is connected to the auxiliary arm of the 10 - or $20 \cdot \mathrm{~dB}$ coupler, reducing coupling variation to less than $\pm 0.2 \mathrm{~dB}$. Sweptfrequency techniques are described in detail in Application Note 65, available from any HP field office.

Specifications, 752 Series

Band 1,2 (prof\|x)	Frequanoy (OH H)	FHs wave和ido slize (In)	Mean ooupling soouracy (dB) 9,4	SWR 6,8 main gulde		Averapa power aux. gulde load (W)	Lenglt (In)			Shloping welfht		Price
				752A	7620,0		A	c	D	(libs)	(kg)	
G	3.95-5 85	2×1	± 04	1.1	105	2	341/2	33	33	16	7,4	8325
J*	5.85-8 2	$11 / 2 \times 1 / 4$	± 0.4	1.1	1.05	1	$261 / 2$	25-9/18	25-9/16	13	5,8	\$220
H	7.05-10	$14 / 4 \times 3 / 8$	$=0.4$	1.1	105	1	18\%/8	171/2	171/2	4	1,8	\$165
X	$82-124$	$1 \times 1 / 2$	± 04	11	1.05	1	16-11/16	15-11/16	15-11/16	3	1,4	\$145
P	$128-18$	$202 \times .391$	± 0.4	1.1	1.05	1	133/4	121/4	121/4	2	0,9	\$170
K \dagger	18-26.5	$1 / 2 \times 1 / 8$	± 0.7	1.1	1.05	1/2	103/8	9-15/16	9-15/16	1	0.45	\$200
R \dagger	26.5-40	. $360 \times .220$	± 0.7	1.1	1.05	1/2	11\%/	85/8	8-23/32	1	0,45	\$250

When ordering, specify suffix letter to indicate nominal couplingı A for $3 \mathrm{~dB}, \mathrm{C}$ for $10 \mathrm{~dB}, \mathrm{D}$ for 20 dB (examplat G band, 3 dB coupling, Modei G 752 A).
Directivity is at least 40 dB ; swept-frequency tested
Mean couping is the average of the maximum and minimum coupling values in the rated frequancy range.
${ }^{4}$ Coupling variation over rated frequency range is not more than $\pm 0.5 \mathrm{~dB}$ about mean coupling ($\pm 0.6 \mathrm{~dB}$ for R752D).
sAuxiliary arm swr is 1.15 (1.2 for P., K. and R.band unlts).
sSwepl-drequency tested.

- I752 Couplers operate to 5.3 GHz with reduced performance.
icircular flange adaplers: Y-band (UG425/U), HP 11515A, \$35 each; R-band (UG-381/U), HP 11516A, \$40 each.

PIN MODULATORS, MODULATORS

Versatile modulation

 8730 Series, 8403A
8730 PIN Modulators

The Hewlett-Packard 8730 Series PIN Modulators increase the fexibility and performance of signal sources by providing increased modulation capability. With PIN modulators, signal sources, including klystrons, can be pulse-modulated, leveled or amplitude-modulared with sinusoidal and complex waveforms. Incidental FM is virtually eliminated, because modulation is accomplished by absorption of RF power, independent of the signal source, with a nearly constant match presented to both the source and load. Thus, the source can operate continuously at its optimum output level. Extremely fast rise times, typically 30 ns , also result from the absorption type of modulation, which sidesteps the bandwidth limitations imposed by the high-Q RF output circuits.

The 8730 PIN Modulators cover the coaxial range from 0.8 to 12.4 GHz in four overlapping bands, in addition to X-band in waveguide. Two models are available within each band: an " A " model, which provides at least 35 dB of attenuation range, and a " B " model, which provides at least 80 dB .

Physically, the PIN modulator comprises a number of PIN diodes mounted as shunt elements across a transmission line. Since PIN diodes have appreciable storage time, they do not rectify at signal frequencies above 100 MHz . However, when a de forward bias is applied, the diodes conduct, and their resistance goes down. Thus, the diodes act as low-reactance, variable resistors shunting the transmission line. Theic resistance and the degree of attenuation of an RF signal are functions of the modulating current. However, due to the storage time of the diodes, specially shaped modulation signals must be applied to realize the fast RF rise and decay times of which the PIN modulators are capable. The HP Model 8403A Modulator is specifically designed to supply these modulation signals.

8403A Modulator

The Model 8403A provides complete control of the PIN modulators, supplying the appropriate modulation wave shapes and bias levels for fast rise times, rated on/off ratios and amplitude modulation. An internal square-wave and pulse modulator, which can be synchronized with external signals, has a free-running PRF from 50 Hz to 50 kHz . In the pulse-modulation mode both pulse width and pulse delay are adjustable from 0.1 to $100 \mu \mathrm{~s}$, and jitter with respect to the sync pulse and pulse width is less than 1 ns. An external $A M$ input permits remote control of attenuation or sinusoidal modulation from de to 10 MHz .

The Model 8403 A also provides square wave and pulses for general pulse applications. Repetition rate, delay and jitter are the same as above. The output signal has an amplitude of 25 to 30 volts.

For situations requiring an absorption-type modulator complete with controls in a single unit, a PIN modulator con be installed in the Model 8403A. This combination is fully portable and convenient for bench use.

Specifications, 8403A

Output characteristics

AM and pulse output for driving 8730 PIN Modulators: pulse outpur specially shaped for optimum RF rise and decay times.
Puise output for general pulse applications: positive dccoupled pulse 25 to 30 volts in amplitude, approximately symmetrical about 0 volt; no $A M$ signal.
Output signals available concurrently from separate frontpanel connectors.

Internal modulation

Square wave
Frequency: continuously variable from 50 Hz to 50 $\mathrm{kHz}, 3$ decade ranges.
Symmetry: better than $45 / 59 \%$.
Pulse
Repetition rate: continuously variable from 50 Hz to $50 \mathrm{kHz}, 3$ decade ranges.
Delay: continuously variable from $0.1 \mu \mathrm{~s}$ to $100 \mu \mathrm{~s}$, in 3 decade canges, between sync out pulse and RF output pulse.
Width: continuously variable from $0.1 \mu \mathrm{~s}$ to $100 \mu 5$ in 3 decade canges.
Maximum duty cycle: see graph.

External sync

Amplitude: 5 volts to 20 volts peak.
Waveform: pulse or sine wave.
Polarity: either positive or negative.
Input impedance: approx. 2000 ohms, dc-coupled.
Rate: subject to internal recovery time considerations; see graph.
Trigger out
Sync out: 0.1 to $100 \mu \mathrm{~s}$ in advance of RF pulse, as set by Delay control (internal pulse mode); simultaneous with RF pulse (internal square wave and external pulse mode).
Delayed sync out: simultaneous with output pulse (internal pulse mode only).
Amplitude: approximately -2 volts.
Source impedance: approximately 330 ohms.

Externai modulation

Pulse input
Amplitude and polarity: 5 volts to 20 volts peak, either positive or negative.
Repetition rate: maximum average PRE, 500 kHz .
Input impedance: approx. 2000 ohms, dc-coupled.
Minimum width: $0.1 \mu \mathrm{~s}$.

Maximum width：$\frac{1}{\text { PRF }}-0.4 \mu \mathrm{~s}$ ．
Continuous amplitude modulatlon（with 8730 Series）
Frequency response：dc to approximately 10 MHz （ 3 dB ）
Sensitivity：approximately $10 \mathrm{~dB} /$ volt with HP 8730A Series，approximately $20 \mathrm{~dB} /$ volt with HP 8730 B Series．
Input Impedance：approximately 1000 obms．
Level control：AM input is dc－coupled，permitting con－ trol by bias of AM input；rear－panel control for use with ac－coupled modulation．

General

Power： 115 or 230 volts $\pm 10 \%, 50$ to 400 Hz ，approxi－ mately 10 watts．
Dimenslons： $163 / 4^{\prime \prime}$ wide， $33 / 4^{\prime \prime}$ high， $183 / 4^{\prime \prime} \operatorname{decp}(425 \mathrm{x}$
$96 \times 467 \mathrm{~mm}$ ）；hardware furnished for conversion to rack mount $19^{\prime \prime}$ wide， $3 \cdot 15 / 32^{\prime \prime}$ high， $163 / 8^{\prime \prime}$ deep be－ hind panel（ $483 \times 88 \times 416 \mathrm{~mm}$ ）．
Welght：net $161 / 2 \mathrm{lb}(7,4 \mathrm{~kg})$ ；shipping $21 \mathrm{lb}(9,5 \mathrm{~kg})$ ．
Price：HP 8403A，$\$ 800$ ．

Options

01．HP 8731A PIN Modulator installed，add $\$ 350$ ．
02．HP 8731 B PIN Modulator installed，add $\$ 575$.
03．HP 8732A PIN Modulator installed，add $\$ 350$ ．
04．HP 8732B PIN Modulator installed，add $\$ 575$ ．
05．HP 8733A PIN Modulator installed，add $\$ 375$ ．
06．HP 87338 PIN M
07．HP 8734A PIN Modulator instailed，add $\$ 400$ ．
08．HP 8734B PIN Modulator installed，add $\$ 625$.
09．Sync output and extemal modulation input con－ nectors on rear pancl in parallel with front－panel connectors；puise output（or RF input and output） connectors on rear panel only，add $\$ 25$ ．

Specifications， 8730 Series

HP Model		B7314	87311	8732A	87328	8733A	87338	8734A	8734日	87364	87368	H10．8731日
Frequency range（ GH_{7} ） Dynamic range（dB）		$0.8-2.4$	$\begin{gathered} 0.8-2.4 \\ 80 \end{gathered}$	$\begin{gathered} 1,8-4,5 \\ 35 \end{gathered}$	$1.8-4.5$	$\begin{aligned} & 3.7-8.3 \\ & 35 \end{aligned}$	$\begin{aligned} & 3.7-8.3 \\ & 80 \end{aligned}$	$\underset{35}{7.0-12.4}$	$\begin{gathered} 7.0-12.4 \\ 80 \end{gathered}$	${ }_{35}^{8.2-12,4}$	$\begin{gathered} 8.2-12.5 \\ 80 \end{gathered}$	$\frac{0.4-0.9}{35}$
Max residualatten．（d8）l		<1.5	＜2．0	<2.0	＜3．5 ${ }^{\text {\％}}$	<2.0	<3.0	<4.0	＜ 5.0	＜4．0	＜ 5.0	<2.0
Typical rise time（ns）${ }^{3}$		40	30	40	30	30	30	30	30	30	30	40
Typical decsy（imen（ns）${ }^{3}$		30	20	30	20	20	20	20	20	20	20	30
SWR，min，altenuation		1.5	1.6	1.5	1.64	1.8	2.0	1.8	2.0	1.7	2.0	1.257
SWR，max．attenuation		1.8	2.0	1.8	2.0	2.0	2.2	2.0	2.2	2.0	2，2	1.57
Froward bias inputresistance（ohms）		300	100	300	100	300	100	300	100	300	100	300
Rf connector type		N	N	N	N	N	N	N	N	W／65	W／G5	N
Weight，netshipping	$\begin{aligned} & \text { (} \mathrm{lb} \text {) } \\ & (\mathrm{kg}) \end{aligned}$	$\begin{gathered} 3 \\ 1,4 \end{gathered}$	$\begin{aligned} & 51 / 2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 1,4 \\ & \hline \end{aligned}$	$\begin{aligned} & 51 / 2 \\ & 2,5 \end{aligned}$	$21 / 2$ 1,1	$\begin{aligned} & 31 / 2 \\ & 1,6 \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 1,1 \\ & \hline \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 1,6 \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 1,1 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 51 / 2 \\ & 2,5 \\ & \hline \end{aligned}$
	$\begin{aligned} & (\mathrm{lb}) \\ & (\mathrm{K}) \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ 2,2 \end{gathered}$	$\begin{gathered} 8 \\ 3,6 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 5 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8 \\ 3,6 \\ \hline \end{gathered}$	$\begin{aligned} & 4 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{aligned} & -5 \\ & 2,3 \\ & \hline \end{aligned}$	$\begin{gathered} 4 \\ 1,8 \end{gathered}$	$\begin{aligned} & \hline 5 \\ & \hline 2,3 \end{aligned}$	$\begin{aligned} & 4 \\ & 1,8 \end{aligned}$	$\begin{aligned} & 5 \\ & \hline 5,3 \end{aligned}$	$\begin{array}{r} 8 \\ \hline 8.6 \end{array}$
$\begin{gathered} \text { Dimensions } \\ \text { Length } \end{gathered}$	$\begin{aligned} & (\mathrm{in}) \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	$\begin{aligned} & 111 / 9 / 9 \\ & 283 \end{aligned}$	$\begin{aligned} & 113 / 8 \\ & 289 \\ & \hline \end{aligned}$	$\begin{aligned} & 111 / 8 \\ & 283 \end{aligned}$	$\begin{aligned} & 113 / 8 \\ & 289 \end{aligned}$	$\begin{aligned} & 896 \\ & 213 \\ & 21 \end{aligned}$	$\begin{aligned} & 121 / 4 \\ & 311 \end{aligned}$	$\begin{aligned} & 83 / 18 \\ & 213 \end{aligned}$	$\begin{aligned} & 121 / 2 \\ & 311 \end{aligned}$	$13 / 1$	$\begin{aligned} & 101 / 2 \\ & 267 \end{aligned}$	$\begin{gathered} 111 / 8 \\ 289 \end{gathered}$
Width	$\begin{aligned} & \text { (in) } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & 31 / 4 \\ & 83 \end{aligned}$	$\begin{aligned} & 41 / 2 \\ & 124 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 83 \end{aligned}$	$\begin{aligned} & \hline 4 / 8 \\ & 124 \end{aligned}$	$\begin{aligned} & 31 / 4 \\ & 83 \end{aligned}$	$\begin{gathered} 31 / 4 \\ 83 \end{gathered}$	$31 / 8$	$\begin{aligned} & 31 / 2 \\ & 83 \end{aligned}$	$31 / 8$ 83	$31 / 8$ 83	47／8 124
Height	$\begin{aligned} & \text { (in) } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	$\begin{aligned} & 21 / 4 \\ & 57 \end{aligned}$	$\begin{aligned} & 27 / \\ & 57 \\ & \hline \end{aligned}$	$\begin{gathered} 21 / 4 \\ 57 \end{gathered}$	$\begin{gathered} 21 / 4 \\ 57 \end{gathered}$	$\begin{gathered} 21 / 4 \\ 57 \end{gathered}$	$\begin{array}{r} 21 / 2 \\ 57 \end{array}$	$\begin{gathered} 21 / 2 \\ 57 \end{gathered}$	$\begin{gathered} 21 / 4 \\ 57 \end{gathered}$	$\begin{gathered} 21 / 4 \\ 57 \end{gathered}$	$\begin{gathered} 24 / \\ 57 \end{gathered}$	$\begin{aligned} & 21 / 1 \\ & 57 \end{aligned}$
Price		\＄300	\＄ 525	\＄300	\＄525	\＄325	\＄550	\＄350	\＄575	\＄350	\＄575	\＄525

Haximum rathgs：maximum Input power，peak or $\mathrm{CW}_{1} 1 \mathrm{~W}$ ，blas limits $+20 \mathrm{~V},-10 \mathrm{~V}$ ．
glas polarity：negallve voitago increases attenualion．
RFI radiated leakage llmils are below those specifled In MIL－I－61810 at Input levels
less than 1 miW；at all Input levals radiated interierence is sufilelently
low to obtaln rated attenuation．
iwith－s V blas．

24 6日， 4 to 4.5 GHz．
1 Oriven by HP 8403A Mosulator．
${ }^{-2.0}$ SWR， 4 to 4.5 GH ？
1 Fits $1 \times 1 / 2$ in．（WR90）waveguloe．
－Exlernal high pass filters required．
，Excluding high－pass iliters．

MICROWAVE TEST EQUIPMENT

VARIABLE COAXIAL ATTENUATOR
Versatile application to $\mathbf{2 ~ G H z}$
Models 355C, D, 393A, 394A

355C,D VHF Attenuators

Unique design provides accurate attenuation from $d c$ to 1 GHz with the HP 355 C (0 to 12 dB in $1-\mathrm{dB}$ steps) and HP 355D (0 to 120 dB in $10-\mathrm{dB}$ steps). Attenuator sections are inserted and removed by cam-driven microswitches. These sections are adjusted by a time-domain reflectometry system to minimize refections and ensure high accuracy. Insertion loss is low, and using both instruments provides attenuation in $1 \cdot d \mathrm{~B}$ steps to 132 dB . The units can be connected with either terminal as input or output, and their small size and mounting versatility permit several installation schemeseven within other equipment.

393A, 394A Coaxial Attenuators

Each of these coaxial variable attenuators uses the principle of a directional coupler (see Figure 1) to achieve a wide range of attenuation over a full octave. The HP 393A covers 5 to 120 dB from 500 to $1000 \mathrm{MHz} ; \mathrm{HP} 394 \mathrm{~A}$ covers 6 to 120 dB from 1 to 2 GHz . With special high-power terminations, they will handle up to 200 watts average.

Since these instruments are variable directional couplers, they are particularly useful for mixing signals while maintaining isolation.

Figure 1. With loads A and B in place the instrument is an attenuator. With load A only, the instrument is a varigble directional coupler.

Speelfiozitons	855C	3550
Attenustion:	12 dB in 1-dB steps	120 dB in $10 \cdot \mathrm{~dB}$ steps
Frequency rango:	do to 16 GHz	
Overall accuracy:	$\begin{aligned} & =0.1 \mathrm{~dB} \text { at } 1000 \mathrm{~Hz} \\ & =0.25 \mathrm{~dB} \mathrm{dc} \mathrm{to} 500 \mathrm{MHz} ; \\ & =0.35 \mathrm{~dB} \mathrm{dc} 101 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & =0.3 \mathrm{~dB} \text { to } 120 \mathrm{~dB} \text { at } \\ & 1000 \mathrm{~Hz} ; \pm 1.5 \mathrm{d8} 1090 \\ & \mathrm{~dB} \text { below } 1 \mathrm{GHz} ; \pm 3 \\ & \mathrm{~dB} \text { 10 } 120 \mathrm{~dB} \text { below } 1 \\ & \mathrm{GHz} \end{aligned}$
Impedance:	50 ohms nominal	
Power dissipation:	0.5 watl average, 350 volts peak	
Maximum SWR (input and output):	1.2 below $250 \mathrm{MHz} ; 1.3$ below$500 \mathrm{MHz} ; 1.5$ below I GHz	
Maximum insertion loss:	0.25 dB at $100 \mathrm{MHz} ; 0.75 \mathrm{~dB}$ to $500 \mathrm{MHz} ; 1.5 \mathrm{~dB}$ 101 GHz	
Dimensions (in.) :	6 long, $23 / 4$ wide, $23 / 8 \mathrm{high}(152 \times 70 \times 67 \mathrm{~mm})$	
Weight:	net 11/2 to (0,7 kg) : shipping 3 lb (1,4 kg)	
Prica:	HP 355C, \$160	HP 3550, \$160
Option 01, HP 355C, 3550 (Type N connectors). Add \$33		
Speolficatlans	3934	384 A
Frequency range:	500 MHz 10 1 GHz	1 to 2 GHz
Altenuation or coupling:	510120 dB , variable	6 to 120 dB, variable
$\begin{aligned} & \text { Directivity (with loads } \\ & \text { less than } 1.05 \mathrm{SWR} \text {): } \end{aligned}$	typically $>10 \mathrm{~dB}, 10$ to 40 dB attenuation	
Absolute accuracy (between matched generator and load):	$\pm 1.25 \mathrm{~dB} \text { or }=1.75 \% \text { of }$ dial reading, whichever is greater	$\pm 1.25 \sigma^{\mathrm{B}}$ or $x=2.5 \%$ of dial reading, which. ever is greater
SWR input:	$<2.5,5$ to 15 dB attenuation $<1.5,15$ to 30 dB atlenuation $<1.2,30$ to 120 dB attenuation	$\begin{gathered} <2.5,6 \text { to } 10 \mathrm{~dB} \\ \text { gttenuation } \\ <1.8,10 \text { to } 15 \mathrm{~dB} \\ \text { attenuation } \\ <1.6,15 \text { to } 120 \mathrm{~dB} \\ \text { attenuation } \end{gathered}$
SWR output:	$<2.5,5$ to 15 dB attenuation $<1.5,15$ to 30 dB attenuation $<1.4,30$ to 120 dB attenuation	$\begin{aligned} & <2.5,6 \text { to } 10 \mathrm{~dB} \\ & \text { attenuation } \\ & <1.8,10 \text { to } 15 \mathrm{~dB} \\ & \text { gttenuation } \\ & <1.6,15 \text { to } 120 \mathrm{~dB} \\ & \text { attenuation } \end{aligned}$
Impedance:	50 ohms nominal	
Maximum voltage:	500 volls peak	
Average power:	approx. 200 walts maximum; power rating of terminations must be observad (908A, 0.5 watt terminations furnished)	
Dimensions (in.)	$51 / 2$ wide, 12 long, $21 / 4$ deep ($140 \times 305 \times 70 \mathrm{~mm}$)	
Weight:	net $6 \mathrm{lb}(2,7 \mathrm{Kg})$; shipping $13 \mathrm{lb}(5,8 \mathrm{~kg})$	
Price:	HP393A, \$525	HP 394A, \$550
Option 01.	suppled without 908 A cosxial terminations,less $\$ 70$	

355C, 0

Attenuator Set

A set of four HP attenuators, 3, 6, 10, and 20 dB , are furnished in a handsome walnut accessory case. In addition to protecting the units when not being used, the case is also a convenient storage place for the attenuator calibration reports provided with the set of four attenuators. These calibration reports include the accuzacy of the measurement and are certified traceable to the Nationa! Bureau of Standards.

Attenuation calibrations are stamped on the attenuators at $\mathrm{dc}, 4,8$, and 12 GHz for the 8491A and at $\mathrm{dc}, 4,8,12$, and 18 GHz for the 8491 B and 8492A. In addition, the calibration report includes both the attenuation and the reflection coefficient at each port of the attenuator at these frequencies. Calibrations at other frequencies are available on request.

Specifications

Accuracy of insertion loss measurements: ($\mathrm{San}_{\mathrm{a}} \mathrm{S}_{\mathrm{n}}$)

$$
\begin{array}{ll}
D C & \pm 0.01 \mathrm{~dB} \\
0.20 \mathrm{~dB} & \\
4 \cdot 12 \mathrm{GHz} & \pm 0.062 \mathrm{~dB} \\
12 \cdot 18 \mathrm{GHz} & \pm 0.097 \mathrm{~dB} \\
\text { Above } 20 \mathrm{~dB} & \pm 1 \% \text { of Altenuation }
\end{array}
$$

Accuracy of reflection coefficient measurements: ($S_{n, 1} S_{n:}$)

$$
\begin{aligned}
4 & =12 \mathrm{GHz} \Delta \Gamma_{\mathrm{L}} \leq \pm\left(0.036+0.03 \Gamma_{\mathrm{L}}+0.045 \Gamma_{\mathrm{L}}{ }^{8}\right) \\
12 & =18 \mathrm{GHz} \Delta \Gamma_{\mathrm{L}} \leq \pm\left(0.046+0.03 \Gamma_{\mathrm{L}}+0.055 \Gamma_{\Sigma^{2}}\right)
\end{aligned}
$$

Prices

Attenuator set:
11581A (for 8491 A) includes $3,6.10,20 \mathrm{~dB}$ values, $\$ 225$.
11582 A (for 8491 B) includes $3,6,10,20 \mathrm{~dB}$ values, $\$ 285$.
11583A (for 8492A) includes 3, 6, $10,20 \mathrm{~dB}$ values, $\$ 525$.

COAXIAL STEP ATTENUATOR

DC to 12.4 GHz

Model 354A

Specifications

Frequency range: dc to 12.4 GHz .
incremental attenuation: 0 to 60 dB in $10 \cdot \mathrm{~dB}$ steps.
Accuracy (inctuding frequency response): $\pm 2 \mathrm{~dB}$.
Residual attenuation: less than 1.5 dB .
Impedance: 50n.

Reflectlon coefficient

0 to 8 GHz : less than 0.2 (1.5 SWR, 14 dB return loss).
8 to 12.4 GHz : less than 0.273 ($1.75 \mathrm{SWR}, 11.3 \mathrm{~dB}$ return loss).
Maximum power: 2 W average, $300 W_{\text {peak. }}$
Connectors: Type N femaie, stainless steel.
Dimensions (maximum envelope): $4^{\prime \prime}$ wide, $31 / 8^{\prime \prime}$ hígh, $41 / 2^{\prime \prime}$ deep ($102 \times 79 \times 114 \mathrm{~mm}$) ; panel mount, $3.1 / 16^{\prime \prime}$ wide, $2-5 / 16^{\prime \prime}$ high, $33 / 4^{\prime \prime}$ deep behind panel ($78 \times 59 \times 95$ mm).

Weight (wlth base): net $23 / 4 \mathrm{lb}(1,2 \mathrm{~kg})$; shipping $4 \mathrm{lb}(1,8$ kg)

Prlce: Model 354A, \$350.

Attenuation 0 to 60 dB in $10-\mathrm{dB}$ steps

Flat response dc to 12.4 GHz

Low residual attenuation
Simple knob rotation

MICROWAVE TEST EQUIPMENT

ε

COAXIAL ATTENUATORS
Performance at low cost
Models 8491A，B，8492A，8493A，B

8493A，B

8491A，B

Hewlett－Packard fixed coaxial attenuators provide preci－ sion attenuation，flat frequency response，and low VSWR over broad frequency ranges at low prices．Altenuators are available in nomina！attenuations of $3-\mathrm{dB}, 6 \cdot \mathrm{~dB}$ and $10-\mathrm{dB}$ incements from 10 dB to 60 dB ．

Each attenuator is swept－frequency tested．Swept－frequency testing to $18-\mathrm{GHz}$ ensures that the attenuator meets specifi－ cations at all frequencies in the specified cange．Spot fre－ quency testing can easily miss narrow＂resonances＂．

Speciflcations

	24914 and 2038 A		Mall ind Pmos			4124		
Fragency isnga	OC to 12.4 CHz		DC 2018 OHz			DC 10 l 8 OHz		
Altenualion Accuracy			$0 \mathrm{C}-12.4 \mathrm{GHz}$		124－186Hz	DC－12．4 6 Hz		$12.4-18 \mathrm{CHz}$
3 dB	－0．3 d8		$\pm 0.3 \mathrm{ds}$			－0．3 d8		
6 dB	－0．3 d ${ }^{\text {d }}$		$=0.3 \mathrm{d8}$		$=0.4 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$		－0．4 d8
1088	± 0.588		－0．5d8			$\pm 0.5 \mathrm{~d} \mathrm{\theta}$		
20 dB	＝ $0.5 \mathrm{d8}$		－0．5 de		－1d8	－0．5dB		± 1 d ${ }^{\text {d }}$
30 dB	± 168		－188			$\pm 1 \mathrm{~dB}$		
$40 \mathrm{~dB}^{4}$	$-1.5 \mathrm{~dB}$		－1．5 dB			－1．5d8		
$50 \mathrm{~dB}{ }^{4}$	$\cdots 1.5 \mathrm{~dB}$		$=1.5 \mathrm{~dB}$			$=1.5 \mathrm{~dB}$		
$60 \mathrm{~d} 8^{4}$	－ 2 dB		$\pm 2 \mathrm{~dB}$			－2 28		
SWR	$\mathrm{OC}-8 \mathrm{chz}$	8－12．A GHz	DC－8 CH_{2}	$8-12.40 \mathrm{OHz}$	12．4－18 GHz	$\mathrm{DC}-8 \mathrm{GH} 2$	$8-12.4$ GHz	$12.4-18 \mathrm{GHz}$
3 dB	1.25	1.35	1.25	1.35	1.5	1.2	1.3	1.5
6 dB	1.2	1.3	1.2		1.5	1.2	1.3	1.35
1068	1.2	1.3	1.2		1.5	1.15	1.25	1.3
2088	1.2	13	1.2	1.3	1.5	1.15	1.25	1.3
30 dB	1.2	1.3	1.2	13	1.5	1.15	1.25	1.3
$40 \mathrm{AB}^{4}$	1.2	1.3	12	1.3	1.5	1.15	1.25	1.35
50.88^{4}	1.2	1.3	1.2	1.3	1.5	1.15	1.25	1.35
$60 \mathrm{ds}^{4}$	1.2	1.3	1.2	1.3	1.5	1.15	1，25	1.35
Calibration Frequencios	OC，4，8，12 GHz		DC．4，8，12，18 GHz			DC，4，8，12， 18 CHz		
Maximum Inpui Power	2 W avg， 100 W ok		$2 \mathrm{Wavg}, 100 \mathrm{~W}$ Dk			2 Wavg ． 100 W dk		
Conneclors（50n）	$\begin{aligned} & \text { 8491A: Typo } N^{1} \\ & \text { 8A93A: }{ }^{1} M A^{2} \end{aligned}$		$\begin{aligned} & \text { 84918: rype } \mathrm{Nl}^{1} \\ & \text { 8493日: } \mathrm{SMR}^{2} \end{aligned}$			APC－${ }^{3}$		
Dimenslons：in． mm			$\begin{aligned} & 84918: 2.7 / 6 \times 13 / 16 \mathrm{dia} \\ & 62 \times 21 \\ & 84938: 14 \times 1 / \mathrm{dig} . \\ & 38 \times 13 \end{aligned}$			$31 / 9 \times 13 / 16 \mathrm{dia} .$		
Welght：net shipolne	$\begin{aligned} \left.\hline \text { 8991A: } \begin{array}{c} 4 \\ 801(1108) \\ 800(2208) \\ \\ 8493 A: \\ 0.602(20 g) \\ \\ 301(808) \end{array}\right) \end{aligned}$					$\begin{aligned} & 402(110 \mathrm{~g}) \\ & 802(220 \mathrm{~g}) \end{aligned}$		
	1491a	140314	14811		$1988{ }^{4}$	14924		
Price （Give Option Number for desirad a thentuallon）${ }^{5}$	$\begin{aligned} & 3-30 \mathrm{~dB}, \\ & \$ 50-8 \mathrm{ch} \\ & 40.60 \mathrm{~dB} \\ & 575 \mathrm{Bach} \\ & \hline \end{aligned}$	$\begin{aligned} & 3-30 \mathrm{~dB}, \\ & 800 \text { each } \end{aligned}$	365 each 40－60 d日， $\$ 100$ each		3－30 6B 575 ach	$\begin{aligned} & 3-30 \mathrm{~dB}, 5125 \mathrm{esch} \\ & 40-60 \mathrm{~dB}, \$ 160 \mathrm{edach} \end{aligned}$		

VARIABLE ATTENUATORS Frequency coverage to 40 GHz

 Models 382A, C and 375A
MICROWAVE TEST EOUIPMENT

Precision Variable Attenuators

Operation of these direct-reading, precision attenuators depends on a mathematical law, rather than on the resistivity of the attenuating material. Accurate attenuation from 0 to 50 dB (0 to 60 dB for S382C) is assured regardless of temperature and humidiry. The
instruments can bandle considerable power and feature large, easily read dials. In addition, the $\$ 382 \mathrm{C}$ achieves both long electrical length and short physical dimensions through dielearic loading. The result is an S -band attenuator which is only $251 / 4$ inches long and yet is more accurate than previously available units.

HP Model	8382C	6382A1	J382A1	H892A	$\times 3824$	P382A	K382A2	R382A2
Frequency cange (OH_{2}):	2.6-3.95	$3.95 \cdot 5.85$	5.3-8.2	$7.05 \cdot 10.0$	$8.2 \cdot 12.4$	12.4 - 18.0	18.0-26.5	$26.5 \cdot 40.0$
Waveguide size (in):	$\begin{aligned} & 3 \times 11 / 2 \\ & \text { WR } 284 \end{aligned}$	$\begin{aligned} & 2 \times 1 \\ & \text { WR187 } \end{aligned}$	$\begin{aligned} & 15 / 2 \times 3 / 4 \\ & W R 137 \end{aligned}$	$\begin{aligned} & 13 / 4 \times 5 / 2 \\ & \text { WR112 } \end{aligned}$	$\begin{aligned} & 1 \times 1 / 2 \\ & \text { WR90 } \end{aligned}$	$\begin{gathered} .702 \times .391 \\ \text { W } 262 \end{gathered}$	$\begin{aligned} & 1 / 2 \times 1 / 4 \\ & \text { WR42 } \end{aligned}$	$\begin{gathered} .360 \times .220 \\ \text { WR28 } \end{gathered}$
Power handiling capacity, watts, average continuous duty:	10	15	10	10	10	5	2	1
Size lengih, in. (mm) height depth, $(\mathrm{mm}):$ dim. $(\mathrm{mm}):$ 	 $251 / 4$ (641) 6 (152) 8 (203)	 $311 / 8$ (803) $95 / 8$ (245) $71 / 2$ (197)	$\begin{array}{cc} 25 & (635) \\ 71 / 8 \\ 0.3 / 16 & (220) \\ \hline(157) \end{array}$	$\begin{array}{cc} 20 & (508) \\ 7.15 / 16 \\ 81 / 20 & (202) \\ (165) \end{array}$	$\begin{array}{cc} 155 / 9 & (397) \\ 75 / 8 & (194) \\ 4.11 / 16 & (119) \end{array}$	 $121 / 2$ (318) 7% (197) $42 / 4$ (121) 	$75 / 8$ (194) $61 / 8$ (156) $83 /$ (121) 	$\begin{array}{ll} 63 / 8 & (162) \\ 61 / 8 & (156) \\ 4 \% & (121) \end{array}$
$\begin{array}{ll}\text { Weight } & \begin{array}{l}\text { net, } 1 \mathrm{lb}(\mathrm{kg}): \\ \text { shippling, } \mathrm{lb}(\mathrm{kg}):\end{array}\end{array}$	$\begin{array}{ll} 18 & (8,1) \\ 28 & (12,6) \end{array}$	$\begin{array}{cc} \hline 21.5 & (9,7) \\ 32 & (14,4) \\ \hline \end{array}$	$\begin{array}{ll} 13 & (5,9) \\ 24 & (10,8) \end{array}$	$\begin{array}{ll} 10 & (4,5) \\ 22 & (9,9) \end{array}$	$\begin{array}{ll} \hline 6 & (2,7) \\ 8 & (3,6) \end{array}$	$\begin{array}{ll} \hline 6 & 3.5 \\ 8 & (3,6) \\ \hline \end{array}$	$\begin{array}{ll} \hline 4 & (1,8) \\ 9 & (4,1) \end{array}$	$\begin{array}{ll} \hline 4 & (1,8) \\ 9 & (4,1) \end{array}$
Price:	\$1120	\$550	\$415	\$385	\$310	\$340	\$525	\$550

For all 382A Models

Incremental attenuation range: 0 to 50 dB .
Residual attenuation: less than 1 dB .
Reflection coefficient: less than 0.07 (1.15 SWR, 23.1 dB return loss).
Accuracy: $\pm 2 \%$ of reading in dB , or 0.1 dB , whichever is greater. Includes calibration and frequency error.

For Model S382C
Calibrated attenuation range: 0 to 60 dB (above residual attenuation).

Residual attenuatlon: less than 1 dB
Accuracy: $\pm 1 \%$ of reading in dB , or 0.1 dB , whichever is greater, from 0 to 50 dB ; $\pm 2 \%$ of reading above 50 dB ; includes calibration and frequency error.
Reflection coefficlent: less than 0.091 ($1.2 \mathrm{SWR}, 20.8 \mathrm{~dB}$ recurn loss), 2.6 to 3 GHz ; less than 0.07 ($1.15 \mathrm{SWR}, 23.1 \mathrm{~dB}$ return loss), 3 to 3.95 GHz .

Degree dlat: 0 to 90°; calibrated in 0.01^{6} increments.
Colrcular flange.
 (UG.381/V) 11515A, \$40 Each.

General-Purpose Attenuators

Variable flap attenuators provide a simple, convenient means of adjusting waveguide power level or isolating source and load. They consist of a sloted section in which a matched resistive strip is inserted. The degree of strip penetration determines attenuation. A dial shows average reading over the frequency band, and a shielded dust cover reduces external radiation and eliminates hand capacity effects. Attenuation is variable from 0 to 20 dB . Dial calibration is accurate within $\pm 1 \mathrm{~dB}$ from 0 to $10 \mathrm{~dB}, \pm 2 \mathrm{~dB}$ from 10 to 20
dB. Maximum reflection coefficient is 0.07 (1.15 SWR 23.1 dB return loss).

Specifications, 375A

HP Madel	Frequanay (GHz)	Power dissipation (wattis)	Length		Flis wavequlde slye $\left(m_{1}\right)$	Price
			(la.)	(mm)		
X375A	$8.2 \cdot 12.4$	2.0	7-3/16	183	$1 \times 1 / 2$	\$110
P375A	12.4-18.0	1.0	71/4	184	. $702 \times .391$	\$135

MICROWAVE TEST EOUIPMENT

LOW-PASS; BANDPASS FILTERS
Effective elimination of undesirable signals Models 360A-D; 362A; 8430

These Hewlett-Packard low-pass and bandpass filters facilitate microwave measurements by eliminating undesirable sig. nals (such as harmonics) from the measurement system. Suppression of such signals is particularly important in applications such as slotted-line measurements, where harmonics generated by the signal source could otherwise impair measurement accuracy. These filters also can be used as preselectors for the HP 8551B Spectrum Analyzer. As such, they permit the maximum utilization of the analyzer's broad spectrum-width capability while ensuring virtually spurious-free displays.

Specifications, 360 Series

HP Model	360A	360 B	368 C	3600
Cur-off frequency	700 MHz	1200 MHz	2200 MHz	4100 MHz
Insertion loss	$\leq 1 \mathrm{~dB}$ below 0.9 times cut-off frequency			
Rejuction	≥ 50 d8 8t 1.25 times cut.off requency			
Impedance	50 ohms through pass band; should be matched for optimum pariormance			
SWR	$<1.6 \text { low }$	$\text { in } 100 \mathrm{MHz}$	$\begin{gathered} <1.6 \text { to } \\ \text { within } \\ 200 \text { MA of of } \\ \text { cut-off } \end{gathered}$	$\begin{gathered} <1.6 \text { to } \\ \text { within } \\ 300 \text { WH2 of } \\ \text { cut-off } \end{gathered}$
Connectors	Type N, one mala, ona famble			
0 verall (in). length (mm)	$\begin{aligned} & 101 / 6 \\ & 276 \end{aligned}$	$\begin{gathered} 7.7 / 32 \\ 183 \end{gathered}$	$\begin{gathered} 10.25 / 32 \\ 274 \end{gathered}$	$\begin{gathered} 73 / 8 \\ 187 \end{gathered}$
Center line (in.) to male end (mm)	$\begin{gathered} 21 / 1 \\ 54 \end{gathered}$	$\begin{array}{r} 21 / 8 \\ 24 \\ \hline \end{array}$	-	-
$\begin{aligned} & \text { Center line } \\ & \text { to (in.) } \\ & \text { temáale (mm) } \end{aligned}$	$21 / 4$ 57	$21 / 4$ 57	--	
	$\begin{array}{r} 2 \\ 0,9 \end{array}$	$\begin{array}{r} 2 \\ 0,9 \end{array}$	0.9	0,45
Price	\$75	570	\$65	\$60

Specifications, 362A Series

HP Model	X362A	Mab2A	P362A	K362A*	R362A*
Passband (GHz)	8.2-12.4	10.0-15.5	12.4-18.0	18.0-26.5	26.5-40.0
Stop band (GHz)	18-37.5	19-47	23-54	31-80	47-120
Insertion loss	less than 1dB	less than 1 d8	less than 1 dB	less than 108	less than 2 dB
Stopband rejection	31 least 40 dB	31 least 40 dB	at least 40 dB	at least 40 dB	at least 35 dB
SWR	1.5	1.5	1.5	1.5	1.8
Waveguide size, in. (E\|A)	$1 \times 1 / 2$ (WR 90)	0.850×0.475 (WR 75)	0.702×0.391 (W9 62)	1/2 $\times 1 / 4$ (WR 42)	0.360×0.220 (WR 28)
Length, in. (mm)	5-11/32(136)	4.15/32(114)	3-11/16(94)	$2 y_{1}(64)$	1-21/32(42)
Shigping weight. lb (kg)	$2(0,9)$	$1(0,45)$	$1(0,45)$	1/2(0,23)	1/2(0,23)
Price	\$325	\$350	\$350	\$385	\$385

* Circular flange adapters: K-Dand (UG-425/U), HP 11515A, \$35 each, R-Dand (UC.381/U), RP 11\$16A, \$40 each.

Specifications, 8430 Series

$\begin{gathered} \text { HP } \\ \text { Model } \end{gathered}$	Passhand frequeroy (OH)	Max, passband Insertian lass	Rejeotlon band attenuation				Dimentons		Shłpping walght		Price
			Below passhand		Above passband						
			$\begin{gathered} \text { Frefulenoy } \\ (\mathrm{QHz}) \end{gathered}$	Atienuatlon	$\begin{gathered} \text { Frequenay } \\ (\mathbf{G H z}) \end{gathered}$	Attenuatlon					
							(In.)	(mm)	(lb)	(kg)	
8830 A	1102	208	≤ 0.8	$\geq 90 \mathrm{~dB}$	2.21020	$\geq 45 \mathrm{~dB}$	$51 / 2 \times 41 / 4 \times 1$	$140 \times 121 \times 25$	3	1,4	5210
8431A	2 to 4	20 B	≤ 1.6	$\geq 50 \mathrm{~dB}$	4.4 to 20	≥ 4508	$51 / 2 \times 3 \times 1$	$140 \times 76 \times 25$	3	1.4	\$210
8432A	4106	2 dB	≤ 3.5	$\geq 50 \mathrm{d8}$	6.51020	$\geq 45 \mathrm{~dB}$	$41 / 2 \times 2 \times 1$	$114 \times 51 \times 25$	2	0,9	\$275
8433A	6108	2 dB	≤ 5.5	$\geq 50 \mathrm{~dB}$	8.51020	$\geq 45 \mathrm{~dB}$	$4 \times 11 / 2 \times 1$	$102 \times 38 \times 25$	2	0,9	\$275
8434A	8 to 10	2 dB	≤ 7.5	$\geq 50 \mathrm{~d} 8$	10.54017	$\geq 45 \mathrm{~dB}$	$48 / 8 \times 1 \times 1$	$118 \times 25 \times 25$	2	0,9	\$275
8435A	4108	2 dB	≤ 3.2	$\geq 50 \mathrm{~dB}$	8.8 to 20	≥ 45 dB	$35 / 8 \times 13 / 4 \times 1$	$92 \times 45 \times 25$	2	0,9	\$210
8436A	8 to 12.4	208	≤ 6.9	$\geq 50 \mathrm{~dB}$	13.5 to 17	$\geq 45 \mathrm{~dB}$	$27 / 8 \times 1 \times 1$	$73 \times 25 \times 25$	2	0,9	\$210

Connectors: Type N, ona male, one temale.

The HP 8470A and 8472A extend the frequency range of coaxial crystal detectors to 18 GH . Like the 423 A and 424 A Crystal Detectors, the 8470A and 8472A combine extremely flat frequency response with high sensitivity and low SWR, making them extremely useful as the detecting element in closed loop leveling systems. Matched pairs are available for applications requiring the utmost in detector tracking, and all but the 8472A can be supplied with video loads for optimum conformance to square larv over a range of at least 30 dB .

The 422A Crystal Detectors are convenient waveguide detectors which cover K- and R-bands. They have a dynamic range of 40 dB or more, making them suitable for refectometer as well as general-purpose applications.

The 420A is a low-cost crystal detector which covers the coaxial range from 10 MHz to 12.4 GHz , making it ideal for general-purpose video detection. The 420 B is essentially the same unit as the 420 A with the addition of a selected video load for optimum square-law characteristics in the 1 to 4 GHz range. Price: HP 420A, $\$ 65$; HP 420B, $\$ 95$.

RF Detector

The 8471A is a low cost RF derector which covers the frequency range from 100 kHz to 1.2 GHz . This unir is a broadband, flat detector with a built-in filter. It is extremely well. suited for use with the HP 8690B/8698B Sweep Oscillatot/RF Unit (pages 423-429).

$\underset{\text { MPdal }}{\text { HP }}$	Froquency range (OHz)	Frequenoy resp.1 (dB)	Low-\|evel senglifivly $(\mathrm{mV} / \mu \mathrm{W})$	Max\|mum SWR	$\begin{gathered} \text { RF } \\ \text { Input } \\ \hline \end{gathered}$	Malohed palr available	Squarelaw load suallable	Length		Shlyplag walght		Prloe
								(in.)	(mm)	(b)	(kg)	
8471A	$\begin{aligned} & 100 \mathrm{kHz} \\ & 1.2 \mathrm{GHz} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.6 ; \text { typ } \\ & \pm 0.1 \text { over } \\ & 100 \mathrm{MHz} \end{aligned}$	>0.5	$\begin{gathered} \text { typically } \\ 1.3 \end{gathered}$	$\begin{aligned} & \text { BNC } \\ & \text { mate } \end{aligned}$	no	no	21/4	70	1	0,5	HP 8471A, \$ 50
423A	0.01-12.4	$\begin{aligned} & =0.2 / \text { octave } \\ & \text { to } 8 \text { GHZ; } \\ & =0.5 \text { overall } \end{aligned}$	>0.4	1.2104 .5 GHz : 1.35 to 7 GHz ; 1.5 to 12.4 GHz	$\begin{gathered} \text { Type } \\ \text { Male } \end{gathered}$	yes ${ }^{2}$	yes 3	2-15/32	63	1	0,5	HP 423A, \$135
8470A	0.01-18	$\begin{aligned} & =0.2 / \text { oclave } \\ & 108 \mathrm{GHz} \\ & \pm 0.5 \text { to } 12.4 \mathrm{GHz} \\ & \pm 1 \text { overall } \end{aligned}$	>0.4	$\begin{aligned} & 1.2104 .5 \mathrm{GHz} ; \\ & 1.35 \text { to } \mathrm{GHz} ; \\ & 1.51012 .4 \mathrm{GHZ} ; \\ & 1.7 \text { to } 18 \mathrm{GHz} \end{aligned}$	APC. 7	yes ${ }^{2}$	yes ${ }^{3}$	$21 / 2$	64	1	0.5	HP 8470A, \$190
8472A	0.01-18	$\begin{aligned} & =0.2 / \text { oclave } \\ & \text { to } 8 \mathrm{GHz} ; \\ & =0.51012,4 \mathrm{GHz} ; \\ & =1 \text { overall } \end{aligned}$	>0.4	1.2 to 4.5 GHz ; 1.35 to 7 GHz ; 1.5 to 12.4 GKZ ; 1.7 to 18 GHz	$\begin{aligned} & \text { OSM } \\ & \text { lype } \\ & \text { male } \\ & \hline \end{aligned}$	Yes	no	$21 / 2$	64	1	0,5	HP 8472A. \$175
S 424 A	2.60-3.95	± 0.2	>0.4	1.35	Wave. guide cover flange	yes4	yes ${ }^{3}$	2-7/16	62	2	0,9	HP S $424 \mathrm{~A}, \$ 195$
G424A	3.95-5.85	± 0.2	>0.4	1.35		yes4	yes 3	2-1/16	52	1	0,45	HP G424A, \$185
J424A	5.30-8.20	$=0.2$	>0.4	1.35		yes ${ }^{4}$	yes ${ }^{3}$	1.7/8	48	0.5	0,23	HP J424A. \$185
H424A	7.05-10.0	± 0.2	>0.4	1.35		yes4	y65 3	1-9/16	40	0.5	0,23	HP H424A, \$175
X424A	8.20-12.4	± 0.3	>0.4	1.35		yes ${ }^{4}$	yes 3	1-3/8	35	0.5	0,23	HP X424A, \$155
M 424 A	10.0-15.0	$=0.5$	>0.3	1.5		yes ${ }^{4}$	yes ${ }^{3}$	1	25	0.5	0,23	HP M424A, \$275
P424A	12.4-18.0	± 0.5	>0.3	1.5		yes4	yes 3	15/16	24	0.5	0,23	HP P424A, \$195
K422AS	18.0-26.5	± 2	≈ 0.3	2.5		yes 5	yes ${ }^{3}$	2	51	1	0,5	HP K422A, 5230
R422A6	26.5-40.0	± 2	≈ 0.3	3		yes ${ }^{\text {s }}$	yes ${ }^{3}$	2	51	1	0,5	HP R422A, \$230

For all models
Maximum Input: 100 mW peak or average, (8471A: 3 V ims, 4.2 V pk).

Deteotor element: supplied

Outpul polarity: negative (positive output available with 423A, 8470A, 424A-specily Option 03; 8471 A - Specity Option 04; no additional charge; 8472 A , available on special order, add $\$ 20$.)
Outpuit connectar: BNC female.

IAs read on a 416 Ratlo Mater or 415 SWR Meter calibrater for squarelaw detectors.
2Frequency response characteristics (excluding basic sensltivily) track within $=0.2$ di por octave from 10 MHz to 8 GHz , $=0.3$ dB from 8 to $12,4 \mathrm{GHz}$, and (8470 A and 8472 A$)=0.6 \mathrm{~dB}$ from 12.4 to 18 GHz ; specify Option 01., add $\$ 40$ per palr. (8472 A , available on speclai order, adt $\$ 50$ per palt).
${ }^{3}<=0.5 \mathrm{~dB}$ variation ftom square law up to 50 mV peak outout into $>75 \mathrm{k}$; sensitlyity typically $>0.1 \mathrm{mV} / \mu \mathrm{W}$; specily Option 02 .; add $\$ 20$.
${ }^{4}$ Frequency response characteristics (excluding basic sensitivity) track withln $=0.2 \mathrm{~dB}$ for S . G -, J- and H -band units, $=0.3$ dB for X-band unlts, and $=0.5 \mathrm{~dB}$ for M . and P-band units; specify Option 01.; add $\$ 40$ per psir.
sMatched pair of unlts fitted with square law loads. Frequency response characteristics (exciuding basic sensitivily) track wilthin $=1$ of for power levels less than approx. 0.05 mW ; specify Option 01. add $\$ 80$ per palr.
${ }^{6}$ Circular flange adapters: l1515A (UG-425/U) for K-band, $\$ 35$ each: 11516A (UG.381/U) for R-band, $\$ 40$ each.

MICROWAVE TEST EQUIPMENT

FREQUENCY METERS
For general-purpose or lab use
Models 532A/B, 536A, 537A

Advantages

High resolution, easy-to-read dial
Direct reading
Broadband
Accuracy specified over $20^{\circ} \mathrm{C}$ and 0 to 100% relative humidity

These direct-reading frequency meters allow you to measure frequencies from 3.95 to 40 GHz in waveguide and from 960 MHz to 12.4 GHz in coax quickly and accurately, Their long scale length and oumerous calibration macks provide a high resolution which is particularly useful when measuring frequency differences or small frequency changes. Frequency is read directly in GHz so no interpolation or charts are required.

The instruments comprise a special transmission section with a high-Q resonant cavity which is tuned by a choke plunger. A $1 \cdot \mathrm{~dB}$ or greater dip in output indicates resonance; virtually full power is transmitted off resonance. Tuning is by a precision lead screw, spring-loaded to eliminate backlash. Resolution is enhanced by a long, spiral scale calibrated in small frequency increments. For example, Mode! X532B has an effective scale length of 77 inches (1956 mm) and is calibrated in $5-\mathrm{MHz}$ increments. Resettability is extremely good, and ali frequency calibrations are visible so you can tell at a glance the specific portion of the band you are measuring. Except for the J532A, there are no spurious modes or resonances. (See note 4 below.)

Specifications, 532A, 536A and 537A

Model	Fraquency Range (BHz)	$\begin{gathered} \hline \text { Disal } \\ \text { Acurazoy } \\ (\%) \end{gathered}$	Overall Acouracy) (\%)	Digat Resomance	Callibration Inoremert (MH2)	Fits Wavegulde		Equivalent Flange	Stag In. (mm)			Woight lb (kg)		Price
						$0 \mathrm{D}(\mathrm{In})$	EIA		Length	Height	Depih	Nat	Shipping	
536A	0.96-4.20	0.102	0.173	Note 6	2				$\stackrel{6}{(152)}$	$\begin{gathered} 91 / 8 \\ (232) \end{gathered}$	$\begin{gathered} 6 \\ (152) \end{gathered}$	$10(4,5)$	$13(5,9)$	\$550
537A	3.7-12.4	0.10	0.17	1 dB min	10				$\begin{gathered} 45 / 8 \\ (118) \\ \hline \end{gathered}$	$\begin{gathered} 53 / 6 \\ (146) \\ \hline \end{gathered}$	$\begin{aligned} & 31 / 2 \\ & (89) \\ & \hline \end{aligned}$	$31 / 2(1,6)$	$5(2,3)$	\$550
G532A	3.95-5.85	0.033	0.065	1 dB min	1	2×1	WR187	UG-407/U	$\begin{array}{r} 61 / 4 \\ (159) \\ \hline \end{array}$	$\begin{array}{r} 91 / 2 \\ (241) \\ \hline \end{array}$	$\begin{gathered} 5 \\ (127) \end{gathered}$	91/4 (4,1)	$12(5,4)$	\$400
J532A	$5.30-8.204$	0.033	0.665	1 dB min	2	$11 / 2 \times 3 / 2$	WR137	UG-441/U	$\begin{aligned} & \hline 61 / 4 \\ & (159) \end{aligned}$	$\begin{aligned} & \hline 918 \\ & (232) \end{aligned}$	$\begin{aligned} & \hline 41 / 2 \\ & (114) \end{aligned}$	71/2 $(3,4)$	$11(5,0)$	\$375
H532A	7.05-10.0	0.040	0.075	1 dB min	2	1/4 $\times 5 / 8$	WRI12	UG-138/U	$\begin{array}{r} 61 / 4 \\ (159) \\ \hline \end{array}$	$\begin{gathered} 8 \\ (203) \end{gathered}$	$\begin{gathered} 43 / 8 \\ (111) \end{gathered}$	$6(2,7)$	$9(4,1)$	\$325
X532B	8.20-12.4	0.050	0.08	$1 \mathrm{d8} \mathrm{~min}$	5	$1 \times 1 / 2$	WR90	UG-39/U	$\begin{array}{r} 41 / 2 \\ (114) \\ \hline \end{array}$	$\begin{aligned} & 61 / 8 \\ & (155) \\ & \hline \end{aligned}$	$\begin{aligned} & 2 / 8 \\ & (73) \end{aligned}$	$31 / 2(1,6)$	$4(1,8)$	\$225
M532A	10.0-15.0	0.053	0.085	1 dB min	5	$\begin{aligned} & \hline 0.850 x \\ & 0.475 \\ & \hline \end{aligned}$	WR75	Cover	$\begin{array}{r} 41 / 2 \\ (114) \\ \hline \end{array}$	$\begin{array}{r} 61 / 9 \\ (159) \\ \hline \end{array}$	$\begin{aligned} & 23 / 2 \\ & (70) \\ & \hline \end{aligned}$	31/2 (1,6)	$4(1,8)$	\$350
P532A	12.4-18.0	0.068	0.10	1 dB min	5	$\begin{aligned} & 0.702 \times \\ & 0.391 \\ & \hline \end{aligned}$	WR62	UG-419/U	$\begin{aligned} & 41 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{gathered} 61 / 9 \\ \text { (159) } \\ \hline \end{gathered}$	$\begin{aligned} & 23 / 1 \\ & (70) \\ & \hline \end{aligned}$	$3(1,4)$	$4(1,8)$	\$275
K532A	18.0-26.5	0.077	0.11	1 dB min	10	$1 / 2 \times 1 / 4$	WR42	UG-595/U	$\begin{array}{r} 41 / 2 \\ (114) \\ \hline \end{array}$	$\begin{array}{r} 53 / 6 \\ (137) \\ \hline \end{array}$	$\begin{aligned} & 21 / 6 \\ & (73) \\ & \hline \end{aligned}$	$2(0,9)$	$3(1,8)$	\$350
R532A	26.5-40.0	0.083	0.12	1 dB min	10	$\begin{aligned} & 0.360 x \\ & 0.220 \end{aligned}$	WR28	UG-599/U	$\begin{gathered} 41 / 2 \\ (114) \end{gathered}$	$\begin{aligned} & 51 / 2 \\ & (140) \end{aligned}$	$\begin{aligned} & 23 / 4 \\ & (70) \end{aligned}$	$2(0,9)$	3 (1,8)	\$400

[^23]- Because of the wide frequency range of the J532A, freauencies from 7.6108 .2 GHz can exclte the $T E_{112}$ mode when the dlal is sel between 5.3 and 5.6 GHz . : Circular llange adapters; K-band (UG.425/U) 11515A, \$35 oach; R-band (UG.381/U) 11516 A, $\$ 40$ each.
${ }^{6} 1 \mathrm{~dB}$ min., $1.4 \mathrm{GHz} ; 0.6 \mathrm{~dB}$ min., $0.96 \cdot 1 \mathrm{GHz}$ and 4.4 .2 GHz . MICROWAVE
TEST EQUIPMENT

905, 907A Sliding Loads

The 905A and 907 A are movable, low-refection loads for precision microwave measurements. They are ideal for use with the 8410A Network Analyzer and the 817A Swept Slotted Line for reducing the ambiguity of reflection measurements. Both loads have zemovable connector bodies and inner conductor pins. APC-7 and type N (male and female) bodies and pins are supplied. The type N bodies are stainless steel for long wear. Center conductors have no supporting beads and can be moved to seat accurately with the mating connector to keep SW'R low. Load travel is greater than a half wavelength at the lowest frequency. The 905 A features compact size, light weight, and index marks for accurate, repeatable load positioning. Prices include carrying cases and wrenches for changing connectors.

905A, 907A Specifications

HP modsl	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Froquagoy } \\ \text { Rinpe } \end{array} \\ \hline \end{array}$	Load SW\%	$\begin{gathered} \hline \text { Poway Rating } \\ \text { Wath } \end{gathered}$	$\begin{aligned} & \text { Langth } \\ & \text { IA. }(\pi \mathrm{mm}) \end{aligned}$	Waloht	Prica
907 A	1-18 G42	$\begin{gathered} 0.024 \\ 1.5-180 \mathrm{Hzz} \\ 0.048 \\ 1.50 \mathrm{~Hz} \end{gathered}$	1 W ave 5 kW ox	$\begin{aligned} & 30.76 \\ & (778) \end{aligned}$	$\begin{gathered} 2 \mathrm{lo} \\ (0.9 \mathrm{~kg}) \end{gathered}$	\$275
905	$1.8-18 \mathrm{GHz}$	1.05	$\begin{aligned} & \hline \text { 1Wavg } \\ & 5 \mathrm{~kW} \mathrm{pk} \\ & \hline \end{aligned}$	$\begin{aligned} & 171 / 1 / 2 \\ & \hline(440) \\ & \hline \end{aligned}$	$\begin{gathered} 702 \\ (196 \mathrm{gm}) \\ \hline \end{gathered}$	5225

908A, 909A Terminations
The 908A and 909A Terminations are low-reflection loads for terminating 50 ohm coaxial systems in their characteristic impedance. Model 909A is extremely broadband, covering the range from dc to 18 GHz . Combining economy with utility, the 908 A covers the range from dc to 4 GHz .

Model 909A is normally supplied with a precision 7 -mm connector (APC-7), but may be ordered with a stainless steel male or female type N connector. The type N connectors are compatible with connectors conforming to MIL.C. 39012. Model 908A has a phosphor-bronze type N male connector that is compatible with MIL-C-71.

908A, 909A Specifications

$\begin{gathered} \mathrm{HP} \\ \text { Modol } \end{gathered}$	Fraquoncy Ranpa	Pmpadanoa	9WR	Powar Raling	Conractor	$\begin{aligned} & \text { Langit } \\ & \text { in (mim) } \end{aligned}$	Prica
908 A	$\mathrm{dC}_{6-4 \mathrm{GHz}}$	50 ohns	105	$1 / 3 \mathrm{Wavg}$, 1 kW	$\overline{\text { I mala }}$	2 (51)	\$35
909 A	$\mathrm{dC}-18 \mathrm{GHz}$	50 chms	1.05. $0-46 \mathrm{~Hz}$. 1.1. $4-1.46 \mathrm{Gz}$. 1.25. 12.48 GHz.	2W avg. loow of	APC-7	2 (51)	\$75
$\begin{gathered} \text { 909A } \\ \text { Option } 12 \\ \text { snd } \\ \text { Option 13 } \end{gathered}$	dc-18GHz	50 hms	$\begin{array}{c\|} 1.06 \\ 0-1 \mathrm{~Hz} \\ 1.14 \\ 4-12.4 \mathrm{Gzz} \\ 12.4-18 \mathrm{GHz} \\ \hline 1 \end{array}$	$\begin{aligned} & 2 W \text { avg } \\ & 100 \mathrm{~W} \text { pk } \end{aligned}$	Oplion 12: N male. Optian 13: K temale	2 (51)	550

11511A, 11512A, 11565 A Shorts
These accessory coaxial shorts are useful for establishing measurement planes and known reflection phase and magnitude in 50 ohm coaxial systems. The 11511 A and 11512 A are type N female and male shorts and are compatible with connectors conforming to MIL-C-39012. The 11565A has a precision $7-\mathrm{mm}$ (APC-7) connector. Prices: 11511A Type N Female Shorting Jack, $\$ 4$; 11512A Type N Male Shorting Plug, $\$ 5$; 11565 A APC-7 Short, $\$ 25$.

MICROWAVE TEST EOUIPMENT

WAVEGUIDE TERMINATIONS, SHORTS

General- application types
Models 910, X913A, 914, 920, X923A, X930A

910 Terminations

Model 910 is designed for terminating waveguides systems operating at low average powers. The terminations are carefully designed to absorb virtually all of the applied power and assure a low SWR.

014 Spodiliustoma						
Madel	$\begin{gathered} \text { Finquanoy } \\ \text { Ranpe (BHz } \end{gathered}$	8Wh	Powar failnge		$\begin{gathered} \text { Ife sire } \\ \text { (EIA) } \end{gathered}$	Prics
G910a	3.95-5.85	1.04	2 watts	2×1	WR 187	570
J910A	5.3-8.3	1.02	1 walt	14883/4	WP 137	555
H9IOA	7.05-10	1.02	1 wstl	$11 / 4.4$	W9 113	545
XSIDE	8.2-12.4	1.015	1 wail	$1 \times 1 / 2$	HR 90	\$35
P910A	12.4-18	1.02	1 Wat	0.001×0.991	WR 62	540

914 Loads

Model 914 Moving Load consists of a section of waveguide in which is mounted a sliding tapered low-reflection load. A lockable plunger controls the position of the load, moving it at least $1 / 2$ wavelength at the lowest waveguide frequency. Fight models cover the frequency range from 2.6 to 40 GHz .

Madal	Fragungy月asga (0Hi)	角Wr	$\begin{aligned} & \text { Ayd Pwf } \\ & \text { Raylng } \\ & \text { (wats) } \\ & \hline \end{aligned}$	Wavipulda siz* (E\|A)	Pried
G914A	3.95-5.85	1.01	2	WR 187	\$120
J914A	5.3-8.2	1.01	2	WR 137	\$100
H914A	7.05-10	1.01	1	WR 112	\$80
XS14B	8.2-12.4	1.01	1	WR 90	3 60
P914A	12.4-18	1.01	4	HR 62	\$ 75
K914B	18-26.5	1.01	$1 /$	WR 42	\$25
89148	26.5-40	1.01	K	WR 28	5278

X913A Termination

The X913A is a high-power termination which requires no cumbersome water connections. The unit will dissipate 500 watts average, 100 kW peak, and its SWR over the full 8.2 to 12.4 GHz range is less than 1.05 . Price: $\mathrm{X} 913 \mathrm{~A}, \mathrm{~S} 125$.

X923A, 920A,B Waveguide Shorts

Models X923A and 920A,B are low loss movable shorts. Each of the 920 series is adjustable through at least half a wavelength at the lowest frequency in its band. The X923A is adjustable through about two wavelengths at 8.2 GHz . The 920A features a crank-driven leadscrew that positions a contacting, conducting plane. The 920B uses a choke-type short positioned by a micrometer drive. The X923A employs a non-contacting, conducting plane positioned by a sliding shaft.

Model	$\begin{aligned} & \text { Fisguanoy } \\ & \text { Ranps (OHz) } \end{aligned}$			Priou
G920A	3,95-5.85	2×1	WR 187	5125
1920A	5,3-8.2	1 $1 / 2 \times 1 / 8$	WR 137	\$100
H920A	7.05-10.0	11/81/4	WR 112	385
X523A	8.2-12.4	1×4	WR 90	875
P\$208	12.4-18	0.702×0.391	WR 62	\$125
+9208	18.0-26.5	0.600×0.250	WR 42	\$155
R920B	26.5-10.0	0.350×0.720	WR 20	\$175

X930A Shorting Switch

Model X930A, 8.2 to 12.4 GHz , provides a removable short in a waveguide circuit. SWR is less than 1.02 in the "open" position, greater than 125 in the "short" position. Price: HP X930A, \$160.

TUNERS, PHASE SHIFTERS
 Precision instruments for lab or general use
 Models 870A, 885A

MICROWAVE
 TEST EQUIPMENT

885A Waveguide Phase Shifters

HP 885A Phase Shifters provide accurate, controllable phase variation in the J -, X -, and P -band frequency ranges. They are particularly useful in microwave bridge circuits where phase and amplitude must be adjusted independently. They also are used in the study of phased arrays.

The instruments are differential phase devices; that is, they add or subtract a known phase shift from the total phase
shift which a wave undergoes in traveling through the device.
The instruments have high accuracy over their entire phase range, -360 to +360 electrical degrees, have low power absorption, are simple to operate, and require no charts or interpolation. They are sturdily built, comprising two rec. tangular-to-circular waveguide transitions with a dial-driven circular waveguide mid-section. These waveguide phase shifters are housed in cast aluminum containers for extreme rigidity and durability.

Specifications, 885A

Madel	Frequeney Range (GHz)	DIKerentlal Phase Angle Rangel	Aocuracy y^{2} (The smaller of)	Insertion Lest ${ }^{3}$	$\underset{(\text { max. }}{\substack{\text { STR }}}$	Power RatIng (Watt)	Waverualde		Wekht		Price
							$\begin{aligned} & \text { S\|1e } \\ & \langle(\mathbb{A}) \end{aligned}$	Flange	$16 \mathrm{Not}_{\mathrm{kg}}$	$\mathrm{lb}_{\mathrm{kg}}^{\text {Shlpping }}$	
1885A	5.3-8.2	$-360^{\circ} 10+360^{\circ}$	$\begin{aligned} & \pm 3^{\circ} \text { or } \\ & 0.1 \Delta \phi \end{aligned}$	$<2 \mathrm{~dB}$	1.35	10	WR137	UG-344/U	$14 \quad 6,3$	$25 \quad 11,3$	\$650
X885A	8.2-12.4	$-360^{\circ} 10+360^{\circ}$	$\begin{aligned} & \pm 2^{\circ}\left(\pm 3^{\circ}, 10-\right. \\ & 12.4 \mathrm{GHz}, \text { or } \\ & 0.1 \Delta \phi \end{aligned}$	$\begin{aligned} & <1 \mathrm{~dB}, 8.2- \\ & 10 \mathrm{GHz},<2 \mathrm{~dB}, \\ & 10-12.4 \mathrm{GHz} \end{aligned}$	1.35	10	WR90	UG-39/U	$8 \quad 3,6$	$10 \quad 4,5$	\$475
P885A	12.4-18	$-360^{\circ} 10+360^{\circ}$	$\pm 4^{\circ}$ or $0.1 \Delta \phi$	$<3 \mathrm{~dB}$	1.35	5	WR62	UG-419/U	7 2,5	$10 \quad 4.5$	$\$ 675$

Can be shilted continuously through any number of cycles.
1 $\Delta \varnothing=$ phase difference in degrees.
${ }^{3}$ Variation with frequency (fixed phase setting): approx. 1 dB.
Variation with phase setting (ilixed frequency): $<0.4 \mathrm{~dB}, \mathrm{~J} 885 \mathrm{~A} ; 0.3 \mathrm{~dB}$ max, 8.2 to 10 GHz and 0.4 dB max. 10 to 12.4 GHz , x885A; $<0.5 \mathrm{~dB}$, 9885 A .

870A Slide-Screw Tuners

Waveguide slide-screw tuners are used primarily for correcting discontinuities or for "flattening" waveguide systems. They are also used to match loads, terminations, bolometer mounts, or antennas to the characteristic admittance of the waveguide. They are particularly valuable in determining experimentally the position and magnitude of matching structures required in waveguide systems.

HP 870A tuners consist of a waveguide slotted section with a precision built carriage on which is mounted an adjustable probe. The position and penetration of the probe is adjusted to set up a reflection which is used to cancel out an existing reflection in a system.

Probe penetration into the guide is varied by a micrometer drive. Position of the probe along the guide is adjusted by a thumb-operated wheel, and position can be read to 0.1 mm on a vernier scale. An SWR of 20 can be corrected to 1.02 , and small SWR's can be corrected exactly.

Specifications, 870A

Model	Freq. Ranga (GHI)	Fits Wavegulde Size Nom. OD (IM.) (EIA)		Equivalent $\substack{\text { Flange }}$ Typo	$(\mathrm{in} .)^{\text {Leng! }}(\mathrm{mm})$		$\begin{gathered} \text { Net Welght } \\ (\mathrm{lbs.)}) \end{gathered}$		$\begin{gathered} \text { Shippling } \\ \text { Welqhit } \\ \text { (lbs.) } \end{gathered}$		Prico
P870A	12.40-18.00	0.702×0.391	WR62	UG-419/U	5	127	$3 /$	0,34	2	0.9	\$160
X870A	8.20-12.40	$1 \times 1 / 2$	WRso	UG-39/U	51/2	140	1/8	0,58	2	0,9	\$150

[^24]Insention loss dB at corrected SWR of 20: 2 dB max.; 3 dB max, for K and R bands.

MICROWAVE TEST EQUIPMENT

MISCELLANEOUS EQUIPMENT
Increase fiexibility of microwave measurements Models 281A/B, 292A/B, P932A, 934A, 11540A.11548A

281 A,B; 292A,B Adapters

HP $281 \mathrm{~A}, \mathrm{~B}$ Adapters transform waveguide impedance into 50 -ohm coaxial impedance. Power can be transmitted in either direction, and each adapter covers the full frequency range of its waveguide band with SWR less than 1.25. The 281 A Adapter is fitted with a cover flange and brass type N female connector; the 281 B , with a cover flange and an APC-7 or optional stainless steel type N female connector.

Models 292A,B Waveguide-to-Waveguide Adapters connect two different waveguide sizes with overlapping frequency ranges. The 292A consists of a short tapered section of waveguide. The 292B is broached waveguide with a step transition between waveguide sizes.

Spactications 281A, B							
$\underset{\text { Model }}{\text { HP }}$	SWR	Frequariay Range (GH1)	$\begin{aligned} & \text { Wave- } \\ & \text { gulde } \\ & \text { Slzi } \\ & \text { EIA } \end{aligned}$	Coaxial Conneator	Length		Prloe
					(in.)	(mm)	
S281A	1.25	2.60-3.95	WR284	N Female	21/2	84	$\$ 85$
G281A	1.25	395-5.85	WR187	N Fermale	21/8	54	\$50
J281A	1.25*	5.30.8.20	WR137	N Female	2	51	\$45
H281A	1.25	7.05-10.0	WRII2	N Female	15/8	41	\$40
X281A	1.25	8.20-12.4	WR90	N Female	13/8	35	$\$ 35$
X2818	1.25	8.20-12.4	WR90	APC.7**	13/8	35	\$70
P281B	1.25	12.4-18	WR62	APC-7**	15/16	24	\$85

- 1.3 from 5.3 to 5.5 GHz .
*Option 13. Furnisned with sialnioss steel N-female connector, less \$15.00.

Speeificatlans 292A,B					
HP Model	SWR	Lenpth		Frequemoy range (GHz)	Prioe
		(4.)	(mm)		
HX292B	1.05	L1/2	38	8.20 to 10.0	\$40
M $\times 2928$	1.05	23/8	60	10.0 to 12.4	\$50
MP292B	1.05	23/8	60	12.41015 .0	\$40
NP292A	1.05	23/8	60	15.01018 .0	\$40
NK292A	J. 05	23/8	60	18.01022 .0	\$40

934A, P932A Harmonic Mixers

HP 934A, P932A speed and simplify frequency measurements from 2 to 18 GHz . They are also excellent as RF mixers in phase-stabilized signal sources. Both feature high sensitivity, yet require no tuning.

Spectilcations 934A, P9324					
Model	$\begin{gathered} \text { Frequerroy } \\ \text { Range (GHz) } \\ \hline \end{gathered}$	Maximum Inpul	Typloal Senstivivy	Min. video ourtput*	Price
934 A	2 to 12.4	100 mW	$\begin{aligned} & -48 \mathrm{~dB} \text { at } 3.5 \mathrm{GHz} \\ & -25 \mathrm{~dB} \text { at } 10 \mathrm{GHz} \end{aligned}$	1.4 mV p-p	\$150
P932A	12.41018	100 mW	$-10 \mathrm{~dB}$	$0.4 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$	\$250

Waveguide Stand, Waveguide Clamps
The 11540 A Wareguide Stand locks HP Waveguide Clamp at any height from $23 / 4^{\prime \prime}$ to $51 / 4^{\prime \prime}$ (70 to 133 mm). The stand is $21 / 2^{\prime \prime}(64 \mathrm{~mm})$ high, and the base measures $43 / 4^{\prime \prime}(12 \mathrm{l} \mathrm{mm})$ in diameter. Price: $11540 \mathrm{~A} . \$ 3$. The Waveguide Clamps are offered in eight sizes to hold waveguide covering frequencies from 2.6 to 40 GHz (see pages $276-281$ for individual listings). They consist of a molded plastic cradle with a center rod. Price: 11541 A-11548A, $\$ 3$ each.

COAXIAL SWITCH Economical, versatile, broadband switches Model 8761

MICROWAVE TEST EQUIPMENT

8761 Coaxial Switch

The HP 8761 is a single-pole, double-throw coaxial switch with low standing-wave ratio, low insertion loss, and good isolation from dc to 18 GHz . Mechanically, the switch is a break-before-make type controlled by a latching solenoid. Solenoids are available in 12 - and 26 -volt ratings and can be operated by de or pulsed signals.

For maximum utility, any of seven coaxial connectors, or a $50-\mathrm{hm}$ termination, may be specified for each port. Connectors may be chosen from Type N jack, Type N plug, precision $7-\mathrm{mm}$ plag, precision $7-\mathrm{mm}$ jack, precision $7-\mathrm{mm}$ jack for semirigid coax, 3 -mm jack, and 3 -mm plug. Type N connector dimensions conform to MIL-C-39012, and the $3-\mathrm{mm}$ connectors are compatible with the OSM ${ }^{1}$ series. The three precision $7-\mathrm{mm}$ connectors are space-saving versions of the APC-72. Two of these, the jack and plug, mate with the standard APC-7 connector. The third is compatible with the connector used on 0.250 -inch outside diameter semirigid (UT-250 ${ }^{3}$) coaxial cable. The $7 \cdot \mathrm{~mm}$ jack has a fixed, threaded coupling sleeve whereas the $7-\mathrm{mm}$ plug has a narrow, hexagonal nut and no coupling sleeve.

Amphenol RF olvision, Dandury, Connecticut.
${ }^{2}$ Omnl Spectra Inc., Detrolt, Mlchigan.
3 Uniform Tubas, Inc., Collegeville, Pannsylvanla.

Ordering information
Specify solenoid voltage and connectors (including built-in 50Ω termination) by the alphabetic suffix on the swiech model number and the appropriate three-digit option number.

Optlon Cods	Conneator Type	Opilon Gode	Connector Type
0	N Jack*	4	$7-\mathrm{mm}$ for UT-250 Coax
1	N Plug	5	$3-\mathrm{mm}$ Jack
2	$7-\mathrm{mm}$ Jack	6	3 -mm Plug
3	$7-m \mathrm{~m}$ Plus	7	50Ω Termination

"'Jack" identifies the connector with flxed threads; "plug" identifess the connector with the coupling nut.

Specifications

Characteristic impedance: son.
Frequency range: dc -18 GHz .
Standing-wave ratlo: looking into one of the connected ports with 50Ω on the other: third port open.*

8781

Frequenoy	Connector Type		
	$\mathbf{7 . m m}$	\mathbf{N}	s.mm
DC-12.4 GHz	<1.15	<1.20	<1.25
DC-18 GHz	<1.20	<1.25	<1.30

Looking into one of the connected ports with the built-in termination on the other; third port open.*

8761 with
buith-in
termination

Frequency	Conneator Type		
	$\mathbf{7 - m m}$	\mathbf{N}	3.mm
$\mathrm{DC}-12.4 \mathrm{GHz}$	<1.20	<1.25	<1.30
$\mathrm{DC} \cdot 18 \mathrm{GHz}$	<1.25	<1.30	<1.35

Insertion loss:
DC $\cdot 12.4 \mathrm{GHz}:<0.5 \mathrm{~dB}$.
DC - $28.0 \mathrm{GHz}:<0.8 \mathrm{~dB}$,

[^25]Isolation:
DC. $12.4 \mathrm{GHz}:>50 \mathrm{~dB}$.
$\mathrm{DC} \cdot 18.0 \mathrm{GHz}:>45 \mathrm{~dB}$.
Power: safely handles 10 W average, $s \mathrm{~kW}$ peak without built-in rerminacion; built-in termination rated at 2 W average, 100 W peak.
Swliching enargy: 1.5 W for 20 ms (permanent magnet latching).
Solenoid voltages: (dc or pulsed)
8761A: 12-15 V.
87618: 24-30 V.
Switchling spead: $35-50 \mathrm{~ms}$ (includes settling time).
Life: $>1,000,000$ switchings.
Dimensions: $1.6^{\prime \prime} \times 1.5^{\prime \prime} \times 1.5^{\prime \prime}(41 \times 38 \times 38 \mathrm{~mm})$, excluding connectors and solenoid terminals.

Welght: net, 5.8 oz (140.220 g) : shipping, 8.11 oz (220.300 g),
Price: Model 8761, $\$ 150$ each, 1.9; $\$ 140$ each, 10-24.
Model 8761 with built-in termination on any port, add $\$ 35$ each.
Prices on request for larger quantities.

MICROWAVE TEST EQUIPMENT

NOISE FIGURE METERS; SOURCES
Automatic noise figure measurements to 18 GHz
Automatic noise figure measurements to 18 GHz
Models 340B, 342A; 343A, 345B, 347A, 349A

In microwave communications, radar, eic. the weakest signal that can be detected is usually determined by the amount of noise added by the receiving system. Thus, any decrease in the amount of noise generated in the receiving system will produce an increase in the output signal-to-noise ratio equivalent to a corresponding increase in received signal. From a performance standpoint, an increase in the signal-to noise ratio by reducing the amount of noise in the receiver is more economical than in. creasing the porer of the rransmitter.

The quality of a receiver or ampli. fier is expressed in a figuce of merit, or noise figure. Noise figure is the ratio, crpressed in dB. of the actual outpue noise power of the device to the noise power which would be available if the device rece perfect and merely amplifed the thermal noise of the input termination
sather than contributing any noise of its own.

The Hewlett-Packard system of auto. matic noise figure measurement depends upon the periodic insertion of a known excess noise power at the input of the device under test. Subsequent detection of noise power results in a pulse train

Figure 1. Automatle nolse ilgure messurement system.
of two power levels. The power ratio of these two levels contains the desired noise figure information. Hewletr-Parkard noise figure meters automatically measure and present this ratio directly in $d B$ of noise figure.

Noise figure is discussed in detail in Herlett-Packard Application Nore 5% which is available from your local Hewlett-Packard seld office upon request. Application Note 57. "Noise Figure Primer." derives noise figure formulas, describes general noise figure measurements and discusses accuracy considera. tions. One of the measurement systems discussed in Application Nore 57 is shown in Figure 1. The portion of the diagram within the dashed box is a simplified block diagram of the HP 340 B and 312A Noise Figure Meters, and the excess noise source could be any of the noise sources described on these pages.

Advantages:

Reads noise figure directly in $d B$
Completely automatic measurement
Easily used by nontechnical personnel
No periodic recalibration needed
Fast response; ideal for recorder operation

Uses:

Measure noise figure in microwave or radar receivers, RF and IF amplifiers
Compare unknown noise sources against known noise levels
Adjust parametric amplifiers for optimum noise figure

HP noise figure meters and noise sources offer time-saving and cost-reducing advantages. Their ease of operation and continuous, automatic metering of noise figure reduce the time required for alignment and adjustment and simplify measurements so that they can be done by nontechnical personnel. No periodic recalibration of the meters is needed. and accurate alignment is easy, so high-level. on-line per. formance is assured.

In operation, a noise source is connected to the input of the device under test. The IF output of the device is connected to the 340 B or 342 A . The noise figure meter gates the noise source on and off. When the noise source is on, the noise level is that of the device plus the noise source. When the noise source is off, the noise level is that of the

device and its termination. The noise figure meter automatically compares the two conditions and displays noise figure directly in dB . Power to operate the noise source is supplied by the noise figure meter. Simply connect the noise source, adjust drive current using the controls and meter on the 340 B or 342 A , and the noise source is ready for operation.

Noise figure meters

Model 3408 Noise Figure Meter, when used with an HP noise source, automatically measures and continuously displays noise figure for frequencies of 30 and 60 MHz . On special order up to four custom frequencies between 10 and 70 MHz , and some frequencies outside this range, can be supplied.

Model 342A is similar to Model 340B, except that it operates on five frequencies: $60,70,105,200$, and the basic tuned-amplifier frequency of 30 MHz . Up to six custom frequencies between 10 and 200 MHz , including 21.4 MHz , are available on special order.

Noise sources

Hewlett-Packard 343A VHF Noise Source: Specifically for IF and RF amplifier noise measurement, a temperaturelimited diode source with broadband noise output from 10 to 600 MHz with 50 -ohm source impedance and low SWR.

Hewlett-Packard 345B IF Noise Source: Operates at either 30 or 60 MHz , as sclected by a switch; another selector permits matching $50-100-200$-, and 400 ohm impedances.

Hewlett-Packard 347A Waveguide Noise Source: Argon gas discharge tubes mounted in waveguide sections; for waveguide bands 2.6 through 18 GHz , they provide uniform noise throughout the range; maximum $S W R$ is 1.2 .

Hewlett-Packard 349A UHF Noise Source: Argon gas discharge tubes in Type N coaxial configuration for automatic noise figure readings, 400 to 4000 MHz .

Specifications, 340B and 342A

Nolse figure range: 5.2 dB noise source, 0 to 15 dB , indicacion 10 infinity; 15.2 dB noise souree, 3 to 30 dB , indication to infiniry.
Accuracy (excluding source accuracy): noise diode scale: ± 0.5 $\mathrm{dB}, 0$ to 1 d dB ; gas cube scale: $\pm 0.5 \mathrm{~dB}, 10$ to $25 \mathrm{~dB} \mathrm{i} \pm 1 \mathrm{~dB}$, 3 ro 10 dB and 25 co 30 dB ; (for stated accuracy with 343A S, H , X and P347A and 349A Noise Sources, correction facior equal to the difference between specified excess noise and 15.2 dB must be applied to meter reading).
Input frequency: 340 B ; 30 or 60 MHz , selected by swich, 342 A : $30,60,70.105$, and $200 \mathrm{M}(\mathrm{Hz}$, selected by switch. Other frequencies available; prices and details on request.
Bandwidth: 1 MHz minimum.
Input requirements: -60 to -10 dBm (noise source on): cor. responds to gain between noise source and input of approximately 50 to 100 dB for 5.2 dB noise source and 40 to 90 dB for 15.2 dB noise source.
Input Impedance: 50 ohms rominal.
AGC output: nominal 0 to -6 V from rear binding posts.
Recorder output: 1 mA maximum into 2000 ohms maximum.
Power input: 115 or 230 volts $\pm 10 \%$, 50 to $60 \mathrm{~Hz}, 185$ to 435 watts, depending on noise source and line voltage.
Power output: sufficient to operate 343A, 345B. 347A or 349 A Noise Sources.
Dimensions: cabinst: $203 / 4^{\prime \prime}$ wide, $123 / 4^{\prime \prime}$ high, $141 / 2^{\prime \prime}$ deep (527 x $324 \times 368 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $10.15 / 32^{\prime \prime}$ high, $137 / 8^{\prime \prime}$ deep behind panel ($483 \times 266 \times 353 \mathrm{~mm}$).

Weight: net $44 \mathrm{lb}(19.8 \mathrm{~kg})$, shipping $55 \mathrm{lb}(24,8 \mathrm{~kg})$ (cabinct): net $37 \mathrm{lb}(16,7 \mathrm{~kg})$, shipping $51 \mathrm{lb}(22,9 \mathrm{~kg})$ (rack rount).
Accessories furnished: one 340A-16A Cable Assembly, connects noise figure meter to 347 A or 349 A Noise Source.
Price: HP 340B, $\$ 815$ (cabinet): HP $340 \mathrm{BR}, \$ 800$ (rack mount); HP 342A, $\$ 915$ (cabinet): HP 342AR, $\$ 900$ (rack mount): not available in all countries.

Speciflcations, 343A

Frequency range: 10 to 600 MHz .
Excess nolse ratior: 10 to $30 \mathrm{MHz}, 5.20 \mathrm{~dB} \pm 0.20 \mathrm{~dB} ; 100 \mathrm{MHz}$, $5.50 \mathrm{~dB} \pm 0.25 \mathrm{~dB} ; 200 \mathrm{MHz} .5 .80 \mathrm{~dB} \pm 0.30 \mathrm{~dB} ; 300 \mathrm{MHz}$, $6.05 \mathrm{~dB} \pm 0.30 \mathrm{~dB}: 400 \mathrm{MHz} .6 .30 \mathrm{~dB} \pm 0.50 \mathrm{~dB}: 500 \mathrm{~N} / \mathrm{Hz}^{2}$. $6.50 \mathrm{db} \pm 0.50 \mathrm{~dB} ; 600 \mathrm{MHz}, 6.60 \mathrm{~dB}=0.50 \mathrm{~dB}$.
Source impedance: 50 ohms .
Reflection coefficient: <0.091 (1.2 SWR), 10 to $400 \mathrm{M} / \mathrm{Hz}$; <0.13 (1.3 SWR), 400 to 600 MHz .
Noise generator: semperature-limited diode.
Dimenslons: $23 / 4^{\prime \prime}$ wide, $21 / 2^{\prime \prime}$ high, $\mathrm{s}^{\prime \prime}$ deep ($70 \times 63 \times 127 \mathrm{~mm}$).
Weight: net $3 / 4 \mathrm{lb}(0.34 \mathrm{~kg})$; shipping $2 \mathrm{lbs}(0.9 \mathrm{~kg})$.
Price: HP 343A, \$125.
Option 01.: spare noise diode(s) calibrated and supplied with in. strument, add $\$ 40$ each.

Specifications, 345B
(same weight and dimensions as 3.3 .3 A)

Spectrum center: 30 or 60 MHz , selected by swich.
Excess nolse ratio ${ }^{1}$: 5.2 dB .
Source impedance: $50,100,200$ or $400 \mathrm{obms} . \pm 4 \%$, as selected by switch; less than 1 pF shunt capacitance.
Noise generator: temperaure-limited diode.
Price: HP $345 \mathrm{~B}, \mathrm{~s} 125$ (operation at any two frequencies between 10 and 60 MHz in lieu of 30 and 60 MHz avaitable on special order).

Specifications, 347A

$\underset{\text { MP }}{\text { HPde! }}$	Range (GHz)	Excess nolse ratiol. 2	Approx. Sength		Prlog
			(II.)	(mm)	
G347A	3.95-5.85	15.2 ± 0.5	19	483	\$310
J347A	5.30-8.20	$15.2=0.5$	19	483	\$300
H347A	7.05-10.0	15.6 ± 0.5	16	406	\$275
$\times 347 \mathrm{~A}$	$8.20-12.4$	15.7 ± 0.4	141/4	375	\$225
P347A	12.4-18.0	15.8 ± 0.5	143/4	375	\$275

Rafiectlon coesficient for all madels, fired or unfired, 0.091 (SWR 1.2) max. (solice terminated in weil-matched load).

Speciflcations, 349A

Frequency range: 400 to 4000 M Hz , wider with correction.
Excess noise ratlo: $15.6 \mathrm{~dB} \pm 0.6 \mathrm{~dB}, 400$ to $1000 \mathrm{M}(\mathrm{Hz} ; 15.7 \mathrm{~dB}$ $\pm 0.5 \mathrm{~dB}, 1000$ to 4000 MHz .
SWR: <1.35 (fired), <1.9 (unfired) up to $2600 \mathrm{MH}_{2}:<1.5$ (fired or unfired), 2600 to $3000 \mathrm{MHz} ;<2.0$ (fited). <3.0 (unfired) 3000 to 4000 MHz .
Dimensions: $3^{\prime \prime}$ wide, $2^{\prime \prime}$ high, $1^{\prime \prime}$ long ($76 \times 51 \times 381 \mathrm{~mm}$).
Weight: net $31 / 4 \mathrm{lb}(1,4 \mathrm{~kg})$; shipping $6 \mathrm{lb}(2,7 \mathrm{~kg})$.
Price: HP 349A, $\$ 325$.

$$
\begin{aligned}
& \text { I } \varepsilon N R(d B)=10 \log \frac{k\left(Y-T_{0}\right) B}{k T_{8}} \\
& \text { where } k T B=\text { avallable nolse power, } \\
& \text { and } k T_{0} B=\text { avaliable nolse power } 315 \text { with nolse source at } 290^{\circ} \mathrm{K}, \\
& \text { 2 Includes factor for insertlon loss. }
\end{aligned}
$$

INDUSTRIAL/UTILITIES TEST EQUIPMENT

DELCON DIVISION

Cable fault locators
Ultrasonic translator detectors

Special ordering information

U.S.A. Customers: The Delcon Division products listed on this page are sold directly to the customer from the manufacturing division. Please direct all orders and inquiries to:

DELCON DIVISION
333 Logue Avenue
Mountain View, California 94040
Telephone (415) 969.0880

Customers Outside the U.S.A.: Orders should be directed to your local Hewlett-Packard distributor or representative.

Cable Fault Locators
 Model 4904A

Pulsed tone system for locating shorts, crosses and grounds in direct buried, underground (ducted) and aerial utilities cable. Also, accutately locate path and determine depth of buried cables and pipes. Sensitive narrow bandwidth receiver rejects ac hum and permits locating high resistance faults. Tone transmitter unit also has built-in ohmmeter for analyzing faults. Complete with transmitter, receiver, search wand, cables and ground rod. $\$ 995$.

Model 4901A

Similar to Model 4904A except limited to locating path, depth and low resistance faults. Built-in ohmmeter, \$765.

Model 4900A

Identical to Model 4901 A except without ohmmeter, $\$ 655$.

Model 49108

Locates opens in telephone exchange cable, coaxial cable and other cable types having constant mutual capacitance. Reads distance to fault directly in feet* by sampling mutual capacitance. \$635.
*Metrir calibration available on special order.

Locates leaks in pressurized communication cable and other pressure and vacuum vessels by detecting release of ultrasonic energy. Also detects friction in moving machinery and electrical corona. Special acressory for detecting leaks in cable ducrs available. Self-contained speaker and logging meter. Provision for headphones (not included). $\$ 595$.

Model 4916A

Ideatical to Model 4905Ay except without speaker and meter. Includes headphones. $\$ 525$.

Model 4917A

Identical to Model 4905A, except without speaker. Includes headphones. \$575.

Model 4918A

Industrial UItrasonic Translator Detector. Listed under Re-examination Service of Underwriters Laboratories, Inc. as intrinsically safe for use in hazardous locations, Class I, Group D. $\$ 850$.

Model 4950A

Embodies special alarm circuitry to actuate relay whenever ultrasonic intensity exceeds present limits. Can be used on bench or rack mounted. Self contained speaker and level meter; oscilloscope and recorder output jacks. AC powered. $\$ 1475$.
 COMMUNICATIONS
TEST EQUIPMENT

The telegraph was the first method of electrical communication. In 1844 the first message was sent over a circuit; shortly after this, the telephone was invented. Since then, electrical communications have been changed to electronic communications. Hewlett-Pachard has designed equipment specifically for testing communication systems. The following information pertains only to test equipment designed to simplify and expedite communications service.

These objectives have been accomplished several ways: 1) One instrument, or combination of instruments in one carrying case, will perform the duties of several previous instruments. 2) One function may be transferced to anotber by merely changing a switch position. 3) Battery-operated test equipment permirs operation in the field. 4) A number of standard Western Electric terminals connected in parallel permit connection to different types of line equipment.

Generally, in the United States, subscribers' loops are of nominal 900 -ohm impedance. 600 obms is an accepted trunk and toliboard impedance and is found in the many miles of open-wire carrier still in use. The CCITT* does not recognize 900 ohms as a subscriber-loop impedance but recommends 600 ohms. Wite-cable carrier, typically short-haul, uses 135 -ohm cable. Many higher capacity systems use 135 ohms as an interface impedance on a group or super-group basis. The CCITT equivalent of this impedance is 150 ohms. Long.haul coaxial.cable carrier systems use 75 ohms in the United States and in the CCITT recommended systems.

Since a holding function is desirable in many measurements, a holding coil is provided which may be switched into the circuit on the 600 Hold and 900 Hold position. This provides an off-hook condition to hold the dialed line.

Connections are provided for atraching a lineman's handset for dialing. Once the connection has been established, the test instrument may be switched to one of the Hold positions. This will maintain the dialed connection but will remove the talking function and substitute the mea. suring circuit. The input and output jacks accept standard 241, 309 and 310 Wes . tern Electric plugs, as well as the special connectors to receive the lineman's hand. set and dual banana binding posts for attaching wises.

The theory of message-circuit noise measurement is based on a relative inter-

[^26]facing effect of the noise on the subscrib. er's hearing. Because of the frequency response of the telephone subset and the fack that the human ear responds dif. ferently to noise of various frequencies, a neighting function is assigned to each frequency in proportion to its contribution to the interfering effect.

The weightiog curve currently accepted as a U.S. standard is the Bell System C-Message weighting (see Figure 1). The unit used to define noise measured in this manner is dBRNC, meaning deciBels above Reference Noise, C-Message weighted. Reference noise is -90 dBm at 1 kHz . The CCITT recommendation is psophometric weighting, which has a slightly different curve and is referenced to 800 Hz . The measuring units for this weighting are picowatrs psophometric, or pWp. A flat weighting tefers to the broadband or fat volemeter function, and a 3 kHz flat weighting provides for

Figure 1. Noise weighting curves.
weighting over the range of voice frequencies only. Radio and television stu-dio-transmitter and studio-remote audio links requice a different weighting known as program weighting because of the different sending and receiving equipment characteristics. This program weighting curve is also shown in Figure 1.

Since noise-measuring sets are designed to duplicate the response of the ear, the dynamic response time and the law of combination of tones should be the same. This requires a 200 ms meter-response time and rms response. Average-responding meters will read 1.05 dB low compared to 30 rms meter on Gaussian noise (providing no overload occurs on the peaks).

The CCITT recommendation specifies rms response for noise measurements and calls out a method for testing meters for ims response.

In addition to the quantitative measure. ment of noise, it is important to identify
the source of the noise. Some indication of this can be obtained by noting the difference in noise on the 3 kHz flat and the C-Message weighting functions. A substantially higher reading in the 3 kHz flat mode usually indicates excessive powerline noise. Aural monitoring of the noise using a headphone is also used.

The noise meter should also be a level meter, as these two measurements are most frequently made. Since field use accounts for a major part of the service of such a device, portability and battery operation are essential. Rugged case construction, able to withstand the rigors of outside operation, is desired. Monitor and recorder outputs for aural monitoring and long-term recording of noise and level should be provided along with a damping switch to lengthen the integracing time constant of the meter for rapidly fluctuating noise.

The Hewlett-Packard Telephone Test Meter incorporates these important features.

3555B Telephone Test Meter

The HP Model 3555B Telephone Test Meter combines the functions of a broadband level mecer and a message-circuit noise meter. As a broadband rms-leve! meter, a frequency range of 20 Hz to 3 MHz is covered with a maximum sensitivity of 0 dBrn and -90 dBm . It is fully balanced with impedances of 75 ohms unbalanced, 135 or 150,600 and 900 ohms balanced both bridging and terminated (Figure 2). The balanced input impedances are accomplished by a high impedance repeat coil. This tech. nique gives impedances of over $100 \mathrm{k} \Omega$ bridging with less than 0.05 dB bridging loss. Provisions are made for dial-through and hold.

As a noise-measuring set, the 3555B contains filters which perform the C Message, 3 kHz Flat, is kHz Flat and Program weighting functions (CCITT weighting filters and European connectors are available on the Model 3556A). The meter circuit contains an rms dctector which adds the noise voltages on a porver basis. Indication of noise levels down to 0 dBrn as well as noise-to. ground and noise-metallic measurements can easily be made. The amplifier output may be connected to a recorder for long. term noise records or will allow aura! monitoring of the character of the noise.

This instrument in a rugged, portable carrying case features internal battery operation as well as CO battery or ac power. It operates reliably over a $0^{\circ} \mathrm{F}$ to $\div 120^{\circ} \mathrm{F}$ temperature range at humid.

Figure 2. 3555B simplified block diagram.
ties up to 95\% R.H. An interlock turns the power switch off when the cover is replaced.

Using the 3555日 Telephone Testmeter in conjunction with the HP. 236A Telephone Test Oscillator makes a universal transmission test set that can be used for all types of telephone equipment.

236A Telephone Oscillator

The HP Model 236A Telephone Oscil. lator has all of the above-mentioned Western Electric connecrors for dialing and output. It incorporates the holding function for 600 and 900 -ohm output impedances. It provides a 50 Hz to 20 kHz frequency range in the 600 - and $900 \cdot \mathrm{ohm}$ balanced output and a 5 kHz to 560 kHz frequency range on the 135 -ohm balanced output. Its power source may be a $115 /$ $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz external source or a 45 V dry cell internal battery.

An interlock turns the power switch off when the cover is replaced. The oscillator's output level is adjustable from +10 to -31 dBm in 0.1 dB steps. The attenuator precedes the output transformer so the output impedance is not affected by the atteouation.

The HP 236A consists of an oscillatoramplifier, attenuator, power supply, meter circuit and a selective output circuit. Figure 3 shows the block diagram of this instrument.

The oscillator-amplifier operates as a typical solid-5tate HP RC oscillator (refer to page 368 of the oscillator section of this catalog). The front-panel output calibrator adjustment controls the output
amplitude. Accurate metal-fim resistors are used to insure exact attenuations.

The output circuitry consists of a low. and a high-írequency output transformer, a holding coil, and parallel Western Electric output and dial connectors to insure a proper connection to any line equip. ment.

3550B Portable Test Set

The HP 3550B Portable Test Set was designed specifically for transmission-line testing and for such applications as align. ment and maintenance of multi-channel communication systems. The test set consists of a wide-range osciliator, an electronic voltmeter and a patch panel containing attenuators and line-matching transformers. The instruments are operated from a rechargeable battery power source, making it usable in the field.

The heart of this test set is the 353A Patch Panel which adapts the oscillator and voltmeter to specific telephone usage. The patch panel has input and output sections acting as a source and receiver for the transmission line. The output section has an attenuator and both sections have an impedance-matching device which matches the oscillator and voltmeter 600 -ohm impedance to 135,600 and 900 transmission-line impedances. The center-tapped transformers give balanced outputs and inputs with bridging or terminated capabilities. The accurate attenuator gives 110 dB attenuation in 1 dB steps.

The H20-204C Option 02 Oscillator frequency is 5 Hz to 1.2 MHz in six

Figure 3. 236A block disgram.
ranges, and the 403B Option ol Voltmeter has ranges from 0.001 to 300 V full scale in 12 ranges. Thus, a complete telephone measuring set is contained in one portable package.

The H02.353A Patch Panel has special telephone jacks which will accommodate Western Electric 309 and 310 plugs. The Hold function is included along with a selectable 23 dB attenuation position.

The H03.353A Patch Panel will ac. commodate Western Electric 309-310 and 241 plugs, and a lineman's handset. The Hold function is included along with a 23 dB attenuator.

Analyzers

The H05.332A and H05.334A are standard HP Models 332A and 334A Dis. tortion Analyzers modified for use in the broadcast industry. The front-panel voltmeter reading is in dBm, and a switchable low-pass 30 kHz filter is added.

312A/313A Selective Voltmeter

The low ooise and wide dynamic range of the 312A Selective Voltmeter makes is useful for many telephone applications including measurement of system fatness, analysis of distortion and intermodulation (cross-talk) in carrier systems, and measurement of noise levels. Input impedances of $50,60,75,124,135,150$, and 600 ohms or bridging, balanced or unbalanced, are selectable at the front panel. Amplitude response vs. frequency can be measured when using the Model 313A Tracking Oscillator. Semi-automatic plors of amplitude vs. frequency can be made using the Model 297A Sweep Drive and an X.Y escorder.

Noise on coaxial telephone lines restricts dynamic range, which of ten must be as high as 70 to 90 dB . The measure. ments are usually made with a selective voltmeter that has a 200 hertz windor. This reading is normalized to that of a 3 kHz window, which covers the standard voice-channel wideh, adding a complicated correction factor to compensate for the difference in bandwidths, weight. ing factors, and rms response.

A selective voltmeter with a 3 kHz bandwidth would be better to measure noise. Until recently, the shape factor of the 3 kHz bandwidth was such that the carrier frequencies were only partialiy suppressed.

The HP 312A Option 01 provides carrier-system operators with a filter that allows channel noise measurements with a 3 kHz bandwidth. Two norches are superimposed 2 kHz away from the center frequency. Better carrier rejection is obtained, as can be seen in Figure a. If the carrier frequency is known, the HP 312A Option 01 need only be tuned to 2 kHz above or below the carsier frequency, and the carrier frequencies adjacent to the voice channel are attenyated 45 dB before they are detected.

The indication is a much truer representation of channel noise. Reler to pages 446 and 447 for additional information.

Figure 4. Bandpass for the 312A Selective voltmeter.

3591 A Selective Voitmeter

The HP 3591A Selective Voltmeter with a Sweeping Local Oscillator Plug-in is a modified 3590A Wave Analyzer that is specialized for communication resting.

The balanced input impedances are 75, 135, 150, 600 ohms and 100 k -ohms bridging. The meter has an illuminated scale with high resolution.

The input functions selected by the function switch are: 1) " dBm " with levels calibrated in dBm for each of the selected input impedances. 2) "ABS VM" which is the absolute value calibrated in volts. 3) "Rel" which is relative values in 10 dB steps with an ad. justable reference level for an arbitrary starting point for relative measurement. 4) "Cal" which gives a 100 kHz full scale calibration signal.

The outstanding dynamic range of this instrument is shown in Figure 5. For additional information refer to the 3590 A technical pages 437 and 438, and for plug-in information, refer to page 443. The 3591 A specifications ate given on page 324.

Figure 5. HP 3591A/3594A sweeps a signal showing the dynamic range of the instrument.

Alignment in local video loops

Equalizer alignment in local video loops has typically been a complicated procedure requiring considerable time and effort on the part of the technician or craftsman. He has had to carsy four bulky pieces of test equipment to the site,
interconnect them with seemingly endless patch cords and then become a nimblefingered wizard adjusting a myriad of controls to produce a flat video response. A frequency range of more than 5 decades is required to faithfully transmit television signals. This necessitates an impressive array of equipment to main. tain the required response.

The classical test equipment used at the sending end for setting the receive equalizers consists of a Western Electric 61C Signal Generator supplying test frequencies from 300 kHz to 10 MHz and a Hewiett-Packard 200CD Oscillator for supplying the 300 kHz reference. For rest frequencies below 300 kHz , the 200 CD is used as the test frequency generator and the 61C supplies the reference. Since neither generator is capable of supplying accurate amplitude signals with a fiat frequency response over the wide range required, a Western Electric 70B Power Meter is used to monitor the generator outputs. The 70 B is a highly accurate thermocouple-type meter and consequently is subject to burnout or error when overloaded. Its time constant is slow in making rapid amplitude adjustments difficult. A Western Electric 1AP Comparing Set is used to switch betroeen the test and reference frequen. cies and concains a poxer splitter arrangement to allow the 708 to monitor the porer level simultancously while transmitting the signal. The receiving level indicator is also a 70 B Power Meter.

There are several sources of error to be considered in making these accurate measurements. Since the 70 B Power Meter responds to the total power generated by the rest oscillator, any oscillator distortion generated will also be measured. If the distortion is not constant, the rotal power indicated will vary. Near the high frequency end of the system response the oscillator dis. tortion products will fall ourside the band resulting in an apparent change in total power. Impedance accuracy is im. portant as mismatches will cause part of the power to be reflected and consequently change the total level. Thus the return loss of the test equipment, which is a measure of its impedance accuracy, must be high. Amplitude transients occurring when the test frequency is changed must be minimized to avoid damage to the thermocouple in the 708 Power Meter. The oscillator frequency must be accurate since the loss of the equalizers varies n'ith frequency. Frequency inaccuracy would result in the equalizer being set improperly.

In some installations the IAP Comparing Set and 70B Power Meter ase replaced with a Western Electric 38A Transmission Measuring Set which auto. matically performs the switching and
comparing function. These 4 classical pieces of test equipment represent a cost of about $\$ 5000$, weigh 100 lbs and are rather laborious to carry to remote sites, as well as to operate.

Hewletr-Packard has recently introduced the Model 653A Test Oscillator shown on page 327 which combines into one 21 lb . package costing $\$ 990$ all the functions previously requiring 4 test sets. The oscillator covers a test frequency range of 10 Hz to 10 MHz and contains a built-in 300 kHz reference oscillator. The oulput can be switched between the test and reference frequency at any cine. The output circuitry supplies a balanced 124Ω or unbalanced 75Ω output lat to within $\pm 0.05 \mathrm{~dB}$ over the entire 10 Hz to 10 MHz frequency range. An accurate 1 and 10 dB step attenuator together With an outpur meter capable of 0.02 dB resolution allows output levels from +10 dBv to -99 dBv to be accurately set. To avoid accidentally applying the +10 dBv power output, causing possible damage to the system under rest, a locking switch is used which must be purposely depressed and turned to the +10 dBy position.

The operation of the 653A is simple. The reference frequency is switched on and the system gain is adjusced. Then the switch is set to the test frequency position and the equalizer frequency is set on a large, easy-toread dial. Once the amplitude of the test frequency is adjusted to equal the reference level on the oscillator output meter, no further adjusments are necessary, since the oscillator is extremely flat over the entire range. The reference test switch is springloaded for momentary reference level checks or can be locked in the reference position. The indicating meter used at the receiving end is a 70B Power Meter,

The 653 A is equipped with a front cover with carrying handle for protection of the panel controls and a rear cover providing storage space for instruction manual, power cord and output cords.

The 653A represents a modern test set for television system maintenance rith unparalleled speed and accuracy. The broadcast technician can make rapid and accurate alignments with this inexpensive, lightweight, and portable piece of rest equipment. Refer to page 327 for specifications. For theory of operation refer to the 654A description page 370. The 654A oscillator is similar to the 653 A omitting the 300 kHz reference oscillator, and adding a differenr output circuit calibration in dBm for impedances of $500,75 \Omega$ unbalanced and $135 \Omega, 150 \Omega$ and 6008 balanced.

Other instruments which can be used in the communications industry are found in the oscillator and voltmeter sections of this catalog.

PORTABLE TEST SET

Model 3550B

Features:

Oscillator-battery or ac operated. 5 Hz to 1.2 MHz . Amplitude variation within $\pm 0.5 \%$ 30 Hz to $300 \mathrm{kHz} ; \pm 1 \% 300 \mathrm{kHz}$ to 1.2 MHz .
Voltmeter-battery or ac operated.
$5 \mathrm{H}_{2}$ to 2 MHz ; reads in volts and dBm from -72 +52 dBm .
Patch Panel (353A)-Matches both oscillator and voit. meter to 135,600 , and 900Ω systems; provides 110 dB atteruation in $10 \cdot \mathrm{~dB}$ and $1-\mathrm{dB}$ steps.
(H 02 or H 03.353 A) Holding coils provided.
23 dB Attenuator to conform to standard telephone levels of +7 and -16 dBm
135, 600, 900Ω Balanced Input and Output impedances. Dial/Talk function switch for use in active telephone circuits.
Better than 60 dB balanced at 1 kHz for 600 ohm and 900 ohm impedances. Better than 40 dB balance over entire frequency range for 135,600 and 900 ohms. Measure-calibrate switch eliminates insertion loss.
Accepts standard telephone plugs.
Hand set may be used in conjunction with Patch Panel.

Uses:

Align and maintain multichannel communications sys. tems.
Align and maintain long distance and local relephone circuits, both wet and dry.
Measure gain, arrenuation, and frequency response.
Measure amplifier characteristics without ground loops.
Source of balanced $\mu \mathrm{V}$ signals for testing differential amplifiers.

Description

The HP Model 3550B Portable Test Set is designed specifi. cally to measure transmission line and system characteristics such as attenuation, frequency response or gain. It is particularly useful for lineup and maintenance of multichannel communication systems. Model 3550 B contains a wide range oscillator, a voltmeter, and a patch panel to match both the oscillator and the voltmeter to 135,600 , and 900 ohm lines. These instruments are mounted in a combining case which is
equipped with a splash-proof cover. In addition, the oscillator, voltmeter, and parch panel may be used separately whether they are in or removed from the combining case.

Both the oscillator and voltmeter are eransistorized and operate from their internal rechargeable batteries or from the ac line. The batteries provide 40 hours of operation berween charges and are recharged automatically during operation from the ac line.

Oscillator

The oscillator of the Portable Test Ser is an HP Model $\mathrm{H} 20-204 \mathrm{C}$ and has a frequency range of SHz to 1.2 MHz . Its output is fully floating, isolated from the instrument case and powerline ground. Flat isequency response, excellent amplitude and frequency stability and balanced outpur further enhance its ease of operation.

Voltmeter

The HP Model 4038-Option: 01 Voltmeter, which is part of the Model 3550 B Portable Test Set, is a versatile general pur. pose voltmeter for measurements both in the laboratory and in the field. Its most sensitive range. 1 mV full scale, allows you to measure voltage as small as $100 \mu \mathrm{~V}$ rms from S Hz to 2 MHz and a dB scale allow's you to measure in dBm from -72 dBm to +52 dBm . Accuracy is within 2% of full scale over a temperature range of $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ for frequencies from 10 Hz to 1 MHz . The dB scale is placed at the rop of the meter scale to provide increased resolution for dB measure. ments.

Patch panel

HP Model 353A Patch Panel contains a precision attenuator, variable in $1 \cdot \mathrm{~dB}$ steps to 110 dB , and two sets of impedance marching transformers.

The calibrate position of the Meas Cal saitch connects the ourput of the oscillator to the voltmeter via the attenvator and both sets of transformers to calibrate out the insertion loss of the impedance matching transformers when making loop-back measurements. Insertion loss should be considered when making single-ended or straightar'ay measurements.

One set of transformers matches the oscillator to 900.0 mms . 600 .ohms, or $135.0 h m s$ lines. The other ser of transformers
terminates the line in 900 ohms, 600 ohms, 135 ohms or in 10 K for bridging measurements. In all positions except Bridg. ing, the voltmeter reads dBm directly. Bridging is on a $1: 1$ impedance and voltage basis.

Available telephone patch panels

The H02.353A has jacks for Western Elecric 309 and 310 piugs which may be switched to either the input or output function of the patch panel. Special clip posts accept a Western Electric 1011 B Lineman's handset for the dial and talk function. A single-step $23 \cdot \mathrm{~dB}$ attenuator is provided to facilitate setting standard levels of +7 and -16 dBm .

The H03.353A has jacks for Western Electric 241, 309. 310 and 347 plugs at both input and output permitting loop.back measurements. The dial/talk and hold functions along with the 23 dB attenuator are identical to the H 02.353 A .

Specifications

Oscillator H20-204C

Frequency range: 5 Hz to 1.2 MHz in 6 ranges. Vernier.
Dial accuracy: $\pm 3 \%$ of setting.
Frequency response: $+5 \%-1 \%, 5 \mathrm{~Hz}$ to $30 \mathrm{~Hz} . \pm 0.5 \% 30 \mathrm{~Hz}$ co $300 \mathrm{kHz}, \pm 1 \% 300 \mathrm{kHz}$ to 1.2 MHz .
Output impedance: 600 ohms .
Output: i0 milliwatis (2.5 V rms) into 600 ohms; 5 V rms open circuit. Completely floating (isolated).
Output control: continuously adjustable bridged " T " attenuator with 20 dB minimum range.
Distortion: less than $1 \%-s^{\circ} \mathrm{F}$ to $+120^{\circ} \mathrm{F}$. Less than 0.1% 30 Hz to $200 \mathrm{kHz} 32^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$.
Hum and noise: less than 0.01%.
Power supply: 4 rechargeable batteries (furnished). 40 hour operation per recharge (20 hours at $-20^{\circ} \mathrm{C}$). up to 500 recharging cycles (expected battery life of 20,000 hours). Recharging circuit is self-contained and functions automatically when instrument is connected to ac line (115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz , approximately 3 watts).
Temperature range: $-5^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$.
Dimensions: (Std. $1 / 3$ module) $6.3 / 32^{\prime \prime}$ high, $51 / 8^{\prime \prime}$ wide. $8^{\prime \prime}$ deep ($155 \times 130 \times 203 \mathrm{~mm}$).
Voltmeter 403日 Option 01
Range: 0.001 to 300 V rms full scale (12 ranges).
Frequency range: 5 Hz to 2 MHz .
Accuracy: within $\pm 0.2 \mathrm{~dB}$ of full scale from 10 Hz to 1 MHz : within $\pm 0.4 \mathrm{~dB}$ of full scale from 5 Hz to 10 Hz and 1 MHz to 2 MHz , excep: $\pm 0.8 \mathrm{~dB} 1$ to 2 MHz on the 300 V range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$.
Meter: individually calibrated, taur band. Responds to average value of inpui waveform and is calibrated in the rms value of a sine wave.
Nominal input impedance: 2 megohms; shunted by 50 pF on 0.001 V to 0.03 V ranges, 25 pF on 0.1 V to 300 V ranges.
$D C$ isolation: signal grd. may be $\pm 500 \mathrm{~V}$ dc from chassis grd.
Price: HP 403B Option 01, $\$ 335$ when purchased separately.
Patch Panel, 353A (apply with oscillator and voltmeter)
Input (recelver)
Frequency range: 50 Hz to 560 kHz .
Frequency response: $\pm 0.5 \mathrm{~dB}, 50 \mathrm{~Hz}$ to 560 kHz .
Balance: better than 70 dB at 60 Hz for 600 ohms and 900 ohms; better than 60 dB at 1 kHz for 600 and 900 ohms: better than 40 dB over entire frequency range for 135,600 and 900 ohms.
Impedance: 135, 600,900 ahms and Bridging (10 k); centerrapped.
Insertion loss: less than 0.75 dB at 1 kHz
Maxlmum level: +22 dBm (10 V rms at 600 ohms).
Output (source) Includes all receiver speciflcations:
Attenuation: 110 dB in 1 dB steps.
Accuracy: 10 dB section, $< \pm 0.25 \mathrm{~dB}$ per step. 100 dB sec. tion, < $\pm 0.5 \mathrm{~dB}$ per step.
Accessories available: 11075A Carrying Case (page 227), \$45.
Price: HP 353A, $\$ 260$ when purchased separately.

Available Telephone Patch Panels
Patch Panel H02-353A (Same as Model 353A except as indicated below)
Attenuator: $23 \mathrm{~dB}=0.5 \mathrm{~dB}$ (1-step slide switch).
Hold circult (Send terminals)
Frequency response: 300 Hz to $3 \mathrm{kHz} \pm 0.5 \mathrm{~dB}, 1 \mathrm{kHz}$ refer. DC resistance: 240 ohms NOMINAL.
Maximum de current: 100 mA .
Maximum de valtage: 150 volis.
Connectors: special telephone jacks to accept W'estern Electric No. 309 and 310 plugs. Sleeve jack is connected to sleeve of Jacks 309 and 310.
Price: HP HO2-3590B (H20-204C Oprion 02, HO2-353A. and 403B Option 01), \$1270. HO2.353A, \$380.

Patch Panel H03-353A (Same as Model 353A except as indicated below)
Hold circuit (Rec terminals)
Frequency response: 300 Hz to $3 \mathrm{kHz} \pm 0.5 \mathrm{~dB}, 2 \mathrm{kHz}$ ref. DC resistance: 240 ohms NOMINAL.
Maximum de current: 100 mA .
Maximum de voltage: 150 volrs.
Attenuation: $23 \mathrm{~dB}=0.5 \mathrm{~dB}$ (1. step slide switch).
Hold circuit (Send terminals)
Frequency response: 300 Hz to $3 \mathrm{kHz} \pm 0.5 \mathrm{~dB}, 1 \mathrm{kHz}$ ref. DC resistance: 240 ohms NOMINAL.
Maximum de current: 100 mA .
Maximum de voltage: 150 volts.
Connectors: special telephone jacks to accept W/estern Electric No. 309, 310 and 241 at Send and Rec terminals. Sleeve jack is connected to sleeve of jacks 309 and 310 .
Price: HP HO 3.3550 B (H20-204C Option 02, HO 3.353 A and 403B Option 01), \$1270. HO3-353A, \$380.

General

Power: (identical specifications in both volmeter and oscillator): A rechargeable batteries (furnished): 40-hour operation per recharge, up to 500 recharging cycles; recharging circuit is self-contained and functions automatically when instrument is operated from ac line (115 or 230 volts $\pm 10 \%$, 50 to 400 Hz . approx. 3 watts).
Dimensions: $83 / 8^{\prime \prime}$ high, $191 / 4^{\prime \prime}$ wide, $1314^{\prime \prime}$ deep (with cover installed) ($213 \times 489 \times 367 \mathrm{~mm}$).
Weighte net $30 \mathrm{lbs}(13,5 \mathrm{~kg})$; shipping $40 \mathrm{lbs}(18 \mathrm{~kg})$.
Accessories furnished: detachable power cord; two 11035A Cables (1 foot long, dual banana-plug-to-BNC); splash-proof cover and storage compartment.
Accessories available: 10503A Cable, BNC.to-BNC, \$7; 11002A Test Leads, banana-plug-to-alligator clip, $\$ 8$.
Price: HP 3550 B (H20.204C Option 02, 353A and 403B Option 01) $\$ 1150$.

COMMUNICATIONS TEST EQUIPMENT

Uses

Measure transmission and noise on voice, carrier and radio systems

Description

The HP Model 3555 B Telephone Test Meter is a combination transmission and noise measuring set designed especially for telephone plant maintenance. The 3555 B measures voice frequency level, carrier frequency level and noise measurements for both noise metallic and noise-to-ground. Its wide cange of sensitivity, selection of input impedances and variety of weighting filters make it a universal tool for virtually all telephone level and noise measurements.

The 35558 comes in a rugged, splash-proof, compact case. This, with a selection of ac line, internal battery or $24 / 48 \mathrm{~V}$ CO battery operation, and a convenient selection of input coanectors makes the instrument ideally suited for use in. side or outside plant applications. Combined with the 236 A Telephone Test Oscillator, this 3555 B makes a complete transmission test set. Refer to pages 317 and 318 for additional information.

Tentative Specifications

Voice frequency level measurements
Range: -80 dBm to +30 dBm full scale.
Level accuracy: $\pm 0.2 \mathrm{~dB}, 100 \mathrm{~Hz}$ to $5 \mathrm{kHz} ; \pm 0.5 \mathrm{~dB}, 20$ Hz to 10 kHz
Temperature range: $0^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$.
Input impedance: terminated, 600 or 900Ω, balanced; bridg. ing, $100 \mathrm{k} \Omega$ balanced.

Nolse measurements

Ranga: 0 dBrn to +110 dBra .
Weighting: 3 kHz flat, C-message, 15 kHz fat, program.
input impedance:
Noise: metallic - terminated-600 or 900Ω, balanced bridging-100 k Ω balanced.
Noise-to-ground: $80 \mathrm{k} \Omega$ across line; $100 \mathrm{k} \Omega$ to ground.
Carrier frequency level measurements
Range: -50 dBm to +30 dBm full scale.
Level accuracy:
135Ω and $600 \Omega: \pm 0.2 \mathrm{~dB}, 10 \mathrm{kHz}$ to 100 kHz ; $\pm 0.5 \mathrm{~dB}, 3 \mathrm{kHz}$ to 600 kHz .
75s: $\pm 0.2 \mathrm{~dB}, 100 \mathrm{~Hz}$ to $1 \mathrm{MHz} ; \pm 0.5 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 3
MHz ; +20 and +30 dBm ranges limited to 600 kHz .
Input impedance: terminated: 600 or 1352 balanced; 75Ω unbalanced. Bridging: $100 \mathrm{k} \Omega$ balanced on 600 or 135s?; $100 \mathrm{k} \Omega$ unbalanced on 75Ω.
General
Meter indication: indicates rms value of input signal.
Meter response: $200 \mathrm{~ms} \pm 90 \mathrm{~ms}$ to +0 dBm (norm), 500 $\mathrm{ms}=100 \mathrm{~ms}$ to +0 dBm (damp).
Input balance: $>70 \mathrm{~dB}, 30 \mathrm{~Hz}$ to $30 \mathrm{kHz} ;>60 \mathrm{~dB}, 30 \mathrm{kHz}$ to $100 \mathrm{kHz} ;>40 \mathrm{~dB}, 100 \mathrm{kHz}$ to 600 kHz .
Max. input voltage: tip to ring, 150 V peak: tip or ring to ground, 200 V peak (NOTE: this is maximum instantaneous voltage and includes both ac and dc.) Input circuit will withstand 48 V de CO battery with superimposed 90 V rms 20 Hz ringing voltage, or $\pm 130 \mathrm{~V}$ carrier supply.
Max. Jongitudinal input level: 200 V rms.
Hold circuit: $600,900, \mathrm{Ng}$ only, 100 Hz to $10 \mathrm{kHz}, 700 \Omega \mathrm{dc}$ resistance. 60 mA max current.
AC monitor: 1.4 V rms with $10 \mathrm{k} \Omega$ output impedance (output available at DIAL/AC MONITOR jacks).
OC monitor: -1 V for 0 dBm on meter scale. Jack accepts 310 plug.
Input lacks: accepts Western Electric 241, 309, 310, 358 plugs. Binding posts accept banana plugs, spade lugs, phone tips or bare wites. Removable shorting bar between sleeve and ground binding posts.
Dial jacks: accepts standard 289, 310,347 plugs. Clip posts accept Western Electric 10118 lineman's handset clips.

Power requiraments

LIne: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz},<1 \mathrm{~W}$.
Internal battery: single NEDA 20245 V "B" batrery (in. cluded)* $24 / 48$ V CO battery: 310 jack (cip negative), $<10 \mathrm{~mA}$.
Expected battery life: 150 hr on a $3 \mathrm{hr} /$ day duty cycle at $77^{\circ} \mathrm{F}$.
Dimenslons: $73 / 4^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $8^{\prime \prime}$ deep ($197 \times 267 \times$ 203 mm).
Welght: net $12 \mathrm{lbs}, 8$ az (9.6 kg): shipping $15 \mathrm{lbs}(6,8 \mathrm{~kg})$.
Complementary equlpment available: HP Model 236A Tele. phone Test Oscillaror, $\$ 600$ (refer ro page 323).
Prlce: HP Model 3555B, \$625.

HP 3556A Telephone Test Meter

The HP 3556A is identical to the 3555B Telephone Test Meter except it is designed for European operation. The front panel connectors are of the Siemens type. The weighting filters consist of CCITT (psophometric) weighting, CCITT program weighting and the standard 3 kHz flat and 15 kH 2 flat. Refer to the Data Sheet for detailed information and specifications.

[^27]
TELEPHONE OSCILLATOR Wide range telephone test oscillator

COMMUNICATIONS TEST EQUIPMENT

The solid-state HP 236A Telephone Test Oscillator is designed specifically to deliver transmission test signals. It is particularly useful for line-up and maintenance of telephone voice and carrier systems.

Any frequency between 50 Hz and 560 kHz may be selected in four ranges to an accuracy of $\pm 3 \%$. Frequency response is flat over the entire range at any attenuator setting. The oscillator is fully transistorized, and intemal heat production is small, resulting in unusually low warmup drift. Advanced feedback techniques insure excellent frequency and amplitude stability even under temperature extremes. Its output is fully floating and balanced, isolated from power-line ground and instrument case. Low-current drain, solid-state circuitry results in exceptionally long battery life with hum and noise 65 dB below total output.

Output jacks are standard relephone types to facilitate patching into standard test boards. A front-panel switch selects 135,600 or 900 -ohm output impedance. These outputs are balanced to ground and the impedance of each is controlled over the specified frequency range. The phase angle of the output impedance is low to maintain a true resistive source.

The output circuit includes two transformers preceded by step attenuators which, together, adjust output power over a 41 dB range (+10 to -31 dBm), in $10 \mathrm{dBm}, 1 \mathrm{dBm}$, and 0.1 dBm steps having an overall accuracy of 0.1 dB over the entire range.

A front-panel control permits calibration of the output power level. Frequency response of the instrument is better than $\pm 0.3 \mathrm{~dB}$.

A front-panel meter monitors the 45 volt dry cell battery or the $115 / 230 \mathrm{~V}$ as regulated power supply. The dry cell will provide in excess of 180 hours of operation of the oscillator on a $3 \mathrm{hr} /$ day discharge cycle at $70^{\circ} \mathrm{F}$.

Uses:

Align, test and maintain telephone circuits, both wet and dry
Align, test and maintain carnier systems
Test manual switchboards and PBX systems
Make accurate and reliable measurements even at temperature and humidity extremes
Balanced signal source for bridges

Features:

Flat frequency response 50 Hz to 560 kHz
Calibrated -31 to +10 dBm output in .1 dBm steps
Balanced 135,600 and 900 ohm outputs
Standard telephone output jacks
Dial and hold provisions
Operates from battery or ac line

Specifications

Frequency range: 50 Hz to 560 kHz .
Frequency dial accuracy: $=3 \%$ of setting.
Frequency response $\left(60^{\circ} \mathrm{F}\right.$ to $80^{\circ} \mathrm{F}$ operating temperature):*

50 Hz	
$600 \Omega \&$ 900Ω outputs	$\pm 0.3 \mathrm{~dB}^{*}$

5 kHz			560 kHz
135Ω output	$=0.3 \mathrm{~dB}^{*}$		

*Response is $=0.5 \mathrm{~dB}$ frem $32^{\circ} \mathrm{F}$ to $80^{\circ} \mathrm{f}$ and $80^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$.
Output level: -31 to +10 dBm in 0.1 dBm steps.
Output level accuracy: $\pm 0.2 \mathrm{dBm}$ from -31 to +10 dBm (1 kHz reference), when operating into selected output impedance.
Distortion: ar least 40 dB below fundamental output.
Noise: at least 65 dB below total output or -90 dBm , whichever noise is greater.
Output elrcult: balanced and floating. Can be operated up to $\pm 500 \mathrm{~V}$ dc above case (earth) ground.
Output impedance: 600 and 900 ohms $\pm 5 \% .135$ ohms $\pm 10 \%$.
Output balance: 70 dB at 100 Hz (600 and 900 ohn outputs) 55 dB at 3 kHz (600 and 900 ohm outpurs). 50 dB at 5 kHz (135 ohm output). 30 dB at 560 kHz (135 ohm outpur).
Output jacks: accepts Western Eleckric 241, 309 and 310 plugs. Binding posts accepr banana plugs, spade lugs, phone tips or bare wires. Removable shorting bar between sleeve and ground binding posts.
Dlal jacks: accepts Western Electric 309 and 310 plugs. Clip posts accept Western Electric 1011 B lineman's handset clips.
DC holding coll: $700 \Omega \pm 10 \%$ dc resistance; 60 mA maximum loop current at 100 Hz . (600 and 900 ohm outpuis only).
Power requlrements: line: $115 / 230 \mathrm{~V} \pm 10 \% \mathrm{ac}$, 50 to 400 Hz . 1 W.
Internal battery: single NEDA 20245 V " B " battery (included).
Battery life: 180 hr on a $3 \mathrm{hr} /$ day duty cycle at $70^{\circ} \mathrm{E}$.
Dimensions: $73 / 4^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $87 / 8^{\prime \prime} \operatorname{deep}(197 \times 267 \times$ 205 mm).
Welght: net $13.5 \mathrm{lbs}(6,1 \mathrm{~kg})$; shipping $16 \mathrm{lbs}(7,2 \mathrm{~kg})$.
Complementary equlpment avallable: HP Model 3555B Tele. phone Test Meter, $\$ 525$.
Price: HP 236A, $\$ 600$.

PLUG-IN SELECTIVE VOLTMETER Balanced inputs of 750 to 600 and bridging HP 3591A/3594A

The HP Model 3591A Plug-in Selective Volmeter is de. signed specifically for communications systems. The input balanced impedances and the input functions, in addicion to all of the features of the 3590A, make it outstanding as a communications rest instrument.

Tentative Specifications

Frequency range: 20 Hz to 620 kHz .
Amplitude ranges: $3 \mu \mathrm{~V}$ to 30 V full scale in 15 ranges.
Amplltude accuracy
Meter switch in normal position: overall accuracy: ± 0.5 dB or $\pm 5 \%$ of reading, including:
Frequency response flatness: $\pm 0.2 \mathrm{~dB}$ or $\pm 2 \%$; Merer tracking: $\pm 0.1 \mathrm{~dB}$ or $\pm 1 \%$ of reading, 0 dB to -10 $d B$ indication.
Meter switch in linear $d B$ position: overall accuracy: $\pm 1 \mathrm{~dB}$. Internal callbrator: frequency, $200 \mathrm{kHz} \pm 10 \mathrm{~Hz}$; Amplitude,
full scale on 0 dB range in CAL mode; Amplitude accuracy, $\pm 0.1 \mathrm{~dB}$.
Dynamic range: (IM and harmonic distortion producrs).
$>85 \mathrm{~dB}$ below zero dB reference level when ABSOLUTE measurements are being made ($>70 \mathrm{~dB} 20 \mathrm{~Hz} 50 \mathrm{~Hz}$).
>80 dB belon zero dB reference level when RELATIVE adjustment is used ($>70 \mathrm{~dB}$ for 20 Hz to 50 Hz).
Residual responses
$>80 \mathrm{~dB}$ below zero reference ($>70 \mathrm{~dB}$ for 20 Hz to 50 Hz).
Return loss: 100 Hz to $620 \mathrm{kHz}, 600 \Omega>30 \mathrm{~dB}$; 5 kHz to 620
$\mathrm{kHz}, 150 \Omega, 135 \Omega, 75 \Omega,>35 \mathrm{~dB}$.
Noise level:

Bandwldths	Inout nolse Ievel (6000Ω Inout imodance)
10 Hz and 100 Hz	-125 dBm or $0.436 \mu \mathrm{~V}$
1 kHz and 3.1 kHz	-115 dBm or $1.38 \mu \mathrm{~V}$

Raleation	Bandwldths			
	10 Hz	100 Hr	1 kHz	3.1 kHz
$\begin{array}{r} 3 \mathrm{~dB} \\ 60 \mathrm{~dB} \end{array}$	$\begin{aligned} & 10 \mathrm{~Hz} \\ & 35 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~Hz} \\ & 320 \mathrm{~Hz} \end{aligned}$	$\begin{array}{r} 1 \mathrm{kHz} \\ 3.1 \mathrm{kHz} \end{array}$	$\begin{aligned} & 3.1 \mathrm{kHz} \\ & 9.6 \mathrm{kHz} \end{aligned}$

Input functions
dBm: levels calibrated in dBm for impedances selected. Abs Vm: level calibrated in volts.
Rel: input level can be set arbitrarily to 0 dB Ref. (10 dB set level range)
Cal: 100 kHz full-scale 0 dB cal signal.
Input impedances*
Resistances: 75ת, 135 , 150 , 600Ω terminated; $50 \mathrm{k} \Omega$ (single ended bridging) and $100 \mathrm{k} \Omega$ (balanced bridging).
Capacitance (each terminal to ground): $10 \mathrm{mV}, 30 \mathrm{mV}$ ranges $<55 \mathrm{pF} ; 100 \mathrm{mV}$ to 30 V ranges $<40 \mathrm{pF}$.
Comman mode rejectlon: 20 Hz to $620 \mathrm{kHz},>40 \mathrm{~dB} ; 50 \mathrm{~Hz}$ to $1 \mathrm{kHz},>50 \mathrm{~dB}$.
Automatlc ranging: 8 ranges, 0 dB to -70 dB . Ranging rate proportional to bandwidth.
Output: amplitude: adjustable 0 to 1 V rms open circuit. BFO frequency response flatness: $\pm 0.2 \mathrm{~dB}$ or $\pm 2 \%$. Resistance: 600Ω.
L.O. output: frequency, 1.28 MHz to 1.90 MHz ($1.28 \mathrm{MHz}+$ tuned frequency); amplitude, $0.65 \mathrm{~V} \mathrm{~ms} \pm 20 \%$ open circuit; resistance, 250Ω.
Recorder outputs:

$\begin{gathered} x \text {-Ax\|s } \\ (8593 A / 3594 A \text { only }) \end{gathered}$		
X-axis linear output:	0 to -12.4V	0 to -12.4
(1) k ? source essistance)	($200 \mathrm{mV} / \mathrm{kHz} \pm 5 \%$)	($20 \mathrm{mV} / \mathrm{KHz} \pm 5 \%$)
X. 2 xis log output:	5 V /decade $\pm 5 \%$	$5 \mathrm{~V} / \mathrm{decade} \pm \%$
(1 kn source resistance)	(50 Hz .62 kHz)	($500 \mathrm{~Hz}-620 \mathrm{kHz}$)

Y-Axis:
Linear Y axis output: $+10 \mathrm{~V} \mathrm{dc} \pm 2 \%$ for full scale meter indication, $1 \mathrm{k} \Omega$ source resistance.
Log Y axis output: +1 V to +10 V dc, proportional to linear dB meter indication (-90 to $0 \mathrm{~dB}, 0.1 \mathrm{~V} / \mathrm{dB}$) $\pm 1 \mathrm{~dB}, 1 \mathrm{k} \Omega$ source resistance.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to $400 \mathrm{~Hz},<70 \mathrm{~W}$.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $81 / 4^{\prime \prime}$ high (without removable feet), $163 / 8^{\prime \prime}$ deep ($425 \times 210 \times 416 \mathrm{~mm}$).
Weight: net $37 \mathrm{lbs}(16.8 \mathrm{~kg})$; shipping $47 \mathrm{lbs}(21.3 \mathrm{~kg})$.
Accessories furnished: rack mounting kit for $19^{\prime \prime}$ rack. (Refer
to page 443 for plug in information. The 3591A must have
a plug-in to operate.)
Price: HP 3591 A, 83350.
Plug-Ins: HP 3592A, $\$ 80$; HP 3593A, $\$ 1100$; HP 3594A, $\$ 1600$.
*Other terminations avallable on special order.

Description

These Hewletr-Packard Selective Voltmeters are particularly useful for testing multiplex comraunications systems. The 302A with its narrow (7 Hz) bandwidth is particulariy useful for measuring power-line frequency noise components and narrow-spaced, voiceband telegraph and telemetry signals. The 310 A is useful in multiplex systems up to about 300 channels. The 312 A is useful in multiplex systems up to about 3600 channels. The 312 A is a versatile measuring set with time-saving leatures (special 312 A insrruments are listed in the table below).

Specifications, 302A

Frequency range: 20 Hz to 50 kHz .
Level ranges: -120 dB to +50 dB full scale (15 ranges).
Residual $F M$ and hum: 75 dB dorwn
Selectivity (bandwidth): $7 \mathrm{~Hz} ;>80 \mathrm{~dB}$ down at $\pm 70 \mathrm{~Hz}$.
Input impedance: $100 \mathrm{k} \Omega /<100 \mathrm{pF}$ to $1 \mathrm{M} \Omega /<20 \mathrm{pF}$ (unbalanced).
Restored-frequency output: L V across 600Ω unbalanced (FS). (For complete specifications, refer to page 444.)
Price: HP 302A (cabinet) $\$ 1900$ (rack mount) $\$ 1885$.

Specifications, 310A

Frequency range: 1 kHz to 1.5 MHz (200 Hz banduidth), 5 kHz to 1.5 MHz (1000 Hz bandwidth), 10 kHz to 1.5 MHz (3000 Hz bandwidth)
Voltage range: -130 dB to $+40 \mathrm{~dB} V$ fuil scale in 10 dB steps.
Noise and spurious response: at least 75 dB below a full scale reference on 0 dB position of range switch.
Selectivity (3 IF bandwidths): $200 \mathrm{~Hz}, 1000 \mathrm{~Hz}$ and 3000 Hz . Input impedance: $10 \mathrm{k} \Omega / 100 \mathrm{pF}$ to $100 \mathrm{k} \Omega / 50 \mathrm{pF}$ unbalanced.
Restored-frequency output: 0.25 V across 1350 unbalanced (FS). (For complete specifications, refer to page 445.)
Price: HP 310A, $\$ 2500$.
Specifications, 312A/313A
Frequency range: 10 kHz to 18 AfHy in 18 overlapping bands. usable to 1 kHz with 200 Hz bandwiduh.

Amplitude range: -97 to $+23 \mathrm{dBm} F 5(-107$ to 13 dBm for 600Ω impedance), $3 \mu \mathrm{~V}$ to 3 VFS ; selected in sleps of 10 dB or $3,1 \mathrm{~V}$ sequence.
Noise level, referred to input: 50 to $1500,-120 \mathrm{dBm}$ (300 Hz bandwidth) ; $600 \Omega,-130 \mathrm{dBm}$ (200 Hz bandwidth).
Selectivity (3 IF bandwldths): $200 \mathrm{~Hz}, 1000 \mathrm{~Hz}$ and 3000 Hz .
Input impedances: $50,60,73,124,135,150,600 \Omega$ or bridging: input capacitance $<18 \mathrm{pF}$ balanced. $<35 \mathrm{pF}$ unbalanced.
Automatic frequency control
Dynamic hold-in range: $\pm 3 \mathrm{kHz}$. Tracking speed: $100 \mathrm{~Hz} / \mathrm{s}$.
Frequency readout: 7 digits with 10 Hz resolution.
Frequency range: (313A Tracking Oscillator) ' usable to 3 kHz ; tracks 312 A tuning or 10 kHz to 22 MHz in one band.
Outgut: 0 or +10 dBm max.; attenuãtor, 0 to 99.9 dB in 0.1 dB steps. (For complete specifications, refer to page 446 and 447.)
Price: HP 312A, \$3900; HP 313A, $\$ 1300$.
HP 312A, Option 01 (measurement of thannel noise in C message units "dBrnc" at carrier (requencies), add $\$ 100$.

Special *312A Instruments for Communications

Special	Fraquency Range	$\frac{\text { Input }}{}$	ConneclorsInpul Output		Price
C01-312A	10 kHz to 18 MHz 18 bands	Same as Std. 312A	WE-4650	WE-4778	\$3975
H01-312A	10 KHz to 22 MHz, 22 bands	75®20r 10 k Ω bridge ing (un- balanced $)$	WE-477B	2 Std. Phone. jacks	\$3850
H05-312A	10 kHz to 22 MHz 22 bands	50Ω or 10 kro bridge balanced)	female BNC	$\begin{gathered} \text { female } \\ \text { BNC } \end{gathered}$	\$3800
H10-312A.	10 kHz to 22 MHz 22 bands	75Ω or 10 ksz bridge ing (unc-	$\begin{aligned} & \text { Iemale } \\ & 8 \mathrm{NCC} \end{aligned}$	femate BNC	\$3800

[^28]
COMMUNICATIONS TEST EOUIPMENT

Spectrum analysis provides a rapid means of evaluating the performance of communications systems; the spectrum sealyzer is useful for monitoring, as well as testing and alignment. Important measurements such as distortion, percent amplitude modulation, carrier and sideband suppression in SSB systems, carrier and pilot levels and calibration of FM deviation merers by the cacrier null tecinique are easily made. Other uses include equalization and distortion ad. justments of the tape recorder systems used in celemerry systens.

Hewlett-Packard spectrum analgzers provide frequency coverage from 1 kHz to 40 GHz -reasurenent capability from baseband through microwave. Variable persistence/storage display units are available for all Hewlett-Packard spectrum anslyzers for $\begin{aligned} & \text { icker-free }\end{aligned}$ spectral display even with high resolution, slow sweep rates.

For complete specifications and accessory information on these spectrum analyzers, refer to pages 450 through 460 .

Model 8553L/8552A/141S

This spectrum analyzer provides high resolution coverage from 1 kHz to 110 MHz , a range covering baseband, commercial and military communications broadcast, as well as navigation systems and the common IF's. All functions are calibrated: scan widths from 2 kHz for modulation and stability analysis to 100 MHz for monitoring out-of-band signals such as RFI or cartier distortion corpponents.

Outstanding features of the 8852A/8553L are

Absolute amplitude callbration: -130 dBm to $\div 10 \mathrm{dBm}$ or $0.07 \mu \mathrm{~V}$ to 0.8 V .
$70 \cdot \mathrm{~dB}$ display dynamle range: free of analyzer distortion products.
High sensitivily: to $-130 \mathrm{dBm}(0.07 \mu \mathrm{~V})$.
Frequency response flatness: $\pm 0.5 \mathrm{~dB}$.
$50 \cdot \mathrm{~Hz}$ resolutlon: to separate closely spaced signals.
High stability: residual FM less than 20 Hz p.p when stabilized.
Automatle stablizatlon for narrow scan widths: no complicated phase-locking procedure.
Variable persistence display: a necessiry for low-frequency, high resolution, ficker-free displays. This is the breakthrough that makes low frequency spectrum analysis practical; the spectrum, instcad of a slowly moving CRT spot, can be seen.

RF and microwave frequency coverage with the $8551 \mathrm{~B} / 851 \mathrm{~B}$ allows easy measurement of system power, flatness, gain, and spurious emissions. This specrrum analyzer can display as much as 2 GHz of any portion of the spectrum from 10 MHz to 40 GHz .

Outstanding features of this analyzer are

2.GHz spectrum width: presents a wide, easy-to-interprer display.
60-dB display range: signals, differing widely in amplitude, are easily compared.
Flat frequency response: a must for accurate comparison of signals of different frequencies.
High sensitivity: to let you see very low level signals.
simple operatlon; for your convenience.

Telemetry system basoband carriers, SCAN WIDTH PER DIVISION is 50 kHz . Center frequency is 250 kHz . Test shows IM distortion (more than 40 dB below carriers). Carrier \#5 is disabled to measure any IM products from other carriers that occur in Channel 5 . Swept analysis with $70 \cdot \mathrm{~dB}$ dynamic range makes such tests easy. Response at far left of display is zarofrequency marker.

VIDEO TEST OSCILLATOR Balanced, unbalanced outputs calibrated in dBV Model 653A, 654A

 COMMUNIICATIONS TEST EQUIPMENT

653A Description

The 653A Test Oscillator is a lightweight, portable, solid. state signal source primarily used in the measurement and adjustment of transmission characteristics of television video loops. For this measurement, the HP 653A Test Oscillator replaces the Western Electric 61C Signal Generator, HP 200CD Reference Oscillator, Western Electric 70B Power Meter at the sending end, and the Western Electric 1AP or 38A Transmission Comparing Set and associated cabling.

Adjustable test frequencies from 10 Hz to 10 MHz cover the complete video frequency range. The internal 300 kHz reference oscillator, conveniently selected by a front-panel switch for comparison masurements, eliminates the need for a separate reference oscillator. Amplitude stability, accuracy, and frequency response, good for 90 days from calibration, eliminate the need for the power meter at the sending end.

Front and rear covers provide protection and convenient cable storage space during transportation and periods when not in use. The test set can be operated vertically on the floor or ground.

653A Tentative Specifications

Frequency range: 10 Hz to 10 MHz in 6 bands.
Test frequency accuracy: $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right) \pm 1 \%$ at 4.5 MHz ; $\pm 2 \%, 100 \mathrm{~Hz}$ to $5 \mathrm{MHz} ; \pm 3 \%, 10 \mathrm{~Hz}$ to $5 \mathrm{MHz} ; \pm 4 \%$, 10 Hz to 10 MHz .
Reterence accuracy (0 dBV)
Frequency: $300 \mathrm{kHz} \pm 2 \%$.
Lever: $\pm 0.1 \mathrm{~dB}$ for 90 days.
Output Impedance: 75Ω unbalanced, 124Ω balanced.
Return loss: on $0 \mathrm{~dB} V$ range and below: $>40 \mathrm{~dB}, 10 \mathrm{~Hz}$ to $5 \mathrm{MHz}_{\mathrm{i}}>30 \mathrm{~dB}, 10 \mathrm{~Hz}$ to 10 MHz .
Output level: $+11 \mathrm{dBV} \max$ to $-90 \mathrm{dBV}, 10 \mathrm{~dB}$ and : dB steps with adjustable $\pm 1 \mathrm{~dB}$ meter range into 75Ω unbalanced or 124Ω balanced.
Amplifude control: $>2 \mathrm{~dB}$
Overall attenuator accuracy: $\pm 0.15 \mathrm{~dB}$ except 1 dB at output levels below -60 dBm at frequencies $>300 \mathrm{kHz}$.
Meter resolution: 0.02 dB .
Meter range: $\pm 1 \mathrm{dBV}$ full scale.
Meter tracking: $\pm 0.05 \mathrm{~dB}$.
Frequency response (0 dBV , at end of recommended 6 H cables): $\pm 0.05 \mathrm{~dB}, 10 \mathrm{~Hz}$ to 10 MHz .
Balance: $>50 \mathrm{~dB}, 10 \mathrm{~Hz}$ to $1 \mathrm{MHz} ;>40 \mathrm{~dB}, 10 \mathrm{~Hz}$ to 10 MHz .

Dlstortion (THD): $>40 \mathrm{~dB}$ below fundamental, 10 Hz to 5 $\mathrm{MHz}_{;}>34 \mathrm{~dB}, 10 \mathrm{~Hz}$ to 10 MHz .
Hum and nolse: $>70 \mathrm{~dB}$ below full rated output.
Output jacks: accepts WE 358A and 408A plugs. Max dc voltage which can be applied to the outpur jacks: $< \pm 3 \mathrm{~V}$ p.
Counter output: $>0.1 \mathrm{~V}$ rms into $508, \mathrm{BNC}$ connector.

General

Operating temperature: $32^{\circ} \mathrm{F}$ to $130^{\circ} \mathrm{F}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$, 50 Hz to $400 \mathrm{~Hz}, 30 \mathrm{~W}$ nominal, 35 W max.
Dimenslons covers installed: $163 / 4^{\prime \prime}$ wide, $5^{\prime \prime}$ high (without removable feet), $16^{\prime \prime}$ deep. ($425 \times 127 \times 406 \mathrm{~mm}$).
Weight: net $21 \mathrm{lb}(9.5 \mathrm{~kg})$; shipping $26 \mathrm{lb}(11.8 \mathrm{~kg})$.
Accessories furnished: rack mount kit 00653.84401 , HP Past No. 5060.0827 front cover, rear cover HP Part No. 00653. $62201,7.5 \mathrm{ft}$ yellow power cord.
Recommended accessorles: (not available from HewlettPackard). Cord 75ת, P2BJ 6 ft ; cord $\{24 \Omega, 6 \mathrm{ft}$ made with 754 E type cable or equivalent 124Ω cable.
NOTE: If P3AH cord is used frequency sesponse will roll off 0.03 dB at 5 MHz and 0.1 dB at 10 MHz . As the P3AH is not 124Ω this mismatch will also degrade return loss.
Price: HP 653A, $\$ 990$.

654A Description

The 654A Test Oscillator is similar to the 653A except it is a general purpose test oscillator. The internal 300 kHz reference oscillator is deleted. It has BNC output connectors, and the meter is calibrated in dBm . For additional technical information refer to pages 370 and 382.

654A Tentative Specifications

The 654A specifications are similar to the 653A specifica. tions with these additions:
Output impedance: $50 \Omega, 75 \Omega$ unbalanced; $135 \Omega, 150 \Omega, 600 \Omega$ balanced (10 Hz to 1 MHz for balanced outputs).
Output level: 11 dBm max., calibrated for each impedance.
Meter range: $\pm 1 \mathrm{dBm}$ full scale.
Output connectors: BNC (max dc voltage applied $\pm 3 \mathrm{Vp}$). Price: HP 6S4A, $\$ 875$.

COMMUUNICATIONS TEST EOUIPMENT

Displaying the TV video waveform and the new test signals, and making accurate measurements of them, calls for an oscilloscope with special capabilities, plus unusual accuracy and stability. These requirements are met by the HP Model 191A Television Waveform Oscilloscope which displays and measures black-and-white and color TV video signals and VITS.

Video and test signals

TV picture information occurs at a rate of 30 pictures, or frames, per second, each frame consisting of two fields of $2621 / 2$ lines each. Lines 1 to 21 of each constitute the vertical blanking interval, which produces the black areas betreeen frames on a TV receiver. The other lines contain the picture signals. Each line consists of a horizontal sync pulse of maximum carrier amplitude followed by the picture signals, which are used to intensiry modulate the electron beam (or beams, in color receivers) of the TV picture cube.

Precision measurements with 1% accuracy

The Mode! 191A is a precision instrument of advanced design. It is capable of measuring signal amplitudes with 1% accuracy, which is a capability not usually found in oscillo. scopes of any sype. It produces bright, sharp displays of fast pulses that have low repetition rates. Its frequency response and phase characteristics are carefully controlled not only within the nominal bandwidth, but also on the roll-offs or skirts of the response curves. Its differential input amplifer has high common mode rejection over an unusually wide frequency range. Transient response is also controlled to insure high-fidelity reproduction of the test signals.

The 1% accuracy of the Model 191 A is achieved by means of stable, wideband amplifiers and passive filters of special design; by a mesh type CRT with exeremely constant deflection sensitivity over the entire display; by an internal graticule with a new rype of food gun illumination; and by a advanced CRT gun structure which produces a sharper spot. Brigheness is 7.5 times that of most oscilloscopes, made possible by the new gun structure, which delivers more curcent to the screen in a sharper spor, and by the mesh structure, which makes it possibie to use a 20 kV accelerating potential without losing deflection sensitivity.

The Model 191A displays VITS and video signals without
discernible jitter. This results from the use of logic circuits for positive selection of the portion of the waveform to be dis. played, and from the use of a special synchronizing circuit which works well even with very noisy input signals.

Front panel controls permit easy selection of the displays that are needed in television testing. Discrete selection is provided for the parts of the video signal which contain the VITS. Five special vertical-amplifier gain-filter combinations are available for distortion tests using VITS waveforms.

For minimum size and weight and maximum reliability, the oscilloscope is all solid-state except for the CRT. It is designed to operate at temperatures betpreen $-20^{\circ} \mathrm{C}$ and $+65^{\circ} \mathrm{C}$ and at high altitudes, so that it can be used in hot locations which are crowded with electronic equipment or in mouncain-top radio relay stations.

TV waveform oscilloscopes like the Model 191A are used in the Television Operating Centers of the intercity TV network where video signals are adjusted and switched to the proper channels. Television broadeasting stations also use TV waveform oscilloscopes in their master control consoles, in video rape recorders, in adjusting both black-and-white and color cameras, and in monitoring incoming network programs.

Specifications

Vertical amplifier

Input circult: loop through type.
Terminated: 75 ohms unbalanced; 124 ohms balanced.
Untermlnated: 12.5 k ohms unbalanced; 25 k ohms balanced.
Power off-on transient: less than 5 mV .
Translent protection: 100 V with rise time no less than 1 μ_{5}.
Common mode rejection: - 40 dB from 0 to 2 MHz : ce. creasing at $6 \mathrm{~dB} /$ octave from 2 MHz to 20 MHz .
Gain control: selecrable, fixed or variable; variable provides 140 IRE deflection for composite TV video signal from 0.2 V to over 2 V pk-pk amplitude.

DC restorer: On, restores to the back porch, color burst effect on the display will be less than 2 IRE; Off, restores to the average value of the input signal.
Callbrator: with input switch set to Cal, automatically switches vertical channel to flat filter mode. horizontal

sweep to 2 V mode, and applies a $120 \mathrm{~Hz}, 0.714$ volt $\pm 1 \%$ signal to the vertical amplifier.
Probe input: input RC, 1 megohm shunted by 25 pF ; when used with X10 attenuation probe, 10 megohms shunted by 10 pF .
Fliters
Flat: $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}: \pm 0.05 \mathrm{~dB}$ from 100 Hz to 1.5 MHz decreasing to $-0.05 \pm 0.05 \mathrm{~dB}$ at $4.5 \mathrm{MHz}-20^{\circ} \mathrm{C}$. to $+65^{\circ} \mathrm{C}$: decreasing to $\mp 0.15 \mathrm{~dB}$ from 100 Hz to 1.5 $\mathrm{MHz},-0.1 \pm 0.2 \mathrm{~dB}$ at $4.7 \mathrm{MHz},-3 \mathrm{~dB}$ at 10.5 MHz , and -20 dB at 20 MHz ; rise time less than 50 nsec ; less than 1% tilt on $60-\mathrm{Hz}$ square wave with dc restorer off.
IRE: standard roll-off as specified by IRE (1958 IRE Journal, page 23.51) ; 20 dB down at 3.58 MHz .
Chrominance: band-pass filter with Q of 4 and center frequency of 3.58 MHz .
Differentlal galn: same response as Chrominance with 14 dB additional gain.
Low pass: more than 30 dB down at $0.500 \mathrm{MHz} \pm 0.015$ $\mathrm{MHz} ; 40 \mathrm{~dB}$ down at $1.5,2.0,3.0,3.6$ and 4.2 MHz ; less than 2 dB down at 0.15 MHz .
Horizontal sweep
Internal sweep:
$2 \mathrm{~V}(2.5 \mathrm{~ms} / \mathrm{cm}): \pm 5 \%$ for $\mathrm{X} 1, \mathrm{X} 10$, and X25 magni. fication.
$2 \mathrm{H}(10 \mu \mathrm{~s} / \mathrm{cm}): \pm 3 \%$ for X1 and X10; $\pm 5 \%$ for X25 magnification.
H. Line select ($10 \mu \mathrm{~s} / \mathrm{cm}$) : discrere line selection for lines 16 through 21 ; variable line selection for all lines in the entire field.
Free run ($10 \mu \mathrm{~s} / \mathrm{cm}$): envelope display for video setup.
External inputs: two inputs to sync oscilloscope to external TV sync generators; staiccase input to accept a 4.step staircase foc WRGB (may be modifed to accept a 3 -step staircase).
RGB operation: H-RG日: displays 3 or 4 line parade. V-RGB: displays 3 or 4 field parade. Expand mode allows $10 . \mathrm{cm}$ overlay display.
Fleld select: positive selection of either field: circuit is insensitive to noise pulses.
Blanking: decoupled to remove trace with no signal inpur.
Linearlty: $\pm 1.0 \%$ of full scale.
CRT display
Cathoderay tube: post-accelerator, 20 kV accelerating potential; aluminized P31 phosphor; high writing rate for viewing of sinesquared $T / 2$ pulse.
Graticule: $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ parallax-free internal geaticule; $140[R E$ units $=7 \mathrm{~cm}$; vertical and horizontal trace alignment controls; external graticules available for sínesquared pulse-and-bar, video modulation, etc,
Bezel: provision for external transparent plate with graticule markings; provision for illuminating both internal and exrernal graticules.
General
Design: all solid-state (except for CRT) on plug-in printed circuit boards.
Power: Ils or 230 volts $\pm 10 \%, 50$ to 400 Hz ; approx. 70 W (no fan).
Temperature: operating range from $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ unless otherwise noted.
Environmental: meets Bell Telephone Laboratocies KS-19763 environmental specifications.

Altitude: operates at 15,000 feet above sea level.
LIne bright output: supplies both video and line bright gate to the associated picture monitor; line bright gate pulse is supplied in variable H-line select only.
Accessories supplied: two plug-in extender boards for ser. vicing, and rack-mount kit.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $211 / 2^{\prime \prime}$ deep overall ($426 \times 133 \times 546 \mathrm{~mm}$); hardware furnished for quick conversion to $s^{\prime \prime} \times 19^{\prime \prime}(127 \times 483 \mathrm{~mm})$ rack mount.
Price: HP Model 191A, $\$ 1475$.
Special order: chassis slides and adapter kit; fixed slides, order
HP Part No. 1490-0714, \$32.50; pivot slides, order HP Part
No. 1490.0720, $\$ 37.50$; slide adapter kit for mounting slides on scope, order HP Part No. 1490-0721, \$10.

Accessories avallable

Camera: HP Model 197A. Camera mounts direct, adapters available for other cameras. Model 197A, $\$ 540$.
Front panel cover: cover attaches to front of scope for pro. tection during storage or transportation, order HP Part No. 5060-0437, $\$ 25$.
Amplffler boards: consists of three printed circuit boards for calibration of the Model 191A vertical amplifier, order HP Part No. $00191.69501, \$ 240$.
Model 10009A probe: probe tip is WECO Type 477B connector; input RC, 10 megohms shunted by 10 pF ; when attached to Model 191A Probe Input, input signal at 0.2 V ro 4 V will provide 140 IRE display; probe combined with X 10 gain inpur amplifier in the Model 191A gives unity gain, $\pm 10 \%$; (other standard X 10 probes may also be used with the Model 191A): price, Model 10009A, \$50.

PRECISION RASTER DISPLAY

Visual displays convey information to a viewer from various signal sources, such as television cameras, magnetic storage devices, or computers. By providing proper signal conversion to the HewlertPackard precision Raster Displays, one can achieve high.resolution images from these signal sources.

A relevision raster presentation is an array of lines formed by an intensified CRT beam. It consists of a frame of hori. zontal scanning lines which are displayed in two interlaced fields. Information is presented by intensifying the beam of the cathode ray tube in a synchronous man. ner to produce a desired image. Since a raster consists of a finite number of scan lines, the image of the display is broken into pieces (quantized). Each horizontal scan line can also be represented by a quantization factor determined by the video amplifer bandridth and the cathode ray tube spot diameter.

A raster display is therefore a sampling device. Since it is generally neces. sary that the display device be capable of reproducing a specified amount of image detail, it is important that the parameters affecting image quality be specified and understood.

Geometric Distortion-The degree to which elements of the reproduced image are maintained relative to each other.

Resolusion-The degree to which fine image detail can be reproduced is termed resolution and can be expressed as: lines per inch; spor diameter; or spatial cycles per inch.

Vertical resolution is basically dependent on the CRT spot diameter and the number of active horizontal scan lines. Sequential scanning or interlaced scan. ning modes of operation may be achieved by providing sync signals with proper characteristics. However, when the raster image consists of two interlaced fields, the registration of the fields is important to image quality. The scan lines from the first field should lie exacrly halfway between the lines of the second field. When this occurs, the raster is perfectly incer. laced and maximum vertical resolution is obtained. Scan line pairing degrades resolution and a completely "paired" raster effecrively has only half the maximum possible resolution.
Horizonsal resolution is determined by the CRT spot diameter, the video amplifier bandwidth, and phase characterisrics. Excellent image reproduction is achieved if transient and phase responses are carefully controlled. Phase response
is particularly important since the human eye's tolerance to delay distortion is very smal!.

The video amplifier in Hewlett-Packard raster displays has carefully controlled transient, amplitude, and phase responses thereby maintaining display acuity at a high level. The unretouched computer generated alphanumeric presentation reproduced on this page demon. strates the excellent small area contrast characteristics made possible by these video amplifier parameters.

Brightness-The display brightness required for satisfactory viewing is dependent on the ambient light level. Hewlett-Packard displays are supplied with a polarized neutral gray filter over. lay thus improving contrast ratio.

The absolute brightness level through the neutral gray filter is more than adequate for satisfactory viewing in office and laboratory environments. Comfortable vierwing. by human factors scandards is maintained. Also important is the fact that bigh resolurion character. istics are maintained throughout the range of required brightness levels.

Applications

The mose common usage of raster displays has been for broadcast and CCTV
applications. However, the use of rasrer displays for presenting synthetically generated images and alphanumerics is rapidly growing in computer/data processing industries. Along these lines computer aided instruction terminals are used in great numbers. Some typical applications are listed below.

High-resolution display applications

BROADCAST

CLOSED CIRCUIT T.V. (CCTV)
INDUSTRIAL PROCESS CONTROL
EDUCATIONAL T.V. COMPUTER AIDED INSTRUCTION COMPUTER GRAPHICS DATA RETRIEVAL TERMINALS

MEDICAL

X.RAY W/SPECLAL CAMERA
OPERATING ROOM OBSERVATION PHOTOMICROGRAPHY PATIENT MONITORING

TELEMETRY \& SATELLITE STATIONS

Unretouched photo of computergenerated alphanumeric readout on Modol 6964A Precislan Raster Display. Letter matrix here is typical 5×7 format, which means that height of letter uses only 7 raster lines. and 5 equivalent spaces are used in delining width of characters.

6947A
14-inch Model

The quality of the components used in the Precision Raster Display and the conservative design assure excellent reliability. The display has less than 1% geomerric distortion over the center 80%, and 1.5% geometric distortion over the entire picture area. These displays achieve this linearity by retaining feedback control over the entire usable sweep. In addition, display linearity is independent of size and centering adjustments.

The all solid-state video amplifier employs feedback over the entire bandwidth. The response is flat up to 4.5 MHz with controlled attenuation increasing slowly and smoothly (monoronic) to 3 dB at 11.6 MHz and 18.5 dB at 20 MHz . The controlling element is a passive network designed to insure a linear phase signal characteristic to beyond 16 MHz . With constant-delay performance, a 62.5 nanosecond video pulse applied to the input remains symmetrical and undistorted at the control element of the picture tube.

Unity interlace factor is automatically obtained by deriving the vertical soveep from the stabilized AFC horizontal oscillator. No vertical or horizontal hold controls are required for either U.S. or CCIR standard. In fact, horizontal and vertical sync are mainrained with a composite picture signal-to-noise ratio of 12 dB .

Circularly polarized safety glass covers the picture tube face to improve the reproduced contrast satio of the displayed pictures. It is easily removed to clean the face of the picture tube.

Specifications

Video circuits

Input eircuit: 6946A: 75 ohms unbalanced to ground; UHF connectors with loop-through facility. 124 ohms balanced to ground; UHF connectors with loop-through facility, Return loss greater than 40 dB from de to 4.5 MHz . Prorection for up to 100 V peak transients appearing on input

Specifications (continued)

balanced line. Input impedance (unterminated) - 12 K ohms. 6947A: Identical, but with BNC connectors: the UHF connectors are optional.

Input level: 0.25 to 2 Volts peak to peak for 50 Volt signal at kinescope.

Common mode rejection (longitudinal balance): 46 dB from 0 to 2 MHz ; decreasing at 6 dB /oct from 2 MHz to 20 MHz .

Frequency response: flat up to $8 \mathrm{MHz}(\pm 0.25 \mathrm{~dB})$: less than -1 dB at 10 MHz decreasing smoothly to -3 dB at 18 MHz .

Signal-to-nolse ratio: rms visible noise is greater than 50 dB below p.p signal present at picture tube when a 0.25 Volt sinusoid is applied to the input.

Olfferential gain: less than 3% over specified inpur level (0.2 s to 2 V P-P).

DC restoration: keyed back-porch clamp. Black level shift: Less than 1% for a full change in input signal level.

Horizontal deflection circuits

Horizontal AFC: locks on either 525 or 625 line systems. Horizontal sync is naineained with a composite picture signal-tonoise ratio of 24 dB .

Horizontal width: more rhan 5% overscan of the usable visible area of the kinescope; horizontal width control range is 15% of horizontal dimension.

Vertical deflection circuits

Fieid rate: vertical lock and interlace is automatic. Front panel switch maintains the picture aspect ratio for either 50 or 60 Hz feld rate. Vertical sync is maintained with a composite picture signal-to-noise ratio of 12 dB .

Vertical height: more than 5% overscan of the usable visible area of the kinescope; vertical height control range is 15% of vertical dimension.

Display

Display slze: switchable from 100% to 80% of full picture size with no change in linearity.

Geometric raster distortion: less than 1.5% overall; less than 1% safe title area (80% of full picture size).

Interlace factor: unity (equal spacing between raster lines) maintained with signal-to-noise ratio of 24 dB .

Line brightening: separate raster line brightening infur: A line brightening gate produced by a TV Oscilloscope can brighten any selected raster line (1.525).

Picture tube: 6946A: 17" rectangular tube, type 17DWP4 with medium short persistance P-4 phosphor, aluminized; 6947 A : $14^{\prime \prime}$ rectangular, medium short persistance $P .4$ phosphor, aluminized. (Bonded faceplare is optional, see below.)

Safety glass: circularly polarized laminated safety glass is standard on all units. Polarization increases reproduced picture contrast.

Spot size: 6946A: 010 inch (10 mil) at 30 foot lamberts. 69.17 A: 007 (7.mil) at 30 foot lamberts.

General

External sync inputs: sync switch selects one of the external sync inputs (rear panel jacks) or internal sync input. Sync input range is -1 V to -8 V .

Temperature ratings: operating: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Storage: $-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

Altitude: operating: up to $15,000 \mathrm{ft}$. Storage: up to $50,000 \mathrm{ft}$.
Controls: 6946A: front-panel, exposed: off-on ac switch, contrast, brightness, size switch. Front-panel, concealed: $50 / 60$ Hz field rate switch, focus, height, width, sync switch. 6947 A: Front-panel, concealed; off-on ac switch, contrast, brightness, size switch, pulse-cross 5 witch, $50 / 60 \mathrm{~Hz}$ feld rate switch, focus, height, wideh, sync switch, and video input selector switch.

Input power: $115 \mathrm{Vac} \pm 10 \%, 50-400 \mathrm{~Hz}, 75 \mathrm{~W}$ nominal.
Dimension: 6946: 17-7/16" $(44,3 \mathrm{~cm})$ W $\times 15 \hbar^{\prime \prime}(39,4 \mathrm{~cm})$ H x $201 / 8^{\prime \prime}(51.1 \mathrm{~cm}) \mathrm{D} ; 6947 \mathrm{~A}: 1^{\prime \prime}(43,1 \mathrm{~cm}) \mathrm{W} \times 10^{1 / 2^{\prime \prime}}$ $(26,6 \mathrm{~cm}) \mathrm{H} \times 20^{5} / 8^{\prime \prime}(52,3 \mathrm{~cm}) \mathrm{D}$.

Welght: (net/shipping: 6946A: $63.5 \mathrm{lbs} / 83.5 \mathrm{lbs}$ ($30,6 \mathrm{~kg} / 37,8$ kg) : $6947 \mathrm{~A}: 43.8 \mathrm{lbs} / 64.4 \mathrm{lbs}(19,8 \mathrm{~kg} / 27,8 \mathrm{~kg})$.

Accessorles: standard rack brackers come with both units. for special rack kits, see p. 561 for 14526 A, 14528A, 14529A.

Options: pulse-cross is standard on 6947A; Option 46 for 6946A. Option 28 is available for both models (see p. 561) - \$10: Option 33 (UHF Connectors) for 6947A- $\$ 30$.

Price: $\$ 1,050$ (for either model).

CUT COST ON CABLE INSTALLATION AND MAINTENANCE

COMMUNICATIONS TEST EQUIPMENT

Quick location of faults

Time domain reflectometry (TDR) speeds maintenance by locating faules such as shorts. opens, loose connectors, troublesome tapofi's, mismatched terminations, and poor cable splices. The information is presented on a cathode-ray tube and discloses both the location and nature of each discontinuity. Problems of locating smashed or water damaged sections of underground cable are quickly resolved. Troubles are isolated to specific locations on the line.

Improve picture quality

TDR reveals the qualiry of the transmis. sion system by directly mensuring reflection. Since reflection ghosts are an even greater annoyance to color TV riewers than to monochrome viewers, color transmission requires a higher degree of precision. CATV transmission is subject to reflection anywhere along the cable, at connectors, tapoffs, and terminations. The high sensitivity of the Model 1415A TDR plug-in can locate even the smallest ghost-causing reffection.
Time domain reflectometry principle
TDR employs a closed loop radar method to examine cables. Cables can be easily rested in the same way a ransmitted signal would see it. By sending a step roltage through the cable and measuring the reflected roltage with a high-speed sampling oscilloscope, a time profile is obrained revealing the chatacteristics of each point along the cable.

Checks cables to 3000 teet
The CRT is calibrated directly in distance for air and polyethylene dielectric cables.

WET CONNECTOR: Highly magnified display of a wet connector. Multiple reflactions from the faulty connector cause a reflection coefflelent of -0.4.

IMPEDANCE MISMATCH: Reflection caused by cables of different impedance. With the vertical callorated in $.02 \mathrm{o} / \mathrm{em}$ and the first cable known to be 75?, the second cable is quickly found to be 69Ω using the TDR slide rule. From scope readout, the mismatch is to. cated 55 ft down the 75 s cable.

The Model 1415A can test polyethylene cable to 600 feet with 5% accuracy. The long line version, Option 14, will test to 3000 feet. A special slide rule is furnished to convert the disrance scale to other dielec. trics. Special techniques can double the range and pinpoint discontinuities at long distances. If both ends are accessible, measurements can be taken at each end permitting 6000 feet 10 be checked. Accuracy can be improted two ways. The first is to close in on the fault by measuring at successively closer cornections. The other is to compare distances ro a standard cable connected in parallel. With these techniques, faults can be isolated within inches of the trouble spor. The 150 ps ($1 \mathrm{ps}=10^{-0} \mathrm{~s}$) step rise time of the Model 1415A is great enough to resolve nearby discontinuities that are less than an inch apart. The high resolution is useful to examine faulcy connectors.

50 ohm system TDR plug-in
 (Refec to page 530 for details)

Distance scale is calibrated to relate ren. timeters of CRT display to centimeters of uransmission cable. For polyethylene line with a dielectric constant of 2.25 , the CRT is calibrated to represent 200, 500,1000 , or 2000 cm line $/ \mathrm{cm}$ display. The long line version, Option 14, will extend the range to 1000 cm line/ cn display. For air line with a dielectric constant of 1 , the calibration is 300. 750,1500 or 3000 cm line $/ \mathrm{cm}$ display. Option 14 extends calibration to 15000 cm line/cm display. Also, each calibrated dis. play can be magnified X1 to X200 in 1. 2. 5 sequence with 5% accuracy.

75 ohm system

(Refer to page 530 for details.)
The ETS-140A is a special system for checking and analyzing 75 ohm coaxial cable

PINCHED CABLE: Magnfied display of a pinched cable resulting from sharp radius of curvature. The calibrated CRT indicates a reflection coefficlent of $\mathbf{- 0 . 0 4}$.
systems. This system uses an H08-1415A Which is calibrated to read directly in feet of polyethylene or polyfoam coaxial cable. This system includes, in addicion, a 140 A Oscilloscope mainframe with P7 phosphor. This phosphor has a long persistence that is quite useful in reducing ficker when scanning the line in detail. This system includes a 50 to 75 ohm adapter and is calibrated at the factory for 75.0 hm systems. Also in. cluded in this system ate: an application noie on TDR measurements; 75 ohm overlays for direce reading of difierent resistance cables; and a TDR slide-rule for rapid con. version to distance in different dielectric cables.

Rise time converters

Models 10452A through 10456A Rise Time Converters slow down the scep from the Model 1415 A in order to eliminate reRections caused by frequencies beyond the bandwidth of interest. Rise times are 0.5. 1, 2, 5 , and 10 ns . Refer to page 531 for complete specifications.

75-ahm adapters

Models 10457A and 1045SA Adapiers convert the Model 1415A output connector to 75 -ohans systems. Refer to page 531 for complete specifications.

SYSTEM PROFILE: Reftection pattern as saen by looking down a transmission system. The pattern reveals a low impedance cable coff screen) connected to a 692 cable. 27 ft from the connector is an inductive defect; 20 ft farther along is a capacitive defect from a pinched cable: 8 ft from the pinch is a 670 termination.

COMMUNICATIONS TEST EQUIPMENT

MICROWAVE LINK TESTING

The seventh decade

Communications systems have been planned, and are being commissioned now which will make multi-national com. munications in the 1970's the most sapid and of the bighest quaiity ever achieved. Hevlett-Packard recognizes the vital role that the complex communication systems of the seventies will play in the continuing endeavor for better understanding between nations and ultimate World peace.

Increasing complexity

These communication systems encompass every possible means of communication and embrace many fields of tech. nology. Typically these systems include telephone and telegraph equipment. multiplex and data-handling racks, overland and undersea cables, microviave links, broadcast radio and VHF, and special active communications satellites. Many different branches of information are passed by communication systems including telephony, datel. monochrome and color TV, Press Wire Photo, and international news messages. For example, during the Olympic Games in Mexico City in the late summer 1968. continuous daily Radio and TV broadcasts nere relayed live to many countries throughout the Worid. Sportsmen throughout the World could follow their country's progress at the Games, with TV and up-to-date sports news services far in exiess

of the coverage available four years before at the Tokyo Olympics.
Accepted as the leading supplier, and famous in the design of electronic measuring instruments for the engineer, Hew lett-Packard has more recently become an important source of communications test equipment.

International standards

With improvements in solid-state electronics, and microwave equipment in particular, coupled with the rising costs of cable-laying and maintenance, the Micro. wave Link has gradually yet successfully replaced the use of cable for long-haul overland communications. Development and maintenance of these microwave
links requires specialized equipment. Hewlett-Packard recognizes this need and developed the Microwave Link Analyzer, Models 3701A, 3702A, 3703A, to meet this need. The Analyzer is designed to the CCIR recommendations on international standards for radio relay equipment, which includes $70 \mathrm{MHz} \mathrm{IF}_{\mathrm{F}} 75$ ohms standard impedance, and standardized test deviations and baseband sensitivity.

Standard link equipment

Microwave Link equipment embraces three main areas of electronics, each very much different from the other and requiring specialized test equipment. These areas are (1) Multiplex at 600 kHz to 9 MHz , (2) FM modulators, demodula-

Figure 1. Communications Test Equipment

Type	Desoription	Range	Models	Psloe 5
Transmission test set	Transmission line and system chacacteristics: Attenuation, gain, fiequency response, line-up; patch-panel 135, 600, 900 : lines	$\begin{aligned} & 5 \mathrm{~Hz} \text { to } \\ & 560 \mathrm{kHz} \end{aligned}$	$\begin{gathered} 3550 \mathrm{~A} / 353 \mathrm{~A} \\ 204 \mathrm{~B} / 403 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{aligned} & 1225 / 260 \\ & 350 / 340 \\ & \hline \end{aligned}$
Cable network leak detector	Uiltrasonic translator detactor which translates detected leaks of ultrasonic energy in cables to audio trequency	$\begin{aligned} & 36 \mathrm{kHz} \text { to } \\ & 44 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 4916 \mathrm{~A} \\ & 4905 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 525 \\ & 595 \\ & \hline \end{aligned}$
Cable shorts. grounds, crosses	Operating on principle of electromagnetic induction and earth voltage gradients with inductive and conductive loops	$\begin{aligned} & 990 \mathrm{~Hz} \\ & \text { Pulsed } 7 \mathrm{pps} \\ & \hline \end{aligned}$	$\begin{aligned} & 4900 \mathrm{~A} \\ & 4901 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 655 \\ & 765 \\ & \hline \end{aligned}$
Cable resislince	Resistance measurement for fault location in telephone cable pairs to 30,000 meters	$0-3 \mathrm{kHz}$	49108/C	635
Telephony oscillator	R-C oscillator with all Western Electric connectors for dialling and oulput. Holding functions for $600,900 \Omega$ oulpuls.	$\begin{aligned} & 50 \mathrm{~Hz} \cdot 20 \mathrm{kHz} \\ & 5.560 \mathrm{kHz} \end{aligned}$	236 A	600
Telephony analyzer	Selective voiltmeter, 7 Hz bandwidth, meler scale in dB, working range -120 to +50 full scale. High impedance.	$\begin{aligned} & 20 \mathrm{~Hz} \text { to } \\ & 50 \mathrm{kHz} \end{aligned}$	302A	1900
Multiplex oscillator	Linear sweeping oscillator, 10 Hz to 32 MHz in one range, 0.15 dB flatness, AM to 1 kHz , FM to $4 \mathrm{kHz},+13 \mathrm{dBm} / 50 \Omega$	10 kHz to 32 MHz	675A	2250
Multiplex analyzer	Selective voltmeter, digital frequency readout, bandwidth $200 \mathrm{~Hz}, 1 \mathrm{kHz}, 3 \mathrm{kHz}$, sensifivity -97 dBm to $+23 \mathrm{dBm}, 75 \Omega$	$\begin{aligned} & 10 \mathrm{KHz} \text { to } \\ & 22 \mathrm{MHz} \end{aligned}$	312A	3900
Microwave link IF analyzer	Transmission generator provides $45-95$ MHz swept If with baseband FM. Output range +10 dBm to -89 dBm . IF flatness $\pm 0.1 \mathrm{~dB}$. Demodulator display extracts FM from 45-95 MHz IF, will display IF flatness, linearity, group delay, Bessel Zero, TVSC differential phase and gain at 3.50 and $4,50 \mathrm{MHz}$, reiturn loss, 75Ω system	$\begin{aligned} & \text { IF } 45-95 \mathrm{MHz} \\ & \text { 88 } 8.3-500 \mathrm{kHz} \\ & \text { TVSC } \\ & 3.5 \mathrm{C} .5 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{aligned} & 3701 \mathrm{~A} \\ & 3702 \mathrm{~A} \\ & 3703 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 2700 \\ 3750 \\ 750 \end{array}$
TV waveform oscilloscope	Displays of TV lest signals are multiburst frequencies, sine-squared pulse and bar, modulated stairstep. Checks quality of monochrome or color TV signal channel in routing equipment or fuicrowave links. 75Ω input. Chrominance filters at $3.58 \mathrm{MHz}_{2}$.	Monochrome and Color TV	191 A 193 A	1475 1550
$\overline{\text { Altenuator }}$	75Ω push button unbalanced impedance. 0-99 dB in 1 dB steps. Insertion loss less than 0.6 dB . Accuracy $==0.5 \mathrm{~dB}$ to $79 \mathrm{~dB},=1 \mathrm{~dB}$ to $89 \mathrm{~dB}, \approx 2 \mathrm{~dB}$ to 99 dB $= \pm 1 \mathrm{~dB}$ to $79 \mathrm{~dB} \pm 2 \mathrm{~dB}$ to 89 dB	$\begin{aligned} & \mathrm{OC}- \\ & \text { to } 100 \mathrm{MHz} \\ & \text { to } 200 \mathrm{MHZ}_{2} \end{aligned}$	3750A	95
Accessories	75Ω impedance, 6 d8 Hybrid Accessory kit includes 75Ω loads, cables, 17 dB standard mismatch	$\begin{aligned} & D C- \\ & \text { to } 100 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \hline 15520 \mathrm{~A} \\ & 15526 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 80 \\ 140 \\ \hline \end{array}$

tors and IF at 70 MHz , (3) Up . or down. converters at 3.10 GHz . The Microwave Link Analyzer is specially designed for analyzing IF equipment. but can do a number of tests at baseband (BB). Figure 1 shows how rypical telephone signals get transfererd by frequency division multiplex (FDM) into the multiplex band. 1800 telephone channels, each allocated 4 kHz , occupy about 8.4 MHz , with spacing for test frequencies.

Figure 2 shows in simplined form the concept of a microwave link. The BB signals are applied to an FM modulator centered at 70 MHz . Frequency modularion is used because it offers a significant improvement in signal/noise ratio and is more resistant to fading effects than

Flgure 1. Volce channels are shown conventionally as trlangles stacked by the multi. plex (FDM) in the frequency spectrum. Each channel is 3 kHz wide lower sideband (LSB) amolitude modulation on the appropriate multiplex carrier.
amplitude modulation.
The modulator is followed by an up. converter where the 70 MHz band signals are converted to the GHz band, generally around 3.10 GHz . The same parabolic dish and aerial system is used for both the EASTBOUND and WESTBOUND carriers which are separated slightly in frequency; for example A speech at 7070 MHz , B speech at 6930 MHz . A simple 'hop' like the one shown can span a maxi. mum of about 30 miles.

Figure 3 shows in simplified form the basic microwave link terminal. The input signals (BB) at A are applied to an FM modulator centered at 70 MHz . The input frequencies extend up to 8.4 MHz and the deviation rates generally used create sidebands which extend from about 55 MHz to 85 MHz . This 30 MHz band IF is amplified and filtered before being applied to the up-converter where it is converted to, typically, 7070 MHz . The incoming signal is at some different fre. quency, say 6930 MHz , and the use of

Figure 2, Simple microwave ilik, like the one above, can provide two way communication for up to 1800 voite channels over a 'hop' of less than 30 miles. Most links employ the system shown where a common aerial system is used to tranamit and receive simultaneously the two microwave carriers at"different frequencies.
ferrite circulators and waveguide filters prevents breakthrough of the 7070 MHz and 6930 MHz signals into unwanted channels.

Distortion problems

Principal causes of distortion in the handling of the baseband input to the modularor arise at the IF sections. The IP signal for an 1800 channel telephony system extends from about 55 MHz to 85 MHz and is densely packed with channel information. All these channels are in particular amplitude and phase relationship to each orther and any changes in amplitude sensitivity or phase are evident as distortion, crosstalk and intermodula. tion.

Distortion at IF is caused by the in. ability of modulators, IF amplifiers, filters, attenuators and demodulators to bandle the IF with constant sensitivity, group delay and return loss across the

IF band. The Microwave Link Analyzer measures IF sensitivity, FM linearity, group delay and return loss of any BB / IF, IF/IF or IF/BB item. For checking IF sections, the Analyzer provides a soept IF outpue from 45 MHz to 95 MHz flat to within $\pm 0.1 \mathrm{~dB}$. A special feature about this IF is that the sweep is sinu. soidal at 70 Hz (Figure 5) with distortion products better than 30 dB down on sweep level. The general measurements required by link engineers are shown in Figure 4.

Sinusoidal sweep

Hewletr-Packard employs classical merhods of sweep-testing with pure si. nusoidal sweep-envelopes because these methods are inherently noise-free and offer the most accurate and reliable solutions to the problems of distortion mea. surement.

Figure 3. Simplified concept of a microwave link terminal. The main information encoder is the frequency modulator where input data is modulated by FM onto a 70 MHz carrier. Thls carrier, or IF, is up-converted to frequencies 3.10 GHz . In-coming transmissions are downconverted to 70 MHz and the data extracted in a frequency demodulator. Many links now in service have entirely solid-state electronics.

Figure 4. General measucements required at 1F. Phase/frequency is not displayed directly, but the effects, mainly of envelope delay on the If carrier are measured as group delay. the derivative of phase/frequency.

IF level, FM linearity

The IF level sensirivity is derected from the signal IF in a linear detector and displayed as level (dB) against a base of swept frequency. For the measurement of FM lineariky on modulators, a modulation frequency is added to the sweep fre. quency and the resultant [F with FM is demodulated in an FM demodulator. The resultant demodulated frequency is detected and the level measured. This level is displayed (\% change in level) against a base of srept frequency. For measurement of group delay, the phase of the detected modulation, which contains the

Figure 5. Sinusoidal sweep methods are inherently nolsedree and simple in operation. Baseband modulation freauencies are added to swesp so that modulators can be sweep. tested over the working band at constant modulation level. For checking IF sections and demodulators an if in the bend 45.95 MHz is avallable, modulated with the same base. band + sweep.
information on envelope delay, is extracted in a phase detector, converted to dc and displayed (nsec delay change) against a base of frequency.

Simultaneous display

These bandwidth measurements of IF level, FM linearity and group delay are fundamental to the continued operation and acceprability of the link. To aid setting.up commissioning procedures, the display of IF level and group delay, two quantities which can be mucually inter. fering. can be viewed simultaneously; group delay can also be viewed simultaneously with FM linearity and ceturn loss. Other measurements performed in. clude BB gain, insertion loss, IF gain, in. sertion loss and return loss at IF

Return loss

The return loss, or impedance match, of all connectors and cables ar IF is critical. Poor impedance matching results in high VSWR (greater than 1.10:1 is not acceprable) with consequent distortion caused by the standing wave cipple at IF level, and the classic phase ripple on IF group delay. Hewlett-Packard provides two fundamentally different methods of measuring return loss, eash with its own advantages and disadvantages, 1) Hybrid method using hybrid power divider and sensitive IF detector to measure return loss power 2) Long cable method where incident power is compared to return loss power by relative attenuation and a long cable.

1) The Hybrid method has the advartage that actual return loss can be seen across the band and compensated for at frequencies where it is excessive. HewlectPackard provides a direct-coupled display calibrated at $1 \mathrm{~dB} / \mathrm{cm}$ so that the thresh. old can be set, and return loss better than this can be seen. Initial calibration and matching of the hybrid to the mea. surement system is achieved using the HP Model 15521A 17 dB Standard Mis. match.
2) The long cable method compares the return loss power with the incident power by means of an accurate attenua. tor. Principal requirement is that IF is detected to display VSWR ripple, and ripple with cable open-ended is atrenuated to match ripple with cable terminated. Twice the attenuation applied is the return loss ngure.

Calibration

An important fearure of the Analyzer is the calibration facilities offered. For relative amplitude of IF, including return loss, a 0.1, 0.3 or 1 dB setring can be used where the calibration selected is the spac. ing between the double lines on the display. Also, for linearity measurements, where percentage change in modulation level is required, 1,3 or 10% setting can

Figure 6. Hybrid mathod of return loss mea. surement has return loss detector with - 54 dBm IF sensitivity. Initial calibrstion requires HP Model 1552lA Standard Mismatch 17 dB and simple setting-up.
be selected between the double lines. Similarly. for group delay measurements. 1, 3 or 10 nsec can be selected berween the double lines. Guaranteed sensitivities are $0.1 \mathrm{~dB} / \mathrm{cm}, 0.25 \% / \mathrm{cm}$ and $0.33 \mathrm{nsec} / \mathrm{cm}$.

Accurate pin-pointing of non-lineasities. relative 10 the IF band 55.95 MHz . is possible by means of the MARKER OFFSET dial which positions two sliding markers, one each side of 70 MHz , at a spacing up to 26 MHz offset from 70 MHz . These markers are generated by a highly-linear voltage-tuned oscillator output mixing with a stable, accurate crystal reference to produce a center marker at 70 MHz and two sliding markers. For accurate interpolation, offset frequency up to 26 MHz is available at rear panel for digital display.

A further refinement on the Analyzer is a simple Specrrum Analyzer function where the frequency band 67.73 MHz can be investigated for the analysis of deviarion. Bessel Zero's, with FM at 83.3 kHz and deviation of 140 kHz rms , are easily displayed, allowing deviation measure. ment to 1 kHz . The Spectrum Analysis function has a sweep rate of 70 Hz and a separate cryssal-derived marker at 70 MH2.

Figure 7. Long cable method of raturn loss measurement has IF level secondharmonic balanced detector, two-way attenuator and 15 fi. or more of 75 ohm cable. Ripples caused by VSWR of fitem are noted on alsplay, the item is disconnected, and ripples caused by open-ended cable are atrenuated to match the prevlous ripples. Twlce the attenuation applied is the return loss figure.

Figure 9. 3702A/3703A block diagram.

Options

One option offered gives adjustment of phase on the IF sweep, a valuable feature during thru-link tests with slaving for a remote display. Also available as an option, are extra baseband frequencies better than 30 dB .

DC-coupled return loss 1 dB/cm. Hopizontal lina is 30 as limlt. Trace below this line is
namely the chrominance sub-carriers for color TV transmission testing, 3.50 MHz or 4.50 MHz . With these frequencies using sinewave methods, the critical mea. surements of differential gain and phase

VSWR ripples with long Ine. Ripoles with long cable open-ended are attenuated to match this.
can be made.

Spactrum display of Bessel Zera 2.4, deviation 423 kHz rms. Center marker is 70 MHz .

Oscillograms made with the Microwave Link Analyzer Models 3701A/3702A/3703A show performance over 45.95 MHz swept band with 250 kHz FM , deviation 200 kHz rms , outer markers at 55 and 85 MHz .

COMMUNICATIONS TEST EQUIPMENT

ATTENUATORS, ACCESSORIES
 Model 3750A, 15526A

DC to 400 MHz
0 to 99 dB by 1 dB steps VSWR better than 1.1:1
Up to +24 dBm input
75 ohms impedance

Description

The Model 3750A Attenuator is ideally suited for use as a reliable, accurate general-purpose attenuator operating in the communications bands, dc to 400 MHz . It is particularly suited to large-value attenuation of RF signals during receiver and amplifer design.

A controlled-dielectric strip-line attenuator operated by push-buttons in 1, 2, 3, 3, 10,20,30, 30 dB steps forms the basis for the Model 3750A. Connectors are 75 BNC female with outer grounded. Insertion loss is less than 0.6 dB . Input powers up to +24 dBm can be accepted, and
either connector can be used as input or output; small size and mounting versatility allows various installation arrangements including stacking, even within other equipments.

Specifications			
	Attenuation performance		
	DC $\cdot 100 \mathrm{MHz}$	$100 \cdot 200 \mathrm{MHz}$	$200 \cdot 400 \mathrm{MHz}$
Unics	$\pm 0.1 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$
Tens	$\pm 0.2 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$
Cumulative	$\pm 0.5 \mathrm{~dB}$ to		$\pm 2.0 \mathrm{~dB}$ to
	79 dB		79 dB
	$\pm 1.0 \mathrm{~dB}$ to	$\pm 2.0 \mathrm{~dB}$ to	Not usable
	89 dB	89 dB	
	$\pm 2.0 \mathrm{~dB}$ to	Not usable	
	99 dB		

Impedance: 75Ω
Power dissipation: $+24 \mathrm{dBm}(250 \mathrm{~mW})$.
Maximum SWR: below 1.1:1.
Maximum Insertion loss: 0.1 dB at $10 \mathrm{MHz} ; 0.4 \mathrm{~dB}$ at 50 $\mathrm{MHz} ; 0.6 \mathrm{~dB}$ at 100 MHz .
Maximum leakage at $99 \mathrm{~dB}(100 \mathrm{MHz})$ is 2 dB .
Dimensions: $8^{\prime \prime}$ long $\times 4^{\prime \prime}$ wide $\times 23 / 4^{\prime \prime}$ high (203 mm x $102 \mathrm{~mm} \times 70 \mathrm{~mm}$).
Weight: $2.8 \mathrm{lb}(1,27 \mathrm{~kg})$.
Temperatures: operating $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$; storage $-40^{\circ} \mathrm{C}$ to $+69^{\circ} \mathrm{C}$.

Price: $\$ 95$ ($\$ 80$ at factory in Scotland).

Communications Accessories

15525A cable

Description

Constructed from best-quality 75Ω low-loss cable, these cables provide a high standard of connection at nominal cost. Standard cable is $48^{\prime \prime}$ (1220 mm) long with BNC male ends.

Prices

Standard BNC, \$8.
Option 02, Siemens $2.5 \mathrm{~mm}, \$ 10$.
Option 03, Siemens $1.6 \mathrm{~mm}, \$ 10$.

15526A accessory kit

Description

Developed for the communications industry, these accessories are supplied standard 75Ω BNC with return loss better than 32 dB , except for Model 15521 A 17 dB Standard Mismatch. They are supplied in a useful grey molded PVC case which serves for storage and protection. Options offered include Siemens 75Ω connectors, both large and small types.

Contents

Model 15520A, 6 dB Hybrid.
Model $15521 \mathrm{~A}, 17 \mathrm{~dB}$ Standard Mismatch.
Model 15522A, 75Ω Termination (two supplied).
Model 15524A, 75Ω Coupler (two supplied).
Prices
Standard BNC, $\$ 140$ ($\$ 130$ at Factory in Scotland).
Option 02, Siemens 2.5 mm , add 535 .
Option 03, Siemens 1.6 mm , add $\$ 35$.

Description

The Microwave Link Analyzer, Models 3701A, 3702A, 3703 A, is an integrated system package which offers a wide range of measurements at both baseband (BB) and 70 MHz IF for $B B$ and IF equipment in Microwave Links. It satisfies the needs of engineers involved in development, commissioning and on-site measurements of Microwave Link equipment.

With the Analyzer comes the ability to performance-check 1800 channel systems through a series of realistic measurements, such as group delay and IF band flatness simultaneously with modulation linearity over the 45.95 MHz band. Sensitivity, group delay and modulation linearity of modulators and demodulators can be measured separately. A special SPECTRUM mode allows analysis of modulation index and hence accurate measurement of deviation ($\pm 1 \mathrm{kHz}$ at 83.3 kHz FM) for sensitivity of modulators and demodulators.

Based on CCIR and CCITT recommendations for international standards for Radio Systems, the Analyzer is available as a standard model with 75 ohm BNC connectors. Options offered give differential gain and phase measurements at either 3.50 or 4.50 MHz color TV chrominance sub-carrier frequencies using the Link demodulator; other options give different connectors, including Siemens large and small types.

Except for the CRT, the Analyzer is entirely solid-state, having short warm-up and stabilization times, and few regular maintenance requirements. A compatible range of 75 ohm accessories, including a 6 dB Hybrid, are supplied (for further details see page 338).

Operation

The Microwave Link Analyzer is simple to operate. Particular care has been given to logical panel layout and simple cabling set-ups. The Analyzer consists of two principal instruments; Model 3701 A Transmission Generator and Mode! 3702A Demodulator Display. A third instrument, Model 3703A Group Delay Derector is a plug-in for the 3702A and is used in group delay measurements. Fígures 8 and 9 show the block diagrams of these instruments, see page 337.

Model 3701 A is a BB and IF generatoc. The highly stable IF is produced by a twin UHF oscillator design, one oscillator fixed at 300 MHz and has FM , the other swept in 70 Hz sinusoidal envelope from 345.395 MHz . Mixing of these two quantities produces a stable 45.95 MHz IF , internally levelled to better than $\pm 0.1 \mathrm{~dB}$, all housed in the same thermal environment to minimize temperature drift. Sweep width is selectable $0-50 \mathrm{MHz}$ continuous, and FM is superimposed at $83.3,250$ and 500 kHz , as selected, with deviation controliable 100 kHz to 500 kHz rms. Options extend the FM to 3.50 or 4.50 MHz . IF output is +10 dBm direct, can be varied in 1 dB steps down to -89 dBm with 99 dB built-in attenuator.

Model 3702A is a 70 MHz demodulator, with automatic frequency lock (AFC) capabilities; the Model 3702A can thus lock and follow swept IF in the range 45.95 MHz , and

recover frequency modulation up to 1 MHz , deviations up to 500 kHz rms. IF sensitivity of the 3702 A is -10 dBm .

Display modes of the Model 3702A Demodulator Display are selected by the DISPLAY switch as follows:

1. EXT. (input at EXT. INPUT)
2. I.F. (display is IF level)
3. B.B. (display is BB levei)
4. DELAY (display is group delay)
5. SPECTRUM (display is sidebands above and below carrier)
6. RET. LOSS (direct hybrid measurement at swept frequencies with marker offset frequency $0-26 \mathrm{MHz}$ avail. able for readout)
7. SLAVE (do test on transmit path, playback display on receive path)
Simultaneous display of IF level, BB linearity, or directcoupled return loss with group delay is one of the valuable features which speeds-up and simplifies on-site Link performance checks. Other features include a calibration facility where IF, BB and group delay displays can be separately calibrated in $d B$, \% and nanoseconds, and frequency markers are available (with marker offset frequency for digital display) to define both specific non-linearity points and IF frequency band.

Model 3702A has Y1 and Y2 channels operating on a time-sharing basis, with Y1 being the continuous signal channel and Y2 being grounded reference channel with frequency markers, except during simultancous display, when both channels are used. Particulacly useful time-saving features include a 70 MHz crystal-controlled output for checking demodulator crossover and a balanced detector at the IF output which gives a detected IF output including VSWR. This latter feature is invaluable for performing return loss measurements by the 'long cable' method.

System Specifications

1 swept frequency

Weasuremant	$\begin{aligned} & \text { Baok-lo-back } \\ & \text { Bwapl band al } 76 \mathrm{MHz} \end{aligned}$			Tost sunsifivity
	So mix	4 MHz	66 MHz	
If flatness If group delay	$\begin{aligned} & =0.1 \mathrm{~dB} \\ & -0.2 \mathrm{nssc} \end{aligned}$	$\begin{aligned} & \pm 0.1 \mathrm{~dB} \\ & \pm 0.3 \mathrm{~ns} \mathrm{CB} \end{aligned}$	$\begin{aligned} & =0.1 \mathrm{~dB} \\ & =0.5 \mathrm{n} 5 \theta \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~dB} / \mathrm{cm} \\ & 0.33 \mathrm{nsec} / \mathrm{cm} \end{aligned}$
Mod/derood group delay Mod group delay Demod group delay	$-0.05 \mathrm{nsec}$ +0.15 лsec $=0.15$ nsec	$\begin{aligned} & \pm 0.05 \mathrm{nsec} \\ & =0.2 \mathrm{nsec} \\ & \pm 0.2 \mathrm{nsec} \end{aligned}$	$\begin{aligned} & =0.05 \mathrm{nsec} \\ & =0.3 \mathrm{nsec} \\ & =0.3 \mathrm{nsec} \end{aligned}$	$\begin{aligned} & 0.33 \mathrm{nsec} / \mathrm{cm} \\ & 0.33 \mathrm{nsec} / \mathrm{cm} \\ & 0.33 \mathrm{nsec} / \mathrm{cm} \end{aligned}$
Mod/demod linearity Mad linearily Demod insearity	$\begin{aligned} & =0.1 \% \\ & =0.1 \% \\ & =0.05 \% \end{aligned}$	$\begin{aligned} & =0.1 \% \\ & =0.1 \% \\ & -0.05 \% \end{aligned}$	$\begin{aligned} & =0.2 \% \\ & =0.2 \% \\ & \pm 0.05 \% \end{aligned}$	$0.25 \% / \mathrm{cm}$ $0.25 \% / \mathrm{cm}$ $0.25 \% / \mathrm{com}$

2 fixed frequency

Mamurommat	Mu	Min	Acouracy	Fiequenoy band
BB pows BB gain BB Insertion loss	$-10 \mathrm{dem}$ 39 dB 43 dB	$\begin{aligned} & -32 \mathrm{dBm} \\ & 0 \mathrm{~dB} \\ & 0 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & =0.5 \mathrm{~dB} \\ & =0.5 \mathrm{~dB} \\ & \neq 0.5 \mathrm{~dB} \end{aligned}$	50 kHz to 12 MHz 83.3,250 and 500 kHz 83.3, 250 and 500 kHz
If power IF goln If insertion loss	$\begin{aligned} & +12 \mathrm{dBm} \\ & 101 \mathrm{~dB} \\ & 22 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -10 \mathrm{dBm} \\ & 0 \mathrm{~dB} \\ & 0 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & =0.5 \mathrm{~dB} \\ & \pm 0.5 \mathrm{~dB} \\ & \pm 0.5 \mathrm{~dB} \end{aligned}$	45 MHz to 95 MHz
Mod sensitivily	$-49 \mathrm{dBm}$ 140 kHz	$-10 \mathrm{dBm}$ 140 kHz	$\begin{aligned} & \pm 0,5 \mathrm{~dB} \\ & \pm 1 \mathrm{kHz} \end{aligned}$	45 MHz to 95 MHz
Demod. sensitivity	$-10 \mathrm{dBm}$ 140 kKz	$\begin{aligned} & -32 \mathrm{dBm} \\ & 140 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & =0.5 \mathrm{~dB} \\ & =1 \mathrm{kHz} \end{aligned}$	45 MHz to 95 MHz
Klystron mod. Linearlly Mode center	-	-	$\begin{aligned} & \pm 0.2 \% \\ & \pm 1 \mathrm{Hzz} \end{aligned}$	All bands

3 return loss

Mathod	May.	Mia.	Accuray	Fraquency asand
Hybrid	10 dB	32 dB	$\approx 2.5 \mathrm{~dB}$ at 32 dB	45 MHz to 95 MHz
Long cable	0	46 dB	$=1 \mathrm{~dB}$	45 MHz to 95 MHz

3701A Transmission generator

Description

Mode switch controls baseband modulation and sweep applied 10 IF.

Sattlng	Swaep rate	Baseband (kHz)
Manual	Use l.F. Fine	$83.3 / 250 / 500 /$ exl.
Auto	70 Hz	-
Line	Line	$83.3 / 250 / 500 /$ ext.
B.B. + sweep	70 Hz	$83.3 / 250 / 500 /$ ext.
B.B. + ext. sweep	External	$83.3 / 250 / 500 /$ ext.

Specifications

IF range: $50,60,70,80,90 \mathrm{MHz}$ with $\pm 5 \mathrm{MHz}$ on vernier: accuracy $\pm 0.5 \%, \pm 0.5 \mathrm{MHz}$ as $+25^{\circ} \mathrm{C} . \pm 1 \mathrm{MHz}$ from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
IF output: +8 dBan to +12 dBm witb SET LEVEL; accuracs $\pm 5 \%$ levelled to betrer than $\pm 0.1 \mathrm{~dB}$ over 45 to 95 MHz , return loss 30 dB with $\pm 15 \mathrm{MHz}$ sweep, 28 dB with $\pm 25 \mathrm{MHz}$ sweep.
70 MHz output: 10 dBm , adjustable with SET LEVEL: crystal. derived for accurate frequency checking, $\pm 0.01 \%$.
Meter: reads IF or 70 MHz OUTPUT, +8 dBn to $\div 12 \mathrm{dBm}$. 0.5 dB sub-divisions.

IF sweep rates; power line, 70 Hz , manual (IF FINE) or external: sweep harmonics better than 30 dB down on 70 Hz ; internai sweep widths 0 to 50 MHz with step and vernier, centered on IF, accuracy $\pm 2 \%$ for internal $70 \mathrm{~Hz}, \pm 10 \%$ for line sweep $50 / 60$ Hz ; external sweep: frequencies 40 Hz io 500 Hz ; 5 V peak-pcak into $10 \mathrm{k} \Omega$ at EXT. SWEEP INPUT maintains sweep calibration.
Baseband: frequencies $83.3,250,500 \mathrm{kHz}$ or external: output: $+11 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$, return loss 26 dB so kHz to $1 \mathrm{MH}_{2}$: fre. quency stability: $\pm 5 \mathrm{PPm}, 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ a aging rate: $\pm 0.2 \mathrm{ppm}$ per month; external baseband 10 kHz to 12 MHz .
Modulator: sensizivin, $-36 \mathrm{dBm} \pm 1 \mathrm{~dB} / 200 \mathrm{kHz}$ rms; linearity: $\pm 0.1 \%$ over IF band.
Deviation: range 100 kHz to 500 kHz rms with in:ernal baseband, accuracy $\pm 5 \mathrm{kHz}$ over whole range.
BB + sweep output: baseband frequencies combined with sweep frequency of power line, 70 Hz , or external ($40-500 \mathrm{~Hz}$): sweep output variable 0 to 5 V peak continuous, baseband outpue variable -49 dBm to -10 dBm stepped at 1 dB .
Attenuator: range 99 dB in 1 dB steps; accuracy $\pm 0.1 \mathrm{~dB}$ units, $\pm 0.2 \mathrm{~dB}$ tens, $\pm 0.5 \mathrm{~dB}$ any combination; insertion loss 0.4 dB at $50 \mathrm{MH}_{2}$. 0.6 dB at 100 MHz frequency range dc to 100 MHz ; maximum input +24 dBm .
Detector output: detected level of IF is available for displaying return loss on 3702A Demodulator Display, using 'long cable' method of measurement.
Price: $\$ 2700$ ($\$ 2450$ ar factory in Scotland).
Options
01: variable phase and amplitude facility on rear panel. Phase: $0^{\circ} \pm 120^{\circ}, 180^{\circ} \pm 120^{\circ}$ continuous.
Output: 0 to 6 V peak-peak at 75Ω.
Price: add $\$ 100$.
02: Siemens 2.5 mm large connectors, 75Ω. Price: add \$75.
03: Siemens 1.6 mm small connectors, 75Ω. Price: add $\$ 95$.
04: not assigned.
05: TV color sub-carrier 4.50 MHz . Price: add $\$ 300$.
06: TV color sub-carrier 3.50 MHz . Price: add $\$ 300$.

3702A demodulator display

Description

Display mode: two channcls are displased on a CRT. In most mensurements one channel is the reference channel. Guaranteed CRT sensitivities are $0.1 \mathrm{~dB} / \mathrm{cm}_{1} 0.25 \% / \mathrm{cm}$ and $0.33 \mathrm{nsec} / \mathrm{com}$. Signal channel is switched to display seven functions as follows:

Satting	Funotion Y Y	Calinration traces
Ext,	External	50 mv
I.F.	IF amplitude	0,1, 0,3,1 dB
B.B.	88 amplituje	1, 3, 10\%
Delay	Group delay	1,3,10 nsec
Spectrum	Spectrum	-
Ret. loss	Return loss	0.1, 0.3, 1 d8
Slave	Slaving	dB, \% or nsec

Specifications

Ext. Input (Y1): frequency 5 Hz to 80 kHz (3 dB) on YI GAIN: sensitivity 5 to $600 \mathrm{mV} / \mathrm{cm}$ (Y GAIN), input impedance $1 \mathrm{M} \Omega$ in parallel with $<50 \mathrm{pf}$, max. inpur 6 V peak-peak.

X phase shift: adjusts symmetry of recovered X-axis sweep.
IF range: 45 to 95 MHz at IF INPUT; sensitivity -10 dBn to $+12 \mathrm{dBm} ; 22 \mathrm{~dB}$ step atrenuator ($\pm 0.3 \mathrm{~dB}$) compensates for powers greater than -10 dBm ; retum loss 30 dB over $\pm 15 \mathrm{MHz}$ sweep, 28 dB over $\pm 25 \mathrm{MHz}$ sweep.

Automatic frequency control: $\pm 1 \mathrm{MFz}$ captive range at 70 MHz : 45 to 95 MLHz dynamic hold-in range; sweep rates at $45-85 \mathrm{~Hz}$ can be followed.

日B input: feeds detector and meter through 22 dB attenuator; basic sensitivity is -32 dBm , accuracy of power measurement $\pm 0.5 \mathrm{~dB}$; frequency response 80 kHz to 12 MHz .

BB output: baseband frequencies demodulated from IF; internally coupled to 3703 A for group delay measurements.

Demodulator: sensitivity $-16 \mathrm{dBrn} \pm 2 \mathrm{~dB} / 200 \mathrm{kHz} \mathrm{rms} ;$ frequency modulation up to 1 MHz , deviation up to 500 kHz rms is re. covered with distortion loss than $\pm 0.05 \%$.

Meter: center zero, calibrated -0.5 to +0.5 dB with 0.25 dB graduations; when set to read zero by IF ATTENUATOR or BB LEVEL or RETURN LOSS controls, the input power can be read off the control.

Return loss: direct-coupled rerum lass on display, gives return loss simultaneously with IF level, using the HP 15520A. Hybrid. Initial calibration is achieved with HP 15521 A 17 dB Standard Mismatch. using the RET. LOSS INPUT; display sensitivity can be calibrated to $1 \mathrm{~dB} / \mathrm{cm}$; frequency range 45 to 95 MHz , sensitivity -54 dBm , flatness $\pm 0.5 \mathrm{~dB}$.

Spectrium: display of fixed IF and sidebands, maximum display 67. 73 MHz spectrum sweep is $70 \pm 5 \mathrm{~Hz}$; minimum width is 1 MHz , with SPECTRUM WIDTH control.

Callbration: amplitude: $0.1,0.3,1.0 \mathrm{~dB}$ (at JF); $1,3,10 \%$ (at BB) selected by CALIBRATION control, accuracy $\pm 10 \%$; frequency: selected by MARKER OFFSET, on center marker at 70 $\mathrm{MHz}(\pm 0.01 \%)$ and two sliding markers up to 52 MHz separation; for accurate interpolation, the frequency is available on the rear panel at MLARKER OFFSET connector as a clipped sinewave, frequency 0.26 MHz , amplitude 1 V peak-peak minimum.

Price: $\$ 3750$ ($\$ 3400$ at factory in Scorland).

Optlons:

01: not assigned.
02: Siemens 2.5 mm Jarge connectors, 75Ω.
Price: add $\$ 100$.
03: Siemens 1.6 mm smal! connectors, 75Ω.
Price: add \$110.

3703A group delay detector

Description

Output (interna!ly connected to display channel of 3702A) is dc voltage proportional to instantaneous value of group delay on baseband frequencies of $83.3,250,500 \mathrm{kHz}$ and 3.50 or 4.50 MHz (Option 05).

Specifications

Group delay: maximum resolution at $500 \mathrm{kHz}: 0.1 \mathrm{nsec}, 250 \mathrm{kHz}$: 0.2 nsec, $83.3 \mathrm{kHz}: 0.6$ nsec. Resolution limits set by system noise. Above noise is obrained with back-to-back IF tests, 200 kHz rms deviation; minimum measureable phase difference is 0.01°.

Display: total of 80 nsec on Y1 channel, 40 nsec on Y2.
Calibration: 1, 3 or 10 nsec on display, accuracy $\pm 10 \%$.
Phase detector; mean-phase rracking between reference baseband of the 3703A and group delay baseband is achieved by means of a phase-lock loop. The display can be inverted with the NORMAL/ INVERT switch. INT/EXT switch gives internal baseband demodulated from IF (INT) in 3702A or requires baseband demodulated externally to be applied to BB INPUT.

Reference baseband: frequency, $83.3,250$ or 500 kHz , crystalderived, stability and aging same as 3701 A baseband.

Meter: indicates phase lock and correct phase detector input level.
Price: 5750 (5650 at factory in Scotland).

Options:

01 thru 04: not assigned.
05: modified to measure group delay on TV calor sub-carriers $3.50 / 4.50 \mathrm{MHz}$.
Price: add \$100.

General System Specifications

Connectors: all impedances are 75Ω BNC uniess otherwise stated.
Temperatures: operasing, $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
storage, $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Weights:	ne:		Shipping
	1b. (k		
3701A	31.5 (1		40 (18)
3702A	44 (20)		SS (25)
3703A	3 (1.4)		4 (1.8)
Power:	Voles	Hz	Wates
3701A	115/230 ($\pm 10 \%$	45.100	80
3702A	115/230 ($\pm 10 \%)$	45.100	100
3703A	3702A	3702A	3
Dimenslons:	ride (mm)	high (mm)	deep (mm)
3701A	163/4" (425)	67/8" (177)	183/8" (467)
3702A	$163 / 4$ " (425)	85/8"(221)	183/8" (467)
3703A	$33 / 8{ }^{\prime \prime}(22)$	81/4" (210)	105/8" (270)

Accessories furnished;	3701 A	3702 A	3703 A
15520A	-	1^{*}	-
15521 A	-	1^{*}	-
15522A	1^{*}	1^{*}	-
15524 A	1^{*}	1^{*}	-
15525A	1	2	-
PVCBox	-	$1 *$	-

[^29]
SIGNAL SOURCES

PULSE AND SQUARE WAVE GENERATORS

Pulse and square wave generators most often are used with an oscilloscope as the measuring device. Waveform shapes as seen by the oscilloscope, either at the output or at pertinent points within a system under test, provide both qualitative and quantitative evaluations of system or device performance.

Square waves or pulses

The fundamental difference between pulse and square wave generators concerns the signal duty cycle. Square wave generators have equai "on" and "off" periods, this equality being retained as the repetition frequency is varied. The duration of a pulse generator "on" period, on the other hand, is independent of pulse repetition rate. The duty cycle of a pulse generator can be made quite low so that these instruments are generally able to supply more porver during the "on" period than square wave genera. tors. The HP Model 214A, for instance, supplies up to 200 watts in its output puise.

Short pulses reduce power dissipation in the component or system under test. For example, measurements of transistor gain are made with pulses short enough to prevent junction heating and the consequent effect of heat on transistor gain.

Square wave generators are used where the low-frequency characteristics of a system are important, such as in the testing of audio systems. Square waves also are preferable to short pulses if the transient response of a system requires some time to settle down,

Pulse gemerators

In the selection of a pulse generator, the quality of the output pulse is of primary importance. High quality test

Figure 1. Carafully controlled pulse shapes insure accurate measurements.
pulses insure that degradation of the displayed pulse may be attributed to the test circuit alone.

The pertinent characteristics of a test pulse, shown in Figure 2, are controlled and specified accurately in HP pulse gen. erators. Rise and fall times should be
significantly faster than the circuits or systems to be tested. Variable rise time and fall time, available in KP 1900 pulse system, HP Model 8002A, and HP Model 8005A, are useful for testing over a wider range of operating conditions.

Any overshoot, ringing and sag in the test pulse should be known, so as not to be confused with similar phenomena caused by the rest circuit.

The range of pulse width control should be broad enough to fully explore the range of operation of a circuit. Nar. row pulse widths are useful in determining the minimum trigger energy required by some circuits.

Maximum pulse amplitude is of prime concern if appreciable input power is required by the tested circuit, such as a magnetic core memory. At the same time. the attenuation range should be broad enough to prevent overdriving the test circuits, as well as to simulate actual circuit operating conditions.

The range of pulse repetition rates is of concern if the cested circuits can oper. ate only within a certain range of pulse rates, or if a variation in the rate is needed. The HP Model 216A is capable of rep rates to 100 MHz for testing fast circuits and has a pulse burst feature which allows trains of pulses rather than a continuous output to be used to check systems more thoroughly.

Triggering

The trigger requirements for synchronizing a pulse generator should be evaluated in light of the triggers available in anticipated measurement set-ups. Most Hewletr-Packard pulse generators have versatile trigger circuits similar to oscilloscopes. These circuits synchronize on most waveforms of more than 1 V amp. Litude.

Hewletr-Packard pulse generators also supply fast rise output triggers for operation of external equipment. The output triggers may be timed to occur either before or after the main output pulse.

Source ímpedance

Generator source impedance is an important consideration in fast pulse systems. This is because a generator which has a source impedance matched to the connecting cable will absorb reflections resulting from impedance mismatches in the external system. Without this match, tefections would be re-reflected by the generator, resulting in spurious pulses or perturbations on the main pulse.

DC coupling of the output circuit is necessary when retention of de bias levels in the test circuit is desired in spite of variations in pulse width, pulse ampli. tude or repetition rate.

Applications of pulse and square wave generators

Pulse generators with fast rise times are widely used in the development of digital circuitry. Teamed with a suitably fast oscilloscope, these generators enable evaluation of transistor and diode switch. ing times.

Variable rise time and fall time pulses are invaluable for testing devices whose output changes with rise time and fall (ime, such as magnetic memories. Variable transition time pulses are useful in checking logic circuitry where the input signal characteristics must be carefully specified.

Pulse generators are used as modulasors for klystrons and other rf sources to obtain high peak power while main. taining low average power.

figura 2. Test pulse description in terms of primary characteriatics.

Pulse generators also are used for impulse testing. A very short pulse is rich in harmonic frequency components, so that impulse testing amounts to simultaneous frequency response testing of components or systems.

A relatively new application of fast pulse instruments is the testing of transmission lines. Very fast pulse generators (HP Models 213B, 215 A and $1105 \mathrm{~A} /$ 1106A) used with fast oscilloscopes (HP Models 1430A or 1432A) also can measure the stray inductances and capacitances of components.
Tesrs of linear systems with pulse or square wave generators and oscilloscopes

PULSE GENERATOR SELECTION CHART

SIGNAL SOURCES
are dynamic tests which quickly analyze system performance.

Hewlett-Packard designs pulse generators with the fast rise times (fixed or

The double pulse is useful for testing memory cores. counter circults and other applicatlans that require a double pulse at a low duty cycle.

Pulse bursts are used to tesi many typss of logle circults.
variable), matched source impedance, fiexible pulse width and amplitude conrrol, and versatile riggering capabilities required by a wide range of measure.

Since the impulse has a wide llat frequency spectrum it is useful in oblaining frequencydomain information.

Variable rise and fall times ald checks over wide range of operating conditions.
ments. Particular attention has been paid to the quality of the output pulse, with all aspects of pulse shape carefully controlled and specified in detail.

Fast rise time pulses are used as standerds to check the rise time of oscilloscogas, ampll. fiors, and components. Fast step is also used in Time Domain Reflectomeiry.

The square wave is useful in amplifier testing and callbration, and attenustor checking.

Type	Square Wave			Fant Risa Pulce			Qerieral Puppose Pulst								
Model No.	211A	2118	$\begin{aligned} & 220 \mathrm{~A} \\ & 221 \mathrm{~A} \end{aligned}$	213B	$\begin{aligned} & 1105 \mathrm{~A} \\ & 1106 \mathrm{~A} \end{aligned}$	$\begin{gathered} 1105 \mathrm{~A} \\ 1108 \mathrm{~A} \end{gathered}$	2144	216A	218A	222 A	8002A	8003A	8004A	8005A	1900
Output impedance (ohms)	75/600	50/600	50	50	50	50	50	50	50	50	50	50	50	50	50/5k
	$\begin{aligned} & -3.5 / \\ & -0 . \end{aligned}$	$\begin{aligned} & -51 \\ & -30 \end{aligned}$	$\begin{aligned} & -5 / \\ & +5 \end{aligned}$												

Rise time (ns)	20/100	5/70	10	0.1	0.02	0,06	15	1	2.5	4	$\underset{2 \mathrm{~s}}{\substack{10 \mathrm{~ns}-\\ \hline}}$	5	1	$\left\lvert\, \begin{gathered} 10 \mathrm{~ns}- \\ 2 \mathrm{~s} \end{gathered}\right.$	$\begin{aligned} & 7 \mathrm{~ns}- \\ & 10 \mathrm{~ms} \end{aligned}$
Max rep rate (MHz)	1	10/1	10	0.1	0.1	0.1	1	1	100	10	10	10	10	10	25
Pulse width	sa	59	sq	fixed	fixed	fixed	var	var	vas	var	var	var	var	var	var
Pulse delay							var	vat	fixed	var	fixed	fixed	var	var	var
Variable rise and fatl											-			-	-
Double pulse							-						-		-
Internal gating									-						
External gating							-	-	-	-	-	-	-	-	-
Programmable												-			-
Price	$\$ 400$	$\$ 450$	\$195	\$250	\$750	$\$ 375$	\$875	\$1875	\$1775	\$690	5700	\$470	on rea	on rea	\$2750
Page no.	349	348	349	350	350	350	352	353	354	355	344	344	386	346	356

The Hewlett-Packard 8002A generates pulses with variable rise and fall times over an extremely wide ange of repetition rates. These features enable you to rest circuits under actual operating conditions rather than conditions dictated by the pulse generator itself. Indeed, in the 8002A you have a high-speed function generator capable of deliver. ing triangular, sawtooth, and trapezoidal shapes as well as pulses and square waves.

Either positive or negative output signals can be selected, giving the pulse generator another degree of flexibility. In addition, the source impedance is a constant 50Ω for minimum reflections in matched systems. In such systems output amplitude is continuously adjustable from 0.02 to 5 volts with a step attenuator and vernier control. When greater amplitude is required, it can be doubled by switching out the internal 50Ω terminating resistor (the source impedance then becomes about 300Ω). In either case the ourput is protected against damage from a short circuit.

The broad repetition range of the 8002 A makes it well suited for driving slow as well as fast circuits. And when the pulses must be synchronized with external signals, the generator can be triggered with sine waves or pulses of either polarity. The 8002 A also generates a trigger of its own. This trigger has an amplitude of at least 2 volts and precedes the output pulse by 180 ns . This delay is essential for viewing the pulses on most sampling oscilloscopes. Should this delay be excessive, it can be reduced to about 35 ns by switching out the internal delay line.

A synchronous gating mode is also available. In this mode
the generator is "on" for the duration of the gating signal, producing signals with the repetition rate, rise and fall times, etc. selected on the front panel. The first pulse is coincident with the start of the gate; however, the final pulse is always completed even if the gating signal is removed during the time the pulse is on. This mode of operation is extremely useful for testing logic and other circuits requiring pulse trains or bursts.

The 8003 A is a highly Alexible, general-purpose pulse generator. Except for its fixed rise and fall time of 5 ns , its characteristics are similar to those of the 8002A. The 8003A is well suited for testing analog devices such as wide-band amplifers, fiters, and oscilloscopes. Its ability to generate pulses as narrow as 30 ns at repetition rates up to 10 MHz makes it ideal for fast switching applications.

The combination of fast rise time and long pulse duration means that systems having very broad frequency characteristics also can be tested by these generators. The maximum duty cycle is greater than 90% over most of the repetition range.

Remote programming of repetition rate, pulse width, and amplitude is offered as an option for the 8003 A . Contact closure programs the repetition rate, ext. triggering, and pulse width while resistive changes program the vernier adjustments for reperition rate, pulse width, and amplitude. Remote programming makes the 8003A suitable for use in zutomatic and semi-automatic test systems, saving both time and manpower.

Figure 1. Typical Waveforms produced by the 8002A. Variable Rise and Fall Time Pulse Generator.

Specifications

Source impedance:

8002A: $50 \Omega \pm 10 \%$ shunted by typically 20 pF at any output voltage.
8003A: $50 \Omega \pm 3 \%$ shunted by typically 20 pF at any output voltage.

Pulse shape: (measured at 5 V across 50Ω).

Rise and fall time:

B002A: 10 ns to $2 \mathrm{~s}, 6$ ranges, ranges are common for rise and fall times, two verniers for independent control of rise and fall times.
8003A: <5 ns.
Overshoot and ringing: $<5 \%$ of pulse amplitude.
Preshoot: $<5 \%$ of pulse amplitude.
Linearity:
8002A: For transition time >20 ns, maximum deviation from a straight line between the 10 and 90% points is less than 4% of pulse amplitude.

Maximum output: 5 V across $50 \Omega, 10 \mathrm{~V}$ across an open circuit. Output circuit protected, cannot be damaged by shorting. With internal load disconnected (switch provided), 10 V across 50Ω (rise and lall time <7 ns for 8003A).

Attenuator: provides 7 steps from 0.05 V to 5 V in a $1,2.5,5$ sequence (positive and negative output can be set independently on 8003A). Vernier provides continuous adjustmenc between ranges.

Polarity:

8002A: positive or negative, selectable.
8003A: positive and negative simultaneously within 5 ns.

Pulse width

Range: continuously variable from 30 ns to 3 s in 5 ranges. Maximum duty cycle: $>90 \%$ from $0.3 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$. $>50 \%$ from $1 \mathrm{MHz} \cdot 10 \mathrm{MHz}$.

Width jutter < 0.1% of pulse width at any width setting.

Delay:

8002A: approximately 180 ns fixed delay between trigger and pulse. Internal switch permits removal of delay line, reducing delay to about 35 ns .
8003A: 150 ns fixed delay between Trigger Output and both Pulse Outputs. Slide switch pernits switching our the 140 ns delay line.

Internal

Repetition rate: continuously variable from 0.3 Hz to 10 MHz in 5 ranges.
Period jitter: 0.1% of period at any repetition rate setting.
Manual: pushbutton Eor single pulse.

Triggering

Trigger input: dc coupled. Sine waves, or pulses of either positive or negative polarity, up to 10 MHz .
Sensitivity: sine waves, 2 V P-p minimum.
External putses: at least 1 V , and at least 15 ns wide.
External trigger delay: approximately 35 ns between lead. ing edge of external input pulse and leading edge of trigger output pulse.
Input impedance: approximately $1 \mathrm{k} \Omega$.
Trigger output pulse (suitable for triggering another Model 8002 A or 8003A).
Width: 15 ns ± 5 ns at 50% amplitude points.
Amplitude: $>2 \mathrm{~V}$ across 50Ω.
Polarity: positive.
Synchronous gating: gating signal turns generator "on"; pulse repetition rate, rise and fall time, amplitude, polarity, and width determined by panel control settings; first pulse is coincident with the leading edge of the gate, last pulse is completed even if gate ends during the pulse.
Minimum gating signal: -2 V .
Maximum input: -20 V .
Input impedance: approximately $1 \mathrm{k} \Omega$, dc-coupled.
Power: 115 V or $230 \mathrm{~V}+10 \%,-15 \%+10 \%, 15 \%, 50$ $\mathrm{Hz}-400 \mathrm{~Hz}, 40 \mathrm{~W}(8002 \mathrm{~A}), 30 \mathrm{~W}(8003 \mathrm{~A})$.
Dimensions: $6-17 / 32^{\prime \prime}$ high, $7-25 / 32^{\prime \prime}$ wide, $11^{\prime \prime}$ deep (166 $\times 190 \times 279 \mathrm{~mm}$).
Weight: net $9 \mathrm{lbs}(4 \mathrm{~kg}$); shipping $11 \mathrm{lbs}(5 \mathrm{~kg})$.
Price:
Model 8002A, $\$ 700$ ($\$ 620$ at factory in West Germany). Model 8003A, $\$ 470$ ($\$ 420$ at factory in West Germany).

Option 01 (8003A only): remote programming of repetition rate, pulse width, and amplitude. Repetition rate and pulse width programmed by contact closure to ground. Rep rate, pulse width, and amplitude verniers programmed by resistance changes. The amplitude switch is not programmable. Add \$70.00.

[^30]PULSE GENERATOR
Complete control of output waveforms Models 8005A, 8004A

8005A

8005A Pulse Generator

The Model 8005A combines the capabilities of several pulse generators to give you virtually complete control of the output waveform. Rise and fall times are adjustable from less than 10 ns to 2 s with a ratio of rise to fall or fall to rise of up to $30: 1$. Both positive and negative pulses are available simultaneously with a variable delay with respect to the synchconizing trigger. The amplitude of each pulse signal is independently and continuously adjustable from 5 V to less than 0.02 V into 50 ohms. Repetition rate and puise width are variable over wide ranges, and a double-pulse mode effectively increases the maximum repetition rate to 20 MHz . Where non-simultaneous pulses are desired, the delay of either pulse can be fixed while that of the other remains variable. Thus the positive pulse can be delayed from 100 ns to 3 s with respect to the negative pulse or vice versa.

To permit broader utilization of the non-simultaneous pulses, the 8005 A permits the two pulse signals to be combined into a single complex signal. Versatile gating possibilities further enhances the utility of the 8005 A . Synchronous gating effectively turns the instrument on and off, permitting the generation of pulse trains of various lengths. In the asynchronous gating mode, on the other hand, the repetition rate generator continues to run, so the trigger output is always available. This trigger can then synchronize external gating
instruments (e,g, a word generator) which in turn can gate the output pulses on or off. Complex pulse waveforms can be generated in this manner. Signals of even greater complexity can be generated using the A/B gating mode. In this mode the positive and negative puises are gated independently. Figure 1 illustrates some of the waveshapes and pulse combinations available from the 8005 A .

The pulse generator also includes a de offset that is continuously adjustable from +2 to -2 V . When the output pulses are used separately, the offset of each can be adjusted independently. For combined operation, a single control adjusts the common baseline offset.

Specifications

Pulse characteristics (50n source and load impedance).
Rise and fall time: separate outpurs: <10 ns to 2 s in six ranges; ranges are common for rise and fall rimes: independent verniers provide separate control of rise and fall times within each range with a ratio of 1:30. Common outputs: <12 ns to 2 s .
Linearity: for transition time 20 ns , maximum deviation from a straight line between 10 and 90% points is 4% of pulse amplirude.
Overshoot and ringing: $<5 \%$ of pulse amplirude.
Preshoot: $<S \%$ of pulse amplitude.
Pulse width: 20 ns to 3 s in five ranges; vernier provides continuous adjustment between ranges.

Figure 1. (a) Separates outputs in double-pulse mode. (b) Combined and separate non-simultaneous outputs. (c) A/g gating of comblned and separate outputs.

Maximum duty cycle: $>90 \%$ for repetition rates from 0.3 Hz to $1 \mathrm{MHz} ;>50 \%$ from 1 to 10 MHz .
Width jitter: $<0.1 \%$ on any width setting.
Amplitude: 5 V maximum (10 V across an open circuit); seven-step attenuator zeduces output to 0.05 V in 5.2 .5 , 1 sequence; vernier provides continuous adjustment between steps and reduces minimum output to $<0.02 \mathrm{~V}$.
Output mode
Separate: positive and negative pulses available from separate connectors simultaneously or with either one delayed with respect to the other. Delay is variable.
Common: both pulses available from a common connector with either one delayed with respect to the other. Delay is variable.
Source impedance: sos $\pm 10 \%$ shunted by rpically 20 pF .
DC offset: $\pm 2 \mathrm{~V}$ across sos load: independent of attenuator and vernier settings; can be switched off.
Pulse dalay: 100 ns to 3 s with respect to trigger output; five ranges; vernier provides continuous adjustment between ranges.
Delay fitter: < 0.1% on any delay setring.
Repetition rate and trigger
Free running: repetition rate: 0.3 Hz to 10 MHz in five ranges: vernier provides continuous adjustment berween ranges. Period jitrec: $<0.1 \%$.
Double pulse: minimum pulse spacing of 90 ns allows maximum repetition rate of 20 MHz .
External triggering: repetition rate: 0 to 10 MHz ; can be
triggered with sine waves or pulses of either polarity.
Sensitivity: sine waves, 2 V pp; pulses, 1 V peak at least is ns wide; maximum input, $\pm 10 \mathrm{~V}$. Delay: approx 35 ns between trigger input and trigger output. Input impedance: approx $1 \mathrm{k} \Omega$, dc coupled.
Manual: pusbbutton for single pulse.
Trigger output: suitable for triggering another 8005 A . Amplitude: $>+2 \mathrm{~V}$ across 50Ω. Widtlı: is $\mathrm{ns} \pm \mathrm{s} \mathrm{ns}$.

Gating

Synchronous gating: gating signal turns pulse "on." Pulse reperition sare, rise and fall time, amplitude, polarity, and width determined by panel control settings; nirst pulse is coincideot with che leading edge of the gace, last pulse is normal even if gate ends during pulse.
Asynchronous gating: gating signal curns output pulse "on." Trigger output always available; last pulse ends with gate.
Gate A / B : independent gating signal for each pulse; last pulse ends with gate.
Gate input: at least -2 V.
input impedance: approx $1 \mathrm{k} \Omega$. de coupled.

General

Power: 115 or $230 \mathrm{~V},+10 \%,-15 \%, 50$ to $400 \mathrm{~Hz}, 85 \mathrm{~W}$. Welght: net $16 \mathrm{lb}(7 \mathrm{~kg})$; shipping $20 \mathrm{lb}(9 \mathrm{~kg})$.
Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ detp ($425 x$ $140 \times 336 \mathrm{~mm}$); hardware furnished for conversion to rack mount $19^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high. $113 / 4^{\prime \prime}$ derp behind panel ($483 \times 135 \times 298 \mathrm{~mm}$) .
Price: $\$ 1050$ ($\$ 925$ at factory in West Germany).

PULSE GENERATOR

Model 8004A

8004A Pulse Generator

The 8004 A generates pulses with extremely fast rise and fall times, typically less than 1 ns , yet provides a versatility seldom found in such generators. Pulse width is variable over a wide range. Minimum width is about 2.5 as at full pulse amplitude; however, pulse width can be reduced to zero with reduced amplitude. The variable pulse delay also can be reduced to zero. A double-pulse mode provides convenient test signals for logic and memory circuits. In addition, the doublepulse mode effectively doubles the maximum pulse repetition rate to 20 MHz . Synchronous and asynchronous garing enables the 8004 A to generate a wide variety of pulse trains and "words", and a de offset permits the pulse baseline level to be ser up to $\pm 2 \mathrm{~V}$ off ground independent of the setting of the pulse amplitude controls.

Specifications

Pulse characteristics ($\$ 00$ source and load impedance) Rise and fall time: <1.jns.
Overshoot and ringing: $<3 \%$ of pulse amplitude.
Preshoot: <s\% of pulse amplitude.
Corner rounding! occurs no sooner than 95% of pulse amplitude.
Amplitude: $s \mathrm{~V}$ maximum accoss 50Ω; seven-step attentsator reduces outpuc to 0.05 V in $5,2.5$, 1 sequence; vernier provides continuous adjustment between steps and reduces minimum output to $<0.02 \mathrm{~V}$. Output short-circuit proof.
Polarity: positive or negative, selectable.
Source Impedance: 50Ω shunted by cypically 10 pF .
DC offset: $\pm 2 \mathrm{~V}$ across son load; independent of attenuator and vernier sertings; can be switched of.
Pulse width: 0 to 1 ms is six ranges; vernier provides continuous adjustment between ranges.
Maximum duty cycle: $>s 0 \%$ from 100 Hz to 1 MHz ; $>\mathbf{2 5 \%}$ from 1 to 10 MHz .
Width |ifter: $<0.1 \%$ on any width serting.
Pulse position (with respect to trigget output): 0101 ms delay in 5 ranges; vernier provides continuous adjustment between ranges.
Delay IItter: $<0.1 \%$ on any delay selting.
Repetition rate and trigger same as 8005 A except:
Free running: reperition rate: 100 Hz to 10 MHz , five ranges.
External trlggering: delay: approx 125 ns between trigger input and trigger outpue.
Gating: same as 800 s extept no A/B gate.

General

Power: 115 or $230 \mathrm{~V},+10 \%,-15 \%, 5010400 \mathrm{~Hz}, 35 \mathrm{~W}$.
Weight: net $7 \mathrm{lb}(3,5 \mathrm{~kg})$; shipping $9 \mathrm{lb}(4,5 \mathrm{~kg})$.
Dimensions: $73 / 4$ " wide, $61 / 2^{\prime \prime}$ high, $11^{\prime \prime}$ deep from panel ($197 \times 165 \times 279 \mathrm{~mm}$).
Price: $\$ 720$ ($\$ 620$ at factory in West Germany)

Features

- All solid-state.
- 5 V across 50 ohms to $10 \mathrm{MHz}, 5 \mathrm{~ns}$ risetime.
- 30 V across 600 ohms to $1 \mathrm{MHz}, 70 \mathrm{~ns}$ risetime.
- Positive or negative trigger output.

Model 211 B Square Wave Generator

The Model 211B Square Wave Generator with fast risetime, undistorted squarewaves and a 10 MHz repetition rate is ideal for fast switching application. Two negative-going output pulses are available simultaneously, one from a 50 . ohm source with a 5 nanosecond risetime and falltime, the orher from a 600 -ohm source with a 70 nanosecond risetime and falltime. Phase difference between the two pulses is 180°.

DC coupling prevents baseline shift with rep rate changes. A true 50 ohm output impedance absorbs reffections from load mismatches.

A symmerry control varies the "on" time from 25% to 75% of the rep rate period and the rate jitter has been held to 0.2% of any rep rate period or symmerry setting. Synchro. nization on external signals is possible through an input trigger circuit. In addition to the outpur pulse, either a positive or negative trigger pulse is provided so external test equipment can be triggered without loading the circuit. The trigger pulse has an amplitude of 2 volts and coincides with the leading edge of the output pulse.

Specifications, Model 211B

Symmetry contral: variable from $25-75 \%$ duty cycle.
Polarity: negative.
Source: 50 ohms $\pm 3 \%$ shunted by approximately 15 pF .
Pulse Shape: (measured at 5 V into 50 ohms). Rise and fall times: less than 5 ns.
Amplitude:
Peak voltage: 5 V into 50 ohms, 10 V into an open circuit; output circuit protected, cannot be damaged by shorting.
Attenuator: 0.05 to 5 V , in a $1,2.5$, 5 sequence.
Vernier: prorides continuous adjustment between ranges.
600 ohm Source: 600 ohms $\pm 10 \%$.
Rise and fall times: less than 70 ns into 600 ohms, less than 140 ns into an open circuit; decreased amplitude setting will improve rise time.

Amplitude:

Peak voltage: at least 30 V into 600 ohms , at least 60 V into an open circuit.
Attenuator: provides continuous adjustment from full output to less than 0.3 V into 600 ohms.
Repetition rate and triggering
Internal:
Repetition rate:
50 ohm output: 1 Hz to $10 \mathrm{MHz}, 7$ ranges.
600 ohm output: 1 Hz to $1 \mathrm{MHz}, 6$ ranges.
Period jilter: less than 0.2% at any duty cycle and rep rate setting.
External:
Sync input: sine waves or positive pulses from 1 Hz to 10 MHz ; frequency of synchronizing signal must be $105-140 \%$ of dial setting.
Sensitivity: de coupled positive pulses, 2 V peak; sine waves, 4 V peak-to-peak.
input resistance: approximately 500 ohms .
Trigger output pulse: (suitable for synchronizing with another Model 211B).
Width: $10(\pm 5)$ ns at 50% points.
Amplitude: at least 2 V into 50 ohms .
Timing: coincident with leading edge of 50 ohm puise.
Polarity: positive or negative.
Power: 115 or $230 \mathrm{~V}+10 \%-15 \%$; 50 to $400 \mathrm{~Hz} ; 23 \mathrm{~W}$.
Dimenstons: $73 / 4{ }^{\prime \prime}$ wide, $61 / 8^{\prime \prime}$ high, $11^{\prime \prime}$ deep overall (190 $\times 155 \times 279 \mathrm{~mm}$).
Weight: net $9 \mathrm{fbs}(4 \mathrm{~kg}$); shipping 11 lbs (5 kg).
Price: HP Móodet 211B, $\$ 450$.

Model 211 A Square Wave Generator

The Model 211A Square Wave Generator is a versatile wide-range instrument particularly designed for testing video and audio amplifier performance, or for use as a trigger generator. It provides complete coverage of all frequencies from 1 Hz to 1 MHz , and has a rise time of 0.02 mic cosecond. There are two separately variable outputs-a 3.5 volt peak 75 -0hm impedance circuit for television measurements, and a 27 -volt peak 600 -ohm output for a high-level work. The generator may be operated free-running or externally synchronized.

Specifications, 211A

Frequency range: I Hz to 1 MHz , continuous coverage.
Low Impedance output: - 3.5 volts peak across 75 -ohm load; -7 volts open circuit, zero level clamped to chassis; rise time less than $0.02 \mu \mathrm{~s}$.
High impedance output: -27 volts peak across 600 -ohm load; - 55 volts open circuit, zero level clamped to chassis; rise time less than $0.1 \mu \mathrm{~s}$.
Relative phase: 180° phase difference between high. and low-impedance output signals.
Amplitude control: low impedance output, potentiometer and 60 dB attentator, rariable in 20 dB steps; high impedance output, potentiometer.
Frequency control: dial calibrated " 1 to 10 " and decade multiplier switch; six bands.
Symmetry control: allows exact square-wave balance.
Syne input: positive-going pulse or sine wave signal, mini. mum amplitude 5 volts peak.
Power: 115 or 230 volts $\pm 10 \%, 50$ to $60 \mathrm{~Hz}, 225$ watts.
Dimensions: cabinet: $93 / 4^{\prime \prime}$ wide, $151 / 4^{\prime \prime}$ high, $145 / 8^{\prime \prime}$ deep ($238 \times 388 \times 372 \mathrm{~mm}$); rack rount: $19^{\prime \prime}$ wide, $83 / 4^{\prime \prime}$ high, $133 / 8^{\prime \prime}$ deep behind panel ($483 \times 222 \times 340 \mathrm{~mm}$).
Weight: net $26 \mathrm{lbs}(11,7 \mathrm{~kg})$; shipping 29 lbs (13 kg) (cabinet); net $24 \mathrm{lbs}(10,8 \mathrm{~kg})$; shipping $35 \mathrm{lbs}(15,8$ kg) (rack mount).
Price: HP Model 211 A (cabinet) or HP Model 211 AR (rack mount). S $\$ 00$.

Specifications, 220A and 221A
Source impedance: 50 ohms.
Risetime: less than 15 ns .
Overshoot and ringing: less than 5% at 5 voles into 50 ohms.

Amplitude

Model 220A: continuously variable from 0 to -5 volts into 50 ohms.
Model 221A: continuously variable from 0 to $+s$ volts into 50 ohms.
Symmetry: variable from approximately 10% to 60%.
Repetlition rate
Ranges: from 1 Hz to 10 MHz (7 positions) in decade steps. Vernier: continuously variable between all ranges.
Frequency programming: -1.2 to -13 volts applied to external input will program the frequency over selected fre. quency range.
Weight: ner, $31 / 2 \mathrm{lb}(1,6 \mathrm{~kg}$); shipping. $41 / 2 \mathrm{lb}(2,0 \mathrm{~kg})$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 9 \mathrm{~W}$.
Dimensions: $51 / 8^{\prime \prime}$ wide, $3-7 / 16^{\prime \prime}$ high, $11 / 8^{\prime \prime}$ drep ($130 \times 87 \mathrm{x}$ 295 mm).
Price: Model 220A, \$195; Model 221A. $\$ 195$.

SIGNAL SOURCES

$\sqrt{117}$

PULSE GENERATORS

Fast rise pulsers
Models 1105A/1106A, 1105A/1108A, 213B

Model 1105A/1106A 20 ps Pulse Generator

The Model 1105A/1106A produces a pulse of 20 ps rise time, ideal for fast circuit testing or high resolution TDR. The pulser is made up of two parts: the Model 1105A Pulse Generator Supply and the Model 1106A Tunel Diode Mount. The Model 1106A may also be used with the Model 1104 A Countdown Supply to form an 18 GHz trigger countdown.

Specifications, Model 1105A/1106A

Output
Rise time: approximately 20 ps ; less than 35 ps observed with HP Model 1411A/1430A 28 ps Sampler and HP Model 909A 50Ω cernunation.
Overshoot: less than $\pm 5 \%$ as observed on Model 1411A/1430A wich Model 909A.
Droopt less chan 3% in first 100 ns .
Width: approximately $3 \mu \mathrm{~s}$
Amplitude: greater than +200 mV into 50 .
Output characteristics (Model 1106A):
Mechanical: precision 7 mm (Ampheaol APC-7) connectar.
Electrical: de resistance, $50 \Omega \pm 2 \%$; source refection, less than 10%, using a 40 ps TDR system; de offser voltage, approximaiely 0.1 V .
Triggering:
Amplitude: at least $\pm 0.5 \mathrm{~V}$ peak required.
Rise time: less than 20 ns required; jitter less than 15 ps when criggered by 1 ns rise time sync pulse from Model 1424A or 1425A Sampling Time Base sync pulse; fitter increased with slower trigger rise times.
Width: grenter than 2 ns.'
Maximum safe Input: 10 volts.
Input impedance: 200Ω, ac coupled through a 20 pF capacitor.
Repetition rate: 0 to 100 kHz ; free runs: approximately 100 kHz .
Accessories provided (with Model 1105A): one $6 . \mathrm{ft} 50 \Omega$ cable with male Type N connectors, HP Model 10132A.
Weight:
Model 1105A: net, 3 lbs (1,4) kg); shipping, 8 lbs ($3,6 \mathrm{~kg}$).
Model 1106A: net, 1 lb ($0,5 \mathrm{~kg}$); stipping, $3 \mathrm{lbs}(1,4 \mathrm{~kg})$.
Price: HP Model 1105A, $\$ 200$; HP Model 1106A, $\$ 550$.

The Model $1105 A / 1108 A$ is similar to the $1105 A / 1106 A$ in that the 60 ps rise time pulse can be used for circuit testing and TDR. When used with the 1104A Countdown Supply the 1108A is a 10 GH_{2} crigger countdown.

Specificałions, Model 1105A/1108A
Output
Rise time: less than 60 ps

Overshoot: less than $\pm 5 \%$
Droop: less than 3% in first 100 ns
Width: approximately $3 \mu \mathrm{~s}$
Amplitude: greater than plus 200 mv inco 50Ω.
Output characteristics (1108A):
Mechanlcal: GR- 874 connector
Electrical: dc resistance, $50 \Omega \pm 2 \%$. Source refection less than 10%, using a 40 ps TDR de system. DC offset voleageapproximately 0.1 V .
Triggering:
Amplitude: $\pm 0.5 \mathrm{~V}$ peak minimum
Rise tlme: less than 20 ns required. Jitter less than is ps when triggered by 1 ns rise time sync pulse from 1424A or 1425A
Sampling Time Base. Slow risetimes produce more jitter.
Width: greater than 2 ns.
Maximum safe Input: 10 volts.
Ingut impedance: 200Ω, ac coupled ihrough 20 pF .
Repetition rate: 0 to 100 kHz ; free runs at approximately 100 kHz , nominal.
Accessories provided (with Model 1105A): one 6 -ft. 90Ω cable
with male Type N connectors, HP Model No. 10132A.

Weight:

1105A: net, $3 \mathrm{lbs}(1,4 \mathrm{~kg})$. Shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
1108A: net, 1 lb (0.5 kg). Shipping, $3 \mathrm{lbs}(1,4 \mathrm{~kg})$.
Price:
1105A, $\$ 200$.
1108A. $\$ 175$.

The outstanding performance of the Model 213 B makes it conrenient for many small amplitude pulse test applications ranging from circuit rise time testing and bandwidth dererminations to the measurement of transistor switching speeds.

Specifications, Model 213B

Output
Rise time: less than 100 ps .
Top droop: less than 2% in first 100 ns following the rise.
Wldth: approximately $2 \mu \mathrm{~s}$.
Amplitude: greater than 175 mV into $50 \Omega, 350 \mathrm{mV}$ open circuit, either polarity.
Source: son.
Jitter: less than 20 ps when triggered with the sync pulse from a Model 1424A or 1425A.
Repetition rate: free runs at a rate greater than 100 kHz , or may be triggered.
Trigger input
Amplltude: 0.5 vole peak, either polarity.
Rise time: 20 ns or faster.
Width: ar least 2 ns.
Maximum current: 200 mA peak.
Impedance: 200Ω for signals less than 0.75 vole peak; limicing lowers impedance to larger signals.
Repetition rate: 0 to 100 kHz .

General

Power: 11s or $240 \mathrm{~V} \pm 10 \%, 50$ to 1000 Hz , approximately I W.
Dimensions: $11 / 2^{\prime \prime}$ high, $51 / \mathrm{g}^{\prime \prime}$ wide, $\mathrm{S}^{\prime \prime}$ deep ($38 \times 130 \times 127$ mm).
Weight: net $2 \mathrm{lbs}(0,9 \mathrm{~kg})$; shipping, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$.
Price: HP Model 213B, $\$ 250$.

DIGITAL DELAY GENERATOR Digitally controlled time intervals, pulses Model 218AR

 SIGNAL SOURCESThe HP 218AR Digital Delay Generator is designed to generate precise time intervals and single, double or superimposed pulses. It is useful as a general-purpose laboratory pulse generator and because of its versatile plug-in pulse generators, it often can take the place of several specialpurpose instruments.

The 218AR consists of (I) a pulsed crystal oscillator which is started in known phase by the initial trigger (start) pulse, eliminating the ± 1 count error; (2) a dusl-preset digital counter which counts the crystal or externally applied frequency, and operates (3) two preset gates which pass the selected pulses.

Plug-ins include the 219A Dual Trigger Unit to supply
trigger pulses for controlling auxiliary equipment, \$200; the 219B Dual Pulse Unit to deliver fast-rise-time, highpower pulses that are digitally delayed, $\$ 650$; and the 219 C Digital Pulse Duration Unit, which produces a high-power output pulse whose delay and duration may be digitally controlled. $\$ 500$. Outpur puises of the 219 A are identicai to the sync output of the 218 AR . The 219 B pulses are individually adjustable, 0 to $\pm 50 \mathrm{~V}$ peak open circuits from a 50Ω source. Pulses from the 219 C are 90 V peak (or more), open circuit, from a 500Ω source or adjustable from 0 to is V peak from a 90Ω source. The positive excursion of the pulses is clamped to ground, and both positive- and nega-tive-going puises are available simultaneously.

Specifications
 (Plug-in necessary to operate)

Time interval range: (T_{0} to T_{1} and T_{0} to T_{2}) 1 to 10,000 $\mu s ;$ accuracy $\pm 0.1 \mu 5 \pm 0.001 \%$ of time interval selected.
Digital adjustment: 1 to $9999 \mu \mathrm{~s}$ in $1 \mu \mathrm{~s}$ steps.
Interpolation: continuously adjustabie; adds 0 to $1 \mu s$ to digital setting.
Input trigger: internal: 10 Hz to $10 \mathrm{kHz}, 3$ decade ranges; external: sine wave, 10 to $100 \mathrm{~Hz}, 5$ to 40 V rms, 100 Hz to $10 \mathrm{kHz}, 2$ to 40 V rms; pulse, 0 to 10 kHz , positive or negative, 2 to 40 V peak; for trigger rise time of 0.05 μs or less, delay between external trigger and T_{0} is less than $0.5 \mu \mathrm{~s}$; manual: pushbutton operation initiates single pulse cycle.
Jitter: $0.02 \mu \mathrm{~s}$ or less.
Recovery time: $70 \mu \mathrm{~s}$ or 10% of selected interval, which. ever is greater.
Sync output: positive pulse, 50 to 70 V peak, open circuit,
0.1μ rise time; width more than $1.5 \mu s$; available at T_{0}, T_{1}, or T_{z} as selected by' a switch.
1 MHz output: 1 MHz positive pulses (1 V from 500Ω source) provide timing comb synchronized to stact pulses; available at panel connector for duration of longer delay when counting internal 1 MHz oscillator.
External counting: external sine waves, 100 Hz to $1 \mathrm{MHz}, 2$ V rms minimum; 10 to $100 \mathrm{~Hz}, 5 \mathrm{~V}$ ims minimum, and positive pulses, periodic or random, 0 to $1 \mathrm{MHz}, 2 \mathrm{~V}$ peak, can be counted instead of internal standard; time interval range becomes 3 to 9999 periods in 1 -period steps, and accuracy is $\pm 0.1 \mu s \pm 1$ period.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ to $60 \mathrm{~Hz}, 555 \mathrm{~W}$.
Dimensions: $14^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $213 / 4^{\prime \prime}$ deep behind panel ($355 \times 483 \times 553 \mathrm{~mm}$).
Weight: net 74 Jbs (34 kg) ; shipping $104 \mathrm{lbs}(47 \mathrm{~kg}$).
Price: HP 218AR, $\$ 2600.00$ (requires HP 219A,B,C Series plug.in units).

PULSE GENERATOR
 Delivers 200 watts pulse power
 Model 214A

The HP Model 214A features 200 watts puise power, controlled pulse shape, external trigger slope and level selection, and a 50 -ohm source impedance for general. purpose lab and production measurements.

The 200-watt (2 amps peak) pulse power is particularly suited for testing curcent-driven devices such as magnetic memory cores, as well as high-power modulators. At output levels below 50 volts, the pulse generator has a matched source impedance of 50 ohms, eliminating error-producing reflections. The pulse characteristics are carefully controlled, and pulse rate, width and delay jitter are kept to a minimum
to insure accurate, dependable test results.
The 214 A offers an extsemely wide range of trigger control for syncing on external signals. In addition, slope and level may be selected so that triggering occurs at a given point on the trigger waveform. Also provided is a variable delay or advance trigger output signal for use in synchronizing external equipment.

The pulse generator may be gated to provide bursts of pulses. This feature is especially useful for computer logic measurements. Also, a double pulse feature is provided for pulse cesolution tests of amplifiers and memory cores.

$214 A$

Specifications

Output pulse

Source resistance: 50 ohms on the 50 V and lower ranges: approximately 1500 ohms on the 100 V range.

Pulse shape:

Rise and fall time: <13 ns on the 20 V and lower ranges and the -50 V range, <15 ns on the +50 V range; typically <10 ns with the vernier ser for maximum attenuation, and typically 15 ns on 100 V range.
Pulse amplitude: 100 V into 50 ohnms. An attenuator provides 0.2 to 100 V in a $1,2,5,10$ sequence (9 ranges) ; vernier reduces output of 0.2 V setting to 80 mV and provides continuous adjustment between ranges.
Polarity: positive or negative.
Overshoot: $<5 \%$, both leading and trailing edges.*
Pulse 10p rariations: <S\%.
Droop: $<6 \%$.
Preshoor: $<2 \%$.
Pulse widths: 50 ns to 10 ms in 5 decade ranges; continuously adjustable vernier.
Width jitter: $<0.05 \%$ of pulse width +1 asec.
Pulse position: 0 to 10 ms adrance or delay with respect to trigger output (s decade ranges) continuously adjustable vernier.
Position jitter: $<0.05 \%$ of advance or delay setting +1 ns (berween trigger pulse and oupput pulse).

Repetition rate and trigger

Internal
Repetition rate: 10 Hz to 1 MHz (s ranges), continuously ad. justable vernier.
Rate iitter: $<0.5 \%$ of the period.
Manual: pushbutton single pulse, 2 Hz maximum rate.

External

Repeticion race: dc to 1 MHz .
Sensitivity: <0.5 V peak.
Slope: positive or negative.
Level: adiustable from - 40 V io +40 V
Delay: delay between input trigger and leading edge of puise out is approx. 250 ns in Pulse Adrance mode (approx. 420 ns minimum in Pulse Delay mode).
External gating: +8 V signal gares pulse generator on; maximum input, 40 V peak.

Double pulse

Minimum spacing: 1μ s on the 0.05 to 1μ s pulse widih range and 25% of upper limit of width range for all other ranges.

Trigger output

Amplitude: $>10 \mathrm{~V}$ open cireuit.
Source resistance: approximately 50 ohms.
W'idth: $0.05 \mu_{s}$ nominal.
Polarity: positive or negative.

General

Maximum duty cycle: 10% on 100 and 50 V ranges; 25% on 20 V range; 50% on 10 V and lower ranges.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ to $60 \mathrm{~Hz}, 325 \mathrm{~W}$.
Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep overall ($425 \times$ $184 \times 466 \mathrm{~mm}$) ; bardware furnished for quick conversion to $7^{\prime \prime} \times 19^{\prime \prime}$ rack mount, $163 / 8$ " deep behind panel ($178 \times 483 x$ 416 mm).
Weight: net $35 \mathrm{lbs}(15,8 \mathrm{~kg})$; shipping $41 \mathrm{lbs}(18,5 \mathrm{~kg})$.
Price: HP Model 214A, $\$ 875$.
-Measured on a 50 MHz oscilloscope

PULSE GENERATOR
 Controlled, fully specified output pulses

SIGNAL SOURCES

The Model 215A Pulse Generator combines in one compact unit the many capabilities desired for fast pulse testing. The fast rise and fall time and extremely low pulse jitter make the Model 215A particularly useful in measuring transition storage times of semiconductors, logic circuits and thin film memory units.

The output pulse of the Model 215A is carefully controlled to approximate an ideal pulse shape and is specified in every respect for accurate, dependable measurements. One nano-
second rise and fall time pulses of either polacity with nearly an ideal pulse shape, combined with calibrated pulse width and delay controls, adjustable pulse amplitude, variable pulse rate to 1 MHz and a true 50 -ohm source impedance provide maximum measurement capabilities.

The true 50 -ohm source impedance insures clean output pulses, regardless of the load impedance, since any reflection from the circuit under test will be absorbed by the 50 -ohm generator impedance.

Specifications

Source Impedance: 50 ohms $\pm 3 \% ; 3 \%$ maximun reRection when driven by a pulse with 1 ns rise time from an extemal 50 -ohm sysiem.
Leading edge only
Rise time: <1 nsec (101090% points).
Overshoot and ringing: $< \pm 3 \%$ of pulse amplitude.
Corner rounding: occurs no sooner than 95% of pulse amplitude.
Time to achicve flat rop: <6 nsec.
Tralling edge only
Fall time: <1 ns (10 to 90\% points).
Overshoot: < $<3 \%$.
Rounding: occurs no sooner than 95% of fall.
Time to setcle within 2% of baseline: 202025 ns , waries with width scting.
Basellne shlft: $<0.1 \%$ under all conditions.
Preshoot: <1\%.
Perturbations on flat top: $<2 \%$ of pulse amplitude.
Peak voltage: >10 volts into 50 ohms: >20 voles open circuit.
Polarlty: positive or negative.
Attenuator: 0 to 12 dB in 1 dB steps, absolure accuracy within $\pm 0.1 \mathrm{~dB}$.
Pulse width (between 50% points): continuously adjustable, to 100 ns ; dial accuracy within $\pm 5 \% \pm 3 \mathrm{~ns}$: width jitter less than 30 ps.
External bias; up $10 \pm 100 \mathrm{~mA}(\pm 5 \mathrm{~V}$ dc) may be safely applied to the output; at 0 dB arkenuator sering, up to $10 \mathrm{~mA}(0.5 \mathrm{~V} \mathrm{dc})$ may be applied withoue signifant change in pulse shape (5% droop). increasing to 40 mA at 12 dB ; in most cases, adjusting the front-panel pulse-shape controls will restore original pulse shape.

Repetition rate sources

Incernal repecition rate: $<100 \mathrm{~Hz}$ to $>1 \mathrm{MHz}$ in 4 ranges, con. tinuously variable between ranges; period jitcer $<0.3 \%$ of one period.
Manua): pushbutton single pulse.
Trigger timing: adjustable from 10 ns delay to 140 ns adrance with respect 10 leading edge of output pulse; dial accuracy within $\pm 10 \% \pm 5$ ns; jiker < 50 ps.

External trlggering: as coupled, sine waves from 10 Hz io 1 MHz ; pulses from 0 to 1 MHz , either positive or negative slope.
Trigger level: external trigger level continuously variable, from approximately +8 to -8 volts.
Sensitivity: 1 Vpeak to peak min.; external pulses must be at least 30 ns wide; max. input 50 V peak. 0.5 W max. average power.
Input resistaoce: approx. 50 ohms or High Z available by frontpanel switch; High Z is approx. $100 \mathrm{k} \Omega$ for negative slope secting approx. $5 \mathrm{k} \Omega$ for positive slope setting
Coundowa: counts down from frequencies to $100 \mathrm{MHz}, 2 \mathrm{~V}$ rms amplitude; resuleing pulse repecion rate is alorays $<1.3 \mathrm{MHz}$: jitter is $<10 \%$ of one period of the triggerieg signal.
Extemal trigger delay: approximately 250 ns between leading edge of arigger pulse (2 voli step, 2 ns rise time into 50 ohms) and leading edge of outpur base: < 50 ps jiucer.
External gating: gates on with a +1 volt pulse; maximum input 30 V peak, 20 V mms .
Trigger output pulses
Widih: 50 ns, nominal.
Amplitude: >1 volt peak into 50 ohms.
Rise lime: <6ns.
Polarity: positive or aegacive
Power: 115 or 230 vols $\pm 10 \%$, 50 to $60 \mathrm{~Hz}, 60 \mathrm{WV}$.
Dlmensions: $51 / 2^{\prime \prime}$ high. $163 / 4 "$ wide, $183 / 3^{\prime \prime}$ deep ($175 \times 425 \times 466$ mm) ; hardware furnisned for quick conversion to $51 / 4^{\prime \prime} \times 19^{\prime \prime}$ rack mount, $163 / \mathrm{s}^{\prime \prime}$ decp behind panel ($134 \times 483 \times 416 \mathrm{~mm}$).
Weight: net 34 lbs ($15,3 \mathrm{~kg}$) : shipping $41 \mathrm{lbs}(18,3 \mathrm{~kg})$.
Accessories furnished: Model 10120 A cable, 3 feer, BNC.to-BNC, 50 ohms ± 0.5 ohn.

Accessorles available; Model 10122A cable, 3 reet, BNC.to-Type N. 50 ohms $\doteqdot 0.5$ ohm, S 10 : Nodel 908A, 50.0 hm Coaxial Terrai. nation, $\$ 35$; Model 10451 A Mulcipulser generates pulse bursis to simulate is to 200 MHz rep rale, $\$ 150$: Model 10240A Blocking Capacitor, $0.1 \mu \mathrm{~F}$, isolates Model 215A from up to $200 \mathrm{~V} \mathrm{dc}, \$ 70$.
Prlce: HP Nodel 215A, \$1875.

Fast-rise 100 MHz pulses

Model 216A

The Model 216 A offers pulse repetition rates up to 100 MHz for testing fast circuits, yet retains a nearly ideal pulse shape with 2.5 ns rise time for accurate, dependable measurements. In addition, bursts of pulses may be produced internally to sim. ulate pulse trains for logic circuit testing.

Pulse height is continuously variable, allowing exact pulse amplitudes to be selected for precise testing. The de-coupled output eliminates baseline shift with changes in rep rate, and the 50.0 im output impedance prevents multiple reflections, insuring clean, easy-to-interprer waveforms.

Specifications

Source impedance: 50 ohms, $\pm 3 \%$, shunted by approximately 10 pF at any output up to is V .

Leading edge only (at 10 V output into 50 -ohm load). Rlse time: < 2.5 ns.
Overshoot and ringing: $\pm 4 \% \mathrm{p} \cdot \mathrm{p}$ of pulse amplitude.
Corner rounding: occurs no sooner than 96% of pulse amplitude.
Time to achleve flat top: <20 ns.
Preshoot: <2\%.
Trailing edge only (at 10 V output into 50 -ohm load).
Fall time: <2.5 ns.
Overshoot: $<4 \%$.
Corner rounding: occurs no sooner than 96% of fall,
Time to sertle within 2% of base line: < 20 ns.
Preshoot: <s\%.
Perturbations on flat top: $<3 \%$ of pulse amplirude.
Peak voltage: 0.4 to 10 volts into 50 ohms to 100 MHz (15 volts maximum amplitude into open circuit).
Attenuator: 1, 2, 3, 10 volt steps.
Polarlty: positive or negative.
Vernier: provides continuous adjustment from approximately 0.3 volts to 10 volts.

Pulse width: continuously variable in two ranges, from approximately 9 ns to 25 ns and from 25 ns to 100 ns ; width jitter <100 psec $+0.3 \%$ of pulse width with counedown ratio set for minimum jitter.
Maxlmum duty cycle: $\geq 45 \%$ up to 50 MHz decreasing to approximately 20% at 100 MHz .
Internal repetition rate: 1 MHz to 100 MHz in 3 ranges.

External triggering

Frequency: sine waves from 1 MHz to 100 MHz , negative pulses from 0 to 100 MHz : pulse rise time $<100 \mathrm{~ns}$; pulse width $>2 \mathrm{~ns}$.
Sensittvity: at least 0.5 volt peak minimum; maximum input, 10 volt peak.

Input Impedance: approximately 50 ohms, ac coupled.
External trigger delay: approximately 140 ns between leading edge of inpus trigger pulse and leading edge of output pulse.
Trigger output pulse
Width: $3.5 \mathrm{~ns} \pm 1 \mathrm{~ns}$.
Amplitude: >0.7 volts peak into 50 ohms.
Polarity: negative.
Trigger timing: approximately 130 ns advance with respect to leading edge of outpur pulse.
Countdown trigeger outpul
Amplitude: >0.5 volt peak into 50 ohms.
Polarity: positive.
Countdown frequency: variable from approximately 250 kHz to 450 kHz .
Gating of pulse bursts
Internal
Gate width: variable from approx. 20 ns to 750 ns .
Gate repetltion rate: variable from approximately 250 kHz to 450 kHz .
External: gates on with +2 volt pulse having rise and fall times of $\langle 5$ ns; maximum input, 10 volts.
Perturbations: perturbations on gate envelope $<5 \%$ into so ohms; above 50 MHz , width varies slightly from pulse to pulse.

General

Power: 115 or 230 volts $\pm 10 \%$, so to 60 Hz .120 W .
Dimenslons: $51 / 2^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $183 / 8^{\prime \prime}$ deep ($175 \times 425 \times$ 466 mm), hardware furnished for quick conversion to $51 / 4^{\prime \prime} \times 19^{\prime \prime}$ rack mount, $163 / 8^{\prime \prime}$ deep behind panel ($134 \times$ $483 \times 41.6 \mathrm{~mm}$).
Weight: net 25 lbs (11 kg); shipping 31 lbs (14 kg).
Accessories availabla: Model 10120A Cable, 3 feet, BNC-toBNC, 50 ohms ± 0.5 ohm, $\$ 10$; Model 10122A Cable, 3 feer, BNC-to-Type N. 50 ohms ± 0.5 ohm, $\$ 10$; Model 908 A 50 ohm Coaxial Termination, $\$ 35$; Model 10240A Blocking Capacitor, $0.1 \mu \mathrm{~F}$, isolates Model 216A from up to 200 V $\mathrm{d} c, \$ 100$.
Price: HP Model 216A, \$1775.

PULSE GENERATOR Economical general-purpose testing

Model 222A

The Model 222A combines many features normaily found only on more expensive instruments to provide an easy-touse, yet versatile, general-purpose pulse generator. The 4 nsec rise time and full complement of controls permit a wide variety of pulse testing, including square wave testing. Oscilloscope-type triggering, variable pulse width, repetition
rates to 10 MHz , closely specified pulse shape and many other features provide accurate, dependable measurements. The Model 222A, like other HP pulse generators, has a so-ohro output impedance for eliminating error-producing reflections. The output puise may be delayed from the trigger output by up to 5 ms for further measurement convenience.

Specifications

Output pulse

Source Impedance: 50 ohms shunted by approximately is $\mathrm{p} F$ at any output up to 12 V .

Amplitude

Peak voltage: 10 volts across 50 ohms: approximately 12 volts maximum.
Amplitude control: step attenuator provides $0.1,0.2,0.3$. $1,2,5,10$ volts across 50 ohms; continuously variable berween steps; minimum output less than 0.05 volts.
Polarity: positive or negative.
Pulse width
Range: 30 ns to s ms in 6 ranges, continuously variable betreen ranges.
Duty cycle: maximum duty cycle $\geq 30 \%$ from 100 Hz to 10 MHz ; for maximum stability at high duty cycles, se. lect width range which allows maximum clockwise rotation of width vernier; duty cycle from 10 to 100 Hz limited by 5 ms maximum pulse width.
Width jitter. $<0.2 \%$ of maximum range ridch.

Pulse shape

Leading edge only (measured at 10 volts into 90 ohms) Rise time: <4 ns.
Overshoot and ringing: <4\% peak of pulse amplitude, Corner rounding: occurs no sooner than 95% of pulse amplitude.
Time to settle within 3% of flat top: < 20 ns . Preshoat: <2\%.
Trailing edge only (measured at 10 volrs into 50 ohms)
Fall time: <4 ns.
Overshoot and ringlng: <4\% peak of pulse amplitude. Corner rounding: occurs no sooner than 95% of pulse amplitude.
Time to settle within 2% of base line: $<20 \mathrm{~ns}$.

Preshoot: < 4%.
Perturbations on fiat top: $<\%$ of pulse amplitude.
Repetition rate and trigger
Internal
Repetition rate: 10 Hz to 10 MHz in 6 ranges, contin. tously variable between ranges.
jitter: period jitter in any frequency range $<0.2 \%$ of maximum period of that range.
Manual: pushbutton single pulse.

External

Trlggerlng: ac coupled; sine wive from 10 Hz to 10 MHz , pulse from 0 to 10 NHz , either postive or negative slope.
Sensitlvity: 1 volt p-p minimum; external pulses must be
at least 10 ns wide: maximum input 20 volts peak; 0.25
watt maximum average power.
Input resistance: approximately 500 ohms.
External trigger delay: less than 20 ns beracen leading edge of external trigger input pulse and leading edge of trigger pulse.
Trigger output pulse:
Width: $22(\pm 8)$ nsec at 50% points.
Amplitude: >1 volt into 50 ohms.
Polarity: negative.
Pulse delay: pulse delayed from trigger output by <100 ns to 5 ms in 6 ranges, continuously variable between ranges. Delay jltter: $<0.2 \%$ of maximum delay of that range.

General

Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $60 \mathrm{~Hz}, 80 \mathrm{~W}$.
Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep ($425 x$ ($40 \times 336 \mathrm{~mm}$): hardware furnished for quick conversion to $51 / 4^{\prime \prime} \times 19^{\prime \prime}$ rack mount, $113 / 4^{\prime \prime}$ deep behind panel ($133 \times 483 \times 298 \mathrm{~mm}$) .
Weight: net $18 \mathrm{lbs}(8 \mathrm{~kg})$; shipping $23 \mathrm{lbs}(10.4 \mathrm{~kg})$.
Price: HP Model 222A, $\$ 690$.

PULSE GENERATOR
Plug-in, variable risetime/falltime
Model 1900 system

The new', all solid-stare 1900 Pulse System from Hewlert. Packard is a major advancement in fexibility and versatility. Plug-in capability, programmability (optional), and freedom from radiated or conducted electromagnetic interference (RFI and EMI) are representative of the improved performance in this system.

Until the 1900, no pulse system could be so economically tailored to fit exact requirements, from general laboratory use ro fully automated production test systems.

Plug-in flexibility

The 1900 system mainframe contains only power supplies, with optional programming wiring added if desired. The plug. in compartment accepts any combination of half-size or quartersize plug-ins. Additional information, including specifications and accessories, is on page 358.

Model 1905 A Rate Gencrator provides output triggers which are variable in frequency from 25 Hz to 25 MHz ; it includes a push button for single pulse triggers. Additional information and specifications are on page 359.

Madel 1908A Delay Generator delays or advances 25 MHz pulses over a range of 15 ns to 10 ms and includes a double

Figure 1. HP $\$ 900$ pulse system provides clean pulseshapes with variable risetimes and fallimes as well as variable output currents.
pulse mode. Additional information and specifications are on page 350.
Model 1915A Variable Transition Time Outpur varies pulse riserimes and falltimes from 7 ns to 1 ms , and output currents from 40 mA to 1A (see Figure 1). Additional information and specifications are on page 360 .
Updating the 1900 pulse system is easy and economical. Mainframe, rate plug-in, and delay plug-in will be compatible with newer output stages which will provide different pulse parameters such as taster rise- and fallimes.

In addition to simpler pulse generators, complex pulse sys. tems may be formed by using several mainframes and appropriate plug-ins. For example, one rate generator can be used with several delay generators in turn driving several output stages. The resulting system provides several pulse sources whose shape and timing are independently variable, yet it uses a minimum of instruments. This pulse system is illustrated in Figure 2.
The rack-mount version of the 1900 system is oniy 5 inches high and a standard 19 inches wide. This saves valuable rack space, allowing additional instrumentation for increased versatility. The HP modular cabinet enclosure allow's quick conversion to a bench instrument by renoving two rack flanges and installing plastic feet.
Maintenance is fast and easy with the 1900 system. Entire plug-ins can be quickly replaced for minimum downtime. More complex plug.ins have replaceable plug in circuit boards, also facilitating calibration and replacement. Multi-layer circuit boards are used in the 1900 system, minimizing point-to-point wiring and resulting in more consistent and reliable electrical performance.

Programming

All major functions of the 1900 system can be easily programmed. This capability may be ordered initially or easily added later for a nominal cost. Thus the same instrument bridges between a laboratory general purpose test instrument and a programmable unit for automated production testing.

Range switch programming is accomplished by grounding appropriate pins on a rear panel connector, using extenal switches, relays, or DTL logic. Verniers ate programmed by

Figure 2. Pulse system versatility is demonstrated with one rate gen. erator serving as clock for three delay generators, each delay genera tor in turn driving a veriable transition timo output plug.in. Same rate generator could provide clock signal to additional delay generators. Thrae output pulses have separately controlied dolay, width, risatime, fallime, polarity, offset, and amplitude.
applying an external de current (1 to 10 mA) to a connector pin. Any front panel manual setting can be duplicated by this programming technique. Program inputs can be overridden at any time by turning front panel function switch out of irs PGM position.

Programming capability requires only addition of circuit boards and connectors. Some circuit boards are the plug-in type and orhers mount easily with a few screws. No solder connecrions are required for either type of circuit board.

Electromagnetic shielding

The 1900 pulse system is completely shielded against unwanted electromagnetic radiation and conduction (EMI and RFI). It meets EMI/RFI requirements of military specification MIL-I-6181D.

This shielding prevents outside interference from affecting 1900 operation and also prevents 1900 radiation and conduction from disturbing other circuitry.
Shielding precautions include special double covers, a line filter, sealing gaskets for plug-ins, and provision for screwdriver locking of plug.ins (in addition to normal knob locks).

External width input

A unique external width function of the Model 1915A output plug-in extends usability to many new applications such as pulse-code modulation (PCM) and digital circuits requiring non-return-to-zero (NRZ) logic.

Most pulse generators are triggered by a narrow pulse and generate a pulse with a width set by a panel control. Although the 1915 A usually operates this wiay, it can be set to function as a pulse amplifier. In this operation, width and spacing of pulse rrains are maintained.

Figure 3. Middle wavelorm illustrates use of Internal widh control with pulses triggered by the iop waveform. Lower waveform shows oxternal width capablity, using 1900 system as pulse amplifier with output pulse width determined by top waveform.

This feature allows application of variable width pulses to the drive input with these pulses reproduced at the output. However, risetime, fallime, amplitude, and baseline offser are controlled by the Model 1915A. Figure 3 illustrates internal and external width operation
One of the most common uses for the external width capability is with word generators to obtain NRZ formats, essenti. ally a variable wideh pulse train. These NRZ puise trains may be amplified, risetimes varied, baseline offser, or polarity changed. Figure 4 demonstrates how the externa! width capability can be used as a regenerator to clean up noisy puise trains.

The external width feature of the 1900 system will accept three of the most commonly used formars: RZ, NRZ, and biphase.

Figure 4. External width feature of 1900 system turns on output at 1 volt threshold. Output then remains on until input drops below threshold.

Model 1900A. Puise Generator mainframe accepts all 1900 series plug-ins. The plug-in compartment holds any combination of quarter-size or half-size plug-jns. Plug-ins are completely interchangeable and may be interconnected by internal wiring and switches or by external cables.

Programming capability (connectors and cables) may be ordered initially as an option, or added later as a modification kit.

Shielding against electromagnetic conduction and radiation is standard on all instruments of the 1900 system.

1900A (shown with 1905A, 1908A, and 1915A plagins)

Specifications, 1900A

Plug.Ins: mainframe accepts any 1900 series quarter-size or haifsize plug-ins. Plug-ins may be interchanged in any manner within the mainframe.
Interconnection between plug.ins: either external (with BNC cables) or internally selectable with switches in the plug-ins.
RFI-EMI: mainframe with plug-ins installed will pass MIL-I.6181D specifications.
Dimensions: $163 / 4^{* \prime}$ wide, $51 / 4^{\prime \prime}$ high, $213 / 8^{\prime \prime}$ deep over-all (425 x $133 \times 543 \mathrm{~mm}$); hardware furnished for quick conversion to $19^{\prime \prime} \times 51 / 4^{\prime \prime} \times 193 / 8$ " behind panel rack ronunt ($483 \times 133 \times 492$ mm).
Weight: net, 35 (bs (16 kg) ; shipping, $46 \mathrm{lbs}(21 \mathrm{~kg}$)
Power: 115 or 230 volts $\pm 10 \%$, 50 to $60 \mathrm{~Hz}, 300$ watt's max.
Options
Option 001: programming cables and four rear panel connectors, providing 36 pins to each quarter-size plug-in (or 72 pins for double-size). Price: Model 1900A Option 001, \$175 (additional).
Option 002: factory-installed chassis slides, non-pivoting. Price: Model 1900A Option 002, on request (additional).
Accessories avallable
Chassis slides kit for field installation; non-pivoting. Order HP Part No. 01900-69501. Price: on request.
Programming kir for field installation. Price: on request.
Price: HP Model 1900A, $\$ 750$.

Accessories

Blank plugeins

Blank plug-ins are available for cither filling of unused compartment space in a 1900 system, or for construction of special purpose plug.ins. Price: HP Model 1048IA quarter-size unir, $\$ 20$; HP Model 10482A half-size unit. \$25.

Plug-in extender

The 1900 pulse generator system may be serviced and calibrated by simply removing the top covers. However, for greater convenience, a plug.in extender is available which accommodates both quarter-size and half-size units. The extender allows access to either quarter-size or half-size plug-ins outside the mainframe with the system still operating. Extender also includes wiring for programming options, Price: HP Model 10483A, \$135.

Pulse adder

Model 15104A Adder is useful when outputs from two pulse sources must be combined to produce complex signals. It also serves as a signal splitter when one pulse source must drive two paths. Two or more adders masy be used to combine outputs of three or more pulse sources.

Specifications, 15104A

Raflection: 10% in 150 ps pulse system (ds to over 2 GHz equivalent bandwidth).
Risetime: <150 ps.
Maximum input: 2 W into two inputs with third connector terminated in 50 ohms. Maximum average voltage not to exceed 5 V between two connectors.
Output vostage: ilgebraic sum of half the voluge from each input. Input connectors: two BNC female, one BNC male.
Price: HP Model 15104A, $\$ 20$.

Splitter Inverter

Model 15115A Spliter Inverter converts a single input pulse into two opposite polarity pulse outputs. This facilitates driving push-pull srages and flip-flops with one pulse source.

Specifications, 15115A
Reflection: 10% in a $50.0 \mathrm{hm}, 150$ ps puise system.
Risetime: 250 ps noa-inverted ourput; 500 ps inverted outpur.
Droop at 500 ns pulse width: $<2.5 \%$ non-inverted ourput: $<4 \%$ inverred output.
Maximum average input; 6 dB non-inverted output; 6.2 dB inverted output.
Delay between inverted and non-ínverted outputs: <1 ns.
Prlee: HP Model 15115A, $\$ 50$.

Inverter

Model 15116A Inverter reverses polarity of input pulses. Extends possible variety of complex pulse waveforms when used with Model 15104A Adder and Model 15115A Splitter Inverier.

Specifications, 15116A
Reflection: 10% in a $50 . \mathrm{ohm}, 150$ ps pulse system.
Risetime: 500 ps .
Droop at 500 ns pulse width: $<5 \%$.
Insertion loss: 0.3 dB .
Price: HP Model 15116A, $\$ 30$.

Model 1905A
The Model 1905A Rate Generator is a quarter-size plug-in which serves as a clock source for the 1900 systern. The Model 1903A provides output triggers at repetition rates from 25 Hz to 25 Mr Hz .
Either external triggering or internal rate generator operation may be used. Rate generator outputs are obtained using either sinusoidal or pulse waveforms as the external input. Outputs from Model 1905A may be synchronously gated externally by applying a suitable pulse waveform.

Rate source, rate tange, and rate vernier may be externally programmed; see specifications.

Specifications, 1905A

Internal

Repetitlon rate: 25 Hz to 25 MHz in 6 decade ranges. 10:1 vernier allows continuous adjustment on any range.
Perlod jitter: < 0.1% of selected period.
External Input
Repetition rate: 0 to $25 \mathrm{MHz}_{\mathrm{z}}$.
Input impedance: son, dc-coupled.
Senstivity: 0.5 volts pk -pk.
Level: continuously variable over ± 3 volt range.
Slope: + or - , selectable.
Delay: approximately 10 ns between trigger inpur and rate output.
Synchronous gating
Sensitivlty: - 2 volts or more required to gate pulse train on.
Input impedance: son, dc-coupled.
Delay: approx 27 ns between gate input and first race output.
Manual operation: push button for single pulse.

Rate output

Amplitude: $>+1$ volt into 25Ω (drives two 1900 series plugins).
Risetime: < s ns.
Width: < 10 ns .
Connection: race output may be connected internally or externally to other plug.ins, selected by incernal switch.
Weight: net, $11 / 2 \mathrm{lbs}(0,7 \mathrm{~kg})$; shipping, $31 / 2 \mathrm{lbs}(1,6 \mathrm{~kg})$.
Optlon O01: programming connector and circuitry allowing Rate
Source and Rate Range selection by contact closure to ground;
Rate vernier programmed by analog current allowing continuous
rate selection. Price: Model 1905A Option 001, $\$ 100$ (additional).

Accessories avallable

Programming kit: field installation of same capability as Option 001 . Price: on request.
Price: HP Model 1905A, \$200.

Model 1908A

Pulses up to 25 MHz in frequency may be advanced or delayed with the Model 1908A Delay Generator, a quartersize plug. in for the 1900 pulse system. Range for pulse advance or delay is from 15 ns to 10 ms .

A double pulse mode can be used to generate pulse pairs with variable separation of pulses.

The trigger output is useful for triggering other external equipment or it is sufficient to drive two rariable transition time output plog-ins.

Drive output mode, time interval range, and time interval vernier can be externally programmed; see specifications.

Specifications, 1908A

Functions (drive output switch)

Delay: drive output delayed with respect 10 erigger output.
Advance: trigger output delayed with respect to drive output.
Double pulse: generated from drive output connector. Spacing determined by time interval setting.

Time interval

Range: 15 ns to 10 ms in 6 ranges. 10:1 vernier allows con. tinuous adjustment on any range.
Jitter: $<0.1 \%$ of selected time interval.
Excessive delay Indicator: light comes on when selected time interval exceeds pulse period.
Rate Input
Repetition rate: 0 to 25 MHz .
input impedance: son, dc-coupled.
Sensitiulty: >1 volt peak.
Width: portion of input trigger above 0.8 volts must be $<7 \mathrm{~ns}$.

SIGNAL SOURCES 19OO SKETFH conminued
Rate generator, delay generator
Models 1905A; 1908A

Connection: rate input may be connecred internally or externally from other plug-ins, selected by internal swich.
Trigger and drive outputs
Amplifude: $>+1$ volt into 258 drives two 1900 series plugins).
Width: < 10 ns .
Risetime: < s ns.
Minimum delay after rate input:
Trigger output: approx. 14 ns in drive output delay mode; approx. 29 ns in drive output advance mode.
Drive output: approx. 29 ns in drive output delay mode; approx. 14 as in drive output advance mode.
Connection: drive output may be connected intemally or externally to other plug-ins, selected by internal switch.
Welght: ger, $11 / 2 \mathrm{lbs}(0,7 \mathrm{~kg})$; shipping, $31 / 2 \mathrm{lbs}(1,6 \mathrm{~kg})$.
Optlon 001: programming connector and circuitry allowing Drive Output mode and Time Interval range selection by conract closure to ground: Time Interval vemier programmed by analog current allowing continuous time interval selection. Price: Model 1908A Option 001, $\$ 100$ (additional).
Accessories available
Programming kit: field installation of same capability as Option 001 . Price: on request.
Price: HP Model 1908A, $\$ 200$.

SIGMAL SOURCES 1900 SKSTEM canlimuad
High power, variable rlse and fall
Variable transition time output Model 1915A

Model 1915A Variable Transition Time Output, a half-size plug-in, provides high-power, variable risetime and falltime output pulses. These pulses, with reversible polarity and with risetime and falltime as fast as 7 ns, are useful in testing magnetic memory de. vices and in other applications requiring high currents and voltages. Maximum current available is 1 ampere (50 volts into 50 ohms).

Either 50 -ohm or high impedance source is available. The $50-0 \mathrm{hm}$ source impedance preserves the clean pulse shape by absorbing reflections from an external load. The high impedance source provides maximum current and voltage.

Risetimes and falltimes are variable from 7 ns to 1 ms . A common control selects the range and vemiers select risetime and fallime separately. Ratios between transition times up to 100 : 1 provide a wide degree of flexibility.
External width operation (described on pages 356 and 357) ex. tends Model 1913A usefulness to applications such as pulse code modulation, variable pulse width logic, and other pulse-shaping requirements.

Offet capability of the Model 1915A allows the puise baseline to be varied over a $\pm 60 \mathrm{~mA}$ range. A zero position on the curtent offset switch allows setting the baseline quickly and accurately at ground.

All fronr panel control functions car be externally programmed. This capability is available initially as Option 001, or a kit may be ordered at a later date. Other options available (listed in specifications) are for amplitude calibration in rolts, and either positive-only or negative only offset and pulse outpu: polarity (two Model 1915A's may be operated in one mainframe, provided the offset and pulse polarities are different).

Specifications, 1915A

Output pulse

Source impedance: son or high Z; self-contaired 50Ω termina. tion may be connected or disconnected.
High \mathbf{Z} output: approximately 5 k ohms shunted by 45 pF .
50Ω output: approximately 50Ω shunted by 45 pF .
Amplitude (short clrcuit current): 50 milliamperes to 1 ampere in 4 ranges; 2.5:1 vernier allows continuous adjustment on any range. Voltage into external 50Ω is $\pm 2.5 \mathrm{~V}$ to $\pm 50 \mathrm{~V}$ with high Z source; $\pm 1.25 \mathrm{~V}$ to $\pm 25 \mathrm{~V}$ with 50Ω source. Maximum amplitude (including offset) is $\pm 50 \mathrm{~V}$.

Pulse top variations

Wits 50Ω source and 50Ω load: $\pm 5 \%$ for transition times 7 ns to $10 \mathrm{~ns} ; \pm 2 \%$ for transition times $>10 \mathrm{~ns}$.
With high Z source and 50Ω load: $\pm 3 \%$ for all transicion times.
Polarity: + or - , selectable.

Duty cycle: 0 to $>90 \%$, internal width mode; 0 to 100%, ex. ternal width mode.
Basellne offset: ± 60 milliamperes. Maximum offset into external 50Ω is ± 1.5 volts with 50Ω source; ± 3 volts with high Z source.
Overload: overioad light comes on to indicale protection circuits are limiting output to prevent damage to output transistors. Two common combinations of overload conditions are: (a) $25-0 \mathrm{~mm}$ combined load (source and extemal), $<0.2 \%$ duty cycle, and width $>2 \mu \mathrm{~s}$; and (b) so-ohm combined load, >2 $\mu 5$ transition time, and >35 volts amplitude.
Transltion times: 7 ns (10 ns with high Z source) to 1 ms in 11 ranges ($1,2,5$ sequence); two $100: 1$ verniers allow independent control of rise- and falltimes.

Width
Internal
Ranges: 10 ns to 40 ms in 7 decade ranges (excepr for first range which is 10 to 40 ns); $10: 1$ vernier allows continuous adjustment on any range.
Width jltter: < 0.5% of selected pulse width.
External: provides pulse amplifiec operation; output pulse width determined by width of drive input.

Drlve Input
Repetition rate: 0 to 25 MHz .
Input Impedance: 50Ω, dc-coupled.
Sensitivity: $>+1$ volt peak.
Connection: drive input may be connected internally or externally from other plug-ins, selected by internal switch.
Welght: net, $51 / 2 \mathrm{lbs}(2,5 \mathrm{~kg})$; shipping, $9 \mathrm{lbs}(4,1 \mathrm{~kg}\}$.

Options

Optlon 001: programming connector and circuitry allowing width range, Transition Time range, Amplirude range, Offset and Polarity selection by contact closure to ground; vemiers for Width, Leading Edge, Trailing Edge, Offset, and Araplitude programmed by analog current allowing continuous control on any range. Price: Model 1915A Option 001, $\$ 275$ (additional).
Option 002: provides positive-only pulse ourput and positive-only offset. Price: Model 1915A Option 002, on request.
Option 003: provides negativa-only pulse output and negative. only offiser. Price: Model 1915A Option 003, on request.
Optlon 004: calibration of pulse amplitude in voltage. Four ranges provide from $\pm 2.5 \mathrm{~V}$ to $\pm 50 \mathrm{~V}$ from high Z source into 50Ω external load or $\pm 1.25 \mathrm{~V}$ to $\pm 25 \mathrm{~V}$ from 50Ω source into 30Ω external load.

Accessories avallable

Programming klt: field installation of same capability as Option 001. Price: on request.

Price: HP Model 1915A, $\$ 1600$.

Most systems, from simple servos to suspension bridges, are subject to raodom disturbances which must be accounted for in the design and-if possible-simulated at the protorype test stage. For the purpose of simulation it seems appropriate to use a randomly varying test signalthat is, low frequency noise-rather than the traditional sine wave. In environmental testing, too, the real-life shock environment' can often be reproduced ac. curately with a noise-stimulated trans. ducer. The desirability of noise as a test signal has been appreciated for many years, but general acceptance of the technique has been slow-principally owing to the lack of satisfactory generators and related test gear for low frequency noise.

Conventional noise generators employ natural sources such as the gas discharge tube and temperature-limited diode. Generators of this type have the disadvantage that their total power output is subject to unpredictable long term variations: their power spectra, too, can often be unpre. dictable at low frequencies-in particulac, below so Hz , where much of the in. terest in noise testing is focused.

Characterizing noise

The power spectrum describes only the frequency content of the noise signal, but does not characterize its waveshape: this is specified by the probability density function (p.d.f.), a statistical indication of the proportion of time spent by the sigoal at various amplitudes. The most commonly encountered p.d.f. is the classical bell-shaped, or Gaussiao curve so familiar in statistics: this particular p.d.f. characterizes most random phenomena (for example, atmospheric changes) and for this reason, a noise signal designed to simulate such phenomena must have a p.d.f. which closely approximates the Gaussian curve. The question of p.d.f. is another problem area with conventional noise generators. How can 'Gaussianness' be specified? And, more difficult, over what period of time must the signal be evaluated to be certain that its ampli. tude characteristics tend to be Gaussian? Are the signal properties observed in a given period representative of the next similar period? This suggests that a series of identical experiments involving truly random noise will yield different results each time. This 'statistical variance' can often be reduced to acceptable limits by increasing the observation (that is, aver-
aging) time-but it can never be enticely eliminated.

Pseudo-random noise

The need exists, then, for a test signal having the desirable properties of random noise-that is, broad spectrum and Gaussian probability density function-yer not having the bad property . . . randomness. In other words, the signal should be one which introduces no statistical variance into test results, even though the measurements are made in a finite time.

Such a signal exists . . . psendo random noise is a signal which looks and acts like random noise, but is in fact periodic. This kind of noise is the main product of the Hewlett-Packard Model 3722A Noise Generator.

Pseudo-random waveforms from the 3722A consist of completely defined patterns of selectable length, repeated over and over without interruption. They have power spectra and p.d.f.'s similar to those of random noise but, because the waveforms are synthesized, their statistical properties are precisely known. Perhaps the most important feature of pseudo. random noise testing is the fact that, if the measurement time is made exactly equal to the length of one pseudo-random pattern, the results of the experiment will be identical at every repetition, provided nothing else has changed.

This repeatability of pseudo-random noise is especially valuable when param. eters of the system under test are varied -for example, in an analog computer model of a complex system. In such tests,

Part of a pseudo-random Gaussian noisa sequence generated in Modol 3722A from 524, 287 -bit binary pattern. Clock period is $1 \mu \mathrm{~s}$, giving nolse bandwidth of 50 kHz .
it is reassuring to know that changes in test results arise from parameter manipulation and not from statistical variance in the test signal. The basic output from the Model 3722A is two-level, binary noise (random telegraph signal), available as a pseudo-random signal in a variety of pattern lengths, and also as a truly random, non-repeating signal. Binary noise is commonly used in test. ing systems controlled by two-state elements such as switches, relays, fluid control vaives, and so on. Recently, however, binary noise has assumed greater importance in connection with actual identification of systems . . . that is, obtaining the impulse response of a system by injecting low.level binary noise into the.system and then cross-correlating the input and output signals. This technique can be demonstrated very simply using the Model H01.3722A Generator, a stan. dard Model 3722A instrument with two separate binary outputs, one of which can be variably delayed with respect to the other.

The principal output from the Model $3722 A$ is Gaussian noise, which is derived from the binary signal by low-pass filtering. A unique method of digital filtering is employed to give an almost rectangular power spectrum with very little power beyond a selectable cut-off frequency. The particular advantage of this digital filter. as opposed to the conventional analog filcer, is that it yields a signal of constant power regardless of cut-off frequency (in any event, analog fitering is not practicable at the very low frequencies uscful in noise resting-the lowest cut-off frequency of the digital filter in the Model 3722A is about 1 cycle in 100 minutes!).

Probability denslyy function of pseudo.random Gaussian nolse (same sequence as at left) displayad on Model 5400A Multt-channol Analyzer.

Model 3722A Noise Generator synthesizes pseudo-random or random binary signal in a digital waveform generator which is timed by a crystal-controlled clock. Clock rate and length of pseudorandom sequences are variable. Gaus. sian signal is derived from binary output by digital low-pass filtering. Discrete steps in digital filter output are removed by analog filter. Pseudo-random binary output of noise generator has line power spectrum having a flat envelope from dc to an upper $3 \sigma B$ frequency which is selectable from 0.00135 Hz to 450 kHz . Spectrum of pseudo-random Gaussian output has flat envelope from oc to an upper 3 dB frequency which is selectable from 0.00015 Hz to 50 kHz . Random outputs have continuous power density spectra having same shapes as envelopes of spectra of pseudo-random outputs.

NOISE GENERATOR
 Produces calibrated noise patterns
 Model 3722A

SIGNAL SOURCES

The Model 3722A Noise Gentrator uses digital techniques to synthesize binary and Gaussian noise patterns. These pseudorandom' patterns, which are of known content and duration, are repeated over and over without interruption. Since one pattern is identical with the next, each pattern has the same effect on the system under test: for this reason, psendo.random noise signals cause no statistical variance in test resulis. The Model 3722A also generates truly random binary and Gaussian noise.

Basis of the Model 3722A is a binary waveform generatora shift register which operates under the control of either a feed. back mechanism (pseudo-random mode) or a random noise source (random mode). The shift register is clock triggered, with the result that transitions between output levels of the binary waveform can occur only in time with beats of the clock-although whether or not a transition occurs on a given beat is determined by the feedback mechanism or random noise
source. The binary output has a $(\sin x / x)^{2}$ shaped spectrum and the Gaussian output. Which is derived from the binary signal by precision lou'pass filtering, has an almost rectangular spectrum. Both binary and Gaussian outputs are controllable in bandwidth, but the output power remains constant regardless of selected bandwidth-a particularly useful feature, of im. portance in applications where usable noise power must be made available in a very restricted frequency band. Frequency of the first null in the binary spectrum is selectable from 0.003 Hz to 1 MHz , and the bandwidth (at -3 dB point) of the Gaussian noise is selectable from 0.00015 Hz to 50 kHz

Outputs from the Model 3722A are available at fixed amplicudes of $\pm 10 \mathrm{~V}$ (binary) and 3.16 V rms (Gaussian). and a precision amplitude control provides a variable ourput of either signal ranging from 0.1 V rms up to the level of the fixed out. puts.

3722A

Specifications

Binary output (fixed amplitude)

Amplitude: $\pm 10 \mathrm{~V}$.
Output Impedance: <10n.
Load impedance: $1 \mathrm{k} \Omega$ minimum.
Rise time: < 100 ns.
Power density: appsoximately equal to (clock period x 200) $\mathrm{V}^{1} / \mathrm{Hz}$, at low frequency end of spectrum.
Power \$pectrum: $(\sin x / x)^{2}$ form: first null occurs at clnck frequency and -3 dB point occurs at $0.45 \times$ clock írequency.

Gaussian output (fixed amplitude)

Amplitude: 3.16 V rms.
Output impedahce: <1 Ω.
Load Impedance: 600Ω minimum.
Zero drift: $\angle 5 \mathrm{mV}$ shange in zero level in any $10^{\circ} \mathrm{C}$ range from 0° in $+55^{\circ} \mathrm{C}$.

Power density: approximately equal to (clock period x 200) $\mathrm{V}=/ \mathrm{Hz}$ at low frequency end of spectrum.
Power spectrum: rectangular, Iow pass: nominal upper frequency $f_{\text {o }}$ (-3 dB point) equal to $1 / 20$ th of clock frequency. Spectrum is flat within $\pm 0.3 \mathrm{~dB}$ up to $1 / 2 \mathrm{f}_{\mathrm{o}}$, and more than 25 dB down at $2 f_{0}$.

Crest factor: up to 3.75, dependent on sequence length.

Variable output (Binary or Gaussian)

Amplitude (open clrcult)
Blnary: 4 ranges: $\pm 1 \mathrm{~V}, \pm 3 \mathrm{~V} . \pm 3.16 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$, with ten steps in each range, from $\times 0.1$ to $\times 1.0$.

Gaussian: 3 ranges: 1 V rms. 3 V ms , and 3.16 V ms , with ren steps in each range, from $\times 0.1$ to $\times 1.0$.
Output impedance: $600 \Omega \pm 1 \%$.

Main controls

Sequence length switch: first 17 positions select different pseudo-random sequence lengths: final position selects tandom mode of operation (INFINIIE sequence length). Sequence length (N) is number of clock periods in sequence: possible lalues of N ase 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575. $N=2^{n}-1$, where n is in the range 4 to 20 inclusive.

Clock period swithth; selects 18 frequencies from internal clock:

Clock perlod	Clock trequenoy	Gaussian noisa bandwosth
333 s	0.003 Hz	0.0015 Hz
100 s	0.01 Hz	0.0005 Hz
33.3 s	0.03 Hz	0.0015 Hz
10 s	0.1 Hz	0.005 Hz
3.3 L s	$30 \downarrow \mathrm{kHz}$	15 kHz
$1 \mu \mathrm{~s}$	1 MHz	50 kHz

Internal clock

Crystal frequency: 3 MHz nominal.
Frequency stabllity: $< \pm 25 \mathrm{ppm}$ orer ambient temperature range 0° to $\div 53^{\circ} \mathrm{C}$

Output: - 12.5 V rectangular wave. period as selected by CLOCK PERIOD switch.

External clock

Input frequency: usable BINARY output (pseudo-random only) with external clock frequencies up to 1.5 MHz .
Input level: negative-going signal from $\div 5 \mathrm{~V}$ to +3 V initiates clock pulse,

Maximum Input: $\pm 20 \mathrm{~V}$.

Secondary outputs

Sync: negative.going pulse (+12 V to +1.5 V) occurring once per pseudo-random sequence; duration of pulse equal to selecred clock period.
Gate: gaie signal indicates start and completion of selected number of pseudo-random sequences ($1,2,4$ or 8 , selected by fronz panel concrol). Two outputs are provided:-

1. Logic signal: oueput normally +12.5 V , falls to +1 V at start of gate interval and returns to $\div 12.5 \mathrm{~V}$ at end of interal.
2. Relay changeover contacts: gate relay switching is synchronous with logic signal.
Blnary relay: relay changeover contacts operate in sync with binary output signal.

Remote control

Control inputs: remote control inpues for RUN, HOLD, RESET and GATE RESET functions are connected to 36 -way recepracle on rear panel.

Sequence length indication: 18 pins plus one common pin on the 36 -way receplacle are used for remote signalling of selected sequence length (contact closure berween common pin and any one of the 18 pins).

General

Dimenslons: $163 / 4^{\prime \prime}$ wide, $5-7 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep (425 x $132.6 \times 416 \mathrm{~mm}$).

Welght: net $23 \mathrm{lbs}(10,5 \mathrm{~kg})$; shipping $30 \mathrm{lbs}(13,5 \mathrm{~kg})$.
Price: Model 3722A, $\$ 2,650$ ($\$ 2,400$ at factory in Scotland).

Option 01

Zero moment option: shifss relative position of sync pulse and pseudo-randorn binary sequence such that first time moment of sequence, taken with respect to sync pulse, is zero (sequence shift mechanism is operative only when selected sequence length is ≤ 1023): option 01 also provides facility for invers. ing binary output signal. ADD $\$ 50$ ($\$ 45$ ar factory in Scorland).

NOISE GENERATOR For cross-correlation experiments

 Model H01-3722A SIGNAL SOURCESHewlett-Packard Mode! H01.3722A. with only an integrator as additional equipment, provides all the facilities required for measurements of point-by-point correlation. Specification HOL . 3722A is a standard Model 3722A Noise Generator modifed to provide a second binary output which can be delayed by a selectable number of clock periods with respecr to the main binary outpur. The delayed binary output is available only when the instrument is in the pseudo-random mode, that is, generating repeated noise patterns.

The delay introduced between the two binary outputs is selected by rhree decade switches on the front panel. These switches, which are set according to a conversion table supplied with the instrument, provide almost all possible delays ranging from zero to the number of bits (N) in the sequence in use.

Delayed binary output

Typical performance figures for the delayed output are:-

Amplitude: switches between +1.5 V and +12 V .
Maximum sink current at 1.5 V level: 10 mA .

Rise time: <200 ns.
Fall time: <100 ns.
Price: Model H01.3722A, $\$ 2,950$. ($\$ 2,620$ at factory in Scotland).

Typleal setup for cross-correlation with the H01.3722A. Here, the main binary output is appled to the system under test, and the out. put from the system is multiplied by the delayed binary signal (the binary relay is controlled by the delayed signal: pelay contact closed is equivalent to muitiplication by 1, and contaci open is equivalent to multiplication by zero). Integration time is controlled by the gate relay, which closes for a preselected number of noise patterns. This set-up is suitable only for systems having long time constants (greater than i second). For systems with short time constants, electronic switches must be substituted for the relays.

[^31] shows filter's response to a 2 ms pulse.

This section conrains rechnical information for function generators and oscillators, covering frequencies from 0.00005 Hz to 32 MHz . Table 1 illus. trates the frequency range and power output of Hewiett-Packard oscillators and function generators. The following explanations are divided into two parts. First will be the lower frequency multioutput function generators and the nexr the higher frequency sine.wrave oscillators.

FUNCTION GENERATORS

A function generator is a signal generator that delivers a choice of different waveforms with frequencies adjustable over a wide range. The keynore of the modern function generator is versatility. The function generators now produce sine, triangle, square-wave, sawtooth waves and variable aspect ratio pulses with a provision to sweep or analog program frequency up to four decades. This is useful for automatic resting systems and sreeting audio amplifiers, fiters and servo systems.

HP's function generators extend from a low frequency of 0.00005 Hz (HP 203A Option 02) up to a high frequency in the MHz range.

A modern innovation is the plug-in function generator. Onc may use a single main frame and severa! plug-ins to achieve maximum versatility at a minimum cost. Function generators now have several outputs available at the same time, each having a choice of rave shapes. By providing a square nove and a triangle ruave at the same time, line. arity measusements and gating may be achieved simultaneously.

Function generators that provide single or multiple-cycle outputs have simplified many measurements. A theoretically infinite on-off ratio can now be attained in pulse burst operation. To vary the start. ing phase of a single cycle or pulse burst and end at the same phase is aiso valuable for underwater research and other applications.

Figure 1. 3300A Function Generator.

Table 1. Frequency range and power output of HP oscillators.
Line segments show span of each range.

The capability of the function generator to phase lock to an external source opens new possibilities for making audio measurements. By using two function generators, an adjustable phase sine output or a square or triangle wave output with adjustable delay may be obtained. In addition, one function generator may be phase locked to a harmonic of the sine wave of another; and almost any waveform desired may be obtained by summing the harmonics and fundamental, and adjusting the phase and amplitude of the harmonics. One can also phase lock the function generator to a frequency standard and generate al! wave shapes with the frequency, accuracy and stability of the stable source.

Besides the many uses mentioned, the function generator is being used extensively in medical research projects for nerve stimulation and electroanesthesia, As medical electronic research continues to grow, the function generator will find more and more applications in this field.

HP 3300A

Since the low frequency of an RC oscillator is limited, an entirely different approach is used in the 3300A Function Generator.

The main frame of this instrument delivers sine, triangular and square waves with a frequency range of 0.01 Hz to 100 kHz . The circuit outlined in Figure

1 uses a frequency control network governed internally by the frequency dial or exrernally through the rear-panel, frequency control terminal.

The frequency-control voltage regulates the current sources driving the triangle generator. An increase or decrease in current increases or decreases the slope of the triangular wave. Frequency will increase if the + and - slopes are in. creased. The voitage comparator multivibrator changes state at predetermined limits on the positive and negative slopes of the triangular integrator's output. This change of state reverses the current into the triangular integrator, reversing the slope of the triangular outpur.

The circuit produces iowr-frequency square and triangular waves. The triangular wave is synthesized into a sine wave by a diode resistive nerwork. The synthesizing circuitry alters the slope of the triangular reave as its amplitude changes, resulting in a sine wave nith less than 1 名 distortion.

The entire oscillator circuitry is floating. The ground may be established at any desired voltage level. A special fea. ture of this oscillator is that waveform amplitude is controlled by the reference voltages, rather than by a long-timeconstant AGC circuit. As a result, there are no transients when switching betreen ranges or toning to other fre-
quencies. Another feature of the HP 3300A is two output amplifiers that provide simultaneous, individually selected outputs of any of the waveform functions.

3300A Plug-ins

The 3300 A is made more versatile by the use of plug ins (the 3300A must have a plug-in to operate). The HP Model 3301A Auxiliary Plug-in, 3302A Trigger/ Phase Lock Plug-in, the 3304 A Sweep/ Offset Plug in and the 3305A Sweep Plugin are now available. The HP 3301 A Auxiliary Plug in provides in. rernal connections for the basic opera. tion of the unit, as described in the specifications for the 3300A Punction Generator.

The HP Model 3302A Trigger/Phase Lock Plug-in enables the Model 3300A Function Generator to produce either a single cycle or a burst of cycles of any of the output waveforms in response to an input trigger. The waveform bursts may also be frequency modulated.
The plug-in employs two basic operating principles. In the "Trigger" mode, it suppresses waveform generation in the main frame circuits, thus restricting the generator output to a single waveform cycle or burst of cycles. In the "PhaseLock" mode, it contributes a correction voltage to the Function Generator fre-quency-control circuits, phase-locking the output frequency to an external frequency source.
A front-panel meter indicates when phase lock is achieved. The phase relationship between the input and output signals can be adjusted by the front panel PHASE control over a range of 0° so 180° (180° to 360° by using the inverted output or by reversing the input polarity switch). The phase multivibrator acts as a detector (see Figure 2) which is set by the input signal and reset by the main irame square wave. These pulses are filtered to derive a de control voltage.

Thus, the 3300 A frequency is contin. uously locked to the input. The 3300A may be locked to a harmonic of the input signal.

When the MODE switch is set to "Free Run", the plug-in circuits are disabled and the function generator operates
in its basic manner. With the MODE switch set to either "Single" or "Multiple", the plag-in circuits stop the generation of waveforms by clamping the ourput of the triangle integrator to its input at a selected phase (see Figure 3). The waveform generating circuits are released by pressing the MANUAL TRIGGER button on the plug in of by applying a trigger pulse or gate to the plug-in input. The point in the waveform at which waveform generation starts and stops is determined by the START/ STOP-PHASE control, which can be adjusted over a range of -90° to $+90^{\circ}$ of the waveform.

Figura 3. Block diagram of 3302A plug-in shown in single and multipla modes.

The HP 3304 A Sweep/Offset Plug-in provides internal sweeping up to a decade of frequency. It generates a sawtooth waveform and delivers it to either of the 3300A output terminals, and it also provides an offset square wave and a dc offset for all of the signals generated by the 3300 A and 3304A.
For the sawtooth mode of operation, the 3304 A uses a sawtooth generator, a RANGE switch, a FREQUENCY conrrol and a \pm SAWTOOTH selector switch (see photo page 373).
For the internal sweeping of the 3300 A output functions, the 3304 A uses the negative sawtooth output. The start frequency is set by the 3300A PREQUENCY dial and RANGE selector (it may be by semote control). The circuirry of the 3304A adds the start frequency control voltage and the negative saw. tooth ramp. The negative voltage swing of the ramp is controlled by the 3304A SWEEP WIDTH control. The rate of the sweep is controlled by the 3304A sawtooth frequency.

For the de offser which is applied to all output functions of the 3300 A , the 3304 A applies a do voltage between output ground and circuit ground. This dc offset voltage is controlled by a frontpanel + and - switch and by a fine and coarse adjustment.

The 3305 A is a Sweep Plug-in for the 3300A main frame which sweeps fre. quencies from 0.1 Hz to 100 kHz in three overlapping ranges (each range covers four-decades of frequency: 0.1 Hz to 1 $\mathrm{kHz}, 1 \mathrm{~Hz}$ to 10 kHz and 10 Hz to 100 kHz). Here, a low frequency logarith-
mic sweeper can be obtained merely by purchasing another plug-in for the 3300 A Function Generator.

The 3305A Swaep Plug-in is basically a controlled-current generator for the 3300A main frame. Ir provides automatic sweep, manual sweep, criggered sweep and it may be programmed by an ex. ternal analog voltage.

The start and stop frequencies can be independently adjusted to any point on any range. The sweep of the preset frequencies allows logarithmic frequency plots to be made and a good approximation to a linear saceep can be obtained when the sweep width is small. A linear sawrooth output is available for the X . axis of oscilloscopes or $X \cdot Y$ recorders. After the X -axis of the recorder is set up, the sweep width, the start position, the range and the sweep time can be changed without necessitating re-adjustment of the horizontal sweep. This Sweep Plug-in also includes signal blanking and pen lift during retrace.

Any of the 3300A outputs: sine, square or triangular, can be swept logarithm!. cally over four decades at either channel A or channel B of the 3300 A main frame.

For additional information on this 3305A Sweep Plug-in, refer to the Sweep Generator technical information, page 411 , and the product pages 374 and 416 .
Because of its versatility, the HP 3300 A with its various plug-ins may be used for all of the applications listed in the first few paragraphs of this section.

HP 203A

Another HP function generator is the 203A Variable Phase Function Genera. tor. This instrument has a sine wave and square wave output with a second channel that can be phase-shifted contin. wously through a full 360° range.

Although this function generator is intended primarily for low-frequency work, it has a frequency range extending from 60 kHz down to 0.005 Hz or, with options, down to as Iow as 0.00005 Hz (s hours for 1 cycle). All four ourput signals are supplied simultaneously and all have individual 40 dB attenuators.
For a stable, low-distortion sine wave source, the 203 A is ideal, for it has less than 0.06% combined harmonic dis. tortion, hum and noise at full output.

HP 209A

A modification to the Wien bridge os. cillator is the 200A Sine-Square Wave Oscillator. Stable, accurate signals which can be synchronized with an external source are instantly available over a frequency range of $\{\mathrm{Hz}$ to 2 MHz . The amplitude of the sine and square wave outpurs are separately adjustable and are available simultaneously. Distortion and
flatness can be improved at low frequencies by a low distortion mode switch.

The block diagram in Figure 4 shows the basic construction of the sine-square oscillator. The Wien bridge oscillator requires a loop gain of unity in order to oscillate. This requirement is met by positive and negative feedback circuits. The amplitude of the output is held constant by a peak comparator and an automatic gain control (AGC), as explained in the 204C operation page 369.

The sine wave output from the oscillator circuit is amplified by the buffer amplifier and fed to the output terminals. The amplifer bas a high open loop gain thar is controlled by the negative feedback to provide a gain of 2. This enables the circuit to have very low distortion characteristics. The output is fed through a complementary symmetry transistor pair similar to the oscillator amplifier output.

The sine wave output from the oscil. lator circuit is also applied to the sinesquare converter. The sine wave is fed to a tunnel diode which produces a small square wave output with fast rise and fall times. This small square wave sig. nal is then shaped and amplified. It ap. pears at the output as a 20 volt peak topeak square wave.

OSCILLATORS

Signal sources have been described by various names-oscillators, test oscillators, audio signal generators, etc. Different names are applied, depending on the design and intended use of the source. The oscillator is basic to all the sources and generates sine-wave signals of known frequency and amplitude. In the recently developed transistorized sources, the name "test oscillator" has been used to describe an oscillator having a calibrated attenuator and output monitor. The term "signal generator" is reserved for an oscillator with modulation capability.

Basic oscillator requirements

In selecting an oscillator, the user will be most interested in its frequency cover.
age. The question to be answered here is, "Will the instrument supply both the lowest and highest frequencies of interest for anticipated tests?" As shown in Table 1, page 366, Hewlett-Packard manufactures a broad range of oscillators and function generators covering the frequency spectrum from 0.00005 Hz to 32 MHz .

The user's next concern will be with the available output porver or voltage. Some tests require large amounts of power, while others merely require sufficient voltage output. For almost any application, there is a Hew.letr-Packard oscillator capable of delivering the desired voltage output into a high-impedance load or of supplying the desired power into lower-impedance loads.

Some Hewlett-Packard oscillators have a low internal impedance. This low impedance can easily be converted to a desired output impedance with a resistive network. This assures a constant impedance over a wide frequency range. In most HP oscillators, transformer cou. pling is used to provide a balanced and isolated output. Some instruments have transformer taps for supplying the wide variety of impedances encountered in normal test work. Since many audiorange oscillators are used with 600.0 hm systems, several include 600 -ohm adjustable attenuators on the output.

Besides frequency range and power output, the user will be interested in the oscillator's stability, its dial resolution and the amount of harmonic distortion, hum and noise in the output signal.

Dial resolution and accuracy

In the ideal case, the user should be able to set the tuning dial of his oscillator to a particular frequency with assurance that the oscillator will deliver that frequency at all times. Most Hewlett-Packard oscillators have dial accuracies of $\pm 2 \%$. The dials may be precisely set by a vernier control, and the calibration marks are easily read. The accuracy with which the frequency tracks the tuning dial enters into the overall accuracy figure.

Frequency stability

The frequency stability of the oscillator determines the ability of the instrument to maintain a selected frequency over a period of time. Component aging, power-supply variations and temperature changes all affect stability. The HewlettPackard designed RC oscillator circuits, described later, assure stability by using large amounts of negative feedback. Carefully chosen components, such as precision resistors and variable capaciors in the frequency-determining networks.
contribute to long-term stability. Oscilla. tor stability is included in the overall 2% dial accuracy figure.

Amplitude stability

Amplitude stability is important in certain oscillator applications. Amplitude stability is inherent in the Hewlett-Pack. ard RC oscillator circuit because of the large negative feedback factor and the amplitude srabilizing techniques. The "frequency response," or amplitude variation as the frequency is changed, is of special interest when the oscillator is used for response measurements throughout a wide range of frequencies.

Distortion

Distortion in the oscillator's output signal is an inverse measure of the purity of the oscillator's waveform. Distortion is undesirable in that a harmonic of the test signal may leed through the circuits under test, generating a false indication at the output. If the oscillator is used for distortion measurements, the amount of distortion that it contributes to the measurements should be far less than that contributed by the circuits under test.

The Hewlett-Packard Wien bridge RC oscillator is a low-distortion, sine-wave generator; all Hewlett-Packard Wien bridge oscillators have less than 1% distortion (typically 0.25%). Where 0.25% distortion may be too large, a selective amplifier following the oscillator will reduce this to less than 0.1%. A tuned, selective amplifier is used in the HP 206A Low-Distortion, Audio-Signal Generator for this purpose. The 203A Function Generator, 204C and 209A Oscillators are ideal sources with low distortion and wide frequency coverage. See pages 371 and 375 .

Hum and noise

Hum and noise can be introduced at a variery of points in oscillator circuits; but when the circuit operates at a relatively high level, the amount of hum and noise introduced into the device under rest is usually negligible. Hum and noise introduced by a power amplifier usually remain constant as the output signal am. plitude is diminished. Hence, even though the hum and noise power may be quite small compared to the rated output, these spurious signals sometimes become a sig. nificant portion of low-level output sig. nals. To overcome such a limitation, many Hewlett-Packard oscillators have their amplitude control on the output side of the power amplifier so that hum and noise are reduced proportionally with the signal when low-level signals are desired for test purposes.

Synchronization

Recent Hewlett . Packard oscillators have incorporated capabilities to syn. chronize the oscillazor with an external signal (refer to Figures 4 and 7).

At the frequency setting of the Wien bridge oscillator, the closed loop gain is theoretically infinite. An applied sync voltage will be amplified and sent to the AGC circuit. This increase in AGC volt. age will disable the oscillator. Now the oscillator becomes a highly selective amplifer at the tuned frequency of the os. cillator. The AGC circuit maintains a constant volrage to the outpur attenuaror, and because of the high selectivity of the amplifier, the output will be a clean sine wave at the sync frequency. This synchronization of the sine wave oscillator output to an external signal is possible even with a square wave sync signal input.

Theory of operation

The Wien bridge RC oscillator has become the standard oscillator circuit for adjustable frequency test signals. These oscillacors are far less cumbersome than the LC types and far more stable than the beat-frequency rypes formerly used for the below-rf range.

The basic Hewlett-Packard Wien bridge oscillator circuit, shown in Figure s, is a two-stage amplifer with both neg. ative and positive feedback loops. Positive feedback for sustaining oscillations is applied through the frequency selective network, $R_{1} C_{1} \cdot R_{2} C_{2}$, of the Wien bridge.

Figure 5. Basic MP Wien bridge RC oscllator eircult.

The amplitude and phase characteristics of the network, with respect to its driv. ing voltage, are shown in Figure 6. These curves show the amplitude response is maximum at the same frequency at which the phase shift through the network is zero. Oscillations are therefore sustained at this frequency. The resonant frequency, f_{n} is expressed by the equa. tion:
 Unlike LC circuits, where the frequency varies inversely with the square root of C. the frequency of the Wien bridge os. cillator varies inversely with C. Thus,

Figure 6. Characterlstics of frequency-deter. mining network.
frequency variation greater than $10 \cdot 10 \cdot 1$ is possible with a single sweep of an airdielectric runing capacitor. Range switching usually is accomplished by switching the resistors.

The negative feedback loop involves the orther pair of bridge arms, R_{n} and R_{k}. In a Wien bridge RC oscillator, R_{k} is often a temperature-sensitive resistor with a positive temperature coefficient. It is an incandescent lamp operated at a temperature level lower than its illumination level. This lamp, being sensitive to the amplitude of the driying signals, adjusts the voltage division ratio of the branch accordingly. Thus, as the amplitude of oscillations increases, the resis. tance of R_{k} increases. The negative feedback also increases, reducing the gain of the amplifier and restoring the amplitude to normal.

The amplitude of oscillations in any oscillator increases because of the positive feedback until some form of limiting oc. curs. The Hewletr. Packard Wien bridge RC oscillator depends on the tempera-ture-sensitive resistor for amplitude conurol. Thus the amplifier may be operated entirely within the lineas portion of its transfer characteristic, resulting in a lowdistortion, sinusoidal output.

A different type of amplitude stabiliza. tion is used in the solid-state HewlettPackard RC oscillators, such as the 208A, 651 B and the 652A. Because the current drawn by a lamp would be incompatible for use with transistors and battery power sources, these instruments use a peak-detector circuit which provides a bias voltage proportional to the oscilla. tor output voltage.

Another variation of the solid state Wien bridge RC oscillator is used in the 204C show'n in Figure 7. The oscillator with this type of anplitude stabiliza. tion will hold the amplitude constant ($\pm 1 \%$) up to a frequency of 1.2 MHz .

As the amplitude of the amplifier changes, a peak comparator sends an error signal to the automatic gain control (AGC) Which contains a feld effecr transistor. The purpose of the $A G C$ is to continuously control the oscillator gain
to mainrain unity loop gain. The resistance of the AGC circuit can be varied slightly to change the divider ratio of the negative feedback network An error in output voltage is detected by the peak comparator and sent to the AGC field effect transistor. This thanges the resistance ratio in the negative feedback loop, thus bringing the outpur back to a constant level. The Wien bridge RC os. cillator is capable of stable oscillations with low distortion ourput. The 20 仵 has less than 0.01% hum and noise with distortion of 0.1% from 30 Hz to 100 kHz .

With the addition of a power ampli. fier to isolate the oscillator from the load, this circuit is capable of providing useful test signals for a broad variety of purposes. The low cost HP Model 200 AB Oscillator uses such an arrange. ment.

Figure 7. Block dlagram of the 204C Oscillator.

Pushbutton turing

Pushbutron oscillator tuning is possible with a modified Wien bridge. Here, the resistive branches of the frequency-selective network are made up of parallel combinations of resistors. The 241 A Pushiturton Oscillator has three pushburton, decade-switch selectors for changing the resistors in the frequency selective nerwork. Each decade selects resistive value for one pair of sesistors in the frequency-determining network.
Ranges are switched by changing ca. pacitors with a five-position pushbutton switch. Total frequency range of the 241A Oscillator is from 10 Hz to 1 MHz in 4500 discrete steps. An overlapping vernier control permits setting to intermediate frequencies.

Pushbutton tuning enables the frequen. cy to be changed by precise increments. Frequency selection to three-digit resolution with 1% accuracy and resettability to within 0.02% are possible.

Digital Oscillator

Anoriner HP oscillator is the 5204 A Digita! Oscillator. This instrument has
five switches enabling $\pm 0.2 \%$ selection from any of 36,900 discrete frequencies between 10 Hz and 999.9 kHz . An over. lapping vernier control permits setting of intermediate frequencies and extension of the top range to over I MHz . An out. put monitor allows accurate determination of output levels. This instrument provides the functions of an audio oscillator, ac voltmeter, and an electronic counter, in applications requiring an accurate frequency source of known amplitude Refer to page 378 for complete specifications.

Balanced RC oscillator

A more refined circuir is the balanced vacuum tube Wien bridge RC oscillator used in the HP200CD and 202C. This circuir provides several advantages over the basic single ended oscillator circuit.

The circuit has zerooutput impedance because of the positive feedback from the plate of each output tube to the control and screen grids of the opposite output tube. Zero output impedance means that the circuit is insensitive to load changes. Positive feedback effectively increases the amplifier gain, A, to infinity. From the equation, $Z_{0}=Z_{0} /(1+A \beta)$, where Z_{0} is the outpur impedance without feed. back and β is the stabilizing negative feedback factor, it can be seen that the output impedance Z_{o} becomes zero il A is infinite. Series resistors are inserted in the output leads to present a $600-0 \mathrm{hm}$ impedance load and also to prevent short circuiting of the power tubes' cathades.

In the balanced circuit, no $d c$ passes through the lamp circuit; the lamp cur. rent is pure ac. This means that lamp heating occurs at twice the oscillating frequency, enabling the circuit to be operated down to hale of the lonv-frequency limit of the single-ended oscillator. In addition, the capacitor-tuning rotors ase near ground potential, reducing leakage effects in these capacitors and permitting larger resistors to be used in the RC circuits for low.frequency operarion.

Broadband balanced Wien bridge oscillator

A more recent balanced, solid state test oscillator covering the frequency range of 10 Hz to 10 MHz is shown in Figure 8. The RC osciliator uses a different approach for level accuracy. The output of the RC capacitor tuned bridge oscillator is sent through a variable atten. uation pad to a balanced differential amplifier. The outpur of this ampliñer is +10 dBm at 0 on the mecer. Level control over this wide frequency range is accomplished by controlling the intensity of a light shining on a phovo cell. This controls the attenuation of the pad

Figure 8. Block diagram of the balanced 654A Oscillator.
at the input of the balanced amplifier. The output of the differentia! balanced amplifier is average detected and com. pared against a reference current (set by frone panel control) in the amplitude control integrator. This integrator controls the intensity of the lamp, hence the resistance of the photo cell The in. put to the balanced attenuator is kept constant as the frequency is changed. A special common mode feedback loop as. sures exceilent balance in the output over the full frequency range. The output attenuator is balanced in 10 dB and I dB steps. The impedance switch connecrs different resistors to the output connectors for 50 and is ohms unbalanced and 135, 150 and 600 ohms balanced outputs.

The meter is 0 cencered and reads in dBm for the various impedances. An off. ser current source and a meter differential amplifier set the meter pointer as center deflection for a +10 dBm input to the attenuator. A change of $\pm 1 \mathrm{~dB}$ gives full meter defection with a resolution of 0.02 dB . The maximum outpur of +11 dBm ar each of the output impedances can be attenuated in 10 dB and 1 dB steps. Refer to page 327 for the communications version of this oscillator.

High-frequency oscillators

The high-frequency limit of the RC oscillator is imposed by the amplitude and phase characteristics of the oscillator. amplifier. An amplifer phase shift of just a fraction of a degree causes 1% error in calibration. A modified Wien bridge os. cillator is used on all the ranges of the HP 650 series oscillators, instead of phase-shift oscillators which are commonly used above 100 kHz . This is made possible through the use of a wideband, transistorized oscillaror-amplifier
with the phase shift controlled several ocraves past the oscillator's upper 10 MHz limis. An impedance converter provides a high impedance in series with the infut of a differential amplifier on the first four frequency ranges (X 10 to X 10 k). The added high impedance prevents the RC bridge circuit from being loaded by the low inpur impedance of the differential amplifier on loner fre. quency ranges. A complementary sym. metry circuit is used to provide power gain and to increase the dynamic voltage range of the oscillator. A typical ourput circuit of a Hewletr-Packard solid-state 10 Hz to 10 MHz oscillator is shown in Figure 9.

Figure 9. FC high.frequency osciliator output.
The oscillator circuits described here are used in Hewletr-Packard's broad line of signal sources. These signal sources span a Erequency range of 0.00005 Hz to $32 \mathrm{MHz}^{\text {, encompassing the subsonic, }}$ audio, ultrasonic, video and rf ranges. All of the Hewlett-Packard oscillators and rest oscillators described in this cata\log have been designed with the requirements of a maximum number of applica. tions in mind. The various techniques were chosen in order to maximize the performance offered while minimizing the cost so that a Hex.lett-Packard oscillator is available to meet your application

VARIABLE-PHASE GENERATOR Sine- and square-waves 0.00005 Hz to 60 kHz
 Model 203A

 SIGNAL SOURCES

The solid-state HP Model 203A Lowr-Frequency Function Generator provides two transient-free low-distortion square and sinusoidal test signals particularly useful for a wide variety of low-frequency applications. Field and laboratory testing of servo, geophysical, medical and high-quality audio equipment become practical when using the 203 A .

The 203 A frequency range of 0.005 Hz to 60 kHz is covered in 7 overlapping bands (2 additional ranges available on sperial order, offering frequency range to 0.00005 Hz). Accurate $\pm 1 \%$ frequency setting is provided by 180 dial divisions. A vernier drive allows precise adjustment.

30 volt output

The 203A provides a maximum output voltage of 30 V peak-to-peak for all waveforms. The sinusoidal signals have a distortion that is less than 0.06% and provide virtually transient-free outputs when frequency and operating conditions are varied rapidly. The four output circuits of the 203A have individual 40 dB continuously variable attenuators.

Outputs consist of a reference sine and square wave, and a variable-phase sine and square wave. The two sine- and square-wave outputs are electrically identical except that one sine. and square-wave output contains a 0 -to-360 degree phase-shifter. These four signals (two reference phase and two variable phase) are available simultaneously from the 203A. The output system is floating with respect to ground and may be used to supply an output voltage that is terminal grounded, of may be floated up to 500 volts de above chassis ground. The output impedance is 600 ohms for all outputs.

Special features

A front-panel calibration provision permits the user to easily calibrate the oscillator frequency to the environment in which the instrument is used. The HP 203A fea. tures a unique method of mixing, filtering and dividing the frequency to maintain an exact decade relationship. Interchangeable decade modules provide greater reliability and ease of servicing.

Specifications, 203A

Frequency range: 0.005 Hz to 60 kHz in seven decade ranges.*
Dial accuracy: $\pm 1 \%$ of reading.
Frequence stablity: within $\pm 1 \%$ including warmup drift and line volrage variations of $\pm 10 \%$.
Output waveforms: sine and square waves are available simultaneously; all ourputs have common chassis terminal.
Reference phase: sine wave, 0 to 30 V peak-to-peak: square wave, 0 to 30 V peak-to-peak (open circuit).
Variable phase: sine wave, 0 to 30 V peak-to-peak; square wave. 0 to 30 V peak-to-peak; continuously variable, 0 to 360°; phase dial accuracy, $\pm 3^{\circ}$ sine wave, $\pm 10^{\circ}$ square wave (open circuit).

Output Impedance: 600 ohms .
Output power: 5 volts into 600 ohms (40 mW) : 40 dB continuously variable attenuation on all ourpurs.

Distortion: toial harmonic distortion hum and noise $>64 \mathrm{~dB}$ below fundamental ($<0.06 \%$) at full oulput.

Output system: direct-coupled output is isolated from ground and may be operated floating up to 500 V de.
Frequency response: $\pm 1 \%$ referenced to 1 kHz .
Square wave response: rise and fall time, <200 ns; overshoot, $<5 \%$ ar full output.
Power: 115 or 230 volts $\pm 10 \%, 50$ to 1000 Hz , approximately 25 W.

Dimensions: cabinet: $51 / 4^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ deep (133 $\times 425 \times 286 \mathrm{~mm})$; rack mount $\operatorname{kit}(00203.84401)$ furnished with instrument.

Weight: net $20 \mathrm{lbs}(9,17 \mathrm{~kg})$; shipping $28 \mathrm{lbs}(12,6 \mathrm{~kg})$.
Price: HP 203A, \$1250; Oprion 01 (0.0005 Hz range), add \$50; Option 02 (0.0000) Hz range), add $\$ 150$

[^32]

Description

Plug-ins and multiple outputs set the HP 3300A Function Generator apart from other function generators. Any two of three waveforms-sine, square or triangular-may be selected by a front-panel switch over the frequency range from 0.01 Hz to 100 kHz , continuously adjustable in seven decade ranges. This solid-state, multi-purpose source provides simultaneous signals of any two waveforms over the entire frequency range with independent variable amplitudes.

Plug-ins, which insert directly into the front panel, include the HP 3301A Auxiliary Plug-in to provide iniernal connections for basic unit operation. The 3302A plug-in provides single and multiple-cycle operation with adjustable start-stop phase. A phase-lock loop in the 3302A per. mits synchronizing the 3300 A with an external signal and gives adjustable phase control. The HP 3304A Sweep/ Offset Plug-in provides internal sweeping, dc offset, sawtooth wares and offsel square waves. The 3305 A Sweeper Plug-in supplies internal log sweep and manual sweep over four decades with calibrated variable start-stop frequency control within four decades. Sweep width is continuouslyadjustable. It has manual or external triggering. Sweep can be analog-programmed, with horizontal sweep asailable for driving scopes or recorders.

The frequency of the HP 3300A can be controlled by either the front-panel frequency dial or an external voltage applied to a rear-terminal connector. This feature is useful for sweeping fiters, amplifiers and other irequencydependent devices and for externally programming frequencies for production testing.

The output system of the HP 3300A is de coupled and fully floating with respect to power-line ground. An internal shield reduces radiated interference and provides commonmode rejection with floating output. It can be used to supply a balanced output, using both output amplifiers. Each output amplifier will deliver 35 V p-p into an open circuit.

Specifications

Output waveforms: sinusoidal, square and triangular selected by panel switch (any two outputs available simultaneously).

Frequency range: 0.01 Hz to 100 kHz in 7 decade sanges.
Frequency response: $\pm 1 \%, 0.01 \mathrm{~Hz}$ to $10 \mathrm{kHz} ; \pm 3 \%, 10$ kHz to 100 kHz on the X 10 k range.
Dial accuracy: $\pm 1 \%$ of maximum dial setting (1 minor division), 0.01 Hz to 10 kHz at $+25^{\circ} \mathrm{C}: \pm 2 \%$ of maximum dial setting, (2 minor divisions), 10 kHz to 100 kHz on the X 10 k range.
Maximum output per channel: $>35 \mathrm{~V}$ p-p open circuit; $>15 \mathrm{~V}$ p-p into $600 \Omega ;>2 \mathrm{~V}$ p-p into 50 R.
Output attenuators (both channels): 40 dB range.
Sine-wave distortion: $<1 \%, 0.01 \mathrm{~Hz}$ to $10 \mathrm{kHz} ;<3 \%, 10$ kHz to 100 kHz on the X 10 k range.
Square-wave response: <250 ns rise and fall time on all ranges; $<1 \%$ sag, $<5 \%$ overshoot at full outpur; $<1 \%$ symmetry error.
Triangle-linearlty error: $<1 \%, 0.01 \mathrm{~Hz}$ to $10 \mathrm{kHz} ;<2 \%$, 10 kHz to 100 kHz at full output; $<1 \%$ symmetry error.
Sync-pulse output: $>10 \mathrm{~V}$ p-p open circuit. $<5 \mu 5$ ducation.
Output lmpedance (both channels): $600 \Omega \pm 20 \%$.
DC stability: drift; $< \pm 0.25 \%$ of p-p amplitude over a period of 24 hours (after $30-\mathrm{min}$. warmup).
Remote frequency control: 0 to -10 V will linearly change frequency >1 decade within a single range. Frequency resettability with respect to voltage $\pm 1 \%$ of maximum frequency on range selected.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 60 \mathrm{~W} \max$.
Dimensions: standard HP full module $163 / 4$ " wide, $5^{\prime \prime}$ high (without removable feet), $11^{\prime \prime}$ deep ($425 \times 127 \times 279$ mm).
Weight: net $20 \mathrm{lbs}(9 \mathrm{~kg})$; shipping $24 \mathrm{lbs}(10,8 \mathrm{~kg})$.
Accessories furnished: rack mount kit for $19^{\prime \prime}$ rack.
Plug.jns available
HP 3301 A Auxiliary Plug-in, $\$ 30$. HP 3302A. Trigger Plug-in (see page 373). HP 3304A Sweep/Offset Plug. in (sec page 373). HP 3305A Sweeper Plug-in (see page 374).
Price: HP 3300A Function Generator, $\$ 650$.

The HP 3302A Trigger/Phase Lock Plug-in provides singlecycle, multiple-cycle and phase-lock operation. The instrument can be triggered over the entire frequency range, tither manually or by applying an external voleage.

In single-cycle operation, one cycle of any function can be obtained by pushing the manual trigger or applying a voltage to the external rrigger input.

In the mulciple-cycle mode of operation, any number of complete cycles of any function can be obtained by holding the manual trigger depressed, or by applying an external gate voltage.
The 3300 A may be phase-locked to any periodic signal with a frequency from 10 Hz to 100 kHz to ebtain sine, triangle and square wave outputs with frequency characteristics of the externally-applied signal.

The HP 3304A Sweep/Offset Plug.In provides internal sweeping, de offset, sawtooth waves and offset square waves. L'p to $\pm 16 \mathrm{~V}$ of dc offset is available for all signals generated in the main frame and plug-in. In addition, the independently frequency-controlled santooth n'ave may be switched internally to the frequency control circuit of the HP 3300A Function Generator to permit sweeping over a decade of frequency within a single range.

Specifications, 3302A

Trigger requirements

Single cycle: manual or external, do coupled. Requires at least 0.5 V to trigger extemally. May be triggered with positive or negative input voltage which starts at or goes through zero volts (土20 V peak max.)
Multiple cycle: manual or external start/stop, de coupled. Requires at least 0.5 V to starr, 0 V to srop. May be triggered with either positive or negarive inpuk voltage ($\pm 20 \mathrm{~V}$ peak max.).
Phase lock: 10 Hz to 100 kHz (upper 4 ranges only), de coupled. Requires + and $-0.5 \mathrm{~V}_{\mathrm{p}}$ to lock, $10 \mathrm{~V} \mathrm{p} \cdot \mathrm{p}$ for specified accuracy with sine-wave input. The 3302A will lock on a fundamental or harmonic of the inpue signal.
Phase dial accuracy: $\pm 10^{\circ}$ from 10 Hz to $10 \mathrm{kHz}: \pm 20^{\circ}$ from 10 kHz to 100 kHz on X 10 k range (fundamental only).
Introduced distortlon: $<1 \%, 10 \mathrm{~Hz}$ to $10 \mathrm{kHz}:<3 \%, 10 \mathrm{kHz}$ to 100 kHz on X 10 k range (fundamental only)

Dimensions: $6 \cdot 1 / 16^{\prime \prime}$ wide, $f^{3 / 4 \prime}$ high, $101 / 4^{\prime \prime}$ deep $1154 \times 121 \times$ 260 mm).
Weight: net $3 \mathrm{lbs}(1.4 \mathrm{~kg}$); shipping $5 \mathrm{lbs}(2.5 \mathrm{~kg})$.
Price: HP 3302A Trigger/Phase Lock Plug-in, S225.

Specifications, 3304A

DC oftset
Voltage range: adjustable 0 to $=16 \mathrm{~V}$ open circuit and a $\pm 1 \mathrm{~V}$ vernier control.
DC stability: $\pm 50 \mathrm{mV}$ over a $24 . \mathrm{hr}$, period (after $30-\mathrm{min}$. svarm-up).
Offset square wave
Output polarity: positive or negative, from de offset voleage or ground potential.
Amplitude: > is V p-p open circuit; continuously adjustable with 3300 A amplitude control.
Rise time: <400 ns.
Overshoot: < 5% at full ourpur.
Sag: $<1 \%$.

Sawtooth waveform

Frequency range: 0.01 Hz to 100 kHz , continuously adjust. able over 7 decade ranges.
Dial accuracy: $< \pm 10 \%$ full scale, 0.01 Hz to $1 \mathrm{~Hz} ;< \pm 5 \%$ full scale, 1 Hz to 100 kHz .
Amplitude: $>15 \mathrm{~V}$ p-p open circuit; continuously adjustable over a 40 dB range with 3300 A amplitude control.
Frequency response: $<2 \%, 0.01 \mathrm{~Hz}$ to 10 kHz ; $<5 \%$. 10 kHz to 100 kHz .
Output polarty: positive or negative, from de offsec voltage or ground porential.
Linearity: $<1 \%, 0.01 \mathrm{~Hz}$ to 10 kHz ; overshoot, $<5 \%$.
$<2 \%, 10 \mathrm{kHz}$ to 100 kHz ; overshoot, $<5 \%$.
Flyback time: $<5 \% \div 250 \mathrm{~ns}$.

Intemal sweep

Controls: start frequency set by 3300A frequency dial; sweep range set by sweep width control on plug-in.
Sweep rate: determined by sawtooth frequency setiong
Sweep width: adjustable from 0 to at least I decade on any one range.
Dlmensions: $6 \cdot 1 / 16^{\prime \prime}$ wide, $43 / 4^{\prime \prime}$ high, $10^{1 / 4 "}{ }^{\prime \prime} \operatorname{deep}(15-1 \times 121 \times$ 260 mm).
Weight: net $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Price: HP 3304A Sweep/Offec Plug.in, $\$ 265$.

The 3300A/3305A will sweep logarithmically, repetitively between any two frequencies within one of the three (4 -decade) ranges: 0.1 Hz to $1 \mathrm{kHz}, 1 \mathrm{~Hz}$ to 10 kHz , and 10 Hz to 100 kHz . Calibrated independent START.STOP controls greatly simplify setting desired sweep end points. Adjustable sweep time from 0.01 to 100 seconds provides sweep times slow enough for accurate response testing of low-frequency high-Q systems and fass enough for good visual displays of higher frequency responses.
The manual sweep, vernier adjustment of frequency between the start-stop limits, allows close observation of a small portion of a response curve. This manual control also permits measurement of a critical frequency with counter accuracy and simpler set-ups for oscilloscopes or X.Y recorders.

Programming

For automated resting, the $3300 \mathrm{~A} / 3303 \mathrm{~A}$ frequency can be analog-programmed over any one of the three (4 -decade) ranges. Up and down sweeping, up to two decades, can be obrained by a triangular input. Also individual or multiple sweeps can be externally triggered.

Sweep output

X -axis readjustment is eliminated since the sweep output amplitude is independent of start-stop, sweep time and sweep width.

Specifications, 3305A

Frequency range: 0.1 Hz to 100 kHz in three ranges.
Sweep width: limits adjustable 0 to 4 decades in any of three (4-decade) bands: 0.1 Hz to $1 \mathrm{kHz}, 1 \mathrm{~Hz}$ to $10 \mathrm{kHz}, 10 \mathrm{~Hz}$ to 100 kHz . Start-stop dial accuraç: $\pm 10 \%$ of secting.

Sweep modes

Automatic: reperitive logarithmic sweep between seart and stop frequency serings.
Manusi: vernier adjusiment of frequency between start and stop frequency settings.
Trigger: sweep berween start and stop frequency settings and retrace with application of external trigger voltage or by depressing front-panel trigger button.
Trigger requirements: ac coupled, positive going at least i V peak with $>2 \mathrm{~V}$ per ms rise rate. Max. input, 士 $\pm 90 \mathrm{Vp}$.
Sweep time: 0.01 s to 100 s in 4 decade seeps, continuously ad. justable vernier.
Retrace time: <0.003 s for 0.1 to 0.01 s sweep times: $<0.03 \mathrm{~s}$ for 1 to 0.1 s sweep times; < 4 s for 100 to 1 s sweep cimes.
Blanking: oscillator disabled during retrace.
Pen lift: terminals shorted during sweep; open during recrace in auto and wigger modes for 100 to 1 s sweep times.
Sweep output: linear ramp ar CHANNEL B OUTPL'T (PLLiG. IN); amplitude adjustable independently of sweep width: max. output >15 V p-p into open circuit, $>7 \mathrm{~V}$ p-p into 600 n .

External frequency control

Sensilifilty: $6 \mathrm{~V} / \mathrm{decade}$ (refer: START setting), $\pm 24 \mathrm{~V}$ max.
V-to-F conversion accuracy; for each 6 V change in progeamming voltage, frequenc' changes 1 decade $\pm 5 \%$ of end F. input impedance: $400 \mathrm{k} \Omega \pm 5 \%$. Maximum rate: 100 Hz .

General

Dimensions: $6.1 / 16^{\prime \prime}$ wide, $43 / 4^{\prime \prime}$ high, $1014^{\prime \prime}$ deep ($154 \times 121 \times$ 260 mm).
Weight: net $4 \mathrm{lbs} 6 \mathrm{oz}(2 \mathrm{~kg})$; shipping $6 \mathrm{lbs} 6 \mathrm{oz}(3 \mathrm{~kg})$.
Prica: HP 3305A, 8575.

LOW FREQUENCY FUNCTION GENERATOR Model 202A

Description

The HP Model 202A Low Frequency Function Generator has a continuously variable output frequency from 0.008 Hz to 1200 Hz . Any of the three desired waveforms-sine, square or triangular-can be selected from a front panel switch. Fre. quency stability is within 1% with less than 1% sine wave distortion. The outpur systern is fully floating with respect to ground and it can be used to supply a balanced voirage or an outpur voltage with either rerminal grounded. Maximum output is 30 volts peak-to-peak across a rared load of 4000 ohms (10.6 volts tms for a sine wave) . Refer to data sheet for complere specifications.
Power: 115 V or (230 V must be specified) $\pm 10 \% 90$ so $400 \mathrm{~Hz}, 150 \mathrm{~W}$.
Weight: net $42 \mathrm{lbs}(18,9 \mathrm{~kg})$; shipping $52 \mathrm{lbs}(23,4 \mathrm{~kg})$ (cab. inet).
Price: HP 202A, $\$ 665$. (cabinet). HP 202AR, \$650. (rack mount).

The HP 209A is a small, lighrweight, sine/square oscillator. Srable, accurate signals which can be synchronized with an external source are instantly available over a Erequency range from 4 Hz to 2 MHz . Separately adjustable sine/square outputs are located on the front panel. Distortion and fatness can be minimized at low. frequencies by a rear panel LOW DISTORTION MODE switch.

Specifications (209A)

Frequency: 4 Hz to 2 MHz in 6 ranges.
Dlal accuracy: 土 $\jmath \%$ of frequency secting.
Fiatness: at maximum output into 600Ω load. 1 kHz reference.

Low distortion mode	$\pm 1 \%$	$\pm 0.5 \%$	$\pm 1 \%$	$\pm 5 \%$	
Normal mode	$+5 \%$	-1%	$=0.5 \%$	$\pm 1 \%$	$\pm 5 \%$
4	4	100	300 k	1 M	$2 \mathrm{M} \mathrm{(Hz)}$

Distortion: 200 Hz to $200 \mathrm{kHz}, 0.1 \%(-60 \mathrm{~dB}): 4 \mathrm{~Hz}$ to 200 Hz . $<0.2 \%(-54 \mathrm{~dB}) ; 200 \mathrm{kHz}-2 \mathrm{MHz},<1 \%(-40 \mathrm{~dB})$.
Hum and nolse: $<0.01 \%$ of input.

Dutput characteristics sine wave

Output voltage: $5 \mathrm{~V} \mathrm{~ms}(40 \mathrm{~mW})$ into $600 \Omega ; 10 \mathrm{~V}$ open circuit. Output impodance: 600ת.
Output control: 20 dB range continuously adjustable.
Output balance: $>40 \mathrm{~dB}$ below 20 kHz . Output can be floared up to $=500 \mathrm{~V}$ peak between output and chassis ground.

Output characteristics square wave

Output voltage: 20 V p.p open circuit symmetrical about 0 V . Output can be foated up to $\pm 500 \mathrm{~V}$ peak.
Rise and fall time: 50 ns. Symmetry: $\pm 5 \%$.
Output impedance: 600 to 900 ! depending upon outpur conrrol setring.

Synchronization

Sync output: sine wave in phase with output; 1.7 V ms open circuir; impedance $10 \mathrm{k} \Omega$.
Syre input: same as 204 C .

General

Operating temperature: instrument will operate within specifications from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Power: AC-line 115 V or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to $400 \mathrm{~Hz},<7 \mathrm{~W}$, Dimensions: $51 / 8^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ higlu (without removable feet), $8^{\prime \prime}$ deep ($130 \times 159 \times 203 \mathrm{~mm}$).
Weight: net $6 \mathrm{lbs}(2,7 \mathrm{~kg})$; shipping 8 lbs $(3,6)$.
Accessorles available: HP 11075A Instrument Case, $\$ 45$.
Prlce: HP 209A, $\$ 320$.

The HP 204C is a small, lightweight capacitiveruned oscillator. Interchangeable poreer packs, line, rechargeable batteries or mercury batteries make this instrument ideal for bort field and laboratory use. Internal heat generation and temperature coefficient is small, resulaing in unusually low drifc. Sable, accurate signals which can be synchronized with an external source are instantly available over a frequency range from 5 Hz to 1.2 MHz . Distortion can be minimized at low frequencies by a rear panel Low Distortion Mode switch; however, secting time with a rapid frequency change is increased.

Specifications (204C)

Froqeency: 5 Hz to 1.2 MHz in 6 overlapping ranges.
Dial accuracy: $\pm 3 \%$ of frequency setting.
Flatness: at maximum output into 600 ? load. 1 kHz reference.

Low distorion mode	$\pm 1 \%$	$\pm 0.5 \%$	$\pm 1 \%$	
Normal mode	$+5 \% .-1 \%$	$\pm 0.5 \%$	$\pm 1 \%$	
	5			

Distortion: 30 Hz to $100 \mathrm{kHz}, 0.1 \%(-60 \mathrm{~dB})$; $s \mathrm{~Hz}$ to 30 Hz ,

Hum and nolse: $<0.01 \%$ of ouipat.

Output characteristles

Output voltage: 2.5 V rms (10 mW) into 600Ω : 5 V rms open circuit.
Output impedance: 600 .
Output control: $>40 \mathrm{~dB}$ range; continuously adjustable.
Output balance: $>40 \mathrm{~dB}$ below 20 kHz . Can be floated up to $\pm 900 \mathrm{~V}$ peak between output and chassis ground.

Synchronization

Sync output: sine wave in phase with outpue: 1.7 V rms open circuit; impedance 10 k ? .
Sync input: oscillator can be synchronized to exremal signal. Syac range, the difference between sync frequency and sei frequency, is a linear function of syoc roleage. $\pm 1 \% / \mathrm{V}$ rms for sine ware with a maximum input of ± 7 volts peak.

General

Operating temperature: specifications are met from $0^{\circ} \mathrm{C}$ to $59^{\circ} \mathrm{C}$.
Power: standard: ac-line 115 V or $230 \mathrm{~V}=10 \%, 50 \mathrm{~Hz}$ to 400 Hz . <4 W. Opt. 01: mercury batteries 300 hours operation. Opt. 02: line/rechargeable batteries 115 V or $230 \mathrm{~V} \pm 10 \% .90 \mathrm{~Hz}$ co $400 \mathrm{~Hz},<4 \mathrm{~W} .40$ hours operation per recharge.
Dimensions: $51 / 9^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (without removeable feet), $8^{\prime \prime}$ deep $(130 \times 159 \times 203 \mathrm{~mm})$.
Weight: net 6 lbs ($2,7 \mathrm{~kg}$) : shipping 8 lbs ($3,6 \mathrm{~kg}$).
Accessorles available: HP 11107A AC Power Pack for 204 C . \$60. HP 11108 A Mercury Power Pack for 204C, $\$ 75$. HP 11109A Rechargeable Batuery/AC Power Pack for 204C. \$95. HP 11075A Instrument Case, $\$ 45$.
Price: HP 204C, (ac line) $\$ 240$. HP 204 C Option 001 (mercury batteries) add $\$ 15$. HP 204C Option 002 (rechatgeable batteries, ac-line) add $\$ 35$.

Features:
No zero setting, high stability Constant output, low distortion Wide frequency range, log scale No frequency change with load variation
Hewlett-Packard RC oscillators have long been basic tools for making electrical and electronic measurements of precise accuracy. These world-famous test instruments give you the most compact, dependable, accurate and easy-to-use commercial oscillators available.
The HP 200 Series Oscillators have high stability and ac. curate, easily resettable tuning circuits, Low-impedance operating levels, together with superior insulation, guarantee peak performance throughout years of trouble-free service. The instruments have wide frequency range and long dial lengths and feature an improved vernier frequency control. Operation is simplified - just three controls are required. Instruments are compact, light in weight and enclosed in a convenient, aluminum case with cacrying handle. They occupy minimum bench space and are easily portabic. Rack mounting is available on order.

200AB Audio Oscillator, Low Cost, 20 Hz to 40 kHz

The 200 AB sinewave oscillator frequency range of 20 Hz to 40 kHz is covered in four overlapping decade bands. Ac. curate frequency setting is provided by a dial, 90 divisions,and an effective scale length of 63 inches. The oscillator provides one watt or 24.5 volts into 600 ohm load. The output circuit is balanced and floating over the entire frequency range so that the instrument may be used to drive off-ground loads. The cabinet form is conventent for bench operation and the rack mount permits combining the 200AB with othes instruments in a standard rack. The panel arrangement aids in swift and straightforward operation. HP 200AB, $\$ 215$ (cabinet); HP 200ABR, $\$ 220$ (rack mount).

200CD Wide-Range Oscillator, Multi-Purpose, 5 Hz to 600 kHz

One of the most popular of all HP oscillators, Model

200 CD covers the range of 5 Hz to 600 kHz in five overlapping decade bands. Accurate frequency setting is provided by 112 dial divisions and an effective scale length of 78 inches, A vernier drive allows precise adjustment.

The 200 CD gives a maximum sinewave output of at least 10 volts across its rated load of 600 ohms and at least 20 volts open circuit. Its distortion rating is very low, less than 0.2% from 20 Hz to 200 kHz . A special feature of the 200 CD is that its waveform purity does not depend on load. The outpur impedance is nominally 600 ohms. The ourput transformers are balanced within 0.1% at the lower frequencies and within approximately 1% at the higher frequencies. The 200 CD is particulatly useful for testing servo and vibration systems, medical and geophysical equipment, audio amplifiers, sonar and uitrasonic apparatus, carrier telephone systems, video frequency circuits, etc. Waveform purity is maintained with extremely low loads Frequency is covered in 5 decade ranges, and accuracy is $\pm 2 \%$ including warm-up, aging, tube changes, etc. Frequency response is ± 1 dB full range. A convenient panel grounding terminal is provided to ground one of the output terminals when singleended operation is desired. A simple bridged T Attenuator is provided to control output power. Where a well-balanced adjustable ouiput source is desired, the HP 11004A Line Matching Transformer can be used. HP 200CD, $\$ 250$ (cabinet); HP 200CDR, s25s (rack mount).

The $\mathrm{H} 20-200 \mathrm{CD}$ is a standard 200 CD modified to have an extremely low distortion output. Refer to the Table of Specifications, page 377. HP H20-200CD, $\$ 305$.

201C Audio Oscillator, High Power, 20 Hz to 20 kHz

Particularly designed for amplifiet testing, transmission line measurements, loudspeaker testing, frequency comparison and other high fidelity tests, this audio oscillator meets every requirement for speed, simplicity and pure waveform. The frequency range, 20 Hz to 20 kHz , is covered in 3 bands; response is $\pm 1 \mathrm{~dB}$ full range. Ourput is 3 watts or 42.5 volts into 600 ohms; an attenuator adjusts output 0 SIGNAL SOURCES

202C
to 40 dB in 10 dB steps and provides either low impedance or constant 600 -ohm impedance. Distortion at 1 watt output and above 50 Hz is less than 0.5%. HP 201C, $\$ 275$ (cabi. net) ; HP 201CR, \$280 (rack mount).

202C Low-Frequency Oscillator, Excellent Waveform 1 Hz to 100 kHz

Model 202C brings to the low-frequency spectrum the accuracy and stability you associate with audio measure. ments. It provides excellent waveforms in the subsonic, audio and ultrasonic frequency ranges, and has broad applicability for industrial, field or laboratory use. Specifically, it may be used for these important tests: vibration or stability characrecistics of mechanical systems; electrical simulation of
mechanical phenomena; determining electro-cardiograph and electro-encephalograph performance: seismograph response; making vibration check's of structural components; obtaining performance characteristics of geophysical prospecting equipment; making operational checks of servo-mechanisn systems and general audio measurements.

The transformer-coupled. balanced output of the Model 202 C enables it to meet the signal source requirements for tests of a wide variety of systems. The instrument provides an output of at least 10 volts across its rated load of 600 ohms and at least 20 volts open circuit. A special feature is that naveform purity does not depend upon load. Distortion is less than 0.5%; hum roltage is less than 0.1%, and recover; time is extremely short-5 seconds at 1 Hz . HP 202C. $\$ 325$ (cabinet) ; HP $202 \mathrm{CR}, \$ 330$ (rack mount).

Specifications

$\underset{\text { Model }}{\text { HP }}$	Frepuenoy range	Casl. braton ascuracy	Outpul to E00 ohms	Output impadance	Meximum distortion	$\begin{aligned} & \text { Maximum } \\ & \text { hum and } \\ & \text { nofsat } \end{aligned}$	$\begin{aligned} & \text { Input } \\ & \text { power } \\ & \text { (walts) } \end{aligned}$	Welight-16 (kg)		Slze-Inches (mm)	Prioe
								net	shlp	W H D	
200AB	$\begin{aligned} & 20 \mathrm{~Hz} \text { to } 40 \mathrm{kHz} \\ & \text { (4 bands) } \end{aligned}$	$\pm 2 \%$	$\begin{gathered} 1 \mathrm{~W} \\ (24.5 \mathrm{~V}) \end{gathered}$	75 ohms (midfreq)	$1 \% 20 \mathrm{~Hz}$ to 20 kHz ; $2 \% 20 \mathrm{kHz}$ to 80 kHz	0.05\%	80	$\begin{gathered} 15 \\ (6,7) \end{gathered}$	$\begin{gathered} 16 \\ (7,2) \end{gathered}$	$\begin{gathered} 71 / 2 \times 111 / 2 \times 12 \\ (191 \times 292 \times 305\} \end{gathered}$	\$215
$\begin{aligned} & 200 C D \\ & -120-2 \\ & 200 C D \end{aligned}$	$\begin{aligned} & 5 \mathrm{~Hz} 10600 \mathrm{KHz} \\ & \text { (5 bands) } \end{aligned}$	$\pm 2 \%$	$\begin{gathered} >160 \mathrm{~mW} \\ >(10 \mathrm{~V}) \\ -(7.5 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 600 \\ \text { ohms } \end{gathered}$		$\begin{aligned} & >60 \mathrm{~dB} \\ & \text { below } \\ & (<0.1 \% \text { of }) \\ & \text { rated } \\ & \text { oulput } \end{aligned}$	90	$\begin{gathered} 22 \\ (9,9) \end{gathered}$	$\begin{gathered} 24 \\ (10,8) \end{gathered}$	$\begin{aligned} & 73 / 8 \times 111 / 2 \times 141 / 8) \\ & (181 \times 292 \times 355) \end{aligned}$	$\$ 250$ -8305
2016	20 Hz to 20 kHz (3 bands)	$\pm 1 \% \dagger$	$\begin{gathered} 3 \mathrm{~W} \\ (62.5 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & 600^{\circ} \\ & \text { ohms } \end{aligned}$	0.5\%	0.03\%	85	$\begin{gathered} 16 \\ (7,2) \end{gathered}$	$\begin{gathered} 19 \\ (8,6) \end{gathered}$	$\begin{aligned} & 71 / 2 \times 111 / 2 \times 121 / 2 \\ & (199 \times 292 \times 318) \end{aligned}$	\$275
202 C	$\begin{aligned} & 1 \mathrm{~Hz} \mathrm{to} 100 \mathrm{kHz} \\ & \text { (5 bands) } \end{aligned}$	= 2%	$\begin{gathered} 160 \mathrm{~mW} \\ (10 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 600 \\ \text { ohms } \end{gathered}$	0.5\% \%	0.1\%	85	$\begin{gathered} 25 \\ (11,3) \end{gathered}$	$\begin{gathered} 27 \\ (12,2) \end{gathered}$	$\begin{aligned} & 71 / 2 \times 111 / 2 \times 14 y_{4} \\ & (19] \times 292 \times 368) \end{aligned}$	\$325

 50 Hz to 20 kHz at 1 Watt output 1% over full range st 3 watls output, §Above 5 Hz .
 into 600 ohm losd.
7 Measured with respect to full rated output.

General:

Frequency response: flat $\pm 1 \mathrm{~dB}$ over instrument rance; reference level at $\downarrow \mathrm{kHz}$.
Slize and weight: maximum overall size and weights are given for cabinet models; $19^{\prime \prime}$ rack models also available.

Power: 115 or (2,50 volts must be specified) $=10 \%$ at 50 to 400 Hz.

Accessories available: 11000 A Cable Assenbly, 55: 11001 A Cable Assembly, $\$ 6 ; 1100$ fA, 11005 A Line Xatching Trans. formers, see pages 389 . Cables are on pige 226.

TEST OSCILLATORS

Pushbutton or rechargeable battery operation Models 241A, 208A

Pushbutton oscillator (241A)

Any frequency between 10 Hz and 999 kHz can be selected to three signifcant figures by simply pushing the three appropriate frequency pushbuttons and one of free decade multipliers. These pushbuttons control 900 base frequencies in increments of 0.1 Hz from 10.0 to 99.9 Hz , providing 4500 discrete frequence settings. Infinite resolution is provided by a vernier control, extending the upper frequency to 1 MHz .

Since each discrete frequency serting is a digital function effectively isolated from every other setting, a high degree of calibration dependability is achieved-a major advantage for user convenience. Accuracy is within $\pm 1 \%$ of selected value on any range.

Frequency response is flat $\pm 2 \%$ over the entire range at any atienvator setting. This is obtained by using special, fixed-precision resistors and large amounts of negative feedback in a unique biased. diode control circuit. A front-panel control adjusts the bridged-tee attenuator for output levels of -30 dBm to +10 dBm presenting a constant output impedance of 600 ohms.

Specifications 241A

Frequency range: 10 Hz to $1 \mathrm{MHz}, 5$ ranges, 4500 frequency increments with vernier overlap.
Callbration accuracy: $\pm 1 \%$.
Frequency response: $\pm 2 \%$ inco rated load.
Output impedance: 600 ohms.
Distortion: 1% maximum.
Hum and noise: .05\% of outpur.
Outputs +10 to -30 dBm into 600 ohms (2.5 volts maximum).
Power: 115 or 230 voles, 50 to $400 \mathrm{~Hz}, 1$ watt.
Dimensions: standard $1 / 2$ module $73 / 4^{"}$ wide, $61 / 4$ " high (without removable feet $), 8^{\prime \prime}$ deep $(197 \times 159 \times 203 \mathrm{~mm})$,
Weight: net $73 / 4 \mathrm{lbs}(3.5 \mathrm{~kg}$) ; shupping $10 \mathrm{lbs}(4,5 \mathrm{~kg})$.
Accessory furnished: derachable power cord, NEN[A plug.
Accessories available: HP 11000A Cable, 44" long, dual banana plugs, $\$ 5.00$. HP 11002A Test Leads, 60° long. dual banana plug to alligator clips. 58.00 HP 11004 A , Line Matching Transformer, (5 kHz 10600 kHz) balanced oupput for 135 or 600 ohms , $\$ 60.00$. HP 11005A Line Matching Transformer (20 Hz io 45 kHz), balanced oupel for 600 ohms, $\$ 80.00$.
Price: HP 241A, \$490.

Test oscillator (208A)

Rechargeable battery operation

The solid-state design, light weight, modular construction, and battery operation of this oscillator contributes to its portability. Rapid attenuation selection and monitored oscillator levels ideallỵ' suit the 208A Oscillator to transmission line work production line tests and similar situations where output levels must be known.

Specifications 208A

Frequency range: 5 Hz to 560 kHz in 5 ranges. 5% overlay be. tween ranges, vernier control.
Dial accuracy: $\pm 3 \%$.
Frequency response: $\pm 3 \%$ inio rated load.
Output: 10 nilliwatts, nominal 2.5 V rms (${ }^{+1} 10 \mathrm{dBm}$) into 600 ohms.
Output impedance: 600 ohms.
Output attenuator
Meter scale value: 0.01 mV to 1 V full scale (6 steps).
Multiplier: 2.5 multiplier, concentric with Meter Scale Value switch. to obsain 0.025 mV to 2.5 rolis.
Output attenuator accuracy: 5 Hz to 100 kHz , error is less than $\pm 3 \%$ at any step. From 100 kHz to 560 kHz , error is less than 5% at any step. Specifications include multiplier accuracy.
Output monitor: Transistor voluneter menitors level at inpuc to atrenuaror and after set lesel. Accuracy $\pm 2 \%$ of full scale into 600 ohms.
Set level: concinuously variable bridged "T" atrenuator with 10:1 voltage range.
Distortion: less than 1%.
Hum and noise: less than 0.05% at maximum output.
Operating temperature range: $0^{\circ} \mathrm{C}$:o $+50^{\circ} \mathrm{C}$.
Power source: 4 rechargeable batreries (furnished). Thirty-hour operation per recharge. Oscillator may be operated during recharge from ar line. (115 V or $230 \mathrm{~V} \pm 10 \%, 50$ to $400 \mathrm{~Hz}, 3$ watis).
 deep ($155 \times 197 \times 203 \mathrm{~mm}$).
Weight: net $81 / 4 \mathrm{lbs}(3.5 \mathrm{~kg})$: shipping $11 \mathrm{lbs}(5 \mathrm{~kg})$.
Price: HP 208A, $\$ 540$.

208A optional

(same 25 208A excepr)
Output attenuator: 0 to 110 dB in 1 dB steps.
Accuracy, 10 dB section; from 5 Hz to 100 kHz , error is $< \pm 0.125 \mathrm{~dB}$ at any siep; from 100 kHz to 560 kHz , error is $< \pm 0.25 \mathrm{~dB}$ at any step.
Accuracy, 100 dB section: from 5 Hz to 100 kHz error is $< \pm 0.25 \mathrm{~dB}$ at any step; from 100 kHz to 560 kHz error is $< \pm 0.5 \mathrm{~dB}$ at any step.
Output monitor: solid-stare voltmeter monirors level at input to attenuator, and after set level; scale calibrated -10 dBr to +11 $\mathrm{dBm}:$ accuracy $\pm 0.25 \mathrm{~dB}$ at +10 dBm into 600 ohms.

Set level: continuously' variable bridged "T' attenuator with 20 dB minimum range.
Price: HP 208A, Option 01, add \$10.

DIGITAL OSCILLATOR
 Four digit frequency resolution, 10 Hz to 1 MHz
 Model 4204A

Advantages:

Simple, rapid 0.2% frequency selection
Flat frequency response, 10 Hz to 1 MHz
0.01% frequency sepeatability
Excellent stability

Uses:

Production line and repetitive testing Standard source for calibrating ac to de converters Response resting of aride or narrow band devices Filter checkout

The HP 4204A. Digital Oscillator provides accurate, stable test signals for both laboratory and production work. This one instrument does the jobs of an audio oscillator, and ac
voltmeter, and an electronic counter, in applications requiring an accurate frequency source of known amplitude.

Any frequency between 10.00 Hz and 999.9 kHz can be digitally selected with an in-line rotary switch, to four significant figures. As many as 36,900 discrete frequencies are available. Infinite resolution is provided by one vernier control, which also extends the upper frequency limit to 1 MHz . Frequency accuracy is better than $\pm 0.2 \%$ and repeat. ability is typically better than $\pm 0.01 \%$.

A built-in high impedance voltmeter measures the output. The meter is calibrated to read volts or dBm into a matched 600 ohm load. ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600 ohms.) The output attenuator has an 80 dB range, adjustable in 10 dB steps with a 20 dB vernier. Maximum output power can be increased to 10 volts (22 dBm) into 600 ohms,

Specifications

Frequency range: 10 Hz to 1 MHz . 4 ranges.
Frequency accuracy: $\pm 0.2 \%$ or $\pm 0.1 \mathrm{~Hz}$ (at $25^{\circ} \mathrm{C}$).
Frequency stability:
$\pm 10 \%$ line voltage variation: Less than $\pm 0.01 \%$.
Change of frequency with temperafure: $< \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Frequency response: flat within $\pm 3 \%$.
Output: $10 \mathrm{~V}(22 \mathrm{dBm})$ into 600 ohms, $(160 \mathrm{~mW}) .20 \mathrm{~V}$ Open Circuit.
Output attenuators: 80 dB in 10 dB steps: $< \pm 0.5 \mathrm{db}$ error,

Distortion: less than $0.3 \%, 30 \mathrm{~Hz}$ to 100 kHz . Less than 1%, 10 Hz to 1 MHz .
Hum and nolse: less than 0.05% of output.
Dimensions: cabinet; $51 / 44^{\prime \prime}$ high, $163 / /^{\prime \prime}$ wide, $111 / 4^{\prime \prime}$ deep. ($134 \times 426 \times 286 \mathrm{~mm}$).
Power: $115 \mathrm{~V} / 230 \mathrm{~V}$ switch, $\pm 10 \%, 10$ watts, 50 to 60 Hz .
Weight: net, $19 \mathrm{lbs}(8,5 \mathrm{~kg})$; shipping, $28 \mathrm{lbs}(11 \mathrm{~kg})$.
Price: $\$ 695$.
Option OI: Output monitor top scale calibrated in dBm / 600 ; bottom scale calibrated in rolts; add $\$ 10$.
Alanufactured by Yokogawa-Hewlett-Packard Ltd., Tokjo.

AUDIO SIGNAL GENERATORS

Versatile instruments, 20 Hz to 20 kHz
Models 205AG, 206A

The 205AG Audio Signal Generator materially speeds and simplifes a variety of audio testing jobs where sizable amounts of power are required.

Two voltmeters measure input and ourput of the device under test. The output level is adjusted by means of the step attenuators, and output impedance can be instantly changed by means of a selector switch to commonly used impedances.

Specifications, 205AG

Frequency range: 20 Hz to 20 kHz in three decade ranges.
Dial accuracy: $\pm 2 \%$ under normal temperature conditions. (Including warm up and changes due to aging of rubes and com. ponents.)
Output: five Watts maximum into resistive loads of $50,200,600$ and 5000 ohms; output circuit is balanced and center-tapped; any terminal may be grounded.
Frequency response: $\pm 1 \mathrm{SB}, 20 \mathrm{~Hz}$ to 20 kHz at output levels up to +30 dBm with output meter reading held constant at $\div 37 \mathrm{~dB}$: $\pm 1.5 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz at output levels above +30 dBm with output meter reading held constant at +37 dB (reference 1 kHz).
Output impedances: 1/6 load impedance with zero attenuator setting; approaches the load impedance with atrenuator settings of 20 dB or more.
Distortion: less than 1% at frequeocies abore 30 Hz .
Hum level: more than 60 dB below the output voltage or 90 dB below 0 level, whichever is the larger.
Output meter: calibrated directly in Volts at 600 ohms and dBm ($0 \mathrm{dBm}=1 \mathrm{~mW}$ in 600 ohms); voliage scale- 0 to $65 \mathrm{~V} . \mathrm{dB}$ scale $\div 20$ to +37 dBm .
Input meter: calibrated in dBm from -5 to +8 dBn and in Volts from 0 to 2 V ms ; voltage accuracy is $\pm 5 \%$ of full scale.
Input attenuator: extends meter range to -48 dBm and to 200 V rms in s dB steps; accuracy $\neq 0.1 \mathrm{~dB}$.
Output attenuator: 110 dB in 1 dB steps.
Power: 11s or (230 Voles musc be specifed) $=10 \%$, 50 in 400 Hz , 158 W max.
Dimensions: cabinet: $203 / 4$ " wide, $123 / 4^{\prime \prime}$ high, $151 / 2^{\prime \prime}$ deep (527 x $324 \times 394 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $1012^{\prime \prime}$ high, $14^{\prime \prime}$ deep behind panel ($483 \times 267 \times 356 \mathrm{~mm}$).
Weight: net $56 \mathrm{lbs}(25,2 \mathrm{~kg})$, shipping 67 lbs (30 kg) (cabinet): net $49 \mathrm{lbs}(22,1 \mathrm{~kg}$), shipping $63 \mathrm{lbs}(28,3 \mathrm{~kg})$ (rack mount).
Price: HP $205 \mathrm{AG}, 5700$ (cabinet); HP 205 AGR , $\$ 685$ (rack mount).

The HP 206A Audio Signal Generator provides a source of continuously variable audio-frequency voltage at a total distortion level of less than 0.1%. This unusually low distoction, coupled with simple, straightforward circuitry, rugged construction and typical HP ease of operation, makes this signal generator ideal for use in the maintenance of FM broadcasting units and high fidelity audio systems.

The 206A Generator includes an output-matching transformer which allows it to be matched to resistive loads of 50.150 , and 600 ohms. This output system is balanced to ground, and each winding is center tapped. The internal impedance matches the load impedance. A single-ended $600-$ ohm output is provided which bypasses the line-matching transfomper.

Specifications, 206A

Frequency range: 20 Hz to 20 kHz in three decade ranges.
Dlal accuracy: $\pm 2 \%$ including twarmup drift.
Output: -15 dBrn into impedances of 50,150 and 600 ohms; 10 volts are arailable into an open circuit.
Output impedances: the generator has a matched internal im. pedance, and the selection of output impedances includes 50 , 150 and 600 ohms center-tapped and balanced, aod 600 ohms single-ended.
Frequency response: better than $\doteq 0.2 \mathrm{~dB}$ at all levels. 30 Hz to 15 kHz , when the output meter reading is held constant.
Distortlon: less than 0.1% at frequencies above 100 Hz and less than 0.25% from 20 Hz to 100 Hz .
Hum level: ar least 75 dB belorv the outpur signal or more than -100 dBm . whichever is larger.
Output meter: calibrated in dBra and aiso in volts at 600 ohm level, (0 JBm equals 1 mW into 600 ohms).
Output attenuators: 111 dB in 0.1 dB steps.
Power: 115 or (230 Volts must be specified) $\pm 10 \%, 50$ in 400 Hz . 146 W max.
Dimensions: cabinet: $203 / 4^{\prime \prime}$ wide, $123 / 4^{\prime \prime}$ high, $15^{\prime \prime}$ deep (527 x $324 \times 381 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $14^{\prime \prime}$ deep behind panel ($483 \times 267 \times 356 \mathrm{~mm}$).
Weight: net $57 \mathrm{lbs}(25,6 \mathrm{~kg})$, shipping $66 \mathrm{lbs}(29,7 \mathrm{~kg})$ (6 abinet) : aet so lbs (22.5 kg), shipping $62 \mathrm{lbs}(27,9 \mathrm{~kg})$ (rack mount)
Price: HP 206A, 5975 (cabinet); HP 206AR, 5960 (rack mount).

TEST OSCILLATORS 10 Hz to $10 \mathrm{MHz} ; \mathbf{0 . 7 5 \%}$ attenuator accuracy
 Models 651B, 652A

HP 651B Description

Amplitude and frequency stability of this solid-state capacirance tuned Hewlett-Packard Test Oscillator provides rest quality signals for laboratory or production measurements from 10 Hz to 10 MHz . Two output impedances are available from the front panel providing 200 mW into 50 n or 16 mW into 600 s.

HP 651B Specifications

Frequency range: 10 Hz to 10 MHz , 6 bands, dial calibration: 1 to 10.

Amplítude stability: $\pm 2 \%$ per mo., $20^{\circ} \mathrm{C} \cdot 30^{\circ} \mathrm{C}$.
Dial accuracy (indicating warm-up and $\pm 10 \%$ line voltage variation): $\pm 2 \%, 100 \mathrm{~Hz}$ to $1 \mathrm{M} \mathrm{Hz} ; \pm 3 \%, 10 \mathrm{~Hz}$ to 100 Hz and 1 MHz to 10 MHz .
Output (max): 3.16 V into 50Ω or $6008 ; 6.32 \mathrm{~V}$ open circuit.
Ranges: 0.1 mV to 3.16 V full scale, 10 steps in 1,3 , sequence: -70 dBm to +23 dBm (50ת output) full scale, 10 dBm per seep; coarse and fine adjustable.
Flatness: (Amplitude not readjusted to a reference on the output monitor) $\pm 2 \% 100 \mathrm{~Hz}$ to $1 \mathrm{MHz} ; \pm 3 \% 10 \mathrm{~Hz}$ io 100 Hz ; $\pm 4 \%$ \& MHz to $10 \mathrm{MH}^{*}$.
(Amplitude readjusted to a reference on the ourput monitor.)
Range
Frequency
3 V and 1 V
. 3 V ro. 3 mV
.1 mV
10 Hz 20 Hz

2%	1%	$4 \mathrm{MHz} \quad 10 \mathrm{MHz}$	
2.5%	1.5%	2.5%	
3%	2%	3%	

Distortion: $<1 \%, 10 \mathrm{~Hz}$ to 2 MHz ; $<2 \%, 2 \mathrm{MHz}$ to 5 MHz ; $<4 \%, 5 \mathrm{MHz}$ to 10 MHz .
Hum and noise: less than 0.05% of maximum rated output.
Output monitor: voltmeter monitors level ar input of attenuator in voles or dB.
Accuracy: $\pm 2 \%$ of full scale.

Aktenuator

Range: 90 dB in 10 dB sleps.
Accuracy: $\pm 0.075 \mathrm{~dB},-60 \mathrm{dBm}$ to $+20 \mathrm{dBm} ; \pm 0.2 \mathrm{~dB},-70$ dBm to -60 dBm .
Amplitude control: 20 dB range. coarse and fine.
Temperature range: $0^{\circ} \mathrm{C}$ to $-50^{\circ} \mathrm{C}$.
Power: 11s or $230 \mathrm{~V}=10 \%$, so to $400 \mathrm{~Hz}, 30 \mathrm{~W}$.
Dimensions: $163 / 4$ " wide, 5 " high (without removabie (eet), $131 / 4^{\prime \prime}$ deep ($425 \times 127 \times 337 \mathrm{~mm}$).
Weight: net $16 \mathrm{lbs}(7,3 \mathrm{~kg})$; shipping $21 \mathrm{lbs}(9,6 \mathrm{~kg})$.

Accessories turnlshed: rack mount kit for 19 " rack.
Price: HP 65LB, $\$ 590$.
Option 01: output monitor calibrated to read dBm for 600% add $\$ 25$.
Optlon 02: outputs, 75Ω and 600Ω; calibrared in $\mathrm{dBm} / 75 \Omega$, add $\$ 25$.
Note: other outpur impedantes above 50Ω are available.
Description
The HP Model 652A also incorporares an expandable output monitor for amplitude control to 0.25% across the band.

HP 652A Specifications

(Same as Model 651B except as indicated below)
Expand scale: expands reference coltage of the Normal Scale from 0.9 to 1.0 or 2.8 to 3.2.

Flatness (Amplitude readjusted using expanded scale on output monitor): $\pm 0.25 \% 3 \mathrm{~V}$ and 1 V range; $\pm 0.75 \% 0.3 \mathrm{~V}$ to 0.3 mV range; $\pm 1.75 \% 0.1 \mathrm{mV}$ range.

Accessories furnished: HP 11048B 502 feed-thru termination; rack mounting kit.
Price: HP G52A, $\$ 725$.
(sefer to page 198 for calibration system)
*The responsa above 1 MHz at 600 s output is affected by capacitive loads.

654A

Features:
Flatness of $\pm 0.5 \%$ from 10 Hz to 10 MHz . Output levels from +11 dBm to -90 dBm . Selectable balanced outputs.

Description

The 654A Test Oscillator is a lightweight, portable solid. state signal source. Its 10 Hz to 10 MHz frequency band, amplitude stability, accuracy and level flatness make it an ideal general purpose test oscillator. The selective outputs of $50 \Omega, 75 \Omega$ unbalanced and $135 \Omega, 150 \Omega, 600 \Omega$ balanced make it useful in electronic research laboratories, in production testing, and as a commercial test instrument.

Other balanced outputs can be obtained by special order to replace the ones in the standard instrument. These bal. anced outputs have many uses in the communications industry. With the balanced outputs within the 654A itself, the use of external balance transformers is eliminated.

The meter is zero centered and reads in dBm . The expanded meter scale from -1 dBm to +1 dBm gives good resolution on all canges from -80 dBm to +10 dBm .

Tentative Specifications

Frequency range: 10 Hz to 10 MHz in 6 bands.
Frequency accuracy: 100 Hz to $5 \mathrm{MHz}, \pm 2 \% ; 10 \mathrm{~Hz}$ to $5 \mathrm{MHz}, \pm 3 \% ; 10 \mathrm{~Hz}$ to $10 \mathrm{MHz}, \pm 4 \%$.
Level flatness $(+10 \mathrm{dBm}$ and 0 dBm$): \pm 0.5 \%$ from 10 Hz to 10 MHz ; (10 Hz to 1 MHz for balanced outputs).
Output Impedance: 50Ω unbalanced, 75Ω unbalanced; 135Ω balanced, 150Ω balanced and 600Ω balanced.
Output level: +11 dBm to $-90 \mathrm{dBm}, 10 \mathrm{~dB}$ and 1 dB steps

Uses:

Research laboratories
Communications industries
Production testing
with adjustable ± 1 dB meter range; calibrated for each impedance.
Amplitude control: $>2 \mathrm{~dB}$.
Overall attenuator accuracy: $\pm 1.5 \%$ (0.15 dB) except $\pm 10 \%(1 \mathrm{~dB})$ at output levels below -60 dBm at frequencies greater than 300 kHz ,
Meter range: $\pm 1 \mathrm{dBm}$ full scale.
Meter resolution: 0.02 dB .
Meter tracking: $\pm 0.05 \mathrm{~dB}$.
Balance (on balanced impedances): $>50 \mathrm{~dB}$ for frequencies from 10 Hz to 1 MHz .
Distortion (THD):
10 Hz to $1 \mathrm{MHz},>40 \mathrm{~dB}$ beiow fundamental.
1 MHz to $10 \mathrm{MHz},>34 \mathrm{~dB}$ below fundamental.
Hum and noise: $>70 \mathrm{~dB}$ down at full output.
Output connectors: BNC. Maximum voltage which can be applied to the output: $< \pm 3 \mathrm{~V}$ peak.
Counter output: $>0.1 \mathrm{~V}$ ems into $50 \mathrm{n} ; \mathrm{BNC}$ connector.
Operating temperature: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.130^{\circ} \mathrm{F}\right)$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to $400 \mathrm{~Hz}, 30 \mathrm{~W}$ nominal, 35 W max.
Dimensions: $163 / 4^{\prime \prime}$ wide, $5^{\prime \prime}$ high (without removable feet), $111 / 4^{\prime \prime}$ deep $(425 \times 127 \times 286 \mathrm{~mm})$.
Weight: net $21 \mathrm{lb}(9,5 \mathrm{~kg})$; shipping $26 \mathrm{lb}(11,8 \mathrm{~kg})$.
Accessories furnished: rack mounting kit for $19^{\prime \prime}$ rack.
Price: HP 654A, $\$ 875$.

HP 353A Patch Panel
This Patch Panel contains a precision attenuator variable in I dB steps to 110 dB and two sets of impedance matching transformers. One set of transformers matches $900 \mathrm{ohm}, 600$ ohm or 135 ohm lines. The other set of transformers terminates the line in 900 ohms, 600 ohms, 135 ohms or in 10 k ohrns for bridging measurements. Refer to page 321 for specifications.

HP 350C, 350D Attenuators

When a high order of accuracy, wide frequency response, large power-handling capacity or special features are requiced, HP 350 Series Attenuators ace of great value and convenience. They are particularly useful in attenuating output of audio and ultrasonic oscillators, measuring gain and frequency response of amplifers, measuring transmission loss and increasing the scope and usefulness of other lab. oratory equipment.

350C/D Specifications

Attenuation: 110 dB in 1 dB steps.
Accuracy: 10 dB section:

0 dB	
$\mathrm{~d} c$ to 100 kHz	$< \pm 0.125 \mathrm{~dB} /$ step
100 kHz to 1 MHz	$< \pm 0.25 \mathrm{~dB} /$ step

Accuracy: 100 dB section:

0 dB	0 dB	
dc to 100 kHz	$< \pm 0.25 \mathrm{~dB}$	$< \pm 0.5 \mathrm{~dB} / \mathrm{step}$
100 kHz to 1 MHz	$< \pm 0.5 \mathrm{~dB}$	$< \pm 0.75 \mathrm{~dB} /$ step

Power capacity: 350 C , 500 ohms: 5 W (50 Vdc or rms) maximum, continuous duty. $350 \mathrm{D}, 600$ ohms; 5 W (55 Vdc or rms) maximum, contiouous duty.
DC Isolation: signal ground may be $\pm 500 \mathrm{Vdc}$ from external chassis.
Dimensions: $51 / 8^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (withour remorable feet), $8^{\prime \prime} \operatorname{deep}(130 \times 159 \times 203 \mathrm{~mm})$.
Weight: net $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping $5 \mathrm{lbs}(2,3 \mathrm{~kg})$.
Accessories available: HP 11000A Cable Assembly, $44^{\prime \prime}$ of RG.58C/U 50Ω coaxial cable terminated by dual banana plugs, $55 . \mathrm{HP}$ 11001A Cable Assembly, as above but with one BNC male connector, $\$ 6.11075 \mathrm{~A}$ Carrying Case (refer to pages 227 and 228), $\$ 45$.
Price: HP 350C; 500 attemuator, \$140. HP 350D; 600Ω attenuator, $\$ 140$.

Oscillator Accessories

11004A LIne-Matching Transformer

The 11004A Transformer, with a frequency response between 5 kHz and 600 kHz , provides fully balanced 135 or 600Ω outpur from single-ended input. Maximum Jevel +22 dBm. HP 11004A, \$60.

11005A Line-Matching Transformer

The 11005A Transformer, with a frequency response betreen 20 Hz and 45 kHz , provides a fully balanced 600Ω output from single.ended input. Maximum level is +15 dBm. HP 11005 A, $\$ 80$.

10110A, 10111A BNC-to-Binding.Post Adapters
These adapters mate with a BNC or binding post recepracle, respectively, and provide either binding post or BNC output connectors. The 10110A is a BNC male-to-bindingpost adapter; the 10111A is a BNC female-to-banana-plug adapter. Spacing between binding posts is $3 / 4^{\prime \prime}$. HP 10110A, $\$ 5 ;$ HP 10111 A, $\$ 7$.

110488 50-ohm Feed Thru 11094A 75-ohm Feed Thru 11095A 600-ohm Feed Thru
Precision feed thru termination with male and female connectors. HP 11048B, \$10; HP 11094A, 810; HP 11095A, $\$ 20$.

SIGNAL GENERATORS TO 40 GHz

Signal generators

Hewlett-Packard offers a complete line of easy-to use HF, VHF, UHF, and SHF signal generators, precision instruments covering frequencies between 50 kHz and 40 GHz . Each Hewletr-Packard generator incorporates the following:
(1) accurare, direct-reading, frequency calibration
(2) variable output, accurately calibrared and direct reading
(3) constant output impedance, well matched
(4) varied modulation capabilities
(5) low RF leakage
(6) low harmonic content
(7) freedom from spurious or incidental modulation.

This ensures the utmost convenience and accuracy for all kinds of measurements, including receiver sensitivity, selectivity or rejection, signal-to-noise ratio, gain bandwidth characteristics, conversion gain, antenna gain, transmission line characteristics, as well as power to drive bridges, slotted lines, filter networks, etc.

Sweeping signal generators

A result of Hewlett-Packard thin film and hybrid microcircuit technology, the 8601A Generator/Sweeper is one of a new breed of signal generators that also sweep. Signal generator characteritstics are summarized in Table 1. Intended to be a general purpose inscrument, the 8601A also satisfies many specialized test
and design applications. Some examples are: component test. attenuation and insertion loss; use with VSWR bridges and bybrid detectors: measurement of adjacent channel interference and spurious responses. From 10 kHz to 32 MHz , the 675A Sweep Signal Generator also offers many convenient features, as described on Page 386.

HF to UHF signal generators

These signal generacors, including HP $606 \mathrm{~B}, 608 \mathrm{E}, 608 \mathrm{~F}$, and 612 A , collectively cover frequencies from 50 kHz to 1,23 GHz and are characterized by extremely low drift and incidental frequency modulation. All may be amplitude (sine, squate, pulse) modulated. A feedback loop in the 606B keeps its output and

Table 1

Modal	frequenty ramge	Chargelerisilos	Page
606B Signal Generator	50 kHz to 65 MHz	output 3 V to $0.1 \mu \mathrm{~V}$, mod. BW dc to 20 KHz , low drift and noise, low incidental FM, low distortion, auxiliary RF output, stabilized phase lock capability	388
8601 A Generator Sweeper	100 kHz to 110 MHz	$=1 \%$ of frequency dial accuracy, cal output $+2010-110 \mathrm{dBm}$ into 50 ohms, leveled to $=0.25 \mathrm{~dB}$ full range, very low dritt, residual FM and RFI leakage, $30 \% \mathrm{AM}, 75 \mathrm{kHz}$ dev FM, bux outpul, crystal cal	387
$608 E$ Signal Generator	10 to 480 MHz	output IV to $0.1 \mu V$, into 50 -ohm load; AM, pulse modulation, direct calibration, leveled power output, aux RF output	392
6085 Signal Generator	10 to 455 MHz	oulput 0.5 V to $0.1 \mu \mathrm{~V}$ inio 50 ohms, ampllitude, pulse modulation, direct calibration, low Incidental FiM and drift, leveled oulput. aux RF output, stabilized phase lock capability	392
8708A Synchronizer	50 kHz to 455 MHz	Companion for 606B or 608F permitting 2/107 continuous settabilify \& stability, FM and phase modulation	394
$612 \mathrm{~A}$ Signal Generator	450101230 MHz	outpul $0.5 \vee 100.1 \mu \vee$ Into $50-\mathrm{ahm}$ load; AM, pulse or square-wave modulation, direct caribration	397
$\begin{aligned} & 614 A \\ & \text { Signal Generator } \end{aligned}$	0.8 to 2.1 GHz	output át least 0.5 mW to $-127 \mathrm{d8m}(0.1 \mu \mathrm{~V})$ into 50 ohms, pulse or trequency modulation, direct calloration	400
8614A Signal Generator	0.8 to 2.4 GHz	output +10 to - 127 dBm into 50 ohms, leveled below 0 dBm; internal square-wava; external pulse, AM and FM; auxiliary RF output	398
$\begin{gathered} 8614 B \\ \text { Signal Source } \end{gathered}$	0.8102 .4 GHz	output 15 mW ; precision attenuator 130 dB range; internal square-wave, external pulse and FM; auxiliary RF output	398
$\begin{gathered} 6168 \\ \text { Signal Generalor } \end{gathered}$	1.8104 .2 GHz	output 1 mW to $-127 \mathrm{dBm}(0.1 \mu \mathrm{~V})$ into 50 .ohm load, pulse or frequency modulation, direct calibration	400
8516A Signal Generator	1.8 to 4.5 GHz	output +3 to -127 dBm into 50 ohms, leveled below 0 dBm ; internal square-wave, external pulse, AM and FM; auxiliary RF outpul	398
86168 Signal Source	1.8104 .5 GKz	output 3 mW : precision attenuator 130 dB range; internal square-wave, external pulse and FM ; auxiliary RF output	398
$\begin{gathered} 618 \mathrm{C} \\ \text { Signal Generator } \end{gathered}$	3.8107 .6 GHz	output 1 mW to $-127 \mathrm{dBm}(0.1 \mu \mathrm{~V})$ into 50 ohms, pulse, frequency or square-wave modulation, direct calibration, ext $F M$ and pulse modulation, auxiliary RF oulpul	402
6208 Signal Generator	71011 GHz	output 1 mW to $-127 \mathrm{dBm}(0.1 \mu \mathrm{~V})$ into 50 ohms, pulse, frequency or square wave modulation, direct calibration, ex! FM and pulse modulation, auxiliary RF oulput	402
626A Signal Generator	10 to 15.5 GHz	output +10 dBm to -90 dBm ; pulse, frequency or square-wave modulation, direct calibration	404
$\begin{gathered} 628 \mathrm{~A} \\ \text { Signal Generator } \end{gathered}$	15 to 21 GHz	outpul +10 dBm to -90 dBm ; pulse, Irequency or square-wave modulation, direct calibration	404
$938 \mathrm{~A}$ Frequency Doubler	18 to 26.5 GHz	driven by 9 to 13.25 GHz source, HP 626A, 86908 or klystrons; 100 dB precision altenuator	406
940A Frequency Doubler	26.5 to 40 CHz	driven by 13.25 to 20 GHz source, HP 628A, 8690 B or klystrons; 100 dB precision attenuator	406

percent modulation constant as frequency is varied. The 608E and 608F also offer level power output resulting in significant time saving as well as operator convenience when the generator is being used to conduct tests at several frequencies. The 606B, 608E, and 608F offer an auxiliary RF output. This fixed. level CW signal can be applied to an HP 5245L Counter for very accurate indication of carries frequency.

Stabilized RF signal generation

The HP 606B and 608F contain volt. age variable capacitors in their oscillator tank circuir enabling phase-locked operation with the HP Model 8708A RF Synchronizer obtaining $2 / 10^{\circ}$ settability and stability. Phase-locked operation of the HP 606B and 608F Signal Generators can be obtained without compromise of the instruments' modulation or attenua. tion characteristics while phase-locked. The HP 8708A Synchronizer enables continuous tuning between lock points, permitcing continuous frequency response examination of devices such as highlyselective, steep-skirt, narrow-band filters. The HP 8708A Synchronizer provides the additional beneft of phase and frequency modulation capability with the 606 B and 608 F sigmal generators.

Signal sources above 10 MHz

Signal generators available from Hewr. lett-Packard include general-purpose os. cillators and amplifers, FM signal generators, and specialized signal generators for aircrafe navigation systems.

The 3200 B VHF Oscillator is a compact, versatile source in the 10 to 500 MHz range suitable for driving bridges and slotted lines, and for general-purpose laboratory arork. The 230A Signal Generator Power Amplifier provides a convenient means of obtaining porer levels up to 4.5 warts in the 10 to 500 MHz range when operated in conjunction with a signal generator.

HP's FM signal generators offer unusual modulation linearity and stability. The 202H FM.AM Signal Generator operates in the 54 to 216 MHz range and is designed to serve the broadeast FM, VHF-TV, and mobile communications markets. The 202J Telemetering Signal

Special purpose signal sources

Application	Frequeney range	Modulation	Output	Model	Page
Down converter for 202 H	100 kHz to 55 MHz	See specifications		207H	391
Test, calibrate FM receivers	54 to 216 MHz	FM, AM	0.2 V	202 H	390
Telemetry tests	1430 to 1540 MHz 2150 to 2310 MHz	FM	$\begin{aligned} & -10 \text { to } \\ & -127 \mathrm{dBm} \end{aligned}$	3205A	407
VOR/ILS tests	88 to 140 MHz	AM	0.2 V	211 A	409
ILS lests	$329,310335 \mathrm{MHz}$	AM	0.2 V	232A	
DME/ATC lests	962 to 1213 MHz	Pulse	$-10 \mathrm{dBm}$	8925A	408
Receiver, Transmitler Tests	$5280107780 \mathrm{MHz}^{2}$	FM, AM	1 mW	6238	401
	7100108500 MHz	FM, AM	31.6 mW	5636	
	8500 to $10,000 \mathrm{MHz}$	fM, AM	1 mW	624 C	

I Not continuous covarage, sqe specifications.

Generator is specifically designed for VHF relemetry and covers the 195 to 270 MHz frequency range. An accessory 207H Univerter provides additional RF and IF coverage when used with either the 202 H or 202J Signal Generators.

The 211 A Signal Generator is specifically designed for the testing and calibration of aircraft VOR omni-range and ILS localizer recejvers; an external modulator, such as the Collins 479-F3, is required to provide simulated course and bearing. The 232A Glide Slope Signal Generator is specifically designed for the resting and calibration of ILS glide slope receivers. The 8925A DME/ATC Test Set is designed to provide complete facilities for the resting and calibration of aircraft DME radios and ATC transponders; suitable external modulators are required, such as the Collins 578D-1 and 978 X.1, to simulate ground station operation.

UHF to SHF signal generators and sources

This group of instruments, covering 800 MHz to 21 GHz , features extremely simple operation. The 614A, 616B, 618C, 620B, 626A and 628A Signal Generators provide large, direct-reading frequency and atienuator dials. They may be pulse, square-wave, and frequency modulated. Their versatility makes them useful for measuring signal-to noise catio, receiver sensitivity, SWR and transmission line characteristics.

The HP 8614A and 8616A Signal Generators are particularly easy to use. Frequency and attenuation are set on direct-reading digital dials, and pustbuttons permit fast, easy selection of function (CW, square-wave modulation or external amplitude, pulse or frequency modulation). Leveled outpur enables frequency response testing without timeconsuming readjustment of the generator at each new frequency. Each unit contains a unique PIN diode modulator which permits such a wide range of amplitude modulation that remote control of output level or precise leveling with external equipment is possible.

The 8614 B and 8616B Signal Sources can be used in many applications previously requiring signal genecators. The sources have precision attenuators for relative measurements such as insertion loss, and they have pulse and squarewave capabiliry.

Frequency doublers

Broadband frequency doublers, HP 938A and 940A, provide low-cost signal generator capability in the 18 to 40 GHz range. Designed to be driven by signal sources in the 9 to 20 GHz range, the frequency doublers preserve the versatility and stability of the driving source. Thus, the signals may be CW, pulsed or swepr. An outpur monitor and precision attenuator provide a metered output, even though the inpur signal is uncalibrated.

SWEEP SIGNAL GENERATOR
 Programmable; Freq, range: 10 kHz to 32 MHz Model 675A

Signal Generator (CW)

The CW dial accuracy, low residual and spurious FM, lon distortion at all voltage levels, and excellent frequency setta. bility make it ideal for signal generator applications. The CW signal can be internally amplitude modulated by a $1 \mathrm{kHz} \pm 15$ Hz sine wave with pertentage modulation adjustable up to 50%. External amplitude modulation and frequency modula. tion (ext. freq. control) provide added versatility for communications receiver and transmitter testing. Refer to pages 417 and 418 for sn'eeper specifications. Refer to page 466 for nerwork analyzer specifications.

Specifications

Frequency range: 10 kHz to 32 MHz in one range.
Output: maximum +13 dBm (1 V rms into $50 \Omega, 2 \mathrm{~V}$ rms open circuit): continuously adjustable; impedance, 50Ω.
AF Flatnoss
$10 \mathrm{kHz} \quad 50 \mathrm{kHz} \quad 200 \mathrm{kHz}$
Unleveled:
Internally leveled:
Externally leveled:

System Flatnoss

Using internal RF Detector, internally leveled:
$10 \mathrm{kHz} \quad 50 \mathrm{kHz} \quad 200 \mathrm{kHz}$

| $\square=1 \mathrm{~dB}$ | 0.4 dB | $10 \mathrm{MHz} \quad 32 \mathrm{MHz}$ |
| :---: | :---: | :---: | Using External RF

$\pm 1 \mathrm{~dB}$	1 MHz	$10 \mathrm{MHz} \quad 32 \mathrm{MHz}$
$\pm 1 \mathrm{~dB}$		$\pm 0.15 \mathrm{~dB}$
	$\pm 0.15 \mathrm{~dB}$	

Inferral Dotector Outpus (Verilcal): at lesst 1.2 V do for 1 V ms.

Signal Generator Functions

CW dial accuracy: $\pm 0.5 \%$ of full scale $\left(+20^{\circ} \mathrm{C}\right.$ to $\left.+40^{\circ} \mathrm{C}\right)$.

$$
\pm 1 \% \text { of full scale }\left(0 \text { to }+20^{\circ} \mathrm{C}+40^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C}\right) \text {. }
$$

CW settablity: 1 kHz .
CW resolution: 20 kHz .
Internal AM: 0 to 50% sinusoidal, 985 to 1015 Hz continuously adjustable.
External AM: 0 to 50%, dc to 1 kHz leveled; 0 to 50%, 50 Hz to 600 kHz unleveled.
Sensitivity: at least 50% for 2 V to 5 V rms input.
, tit refer to accessories

- O dB reforence is point midway between max. D.D deviation

External frequency control and external FM
Sensitivity: $1 \mathrm{MHz} / \mathrm{V}$.
Input Impedance: $1 \mathrm{M} \Omega$.
Rate: dc to 4 kHz . Above 4 kHz the range and sensitivity decreases $20 \mathrm{~dB} /$ decade.

Attenuator

Range: 99 dB in 10 and 1 dB steps.
Aceuracy: $\pm 0.3 \mathrm{~dB},+10 \mathrm{~dB}$ to $-12 \mathrm{~dB}: \pm 0.4 \mathrm{~dB},-13 \mathrm{~dB}$ to $-89 \mathrm{~dB} ;+6 \mu \mathrm{~V}$ constant error.
Output monitor
Range: -3 to $+3 \mathrm{~dB}(0.5 \mathrm{~V}$ to 1 V$)$.
Accuracy: $\pm 0.3 \mathrm{~dB}, 200 \mathrm{kHz}$ to 32 MHz
Counter output: $>300 \mathrm{mV}$ rms.
Distortion
Harmonic: $>30 \mathrm{~dB}$ down from fundamental.
Spurlous: $>50 \mathrm{~dB}$ down from fundamental.
Residual (line related) FM: $<70 \mathrm{~Hz}$ peak.
Spurious FM: $<60 \mathrm{~Hz} \mathrm{cms}$.
Auxiliary output (rear panet): 100 MHz to 132 MHz unieveled.
General
Temperature range: $0^{\circ} 10+50^{\circ} \mathrm{C}$.
Power: 113 or $230 \mathrm{~V} \pm 10 \%, 50$ to $400 \mathrm{~Hz}, 80 \mathrm{~W}$ max.
Dimensions: $163 / 4^{\prime \prime}$ wide, $81 / 4^{\prime \prime}$ high (without removable feet) $183 / 8^{\prime \prime}$ deep ($425 \times 210 \times 467 \mathrm{~mm}$).
Waight: net $46 \mathrm{lbs}(20,8 \mathrm{~kg}$); shipping $51 \mathrm{lbs}(23,2 \mathrm{~kg})$.
Accessories furnished: HP 11048A son Feed-Thru Termi. nation: tack mount kit for $19^{\prime \prime}$ rack.
Accessories avaliable
HP 11300 A Single-Frequency Marker (Erequency must be specified), $\$ 75$ (additional $\$ 25$ for those factory installed).
tHP 11097A RF Detector, $\$ 30$.
itHP 11098A Leveling Detector, $\$ 30$.
HP 676A Phase/Amplisude Detector (see page 419).
Price: HP 675A, $\$ 2250$.
Option 01: 1 MHz harmonic comb marker, add $\$ 75$.
Option 02: 100 kHz harmonic marker, add $\$ 75$.
Option 03: 100 kHz and 1 MHz harmonic markers, add $\$ 125$.

GENERATOR/SWEEPER A general-purpose production and lab tool Model 8601A

 SIGNAL SOURCES

Signal generator performance
The 8601 A offers excellent CIV characteristics with $\pm 1 \%$ of frequency dial accuracy and a wide range of continuously adjustable output power levels accurate $\omega \pm 1 \mathrm{~dB}$ from +13 dBm to -110 dBm . A power outpuc meter is calibrated in both dBm and rms volts into 50 ohms . These features and low RFI leakage mean that receiver sensitivity can be measured at 1 microvolt with ease. In addition, fatness (power outpur versus frequency) is better than $\pm 0.25 \mathrm{~dB}$ over the entire band and $\pm 0.1 \mathrm{~dB}$ over any $10 . \mathrm{MHz}$ portion from to 110 MHz . Many other signal generator applications can also be satisfed by the 8601 A because of its low noise our. put-more than 70 dB down in a $1-\mathrm{kHz}$ bandwidth.

A unique AM markec system buile into the automatic leveling circuit provides 0.01% frequenç identification at $5 . \mathrm{MHz}$ intervals. The frequency vernier with $\pm 0.1 \%$ of frequency variation and the $A L X X$ output signal that's always between $100 \mathrm{kHz} \cdot 11 \mathrm{MHz}$ regardless of band allow $2 \cdot \mathrm{kHz}$ settability on high band ($200-\mathrm{Hz}$ on low band) when used with the H01.5321A low -frequenc) counter.

A small amount of modulation is available at the fick of a switch to provide a convenient test situation. For example, discriminator sensitivities to AM and FM can be checked withour the use of a an external oscillator. 30% AM and 75 kHz deviation FM (7.5 kHz on loa band) are provided by an internal $1-\mathrm{kHz}$ oscillator. External AM and full band ex. ternal FM allow the 8601A to be programmed in both frequency and amplitude.

Design

Superior frequency-lock circuits keep residual FM very low (less than 500 Hz peak on high band, 50 Hz peak on low band), enabling CW-mode scability comparable to many nonsw eeping signal generators on the market today. Voltagetuned ascillator nonlinearities are avoided by a feedback loop that contains a very linear pulse count discriminator. The dis. criminator output voltage is compared to a command voltage in a differential amplifer whose ourput controls the frequency of the VTO to ubtain an ultra-linear voltage-ro-frequenc: characteristic. Furthermare, the bandwidth of the frequency control loop is reduced for CW and manual operation on the high band to improve spectesl quality. A calibrated precision
potentiometer across an extremely stable power supply provides a low-noise tuning voltage.

Major Specifications

8601 A utillized as a generator
(Refer to complete specifications on pages 420-421)
Frequency characteristics
Coverage: low range, 0.1 .11 MHz : high range, $1.110 \times 1 \mathrm{~Hz}$.
Aceuracy: (In CW).
Low range, $\pm 1 \%$ of frequency or $\pm 10 \mathrm{kHz}$, whicherer is greater.
High range, $\pm 1 \%$ of frequency or $\pm 100 \mathrm{kHz}$, whicherer is greater
Settability: vernier sectability, $\pm 0.01 \%$; vernier range, $\pm 0.1 \%$; coarse settability using 10 -turn pot is 5 kHz , low range; 30 kHz , high range.
Drift in CW:
$(0.01 \%+500 \mathrm{~Hz}) / 10 \mathrm{~min}$, high range, after 1 hr wamup.
$(0.01 \%+50 \mathrm{~Hz}) / 10 \mathrm{~min}$, low range. after 1 hr warmup.
$0.025 \% /{ }^{\circ} \mathrm{C}$ emperature change
$0.001 \% / V$ line voltage change.
Less than 5 min to stabilize for any frequency change on each band.
Harmonics and spurious signals (CW above $250 \mathrm{kHz},+10$
dBm on the +10 dBm attenuator step or below): harmonics at least 35 dB below carrier. Spurious signals at least 40 dB below carricr.
Residual FM in CW:
Line related components:
Less than 50 Hz paik, low range.
Less than $500 \mathrm{H}_{2}$ peak, high range.
Incidental FM with 30\% AM:
Less than 100 Hz peak, low range. Less than 1 kHz peak, high range. Incidental FM in CWV is negligible.
Residual AM: AM noise modulation index (rms. 10 kHz band. width) is $<-50 \mathrm{~dB}$. (Typically -60 dB ar $25^{\circ} \mathrm{C}$.)
incidental AM: incidental AM modulation index is <-9s dB with is kHz deriation.
Output characteristics
Level: +20 to $-110 \mathrm{dBm} .10-\mathrm{dB}$ steps and $13 . \mathrm{dB}$ vernier provide continuous settings over entire range. Merer monitors output in dBm and ms voles into 50 .
Accuracy: $\pm 1 \mathrm{~dB}$ accuracy for any oucput level from +13 dBm to -110 dBm .
Flatness: $\pm 0.25 \mathrm{~dB}$ over full range, $\pm 0.1 \mathrm{~dB}$ over any 10 MHz portion.
Ampiltude modulation
Internal AM: $30 \% \pm 5 \%$ at 1 kHz , less chan 3% distortion. Typically $<1 \%$ distortion for output readings on upper half of meter scale.
External AM: 0 to 30%, up to 400 Hz . 0 to 30%, up to 1 kHz Applied through external AM input on front panel. Sensitivity typically ? V peak/ 10% modulation index at $400 \mathrm{~Hz}(10.50 \%$ AM)
Frequency modulation
Internal FM: high range: $75 \mathrm{kHz} \pm 20 \%$ peak deriation, $1 \cdot \mathrm{kHz}$ rate: low range: $7.5 \mathrm{kHz} \pm 20 \%$ peak deciation, $1-\mathrm{kHz}$ rac: less than 3% distortion. Typically $<1 \%$.
External FM: sensitivis: 5 MHz per volt $\pm 5 \%$, high range: 0.5 MHz per volt $\pm 9 \%$, low range; negative polarity.
Deviations to the band edges are possible for rates to 100 Hz ; volage-to.frequency linearigy is $\pm 0.5 \%$, allowing remore frequenç programming. FM rates to 10 kHz are obtainable with less linearity and accuracy.
Crystal calitrator
Internal $5-\mathrm{MHz}$ crystal allows frequency calibration to $\pm 0.01 \%$ at any multiple of 5 MHz .
Price: Model 8601 A, $\$ 1,975.00$.

HF SIGNAL GENERATORS
 New convenience and performance $50 \mathrm{kHz} \cdot 65 \mathrm{MHz}$ Models 6068, 606A

Description

The Hewlett-Packard 606B Signal Generator provides you with high quality, versatile performance with distinctive case of operation in the important and widely used 50 kHz to 65 MHz frequency range. Outpur signals are stable and accurately known, output amplitude can be precisely established over a very wide dynamic range, and versatile modulation capabilities are incorporated to satisfy virtually all measurement requirements. Convenient size and shape, togerher with a simple, straightforvard control panel layout, make the 606B well suited for production line use as well as laboratory or field applications.

Design

The 606 B is a master oscillator-power amplifier (MOPA) design with a broadband buffer amplifier stage between the oscillator and power amplifier circuits for isolation. The MOPA design permits optimization of the oscillator circuit for highest stability including low drift, minimum residual FM, low har. monics, etc., without restricting the modulation characteristics. Modulation is applied to the power amplifer circuit with negligible effect on the oscillator frequency (because of the buffer stage). Very fine frequency settability is achieved through incorporation of a ΔF control which provides better than 10 ppm resolution.

Highest frequency stability

While the basic frequency stability of the 606 B is excellent (less than 0.005% drift over a 10 -minute period after warmup), the inclusion of frequency control circuitry in the 606 B makes it possible to achieve 250 times greater stebility by phase-locking the 606B with the HP 8708 A Synchronizer. The 8709A, which is fully compatible with the 606B in every respect, can stabilize the 606 B at any frequency (not just at discrete points) with a resultant stability of $2 \times 10^{-2} / 10$ minutes and a very high degree of spectral purity. The combination of the 606 B and 8708 A also permirs you to perform narrow band frequency- or phase-modulation of the 606 B carrier with very low modulation distortion. The 8708A is described on page 399.

Simplified operation

An outstanding feacure of the 606 B is the employment of feedback in the RF power amplifier section which resules in superior performance characteristics and true ease of operation. The feedback circuit maintains both the output level and the percentage of modulation essentially constant over the entire frequency range, thus making ic unnecessary to readjust
controls when changing the operating frequancy. The use of feedback also enables you to change the output level without affecting the degrec of modulation. The constant output, constant modulation feature results in significant time saving as well as operator convenience, making the 606 B an ideal choice for production line operations where semi-skilled personnel can make meaningful measurements.

Versatile amplitude modulation

The use of feedback in the power amplifer section also yields excellent amplitude modulation characreristics. Uip to 95% modulation can be achieved with modulating frequencies rang. ing from de to 20 kHz . Envelope distortion is very low, less than 1% at 30% AM and less than 3% at 70% AM; this allows you to make more accurate measurements of the dis. cortion characteristics on receivers or detectors. Internal modulation oscillators of 400 Hz and 1000 Hz are provided, and the modulation percentage can be set and read directly on the accurate front panel modulation meter. The wide modulation bandridth (dc to 20 kHz) means the 606 B may be modulared with square waves or other complex signals inciuding toneburst modulation, or you can remotely program the output amplitude. The buffer stage berween the master oscillator and power amplifier holds incidenta! FM with AM to a minimum, ensuring accurate measurements.

Accurate output level

The outpur level from the 606B is continuously adjustable from 3 volts to 0.1 microvalts rms into a 50 ohm load. Direct calibration is provided in both volts and $\mathrm{dBm}(+23$ to -120 dBm) and the output calibration is accurate to within 1 dB at any frequency or level setting. The outpur system of the 606 B is a well marched 30 ohm circuit which minimizes mis. match ambiguities as a factor in overa!l measurement accuracy. The extremely wide range of output amplitude control makes the 606B ver'y useful for driving bridges and filters as well as complete receiver measurements including sensitivity, selectivity. and image rejection.

The 606 B provides an auxiliary RF output: this fixed level (100 millivolts ems minimum) CW signal is for use with the 8708A Synchronizer and can also be applied to an HP 5243L Counter for very accurate indication of carrier frequency. Using the auxiliary RF output does not place any restriction on the modulation capabilities nor on the main RF output level. The 606 B also contains a crystal calibrator to provide accurate frequency checkpoints at every 100 kHz or 1 MHz throughout the frequency range of the instrument.

Specifications, 606B

Frequency characteristics

Range: 50 kHz to 65 MHz in 6 bands $(50.170 \mathrm{kHz}, 165.560$ $k H z, 0.33-1.8 \mathrm{MHz}, 1.76 \cdot 6 \mathrm{MHz}, 5.8-19.2 \mathrm{MHz}, 19.65$ $\mathrm{MHz})$; total scaie length approximately 95 in .

Accuracy: $\pm 1 \%$.
Dritt: (attenuator on 1 volt range and below) less than 50 parts in 10^{4} (or 5 hertz, whichever is greater) per 10 minute period after 2 -hour warmup; less than 10 minutes to restabilize after changing Frequency.
Stability when used with 8708A Synchronizer: $s \times 10^{-s} /$ minute, $2 \times 10^{-1} / 10$ minutes, $2 \times 10^{-6} /$ day; $2 \times 10^{-i} /{ }^{\circ} \mathrm{C}$. 0° to $55^{\circ} \mathrm{C} ; 2 \times 10^{-5} / 10 \%$ line voltage change.
Resettability: vernier control resettability better than 0.15% after initial warmup.
ΔF control: ultra-fine frequency vernier provides better than 10 parts in 100 settability; total range of ΔF control ap. proximately 0.1%.
Crystal calibrator: provides frequency checkpoints every 100 kHz and I MHz ; headphone jack provided for audio fre. quency output (headphone not included); crystal frequency accuracy better than 0.01% from 0° to $50^{\circ} \mathrm{C}$; cursor on frequency dial adjustable over small range to aid in interpolation adjusement; calibrator may be turned off when not in use.
Residual FM: less than ± 1 past in 10° or ± 20 hertz, which. ever is greater.
Frequency control input: BNC female connector for "fre. quency control output" from 8708A Synchronizer; can also be used for external frequency control: voltage change from -2 to -32 volts changes frequency approximately 0.2% at lon end of each band and approximately 6% at high end: nominally \& $\mathrm{k} \Omega$ input impedance, direct. coupled; voltage limits: 0 volr \leq applied voltage ≤ 50 voles negative.
Output level: continuously adjustable from 0.1 microvalt to 3 volts into 50 -ohm resistive load; output attenuator calibrated in $10 . \mathrm{dB}$ steps from 3 volt full scale to 1.0 microvolt full scale (into so ohms), also calibrated in $\mathrm{dBm}(0 \mathrm{dBm}=1$ millivate in 50 ohms); vernier control provides continuous adjustment of voltage between full scale ranges; outpur level indicated on RF output meter calibrated in volcs (0 to 1 and 0 to 3 volts) and dBm (-10 to +3 dBm).
Frequency response and output accuracy (attenuator range (volt and belne; 50 ohm resistive load): at any output voltage setting, output level variation with frequency change is less than 2 dB , total, across entire frequency range; output accuracy betcer than $\pm 1 \mathrm{~dB}$ ar any fiequency.
Impedance: 50 ohms, SWR less than 1.2 on 0.3 volt attenuator range and below.
RFI: meets all conditions speciffed in MIL.I-6181D; permits receiver sensitivity measurements don'n to ac least 1.0 microvolt.
Karmonic output: ar least 30 dB below the carrier.
Sourious AM: hum and noise sidebands are 70 dB below car. rier down to thermal level of 50 ohm output system.
Auxiliary RF output: fixed level CW signal from RF oscillator provided at front panel BNC female connector for use with HP 8708A Synchronizer or other extergal equipment (e.g. frequency counter). Minimum output: 100 mV rms into 50 ohms from 50 kHz to $19.2 \mathrm{MHz}, 200 \mathrm{mV}$ rms from 19 to 65 MHz .

Modulation characteristics

Internal AM:

Frequency: $\{00$ and $1000 \mathrm{~Hz}, \pm 5 \%$; modulation signal avail. able at front panel BNC female connector for synchronization of external equipment.
Modulation sevel: 0 to 95% on 1 volt range and below; 0 to at leasr 30% on 3 volt range.
Carrier envelope distortion: less than 1% at $30 \% \mathrm{AM}$; less than 3% at 70% AM (attenuator on 1 volt range and below).
Incidental frequency modulation (attenuator on 1 volt range and below, 30% modulation): less than 5×10^{-6} +100 Hz peak.

External AM:

Frequency: dc to 20 kHz maximum, dependent on carrier frequency (f_{6}) and percent modulation as cablulated:
Maximum modulation frequency: $30 \% \mathrm{Mod}:$ $0.06 \mathrm{f}_{\text {; }}$; 00% Mod: 0.021 : Squarerave Mod: 0.003 f . (3 kHz max).

Modulation level: 0 to 95% on 1 volt attenuator range and below, 0 to ar least 30% on 3 volt range.
Input required: 4.5 voles peak produces 95% modulation (maximum inpur so voles peak): inpue impedance 1000 ohms.
Carrier envelope distortion: less than 1% at $30 \% \mathrm{AM}$, less than 3% at 70% AM rattenuator on 1 volt range and belor').
Modulation meter accuracy: $\doteq 5 \%$ of full scale, 0 to 90%, for modulation frequencies to $10 \mathrm{kHz}, \pm 10 \%$ of full scale for frequeacies from 10 kHz to 20 kHz .
Modulation ievel constancy (internal or external AM; attenuator on 1 volt range and below): modulation level srays constant within $\pm 1 / 2 \mathrm{~dB}$ regardless of carrier frequency and output level changes.
General
Power: 115 or $230 \mathrm{~V}=10 \%$, 50 to $400 \mathrm{~Hz}, 135 \mathrm{w}$.
Dlmensions: cabinet mount, 203/4" wide, $121 / 2^{\prime \prime}$ high, $143 / 4^{\prime \prime}$ deep. $(527 \times 318 \times 370 \mathrm{~mm})$.
Weight: cabinet mount, net, $55 \mathrm{lb}(2-1,8 \mathrm{~kg})$; shipping. 65 Jo (29.3 kg) ; rack nount, net, $50 \mathrm{lb}(22,5 \mathrm{~kg})$: shipping. $63 \mathrm{lb}(28,-\mathrm{kg})$.

Accessories available:

11507A Output Termination, provides 3 positions: 50 ohms (for use into high impedance); 3 ohms ($10: 1$ voltage division) ; IEEE Standard Dummy Antenna (driven from $10: 1$ divider) : price, $\$ 70$.
11509A Fuse Holder, provides protection for output artenua. cor when 606 B is used for transceiver tests; price, $\$ 25$.
10514A Mixer, for use as nanosecond pulse modulator; price, $\$ 95$.
Price: Model 606B (cabiner mount), \$1550: Model 606BR (rack mount), \$1535.

Model 606A

The Model 606A covers the same frequency ranges as the 606B, but does not include the irequency control input feature that allows frequency stabilization by the Model 8708A Syn. chronizer. Model 606 B specifications apply to the 606 A with the following exceptions: an auxiliary uncalibrated RF output is not included; harmonic output is less than 3%; the crystal calibrator provides check points at 100 kHz (useful to 6 MHz) and 1 MHz intervals; output powter level frequency response is $\pm 1 \mathrm{~dB}$ over the entire frequency range.
Price: HP 606A (cabinet), S1450; HP 606AR (rack mount) \$1. 35 .

FM-AM SIGNAL GENERATOR
 FM, AM, CW and pulse coverage 54 to 216 MHz Model 202H

The HP 202H FM-AM Signal Generator covers the frequency range from 54 to 216 MHz and is designed for the testing and calibration of FM receiving systems in the areas of broadcast FM, VHF, TV, mobile and general communica.
tions. The generator consists of a three-stage $R F$ unit, together with a modulating oscillator and power supply, ail housed in a single cabinet which may be readily adapted for rack mounting.

202H

Specifications

Radlo frequency characteristics

RF range: total range: 54 to 216 MHz ; number bands: 2 ; band ranges: 54 to 108 MHz 108 to 216 MHz .
RF accuracy (after 1 hour warm-up): main dial; $\pm 0.5 \%$: electronic vernier: $\pm(10 \%+1 \mathrm{kHz})$.
RF stability: $<0.01 \%$ per hour (after two hour warm-up).
RF output: range: $0.1 \mu \mathrm{~V}$ to 0.2 V (accoss external 50 . ohm load at panel jack); accuracy: $\pm 10 \%, 0.1 \mu \mathrm{~V}$ to $50 \mathrm{~K} \mu \mathrm{~V} ; \pm 20 \%, 50 \mathrm{~K} \mu \mathrm{~V}$ to 0.2 volts; auto level set: holds RF monitor meter to "red line" over band.
Impedance: 50 ohms.
VSWR: <1.2.
Spurious oulput: All spurious RF output voltages are at least 30 dB below desired fundamental.
RF leakage: sufficiently low to permit measurements at $0.1 \mu \mathrm{~V}$.
Amplitude modulation characteristics
AM range: internal: 0 to 50%; external: 0 to 100%.
AM accuracy: $\pm 10 \%$ of reading at 400 Hz at 30% and 50% AM.
AM callbration: $30,50,100 \%$.
AM distortion: $<5 \%$ at $30 \%,<8 \%$ at $50 \%,<20 \%$ at 90%.
AM fldelity: $\pm 1 \mathrm{~dB}, 30 \mathrm{~Hz}$ to 200 kHz .
External AM requirements: approximately 60 volts ims into 500 ohms for 100% AM.
Frequency modulation characteristics
FM deviation range: internal or external, 0 to 250 kHz in 4 ranges.
FM deviation eccuracy: $\pm 5 \%$ of full-scale (for 400 Hz sine wave).

FM callbration: 0 to 7.5 kHz in increments of $0.5 \mathrm{kHz}, 0$ to 25 kHz in increments of $1 \mathrm{kHz}, 0$ to 75 kHz in increments of $S \mathrm{kHz}, 0$ to 250 kHz in increments of 10 kHz .
FM distortion (at 400 Hz mod. freq.): $<0.5 \%$ at 75 kHz $(100 \mathrm{MHz}),<1 \%$ at 75 kHz (54 to 216 MHz), $<10 \%$ at 250 kHz (54 to 216 MHz).
FM fidelity: $\pm 1 \mathrm{~dB}, 5 \mathrm{~Hz}$ to 200 kHz .
Signas-to-nolse ratlo: $>50 \mathrm{~dB}$ below $10 \mathrm{kHz}(31.6 \mathrm{~Hz}$ peak deviation).
External FM requirements: <3 volts rms into 2 K ohms for 250 kHz deviation.
DC FM input: permits control of output frequency over a limited range with an external dc voltage.
Pulse modulation characteristics
PM source: external, PM rise time: $\leq 0.6 \mu \mathrm{~s}$.
PM decay the: $<0.8 \mu \mathrm{~s}$.
Modulating oscillator characteristics
OSC Prequency: $50 \mathrm{~Hz}, 400 \mathrm{~Hz}, 1000 \mathrm{~Hz}, 3000 \mathrm{~Hz}, 7.5$ $\mathrm{kHz}, 10 \mathrm{kHz}, 15 \mathrm{kHz}, 67 \mathrm{kHz}$.
OSC accuracy: $\pm 5 \%$.
OSC distortion (at FM terminals): $<0.5 \%, 50 \mathrm{~Hz}$ to 15 $\mathrm{kHz} ;<1.0 \%, 67 \mathrm{kHz}$.
Physical characteristics
Dimensions; $163 / 4^{\prime \prime}$ wide, $101 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep (42s $\times 260 \times 467 \mathrm{~mm}$).
Welght: net $45 \mathrm{lbs}(20,3 \mathrm{~kg})$, shipping $66 \mathrm{lbs}(29,7 \mathrm{~kg})$.
Power: 105 to 125 or 210 to $250 \mathrm{~V}, 50$ to $400 \mathrm{~Hz}, 100 \mathrm{~W}$.
Accessory furnished: 00502B Patching Cable.
Price: HP 202H, \$1475.

FM-AM SIGNAL GENERATOR FM, AM, CW and pulse coverage, 195 to 270 MHz

The HP 202J FM.AM Signal Generator covers the frequency range from 195 to 270 MHz and is designed for the testing and calibration of FM telemetering receiving systems in the 215 to 260 MHz band.

$202 J$

Specifications

RF characteristics

Rf range: 195 to 270 MHz .
RF accuracy: main dial: $\pm 0.5 \%$; electronic vernier: $\pm(10 \%+1 \mathrm{kH} 2)$ after one-hour warm-up.
RF stability: $<0.02 \%$ per hour, after two-hour warm-up.
RF output: range: $0.1 \mu \mathrm{~V}$ to 0.2 V (across external 50 -ohm load at panel jack); accuracy: $\pm 10 \%, 0.1 \mu \mathrm{~V}$ to 50 k $\mu \mathrm{V} ; \pm 20 \mathrm{~F}, 50 \mathrm{k} \mu \mathrm{V}$ to 0.2 V ; auto level set: holds RF monitor meter to "red line" over band; impedance: 50 ohms; VSWR: <1.2; spurious output all spurious RF output roltages are at least 25 dB below desired fundamental.
RF leakage: sufficiently low to permit measurements at 0.1 $\mu \mathrm{V}$.
AM characteristics
AM range: internal, 0 to 50%; external, 0 to 100%.
AM accuracy: $\pm 10 \%$ of reading at 400 Hz at 30% and 50%.
AM calibration: $30,50,100 \%$.
AM distortion: $<5 \%$ at $30 \%,<8 \%$ at $50 \%,<20 \%$ at 90%.
AM fidelity: $\pm 1 \mathrm{~dB}, 30 \mathrm{~Hz}$ to 200 kHz .
External AM requirements: approx. 50 V rms into 7500 ohms for 100% AM.
FM characterístics
FM deviation range: inrernal, 0 to 300 kHz in 4 ranges; external, 0 to 300 kHz in 4 ranges.
FM deviation accuracy: $\pm 5 \%$ of full scale (indication proportional to $\mathrm{pk} \cdot \mathrm{pk}$ modulating waveform ar 400 Hz).
FM calibration: 0 to 15 kHz in increments of $0.5 \mathrm{kHz}, 0$ to 30 kHz in increments of $1 \mathrm{kHz}, 0$ to 150 kHz in
increments of $5 \mathrm{kHz}, 0$ to 300 kHz in increments of 10 kHz .
FM non-linearity: $<1.5 \%$ at $150 \mathrm{kHz},<50 \%$ at 300 kHz , ("least squares" departure from straight line passing through ocigin.)
FM fidelity: $\pm 1 \mathrm{~dB}, 5 \mathrm{~Hz}$ to $500 \mathrm{kHz} ; \pm 3 \mathrm{~dB}, 3 \mathrm{~Hz}$ to 1 MHz .
Spurious FM: total ms spurious FM from 60 Hz power source is at least 60 dB below $150 \mathrm{kHz}(<150 \mathrm{~Hz})$.
External FM requirements: $<1 \mathrm{~V}$ rms into 100 k ohms in parallel with less than 50 pF for 150 kHz deviation.
PM characteristics: source: external; rise time: $<0.25 \mu \mathrm{~s}$; fall time: $<0.8 \mu \mathrm{~s}$.
Modulation oscillator characteristics: frequency: $50 \mathrm{~Hz}, 400$
$\mathrm{Hz}, 1700 \mathrm{~Hz}, 3900 \mathrm{~Hz}, 10.5 \mathrm{kHz}, 30 \mathrm{kHz}, 70 \mathrm{kHz} .100$
kHz ; accuracy: $\pm 5 \%$; distortion: $<0.5 \%$.
Power: 105 to 125 or 210 to $250 \mathrm{~V}, 50$ to $400 \mathrm{~Hz}, 100 \mathrm{~W}$.
Price: HP 202J, $\$ 1595$.

Model 207H univerter

0.1 to 55 MHz for 202 H and 202J Signal Generators

The HP 207 H Univerter, a frequency converter with unity gain, is designed for use with the HP 202H and 202J Signal Generators to provide additional frequency coverage from 100 kHz to 55 MHz , including commonly used intermediate frequencies.

Major Specifications

(when used with 202 H and 202J Signal Generators)
RF range: 100 kHz to 55 MHz (with 199.9 to 145 MHz input from 202 H ; 200.1 to 255 MHz input from 202J).
RF output: $1 \mu \mathrm{~V}$ to 0.1 V and $0.01 \mu \mathrm{~V}$ to 1 mV across ex. ternal 50.0 hm load at panel jack; $>1 \mathrm{~V}$ with 0.1 V input and 300 -ohm output load.
Modulation: duplicates FM and AM modulation of 202 H or 202 J with no appreciable distortion for input levels $<0.05 \mathrm{~V}$.
Power: 105 to 125 V or 210 to $250 \mathrm{~V}, 50$ to $400 \mathrm{~Hz}, 50 \mathrm{~W}$. Price: $207 \mathrm{H}, \$ 595$.

VHF SIGNAL GENERATORS
 Improved versatility and value $10-480 \mathrm{MHz}$ Models 608C/D/E/F; 8708A

Models 608E and 608F provide high-quality, versatile performance with distinctive ease of operation. The 608 E provides an ourput of up to 1 volt over the range from 10 to 480 MHz , and the 608 F provides an output of up to 0.5 volt from 10 to 455 MHz .

The 608E is an improved version of the popular and timeproven HP 608C/D Signal Generators. The instrument is a master oscillator-power amplifier (MOPA) type with a broadband buffer amplifier stage between the osciliator and power amplifier circuits for isolation. The MOPA design permits optimization of the oscillator stage for high stability of 0.005% per 10 minutes, minimum residual FM , and low harmonics without restricting the modulation characteristics. Modulation is applied to the power amplifier stage with negligible effect on the oscillator frequency.

Modulation capability

The use of feedback in the power amplifier section yields excellent amplizude modulation characteristics. Up to 95% modulation can be achieved with modulating frequencies rang. ing from 20 Hz to 20 kHz . Enveiope distortion is very low, less than 2% at $30 \% \mathrm{AM}$ and less than 5% at $70 \% \mathrm{AM}$; thus you can make more accurate measurements of the distortion characteristics on receivers or detectors. Internal modulation oscillators of 400 Hz and 1000 Hz are provided, and the modulation percentage can be set and read directly on the accurate front panel modulation meter. The buffer amplifier stage between the master oscillator and power amplifier holds incidental $F M$ with $A M$ to a minimum, ensuring accurate measurements.

Accurate output level

Output levels of the Models 608E/F are accurately attenu. ated to provide continuously adjustable calibrated output from 0.1 microvolt to 1 volt mms (608 E) or 0.5 volt rms (608 F) into a $50-0 h m$ load. Direct calibration is provided in both volks and dBm (to -127 dBm) and the output calibration is accurate within $1 d B$ at any frequency or level secting. The output system of the $608 \mathrm{E} / \mathrm{F}$ is a well matched 50 -ohm circuit which
minimizes mismatch ambiguiries as a factor in overall measure. ment accuracy. The extremely wide range of output amplitude control makes the $608 \mathrm{E} / \mathrm{F}$ very useful for driving bridges and filters as well as complete receiver measurements including sensirivity, selectivity, and image rejection.

Models 608E/F provide an auxiliasy RF ourput; this fixed level (180 millivolts rms minimum) CW signal is for use with an HP 5245L Counter for very accurate indication of carrier frequency. On the 608F, this output is also for use with the 8708A Synchronizer. Using the auxiliary RF output does not place any restriction on the modulation capabilities nor on the main RF output level. The units also contain a crystal calibrator to provide frequency checkpoints at every 1 or 5 MHz throughout the frequency range.

High settability

The fine frequency vernier is an electronic fine tuning adjustment of the output frequency. Frequency settability with berter than 10 ppm resolution is possible to obtain precise settings for critical tests. When used with the internal crystal calibrator, $608 E$ frequency accuracy can be increased by a factor of 50 (factor of 100 for the 608F) over the main dial calibration of 1% without the use of an external frequency meter.

608F/8708A combination

The Model 8708 A Synchronizer is an tasy-to-use frequency stabilizer that allows the 608F to be phase-locked from 50 kHz to 430 MHz . Full AM and output level features of the 608 F are retained during phase-lock. The 8708A increases frequency stability by a factor of 250 with the extra benefit of 8708 A precise tuning resolution for sertability to 2 parts in 10°. The 608F/8708A combination also permits narrowband frequency and phase modulation to be applied with very low distortion.

Specifications, 608E/F

Frequency characteristles

Range: 608E: 10.480 MHz in 5 bands ($10.21,21.43$, $43.95,95.215$, and $215.480 \mathrm{MHz} .608 \mathrm{~F}: 10 \cdot 455 \mathrm{MHz}$ in 5 bands (10.21, 21-44, 44-95, 95-210. and 210.455 MHz).

Accuracy: 608E: $\pm 0.5 \% .608 \mathrm{~F}: \pm 1 \%$.
Drift: 608 E : less than 50 parts in 10^{5} per 10 minute period after one hour wrarmup. 608F: less than 50 parts in 10^{6} per 10 minute period after one hour warmup; stability when used with 8708A Synchronizer: $\$ \times 10^{-8} /$ minute: $2 \times 10^{-7} / 10$ minures; $2 \times 10^{-6} /$ day; $2 \times 10^{-7} /{ }^{\circ} \mathrm{C}\left(0^{\circ}\right.$ to $\left.55^{\circ} \mathrm{C}\right) ; 2 \times 10^{-7} / 10 \%$ line voltage change.

Frequency control Input (608F ONLY): BNC female connector for "Frequency Control Output" from 8708A Synchronizer can also be used for external frequency control; voltage change from -2 to -32 volts changes frequency approximately 0.2% at low end of each band and approximately 2% at high end; nominal $4 \mathrm{k} \Omega$ input impedance, di-rect-coupled; voltage limits, 0 to -50 V .

Resettablity: 608E: main frequency control resettability better than $\pm 0.1 \%$ after initial warmup; Fine Frequency Adjust provides approximately 25 kHz settability at 480

MHz (proportionately finer adjustment at lower frequen. cies). 608F: main frequency control resettability better than $\pm 0.1 \%$ after initial warmup; Fine Frequency Adjust provides approximately 25 kHz settability at 455 MHz (proportionately finer adjustment at lower frequencies)

Tuning control: frequency control mechanism provides a main dial calibrated in megahertz and a vernier dial for interpolation purposes; total scale length, approximately 45 inches; calibration, every other megahertz 130 to 270 MHz ; every S MHz above 270 MHz .
Crystal callbrator: provides frequency check points every 1 MHz up to 270 MHz or every 5 MHz over the range of the instrument; headphone jack provided for audio fre. quency output (headphones not included); cryscal frequency accuracy better than 0.01% at normal soom temperatures; cursor on frequency dial adjustable over small range to aid in interpolation adjustment: calibrator may be curned off when not in use.

Residual FM: less than ± 5 parts in 10^{7} peak.
Harmonic output: at least 35 dB below the carrier for harmonic frequencies below 500 MHz .

Output characteristics

Output level: 608E: continuously adjustable from 0.1 $\mu \mathrm{V}$ to 1.0 volt into a 50.0 hm resistive load; outpur attenuator calibrated in volts and $\mathrm{dBm}(0 \mathrm{dBm}=1 \mathrm{~mW}$ in 50 ohms).

608 F : continuously adjustable from $0.1 \mu \mathrm{~V}$ to 0.5 volt into a so-ohm resistive load; outpur attenuator cali. brated in volts and dBm ($0 \mathrm{dBm}=1 \mathrm{~mW}$ in 50 ohms).

Accuracy: within $\pm 1 \mathrm{~dB}$ of attenuator dial reading at any frequency when RF Output Meter indicates "ATTENU. ATOR CALIBRATED."
Levellng: internal feedback circuit retains "ATTENUATOR CALIBRATED" reference on RF Output Meter over wide frequency ranges (typically octave bands); adjustment of front panel AMP. TRIMMER control (only) for maximum RF outpur indication autonatically resrores initial carrier level for grearer frequency changes.

Impedance: $50 n$ wirl a maximum SWR of 1.2 for attenuator setting below -7 dBm .

RFI: meets all conditions specifed in MIL-I-6181D; permits receiver sensitivity measurements down to at least 1.0 $\mu \mathrm{V}$.
Auxillary RF output: 608E: fixed level CW signal from RF Oscillator (minimum amplitude 180 mV rms into 50 ahms) provided at front panel BNC female connector for use with external equipment (e.g., frequency counter).

608F: fixed level CW signal from RF Oscillator (minimum amplitude 180 mV rms into 50 ohms) provided at front panel BNC female connector for use with HP 8708A Synchronizer or other external equipment (e.g., frequency counter).

Modulation characteristics

(Front panel AMP TRIMMER control adjusted for maximum indication on RF Output Meter and RF Output Merer set to "ATTENUATOR CALIBRATED.")

Internal AM

Frequency: 400 and $1000 \mathrm{~Hz}, \pm 20 \%$; modulation signal available at front panel BNC female connector for syn. chronization of external equipment.
Modulation leval: 608E: 0 to 95%, modulation at carrier
levels 0.5 volt and below; continuously adjustable with front panel MOD LEVEL control.
608F: 0 to 95% modulation with Output Attenuator at 0.224 volt (1 mW) or below: continuously adjustable with front panel MOD LEVEL control.
Carrier envelope distortion: less than 2% ar $30 \% \mathrm{AM}$ and less than 5% at 70% AM.

External AM

Frequency: 20 Hz to 20 kHz .
Modulation level: 608E: 0 to 95% modulation at carrier levels of 0.5 volt and below; continuously adjustable with front panel MOD LEVEL control; input required, 1-10 volts, rms (1000Ω inpur impedance).
608F: 0 to 95% modulation with Output Attenuator at 0.224 yolt (1 mW) or below; continuously adustable with front panel MOD LEVEL controi; input required, $1-10$ volts, mas (1000Ω input impedance).
Carrier envelope distortion: less than 2% at 30% AM, less than 5% at 70% AM (modulation source distortion less than 0.5%).
External control of carrier level can be achieved through application of dc voltage in EXT AM mode.
Madulation meter accuracy: $\pm 5 \%$ of fuil scale 0 to 80%. $\pm 10 \%$ from 80% to 95% (for INT AM or 20 Hz to 20 kHz EXT AM).
Incldental frequency modufation (at 400 and 1000 Hz modulation): less than 1000 Hz peak at 50% AM for frequencies above 100 MHz ; for frequencies below 100 MHz , less than 0.001% at 30% AM.

External puise modulation:

Rise and decay time: from 40 MHz to 220 MHz , com. bined rise and decay time less than $4 \mu 5$; above 220 MHz combined rise and decay time less than $2 \mu \mathrm{~s}$.
On-off ratlo: at least 20 dB for pulsed carrier levels of 0.5 volt and above.

Input required: positive pulse, 10.50 volts peak, input impedance 2000 .
General:
Power: 115 or $230 \mathrm{~V} \pm 10 \%$. 50 ro 400 Hz ; approximarely 220 W.
Dimenslons: cabinet: $131 / 4^{\prime \prime}$ wide, $163 / 9^{\prime \prime}$ high, $21^{\prime \prime}$ deep ($337 \times 416 \times 533 \mathrm{~mm}$) : rack mount: $19^{\prime \prime}$ wide, $13-31 / 32^{\prime \prime}$ high, $183 / \mathrm{g}^{\prime \prime}$ deep bebind panel ($483 \times 335 \times 467 \mathrm{~mm}$).
Weight:
Cabinet mount: net, $62 \mathrm{lb}(28 \mathrm{~kg}$); shipping, 74 lb (33,4 kg).
Rack mount: net, $62 \mathrm{lb}(28 \mathrm{~kg}$): shipping, 83 lb (37.4 kg).
Accessories avallable:
11508A output cable provides 50 ohms termination and standard binding posts at the end of a 24 -inch (610 mm) length of cable; allows direct connection of the signal generator to high impedance circuits. $\$ 18$.
11509A Fuse Holder provides protection for the output attenuator when the Model $608 \mathrm{E} / \mathrm{F}$ is used for transceiver tests. $\$ 25$.
10514A Mixer for use as nanosecond pulse modulator or balanced modulator. \$95.
Prlce: Model 608E (cabinet), $\$ 1500$, Model 608ER (rack mount), \$1540; Model 608F (cabinet), \$1650, Model 608 FR (rack mount), $\$ 1690$.

HP Model 8708A Synchronizer

The 8708A Synchronizer is a phase-lock frequency stabilizer that allows you to obtain crystal-oscillator frequency stability in the 606 B (and to 430 MHz in the 608 F) Signal Generator. The outstanding $A M$ and outpur level control capabilities of the signal generators are retained. Phase-locking eliminates microphonics and drift, resulting in a frequency stability of 2×10^{-i} per 10 minutes, an increase by a factor of 250 . The 8708 A includes an ultratine irequency vernier which can tune the reference oscillator over a range of $\pm 0.25 \%$ permitring frequency sertability to 2 parts in 10°. This high order of sta. bility and settability can be achieved over continuous frequencies in the 606 B and 608 F range, eliminating phase-locking at only discrece points. This provides a very stable, yet tunable signal generaror that satisfies oiany critical applications includ. ing measurements on SSB and narrowband reccivers.

An external 20 MHz frequency reference can be used; the resultant stability is that of the external reference. Use of an external reference, however, resuits in just fixed discrete lock points (unless the reference is frequency tunable $=0.25 \%$ around 20 MHz).

Narrowband frequency and phase modulation with very low distortion (better than 1% linearity) of the 606B and 608F Signal Generators can be applied through the 8708A. Narrowband sweeping of the carrier under very stable conditions is valuable for filter or amplifier skirt response tests as well as Q studies of frequency selecrive circuits.

Specifications, 8708A

Frequency range: 50 kHz to 430 MHz ; phase-locks 606 B (608 F to 430 MHz) Signa! Generator at any carrier frequency". with 2×10^{-1} setrability.
Input signal level (slgnal to ba stablized): proper signal level automatically provided by 606 B and 608 F ; general requirements into 50Ω at less than 20% distortion:

10 to $215 \mathrm{MHz}: 180$ to 500 mV rms
215 to $100 \mathrm{MHz}: 280$ to 450 mV mms
400 to $: 330 \mathrm{MHz}: 250$ to 450 mV mms
Frequency reference: incernal or external $20 \mathrm{MHz}(\pm 0.25 \%)$.
External reterence requirements:
When signal to the synchronized is between 50 kHz and 20 $\mathrm{MHz}: 180$ to 400 mV rms ($<20 \%$ distortion) inro 50Ω. When signal to be synclyronized is between 10 and 430 $\mathrm{MHz}=0.1$ to 2 V rms into 50Ω

Internal frequency reference stablity:
Short term (RMS deviation): $5 \times 10^{-8} /$ minute: $2 \times 10^{-7} / 10$ minutes.
With temperature: $2 \times 10^{-i} /{ }^{\circ} \mathrm{C}, 0$ to $55^{\circ} \mathrm{C}$.
With line voltage: $2 \times 10^{-\%} / 10 \%$ line voltage change.
(Note: stability in "External Reference" mode is that of external reference source).
Spectral purity (stabilized RF output of 606B or 608F Signal Generator):
Spurlous slgnals: non harmonically related signals greater than 60 dB below carrier.
Signal-to.AM nolse ratlo**: $>70 \mathrm{~dB}$.
SIgnal-to-phase noise ratlo m: $>60 \mathrm{~dB}, 10 \mathrm{MHz}$ and belor';

$$
>60 \mathrm{~dB}-20 \log \frac{\mathrm{f} \mathrm{MHz}}{20}, \text { above } 10 \mathrm{MHz} .
$$

RMS fractional frequency deviation: less than 5×10^{-5} av. eraged over 10 ms (30 kHz noise bandwidth).
Frequency control output: irequency control voitage directly compatible with 606 B and 608 F Signal Generators; output voltage range, -2 to -32 voles (max).

Modulation

Frequency modulation: maxinum modulation rates and frequency deriation for $\leq 1 \%$ distortion:
${ }^{4}$ Using 8708A Internal Relerence, or external reierence adjustable over 0.5% frequency range. With fixed frequoncy oxtornal feforence, $\mid n t e r v a l ~ b e t w e e n ~$ lock polnts varies from 62.5 Hz ai 50 kHz to 500 kHz above 210 MHz ,

* In a 30 hHz bend centered on the carrier. excluding a 1 Hz band centered on the carples.

Modulation senslitivity (ac or de-Mod. level control at maximum): ($0.5 \mathrm{kHz} / \mathrm{V}$) (carrier freq, in MHz).
Note: dc input limits, 0 to 10 volts (input connector biased as +10 V from a $10-\mathrm{k} \Omega$ source).
Phase modulation: maximum modulation rate and phase devjation for $\leq 1 \%$ distortion:

Modulation sensitivity (ac only-Mod. level control at maximum): (0.01 radian/V) (carriet freq. in MHz).
Devlation monitor: dc output voltage which is proportional to frequency and phase deviation; output voltage, deviation ratio varies with carrier frequency, output voltage range approximately -1 to +3 V .
RFI: meets all conditions specified in MIL-I-6181D.
Warm-up time: $11 / 2 \mathrm{hc}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz ; approximately 48 W.

Dimensions: $163 / 4^{\prime \prime}$ wide, $3-25 / 32^{\prime \prime}$ high, $183 / /^{\prime \prime}$ deep (425×96 x 467 mm) ; hardware furnished for rack mount, $19^{\prime \prime}$ wide, $3.13 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panel ($485 \times 88 \times 416$ mm).

Furnished: interconnecting cables for use with 606B and 608 F Signal Generators.
Weight: ner, $27 \mathrm{lb}(12,2 \mathrm{~kg}$) : shipping. $31 \mathrm{lb}(14 \mathrm{~kg}$).
Price: Model 8708A, $\$ 1800$.

VHF Signal Generators Models 608C and 608D

The Model $608 \mathrm{C} / \mathrm{D}$ ase designed as broadly applicable VHY signal generators. Both units feature internal modulation of 400 and 1000 Hz standard test tones for routine AM applications, and can be externally modulated up to 95%. Versatile modulation capabilities allow pulse and transient testing of VHF receivers. Accuracy of measurements is enhanced by $608 \mathrm{C} / \mathrm{D}$ minimum incidental FM with AM , modulation dis. tortion, and frequency drift. Models $608 \mathrm{C} / \mathrm{D}$ feature calibrated RF output attenuation down to $0.1 \mu \mathrm{~V}$, and provide high qua!. ity pulses as short as $1 \mu s$ at $R F$ frequencies above 100 MHz .

The Model 608C is a high power, stable and very accurate generator for general lab and field use, providing 1 volt maximum RF output and broad frequency coverage from 10 to 480 MHz .

Maximum output of the 608 D is 0.5 volt through the range of 10 to 420 MHz . A buile-in crystal calibrator provides accurate frequency check points at 1 and 5 MHz intervals.

Major specifications, 608C, D

Frequency range: $608 \mathrm{C}, 10$ to 480 MHz in 5 bands; $608 \mathrm{D}, 10$ to 420 MHz in 5 bands.
Frequency dial calibration accuracy: $608 \mathrm{C} . \pm 1 \% ; 608 \mathrm{D}$, $\pm 0.5 \%$.
Resettablility: better than $\pm 0.1 \%$ after warm-up.
Frequency drift: $<0.005 \%$ over a 10 minute interval after initial watm-up (15 to $35^{\circ} \mathrm{C}$ ambient).
Output level: $608 \mathrm{C}, 0.1 \mu \mathrm{~V}$ to 1 V inco 50Ω; 608D, $0.1 \mu \mathrm{~V}$ to 0.5 V into 508 ; attenuator dial calibrated in voles and $\mathrm{dBm} ;(0 \mathrm{dBm}$ equals 1 mW)
Output voltage accuracy: $\pm 1 \mathrm{~dB}$ inco 50 .
Generator Impedance: 50 ohms; maximum SWR 1.2.
Internal AM: $400 \mathrm{~Hz} \pm 10 \%$ and $1000 \mathrm{~Hz} \pm 10 \%$.
External AM: 0 to 95% at output levels of 0 dBm and below at modulation frequencies 20 Hz to 20 kHz ; input requirements, 0.5 V mms across $15 \mathrm{k} \Omega$.
Modulation meter accuracy: $\pm 10 \%$ of full scale, 30% to 95% modulation.
Envelope distortion: less than 5% at 30% sine-wave modulation; less than 10% at 30% sine-wave modulation.
External pulse modulation: positive 5 V peak pulse required. 40 to 220 MHz ; combined rise and decay time of RF pulse less than 4μ s. Above 220 MHz , combined rise and decay time of RF pulse less than $1 \mu \mathrm{~s}$. Pulse on-off ratio at least 20 dB .
Incidental FM: $608 \mathrm{C} .<0.0025 \%$ at 30% AM, 21 to 480 MHz ; $608 \mathrm{D},<1000 \mathrm{~Hz}$ peak at 50% AM above 100 MHz , $<0.001 \%$ at 30% AM belon 100 MHz .
Price: HP 608C, $\$ 1350$ (cabinet): HP 608CR, $\$ 1390$ (rack mount): HP 608D, 31450 (cabinet): HP 608OR, $\$ 1490$ (rack mount).

10 to 500 MHz ; to 1000 MHz with Accessory Probe Model 3200B

The HP 3200 B VHF Oscillator provides low cost, stable, 10 to 500 MHz RF for testing receivers and amplifiers, and driving bridges, slotted lines, antennas, and filter networks. Good pulse modulation sensitivity allows standard audio oscillators to be used to provide usable square-wave modulation; a 2.5 -volt sine wave will provide adequate drive for this type application. The 3200 B can also serve as a local oscillator for heterodyne detector systems and as a marker source for swept systems. An optional accessory Frequency Doubler Probe, HP 13515A, provides additional frequency coverage from 500 to 1000 MHz .
Though the oscillator stability is specified as $.002 \%$ for a s-minute period after warmup, typical data indicates that,
under controlled conditions, stabilities of 0.0001% are attainable at some frequencies.

Effective RF shielding permits measurements at levels down to $1 \mu \mathrm{~V}$.

A front panel vernier control varies the plate voltage in the oscillator, electrically sefining the attenuator piston setting.

RF is read on an expanded slide-rule type scale. The oscillator may be precisely tuned by means of a mechanical vernier activated by the main tuning control.

The 3200 B is well suited for bench use and may be adapted for standard 19 -inch rack mounting.

Specifications

Frequency range: 10 to 500 MHz in six bands: 10 to 18.8 $\mathrm{MHz} ; 18,5$ to $35 \mathrm{MHz} ; 35$ to $68 \mathrm{MHz} ; 68$ to 130 MHz ; 130 to $260 \mathrm{MHz} ; 260$ to 500 MHz .

Frequency accuracy: within $\pm 2 \%$ after $1 / 2$ hour warmup.
Frequency calibration: increments of less than 4%.
Frequency stabifity (after 4 -hour warmup under 0.2 mW load): short term (5 minutes) $\pm 0.002 \%$; long term (1 hour) $\pm 0.02 \%$; line roltage (s-volt change) $\pm 0.001 \%$.

RF output:
Maximum power (across 50-0hm external load): >200 mW (10 to 130 MHz) ; $>150 \mathrm{~mW}$ (130 to 260 MHz) ; $>25 \mathrm{~mW}$ (260 to 500 MHz)

Range: 0 to $>120 \mathrm{~dB}$ attenuation from maximum output. Load impedance: 50 ohms nominal.

RF leakage: sufficiently low to permit measurements at $1 \mu \mathrm{~V}$. RFI: meets requirements of MIL-I-G181D.

Amplitude modulation: externally modulated.
Range: 0 to 30%.
Distortion: $<1 \%$ at 30% AM.
External requirements: approximately 20 volts rins into 600 ohms for $30 \% \mathrm{AM}, 200 \mathrm{~Hz}$ to 100 kHz .

Pulse modulation: extemally modulated.
External requirements: 2.5 -volt negative pulse into 2000 ohms.

Power: 105 to 125 V or 210 to 250 V . 50 to $400 \mathrm{~Hz}, 30 \mathrm{~W}$.
Dimensions: $75 / 8^{\prime \prime}$ wide, $61 / 2^{\prime \prime}$ high, $131 / 8^{\prime \prime}$ deep (194×165 $\times 333 \mathrm{~mm}$).

Weight: net $15 \mathrm{lbs}(6,8 \mathrm{~kg})$, shipping $19 \mathrm{lbs}(8,6 \mathrm{~kg})$.
Accessories available: 13515A Frequency Doubler Probe; $00501 \mathrm{~B}, 00514 \mathrm{~B}, 00517 \mathrm{~B}$ Output Cables; 00502B, 00506 B Patching Cables.

Price: HP 3200B, $\$ 525$; HP 13515A, $\$ 95$.

UHF SIGNAL GENERATOR All-purpose UHF signal generator, 450 to 1230 MHz Model 612A

 SIGNAL SOURCES

Here is an all-purpose, precision signal generator particularly designed for utmosc convenience and applicability throughout the importanc UHF.TV frequency band. It is ideally suited for measurements in UHF-television broadcasting, studio-transmitter links, citizen's radio and public service communications systems. The HP 612A also covers the important frequencies used in aircraft navigation aids such as DME, TACAN and airborne rransponders. Accessory modulators, available from many of the manufacturers of these navigational aids, enable the 612A to provide the complex modulation patterns required for testing and aligning these syscems. In the laboratory, the 612 A is a convenient power source for driving bridges, slotted lines, antennas and filter networks. In addition, the HP 8731 PIN Modulators can be used with the 612A to obtain RF pulses with 30 ns rise time and $0.1 \mu \mathrm{~s}$ minimum duration - with on-off ratios approaching 80 dB .

MOPA circuit

The master oscillaror-power amplifier circuit in the HP 612A provides 0.5 volt into 50 ohms over the full frequency range of 450 to 1230 MHz . There is very low incidental FM (less than 0.002% at 30% AM) and excellent modulation capabili. ties by all frequencies from 20 Hz to 5 MHz . The degree of modulation is easily read from the large percent modulation meter. The instrument can be amplitude-modulated (either
internally or externally), and provision is made for external pulse modulation as well. Pulse modulation can be applied to the amplifer or directly to the oscillator when high on-off signal ratios are requiced (signal may be completely cut off between pulses). Modulation can be up or down from a preset level to simulate TV modulation characteristics aceurately.

Advanced design

The oscillator-amplifier circuit in the 612A employs highfrequency pencil triodes in a cavity-tuned circuit for precise tracking over the entire band. Noncontacting cavity plungers are die-cast to precise tolerances, then injection-molded with a plastic filler for optimum Q. The frequency drive is a direct screw-operated mechanism, free from backlash. A waveguide-beyond-cutoff piston attenuator and crysial monitor circuit are used to ensure accurate, reliable ourpur down to $0.1 \mu \mathrm{~V}$. The artenuator is calibrated over a range of 131 dB and has been carefully designed to provide a constant impedance-versusfrequency characteristic. The SWR of the 50 ohm ourpur system is less than 1.2 over the complete frequency range.

Specifications

Frequency range: 450 to 1230 MHz in one band; scale lengch approximately 15 inches (381 mm).
Callbration accuracy: within $工 1 \%$; resettability better than 5 MHz at high frequencies.
Output voltage: $0.1 \mu \mathrm{~V}$ to 0.5 V into 50 -ohm load: calibrated in V and $\mathrm{dBm}(0 \mathrm{dBm}=1 \mathrm{~mW})$.
Output accuracy: $\pm 1 \mathrm{~dB}, 0$ to -127 dBn over entire frequency range.
Internal impedance: 50 ohnms; maximum reflection coefficieni, 0.091 (1.2 SWR, 20.8 dB recurn loss).

Amplitude modulation: above $470 \mathrm{MHz}, 0$ to 90% at audio fre. quencies, indicated by panel meter; accuracy $\pm 10 \%$ of full scale, 30 to 90% modulation.
Incidental FM: less than 0.002% for 30% AM.
Internal modulation: 400 and $1000 \mathrm{~Hz} \pm 10 \%$; envelope distor. tion less than 3% at 30% modulation.
External modulation: 20 Hz to 5 MHz ; above $470 \mathrm{MHz}, 2 \mathrm{~V}$ ims produces 85% AM at modulating frequencies up to 500 kHz , ac least 40% AM at 5 MHz ; modulation may be up or down froun the carrier level or symmetrica! abour the carrier level; positive or negative pulses may be applied to increase or decrease RF output from the carrier level.
Pulse modulation
Pulse 1 (pulse applied to amplifer): positive or negative pulses, 4 to 40 V peak produce an RF on-off ratio of at least 20 dB : minimum R.F ourput pulse length, $0.2 \mu \mathrm{~s}$.
Pulse 2 (pulse applied to oscillator) : positive or negative pulses, a to $\{0 \mathrm{~V}$ peak; no RF output during off time: minimuos RF output pulse lengch, $1 \mu \mathrm{~s}$.
RFI; conducted and radiated lakage limits are below mose specified in MIL-1.6181D: permirs receiver sensitivity measurements donn to $1 \mu \mathrm{~V}$.
Power: 115 or 230 valts $\ddagger 10 \%$, 50 to $400 \mathrm{~Hz}, 215$ walts.
Dimenslons: cabinet: $131 / 2^{\prime \prime}$ wide, $161 / 2^{\prime \prime}$ high, $211 / 2^{\prime \prime}$ deep (343 x $419 \times 546 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $13-31 / 32^{\prime \prime}$ high. $201 / \%^{\prime \prime}$ deep behind panel ($483 \times 355 \times 514 \mathrm{~mm}$).
Weight: net $56 \mathrm{lb}(25.4 \mathrm{~kg})$, shipping $68 \mathrm{lb}(30,5 \mathrm{~kg})$ (63 binet) : net $56 \mathrm{lb}(25,4 \mathrm{~kg})$, shipping $77 \mathrm{lb}(34.4 \mathrm{~kg})$ (rack mount).
Accessories avaliable: 11500A RF Cable Assembly, $\$ 15$; 10503A Video Cable Assembly, $\$ 7$: 360B Low.Pass Filter (may be used where harmonic output must be reduced to a minimum, as in slothed line measurements), 570 .
Price: HP 612A, $\$ 1500$ (cabinet); HP 612AR, $\$ 1540$ (rack mount).

SIGNAL SOURCES

SIGNAL GENERATORS; SOURCES Stable, easy to use, cover 800 to 4500 MHz Models 8614A, 8616A; 8614B, 8616B

Advantages:

High frequency accuracy, digital dial
Precision attenuator, digital dial
Amplitude modulation capability and automatic power leveling in the signal generators
At least 10 mW output
Compact, only $51 / 4^{\prime \prime}$ (133 mm) high

Use to measure:

Receiver sensiturity, signal-io-noise ratio Standing-wave ratios
Transmission line, antenna characteristics Conversion gain
The HP 8614A and 8616A Signal Generators are easy-touse instruments which provide stable, accurate signals from 800 to 2400 MHz (8614A) and from 1800 to 4500 MHz (8616 A). Both frequency and attenuation are set on directreading digital dials, while function is easily selected by pushbuttons. Selectable functions include CW, leveled output, square-wave modulation, and external amplitude, pulse or frequency modulation. Amplitude, frequency and square. wave modulation can be accomplished simultaneously with or without leveling.

Two outputs

Two RE power outputs are simultaneously available from separate front-panel connectors. One provides at least 10
mW (2 mW above 3000 MHz) or a leveled output from 0 to -127 dBm . The leveled output is flat within $\pm 0.75 \mathrm{~dB}$ (8614 A) or $\pm 1.0 \mathrm{~dB}$ (8616 A) across the respective bands with no resetting of the attenuator or power monitor.

The second output is at least 0.5 mW across the band and is independent of attenuator setting. This signal can be used for phase-locking the signal generators when extreme stability is desired, or it can be monitored with a frequency counter for extreme frequency resolution. In any case, the second output can be utilized without adversely affecting the primary output.

Modulation capabilities

A unique PIN diode modulator permits amplitude modu. lation from de to 1 MHz or furnishes RF pulses with a 2μ s rise time. This broad modulation bandwidth permits remote control of output level or precise leveling using external equipment. The internal leveling is also obtained by using a PIN modulator.

When up to one watt output is required above 1 GHz , the HP 489A (1 to 2 GHz) or HP 491C (2 to 4 GHz) Microwave Amplifers (see Amplifers) serve as ideal power boosters. The HP 8731 and 8732 Series PIN Modulators, driven by the HP 8403A Modulator are available for use with the signa! generators when a sophisticated high-speed, low-jitter, modulation system is required.

Signal Sources

The HP 8614 B and 8616 B retain the convenience of the " A " models. Functions are selected by pushbuttons, and frequency and attenuation are set on digital dials. Although the signal sources do not have poper monitors or internal PIN diode modulation, relative power measurements can be made, using the precision attenuator. Modulation capabilities include internal square-wave modulation, plus external pulse and frequency modulation. For added convenience, a friction clutch arrangement permits setting the attenuator dial to any suitable reference while output power is held constant. Thus the attenuator can be calibrated directly in dBm or insertion loss.

The versatility of the HP 8614 B and 8616 B makes them suitable for both laboratory and general-purpose measurements. Indeed, these signal sources can be used in many applications previously requiring signal generators.

Simplified block diagram of RP 8614A and 8616A Signal Generators. The dashed line shows the levoling control clrcuit-

Specifications

Frequency range: 8614 A and $8614 \mathrm{~B}, 800$ to 2400 MHz ; 8616A and $8616 \mathrm{~B}, 1800$ to 4500 MHz .
Leveled output: constant within $\pm 0.75 \mathrm{~dB}$ (8614 A) and $\pm 1.0 \mathrm{~dB}$ (8616 A) across entire frequency cange at any attenuator setting below 0 dB ; output power can be adjusted from the normal caibrated level with the Automatic Level Control; not available with 8614 B and 8616B.
Frequency calibration accuracy: $8614 \mathrm{~A}, \doteq 5 \mathrm{MHz} ; 8614 \mathrm{~B}$, $\pm 5 \mathrm{MHz}$ or $\pm 0.5 \%$, whichever is greater; $8616 \mathrm{~A}, \pm 10$ $\mathrm{MHz} ; 8616 \mathrm{~B}, \pm 10 \mathrm{MHz}$ or $\pm 0.5 \%$, whichever is greater.
Vernier: $\triangle \mathrm{F}$ control has a minimum range of 1.5 MHz for fine tuning (1.0 MHz for $8614 \mathrm{~B}, 8616 \mathrm{~B}$).

Frequency stabillty

With temperature: approximately $0.005 \% /{ }^{\circ} \mathrm{C}$ change in ambient temperature.
With llne voltage: less than 0.003% change for line volt. age variation of $\pm 10 \%$.
Residual FM: 8614 A and 8616 A , less than 2500 Hz peak; 8614 B , less than 0.0003% peak; 8616 B , less than 6 kHz peak.

RF output power

8614A: $+10 \mathrm{dBm}(10 \mathrm{~mW})$ to $-127 \mathrm{dBm}(0.1 \mu \mathrm{~V})$ into a $50.0 h m$ load; output attenuator dial directly calibrated in dBm from 0 to -127 dBm .

86148: at least 15 mW max, controlled by attenuator.
$8616 \mathrm{~A}:+10 \mathrm{dBm}(10 \mathrm{~mW})$ to $-127 \mathrm{dBm}(0.1 \mu \mathrm{~V})$ into a 50.0 hm load, 1800 to $3000 \mathrm{MHz} ;+3 \mathrm{dBm}$ (2 $\mathrm{mW})$ to $-127 \mathrm{dBm}(0.1 \mu \mathrm{~V})$ into a 50 -ohm load, 3000 to $\mathbf{4 5 0 0 \mathrm { MHz } \text { ; output attenuator directly calibrated }}$ in dBm from 0 to -127 dBm .
8616B: at least 15 mW maximum, 1800 to 3000 MHz ; at least 3 mW maximum, 3000 to 4500 MHz ; controlled by attenuator.
All models: a second, uncalibrated RF output (approximately 0.5 mW) is provided on the front panel.
RF output power accuracy (with respect to attenuator dial)
8614A: $\pm 0.75 \mathrm{~dB}+$ attenuator accuracy from 0 to -127 dBm , including leveled output variations.
8616A: $\pm 1 \mathrm{~dB}+$ attenuator accuracy from 0 to -127 dBm , including leveled output variations.

Attenuator accuracy

8614A: $+0,-3 \mathrm{~dB}$ from 0 to $-15 \mathrm{dBm} ; \pm 0.2 \mathrm{~dB}$ $\pm 0.06 \mathrm{~dB} / 10 \mathrm{~dB}$ from -15 to -127 dBm .
8614 B and $8616 \mathrm{~B}: \pm 0.2 \mathrm{~dB} \pm 0.06 \mathrm{~dB} / 10 \mathrm{~dB}$ below -10 dBm .
8616A: $+0,-1 \mathrm{~dB}$ from 0 to $-10 \mathrm{dBm} ; \pm 0.2 \mathrm{~dB}$ $\pm 0.06 \mathrm{~dB} / 10 \mathrm{~dB}$ from -10 to -127 dBm .
All models: direct-reading linear dial, 0.2 dB increments.
Internal impedance: 50 ohms nominal.

Roflection coefficient:

8614A: less than 0.33 ($2.0 \mathrm{SWR}, 9.5 \mathrm{~dB}$ return loss).
8614 B : less than 0.2 ($1.5 \mathrm{SWR}, 14 \mathrm{~dB}$ return loss).
8616 A : less than 0.33 ($2.0 \mathrm{SWR}, 9.5 \mathrm{~dB}$ return loss).
8616B: less than 0.26 (1.7 SWR, 11.7 dB return loss).
Modulation
Internal square wave: 950 to 1050 Hz .
Square-wave sync: square wave can be synchronized with $a+1$ to +10 volt signal applied to the Pulse input.
External AM (8614A and 8616A only): de to 1 MHz .
tncidental FM (8614A and 8616A only): negligible for power leveis below -10 dBm .
External pulse:
8614 A and $8616 \mathrm{~A}: 50 \mathrm{~Hz}$ to $50 \mathrm{kHz}, 2 \mu \mathrm{~s}$ rise time, +20 to +100 volts input.
8614 B and 8616 B (below 4000 MHz) : 50 Hz to 500 $\mathrm{kHz} ;+25$ to +50 volts peak input; minimum RF pulse width, 300 ns ; RF rise time, typically 200 ns .
External FM: (a) front-panel connector capacitively coupled to klystron repeller; input impedance, $220 k \Omega$ shunted by approximately 300 pF ; (b) rear-panel connector is dc-coupled to the klystron repeller.
Power: 115 or 230 volts $\pm 10 \%$, 50 to 60 Hz . approximately 125 watts.
Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $133 / 8^{\prime \prime}$ deep (426 x $141 \times 467 \mathrm{~mm}$); hardware furnished for conversion to rack mount $19^{\prime \prime}$ wide, $5.7 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panel ($483 \times 133 \times 416 \mathrm{~mm}$).
Welght: 8614 A : net $42 \mathrm{lb}(18,9 \mathrm{~kg})$; shipping 48 lb ($21,6 \mathrm{~kg}$), 8614 B and 8616 B : net $38 \mathrm{lb}(17,1 \mathrm{~kg})$; shipping $43 \mathrm{lb}(19,4 \mathrm{~kg}), 8616 \mathrm{~A}$: net $44 \mathrm{lb}(19,8 \mathrm{~kg})$; shipping $50 \mathrm{lb}(22,5 \mathrm{~kg})$.
Price: HP 8614A, $\$ 2200$; HP 8614B, 81600 ; HP 8616A, $\$ 2200$; HP 8616B, $\$ 1600$.
Option 01.: External modulation input connectors on rear panel in paralle! with front-panel connectors; RF connectors on rear panel only; add \$25.

UHF SIGNAL GENERATORS
Direct-reading, direct control, 800 to 4200 MHz Model 614A, 616B

Ease of operation, direct-reading one-dial frequency control, high stability and accuracy and broad frequency coverage are all advantages of these widely used signal generators.
The 614 A covers frequencies from 800 to 2100 MHz , has constant internal impedance with less than 1.6 SWR, and ouput accaracy of $\pm 1 \mathrm{~dB}$ over the range of -10 dBm to -127 dBm . The 616 B gives complete coverage of frequencies from 1.8 to 4.2 GHz , has constant internal impedance with less than 1.8 SWR , and output accuracy of ± 1.5 dB from -7 dBm to -127 dBm .
On both instruments, operation is extremely simple. Carrier frequency is set and read directly on the large tuning dial. No voltage adjustments are necessary during operation because of the coupling device which causes oscillator repeller voltage to track frequency changes automatically. Oscil-
lator output is set and read directly on a simplified dial. Output may be continuous or pulsed, or frequency-modulated at power line frequency. Pulse modulation may be provided externally or internally. Internal pulsing may be synchronized with either positive or negative external pulses, or sine waves.
The oscillator portion of both the 614 A and 616 B consists of a reflex klystron in an external coaxial resonator. Frequency of oscillation is determined by a movable plunger which varies the resonant frequency of the resonator. Oscillator output is monitored by a temperature-compensated thermistor bridge circuit which is virtually waffected by ambient temperature conditions. Voltage output is read directly. A logging scale on the frequency dial provides a resettability of 0.1%.

Specifications

Frequency range: 614A. 800 to $2100 \mathrm{MHz}: 616 \mathrm{~B}, 1.8$ to 4.2 GHz .
Frequency accuracy: $\pm 1 \%$.
Frequency stability: $0.005 \% 1^{\circ} \mathrm{C}$ change in ambient temperature: line voltage changes of $\pm 10 \%$ cause 0.01% frequency change.
Output power range (into 50.0 hm load) : $614 \mathrm{~A}, 0.5 \mathrm{~mW}$ or 0.158 volt to $0.1 \mu \mathrm{~V}$ (-3 to -127 dBm) from 800 to 900 MHz ,) mW or 0.224 volt to $0.1 \mu \mathrm{~V}(0.10-127 \mathrm{dBm})$ from 900 to $2100 \mathrm{MHz} ; 616 \mathrm{~B}, \mathrm{I} \mathrm{mW}$ or 0.224 volt to $0.1 \mu \mathrm{~V}$ (0 to -127 dBm).
Power accuracy (at the end of 6 -ft output cable, terminated in 50-ohm load): 614A, within $\pm 1 \mathrm{~dB}$ from - 10 to 127 dBm : 616 B, within $\pm 1.5 \mathrm{~dB}$ from -7 to -127 dBn ,
Internal impedance: 614A, 500 hms , refiection coefficient less than 0.23 ($1.6 \mathrm{SWR}, 12.9 \mathrm{~dB}$ return loss); $616 \mathrm{~B}, 50$ ohms, refection coefficient less than 0.285 (1.8 SW R. 10.9 dB return loss).
Modulatlon: internal or external pulse or FM.
Internal pulse modulation: pulse repetition rate variable from 40 104000 per sec; pulse length variable from 1 to $10 \mu \mathrm{~s}$; delay variable from 3 to $300 \mu \mathrm{~s}$ between synctronizing signal and RF pulse.
External pulse modulation: ext $-:-40$ to $-70 \mathrm{~V}, 1$ to 2500 $\mu \mathrm{s}$ wide, ext $+:+40$ to $+70 \mathrm{~V}, 1$ to $400 \mu \mathrm{~s}$ wide, square wave: ± 40 to $\pm 70 \mathrm{~V}$ p-p, 40 to 4000 Hz .

Trigger pulses out: (1) simultaneous with RF pulse: (2) in ad. vance of RF pulse, variable from 3 to $300 \mu s$ (both approximatels' I $\mu \mathrm{s}$ rise time, amplitude +10 to +50 volts).
External synchronization: pulses, ± 10 to ± 50 volts, 1 to $20 \mu \mathrm{~s}$ wide; may also be synchronized with sine waves.
Frequency modulation: osciliatoc sweeps at power line frequency; deviation and phase adjustable; maximum deviation approx. 3 MHz p-p.
RFI: Conducted and radiated leakage limits are below those specified in MILL-1-6181D.
Power: 115 or 230 volts $\pm 10 \%, 50$ to 400 Hz , approx, 160 watts.
Dimensions: cabinet: $171 / 4^{\prime \prime}$ wide, $131 / 8^{\prime \prime}$ high, $131 / 2^{\prime \prime}$ deep (438 x $346 \times 343 \mathrm{~mm}$) : rack mount: $19^{\prime \prime}$ wide, $13.31 / 32^{\prime \prime}$ high, $121 / 8^{\prime \prime}$ deep behind panel ($483 \times 355 \times 308 \mathrm{~mm}$).
Weight: net $59 \mathrm{lb}(26,5 \mathrm{~kg})$; shipping $72 \mathrm{lb}(32,4 \mathrm{~kg})$.
Accessory furnished: I1500A RF Cable Assembly.
Accessories avallable: 614A: 360C Low-Pass Filter, $\mathrm{f}_{\mathrm{c}}=2200$ $\mathrm{MHz}, \$ 65 ; 10503 \mathrm{~A}$ Video Cable Assembly, $\$ 7$; 616B: S281A Waveguide-to-Coax Adapter, 2.6 to $3.95 \mathrm{GHz}, \$ 65$; G281A Wave. guide-to-Cozx Adapter, 3.95 to $5.85 \mathrm{GHz}, \$ 50,360 \mathrm{D}$ Low-Pass Filter, $\mathrm{f}_{4}=4.1 \mathrm{GHz}, 560$.
Price: HP 614A or HP 616B, $\$ 2100$ (cabinet): HP 614AR or HP 616BR, $\$ 2140$ (rack mount).

RF TEST SETS
 For testing transmitters, receivers
 Models 623B, 624C, 5636

Advantages:

Direct reading of power, frequency
Stable accurate input, output attenuators
Compact package for portability in field

Uses:

Measure receiver sensitivity, selectivity
Test cransmitter tuning power level

Each of these test instruments consists of a combination signal generator, frequency meter and power meter and permits measurement of receiver sensitivity and selectivity, transmitter tuning and power level. Each is easy to use, fast and accurate.

The HP model 6238 SHF Test Set is an ideal one-piece unit for measuring receiver sensitivity or selectivity, transmitter tuning or power level. It is particularly adapted to testing complete communications, control, and video relay station equipment in the range of 5925 to 7750 MHz , using any of 3 klystrons. Its klystron source can be frequency modulated and externally pulse modulated.

From 8.5 to 10.0 GHz , the 624 C X-Band Test Set provides a one-piece unit particularly adaptable for testing complete radar, gunfire control systems, or radio beacon equip. ment. It has internal frequency modulation capability and provision for a 35 Hz to 3.5 kHz pulse, FM , or square wave external modulation.

Nearly-overlapping the frequency ranges of the 623B and 624 C , the 5636 H -Band-Test Set more than covers the entire government communications band. It performs the same task but offers greater output power and a wider power measurement range than the 623 B and 624 C .

Model	Frequenoy rangs (MHI)	$\begin{gathered} \text { Froqueney } \\ \text { metnet } \\ \text { ringe (} \mathrm{MHz} \text {) } \end{gathered}$	Output gower (dBm)	Ourput attenuator range (dB)	Internal modulation	Extamal modulaton	$\begin{aligned} & \text { Powar } \\ & \text { masiuremant } \\ & \text { range (CW) } \end{aligned}$	Panel helight	Shloping Wolght Prles
623 B	$\begin{aligned} & 5925-6575 \text { or } \\ & 655-7175 \text { or } \\ & 7125-7750 \end{aligned}$	5820-7780	$\begin{gathered} 0 \\ (1 \mathrm{~mW}) \end{gathered}$	70	FM, 1 kHz	FM, pulse, square-wave, 30 Hz 10100 kHz	-6 to $+3 \mathrm{d8m}$	$\begin{gathered} 111 / 2^{\prime \prime} \\ (292 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 76 \text { los. } \\ \$ 3100 \\ \text { (transit case) } \end{gathered}$
5636	7100-8500	7100-8500	$\begin{gathered} 15 \\ (30 \mathrm{~mW}) \end{gathered}$	100	$F M_{1} 1 \mathrm{kHz}$	FM, pulse, square-wave, 30 Hz to 100 KHz	$-610+40 \mathrm{cBm}$	$\begin{gathered} 14^{\prime \prime} \\ \left(355^{\prime} \mathrm{mm}\right) \end{gathered}$	$\begin{gathered} 98 \mathrm{lbs.} \\ \$ 4450 \\ \text { (ransit case) } \end{gathered}$
6240	8500.10,000	8500-10,000	${ }_{(1 \mathrm{~mW})}^{0}$	100	FM at power line trequancy; pulse, 35 to 3500 pps	FM, pulse, square-wave, 35103500 Hz	-6 to +28 dBm	$\begin{gathered} 101 \mathrm{z}^{\prime \prime} \\ (266 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 78 \text { los. } \\ \$ 3100(\mathrm{cabingt} \\ \text { or rack) } \end{gathered}$

SHF SIGNAL GENERATORS
 Multiple-purpose instruments, 3.8 to 11 GHz Models 618C, 620B

Advantages:

Direct-reading frequency dial
Direct-reading output in voltage or dBm
Internal FM, CW, pulsed or square-wave modulation
Broadband coverage
Wide frequency range
High stability, high accuracy

Use to measure:

Receiver sensitivity
Selectivity or rejection
Signal-to-noise ratio
Antenna gain
Transmission line characteristics
The Models 618 C and 620B SHF Signal Generators provide versatility, accuracy, and stability in the range from 3.8 to 11 GHz . Thus such measurements as sensitivity, selectivity, signal-to-noise ratio, SWR, and antenna gain are made with ease. Frequency is set on a large, direct-reading dial. A ΔF vernier control provides ultra-fine tuning capability. There is also a provision for remote fine tuning.

A calibrated output from 0 to $-127 \mathrm{dBm}(0.224$ volts to 0.1 microvolt) is also set on a large, direct-reading dial. The dial is calibrated in both dBm and volts, permitting measurements in terms of either and eliminating any computation in converting from one to the other. In addition, the zero set control for the power monitor has been elim. inated, simplifying measurements by reducing the number of steps required. A second, uncalibrated output is available. This auxiliary output is at least 0.3 milliwatt and is independent of attenuator setting. Thus it can be used for phaselocking the signal generator when crystal-oscillator stability is required, or it can be monitored with a frequency counter for extreme frequency resolution.

Raflex klystron osclilator

The 618 C and 620 B Generators both feature oscillators of the reflex klystron type, with external resonant cavity. Oscillator frequency is determined by a movable plunger which varies the length of the cavity. Oscillator output is monitored by a temperature-compensated detector circuit. This circuit operates vitually unaffected by ambient temperature conditions. Identical piston attenuators couple power to the monitor and output terminal. The power monitor attenuator is linked to the output attenuator cursor to compensate for klystron output variation as frequency is changed.

Broad modulation capabillties

Modulation includes internal pulse, squace-wave, and frequency modulation plus external pulse and frequency modulation. Internal pulse and square-wave repetition rates are continuously vaniable from 40 to 4000 Pps , and pulse width is variable from 0.5 to 10 microseconds. Synchronization pulses are available simultaneously with the RF pulse or in
advance of the RF pulse from 3 to 300 microseconds. The internal pulse and square-wave modulation can be synchronized with external sine waves or pulses of either polarity, or external pulses can themselves be used as the modulating signal.

For internal frequency modulation, each generator has a sawtooth sweep variable from 40 to 4000 Hz with deviation adjustable up to about 5 MHz peak-to-peak. Extemal FM is accomplished through one of two input connectors. The front-panel input is capacitively coupled to the repeller of the klystron oscillator for standard FM applications. The rear-panel input is de-coupled to the klystron to permit phaselocking of the oscillator.

Specifications
 Output

Frequency range: $618 \mathrm{C}: 3,800$ to $7,600 \mathrm{MHz}$ covered in a single band; 620B: 7 to 11 GFiz covered in a single band; repeller voltage automatically tracked and proper mode automatically selected.
Cailbratlon: direct reading; frequency calibration accuracy better than $\pm 1 \%$.
Vernler: $\Delta \mathrm{F}$ control has a minimum range of 0.5 MHz for fine tuning; remote $\Delta \mathrm{F}$ connector on rear panel permits fine tuning with external potentiometer; tuning range at least 1.5 MHz with potentiometer ≥ 2 megohms.
Frequency stabillty: with temperature: less than $0.006 \% /{ }^{\circ} \mathrm{C}$ change in ambient temperature; with line voltage: less than 0.02% change for line voltage variation of $\pm 10 \%$; residual FM : $<15 \mathrm{kHz}$ peak.

Output range: 1 milliwatt or 0.224 volt to 0.1 microvolt (0 dBm to -127 dBm) inio 50 ohms; directly calibrated in microvolts and $d B$; coaxial type N connector.
Output accuracy: within $\pm 2 \mathrm{~dB}$ from -7 to -127 dBm , within $\pm 3 \mathrm{~dB}$ from 0 to -7 dBm , terminated in $50-0 \mathrm{hm}$ load; temperature-compensated detector circuit monitors RF oscillator power level; an auxiliary, 6xed-level RF output (at least 0.3 mW) is provided on the front panel for use with other equipment such as a frequency counter or phase-lock instrumentation.
Source impedance: 50 ohms nominal; refection coefficient less than 0.33 ($2 \mathrm{SWR}, 9.6 \mathrm{~dB}$ return loss).

Modulation

Modulation: internal or external pulse, FM, and square-wave.
Intarnal pulse modulation: repetition rate variable from 40 to $4,000 \mathrm{pps}$, pulse width variable $1 / 2$ to 10 microseconds.
Sync out signals: simultaneous with RF pulse, positive; in advance of RF pulse, positive, variable 3 to 300 microsec. onds (better than 1 microsecond rise time and 25 to 100 volts amplitude into 1,000 -ohm load).

External synchronization: sine wave: 40 to $4,000 \mathrm{~Hz}, 5$ to 30 V rms; pulse: 40 to $4,000 \mathrm{pps}, 5$ to 50 V peak, positive or negative, 0.5 to $S \mu \mathrm{~s}$ wide, 0.1 to $1 \mu \mathrm{~s}$ rise time.

Internal square-wave madulation: variable 40 to $4,000 \mathrm{~Hz}$, controlled by "pulse rate" control.

Internal frequency modulation: sawtooth sweep rate adjustable 40 to $4,000 \mathrm{~Hz}$; frequency deviation to 5 MHz peak-to-peak over most of the frequency range.

External pulse modulation: pulse requirements: amplitude from s to 50 volts positive or negative, width 0.5 to 2.500 microseconds.

External FM: frequency deviation approximately 5 MHz peak. to-peak orer most of the band; sensitivity approximately $20^{\circ} \mathrm{V} / \mathrm{MHz}$ at front-panel connector, approximately $10 \mathrm{~V} / \mathrm{MHz}$ at rear-panel connector (mating connector supplied); front-panel connector is capacitively coupled to klystron repeller; rear-panel connector is $d c$-coupled to klystron repeller and is suitable for phase-lock control input.

General

RFI: conducted and radiated leakage limits are below those specified in MIL-I-6181D.

Power source: 115 or 230 volts $\pm 10 \%$, 50 to $60 \mathrm{~Hz}, 230$ watts.

Dimensions: cabinet: $171 / 2$ in. wide, $137 / 8$ in. high, $195 / 8$ in. deep behind panel ($445 \times 353 \times 499 \mathrm{~mm}$); rack mount: 19 in. wide, $1331 / 32$ in. high, 19 in. deep behind panel ($483 \times 355 \times 483 \mathrm{~mm}$).

Weight: net, $69 \mathrm{lb}(31,1 \mathrm{~kg})$; shipping $90 \mathrm{lb}(40,5 \mathrm{~kg})$.
Accessory furnished: 11500A Cable Assembly, 6 feet (1830 mm) of RG-214A/U 50-0hm Coax, terminated on each end by type N male connectors.

Price: Model 618C (cabinet mount), \$2350. Model 618CR (rack mount), $\$ 2390$. Model 620B (cabinet mount), $\$ 2350$. Model 620 BR (rack mount), $\$ 2390$.

Advantages:

Direct-reading frequency control
Direct-reading output control
10 mW output over full range
CW, FM or puise modulation
Internal square-wave modulation
Broad pulsing capabilities
Low internal SWR
High stability
Operate to 40 GHz with $\mathrm{HP} 938,940$ Frequency
Doubler Sets

Use to measure:

Receiver sensitivity
Selectivity or rejection
Signal-to-noise ratío
Transmission line characteristics

Here are two HP signal generators which extend the measuring versatility, convenience and accuracy of HP VHF sig. nal generators to 21 GHz . The 626 A covers frequencies 10 to 15.5 GHz , and the 628 A covers frequencies 15 to 21 GHz . In design and operation, the instruments are similar to HP generators for lower frequency ranges. Operation is very simple. Carrier frequency is set and read directly on the large tuning dial. No voltage adjustment is necessary during tuning because repeller voltage is tracked with frequency changes automatically. Oscillator output also is set and read directly, and no frequency correction is necessary throughout operating range. A frequency logging scale permits frequency to be reset within 0.1%.

The high power output of these signal generators make them ideally suited for driving HP 938A and 940A Frequency Doubler Sets (18 to 26.5 GHz and 26.5 to 40 GHz respectively). These doubler sets retain the modulation and stability of the driving source and have accurate power monitors and attenuators.

Versatile modulation

Both the 626A and 628A offer internal and external pulse modulation, as well as internal square-wave modulation and FM. Pulse repetition rate is continuously variable from 40 to 4000 pps , and pulse width is variable from 0.5 to $10 \mu \mathrm{~s}$. Sync out signals are simultaneous with the RF pulse, or in advance of the RF pulse by any time span from 3 to $300 \mu \mathrm{~s}$. The pulse generators may be synchronized with an external sine wave and also with positive or negative pulse signals.

For internal FM, both instruments fearure a sine-wave sweep at power line frequency. Frequency deviation is variable up to 10 MHz peak-to-peak. For external FM, the generators have capacitive couplings to the klystron oscillator repeller.

SHF SIGNAL GENERATORS
 Direct-reading, high power, 10 to 21 GHz Models 626A, 628A

Figure 1 shows the basic circuits of the HP signal geneators. The reflex klystron oscillator is tuned by a plunger driven by the direct-reading frequency dial and control. Repeller voltage is automatically tracked, so that correct operating potentials are maintained over the entice frequency range. Klystron output is introduced into a power monitoring meter. The directional coupler provides uniform coupling over the entire frequency range. A rotary attenuator which follows the coupler assures high accuracy and stability, because the attenuation is governed by a precise

Figure 1. Basic circult, HP 626A, 628A.
mathematical law related to the angular rotation of the attenuator. The conductivity of the attenuating film does not affect the attenuation; thus, the output of the generator is independent of humidity, temperature or the effect of long-rerm aging. The attenuator also provides low SWR over the complete frequency range. On both HP 626A and 628A, the output connector is waveguide. Adapters furnished per. mit the instruments to be connected to W/R.42, WR-62 or WR-90 waveguide. Thus, the generators can be employed with all ERA (RETMA) and JAN guides suitable for the 10 to 21 GHz range.

Speclifications

Frequency range: $626 \mathrm{~A}, 10$ to $15.5 \mathrm{GHz} ; 628 \mathrm{~A}, 15$ to 21 GHz .
Frequency callbration: dial direct-reading in GHz , accuracy better than $\pm 1 \%$.
Output range: 10 mW to $1 \mathrm{nW}(+10 \mathrm{dBrn}$ to -90 dBm . $0 \mathrm{dBm}=1 \mathrm{~mW}$); attenuator dial directly calibrated in output dBm.
Source impedance: 50 ohms nominal; reflection coefficient: 626 A , less than 0.43 ($2.5 \mathrm{SWR}, 7.3 \mathrm{~dB}$ return loss) at $+10 \mathrm{dBm}, 0.15$ ($1.35 \mathrm{SWR}, 16.5 \mathrm{~dB}$ return loss) at 0 dBm and below; 628A, less than 0.43 (2.5 SWR, 7.3 dB return loss) at $+10 \mathrm{dBm}, 0.091$ ($1.2 \mathrm{SWR}, 20.8 \mathrm{~dB}$ return loss) at 0 dBm and below.

628A

Output monitor accuracy: better than $\pm 1 \mathrm{~dB}$; temperaturecompensated thermistor bridge circuit monitors RF oscillator power level.
Output connector 626A: $0.850 \times 0.475 \mathrm{in}$. waveguide, WR75, flat cover flange; 628A: $0.590 \times 0.335 \mathrm{in}$. wave. guide, WR51, flat cover Blange.
Output attenuator accuracy: better than $\pm 2 \%$ of attenuation in dB introduced by output attenuator.
Leakage: less than minimum calibrated signal generator output.

Madulation: internal or external pulsed, FM, or squarewave.

Internal pulse modulatlon: repecition sate variable from 40 to 4000 pps ; pulse width variable 0.5 to $10 \mu \mathrm{~s}$.

Internal square-wave modulation: variable 40 to 4000 Hz controlled by "pulse rate" control.

Internal frequency modulation: power line frequency, deviation up to 10 MHz p.p.

External pulse modulation: pulse requirements: amplitude 15 to 70 volts peak positive or negative; width 1 to $2500 \mu \mathrm{~s}$.
External frequency modulation; provided by capacitive coupling to repeller of klystron; maximum deviation approximately $10 \mathrm{MHz} \mathrm{p}-\mathrm{p}$.

Sync out signals: positive 20 to 50 volts peak into 1000 . ohm load; better than 1μ sise time; (1) simultaneous with RF pulse, positive; (2) in advance of RF pulse, positive, variable 3 to $300 \mu \mathrm{~s}$.
External synchronizazlon: (1) sine wave, 40 to 4000 Hz , amplitude 5 to 50 volts rms; (2) pulse signals 0 to 4000 pps, 5 to 50 volts amplitude, positive or negative; pulse width 0.5 to $5 \mu \mathrm{~s}$; rise time 0.1 to $1 \mu \mathrm{~s}$.
Power: 125 or 230 volts $\pm 10 \%, 50$ to 60 Hz approx. 200 watts.
Dimensions: cabinet: $17^{\prime \prime}$ wide, $14^{\prime \prime}$ high, $15^{\prime \prime}$ deep (432 x $356 \times 381 \mathrm{~mm}$); rack mount: $19^{\prime \prime}$ wide, $14^{\prime \prime}$ high, $12.13 / 16^{\prime \prime}$ deep behind panel ($483 \times 356 \times 313 \mathrm{~mm}$).
Weight: $626 \mathrm{~A}, \mathrm{AR}$: net $61 \mathrm{lb}(28,1 \mathrm{~kg})$, shipping 76 lb ($34,2 \mathrm{~kg}$); $628 \mathrm{~A}, \mathrm{AR}$: net $57 \mathrm{lb}(26,4 \mathrm{~kg})$, shipping 76 ib ($34,2 \mathrm{~kg}$).
Accessories furnished: 626A (a) MX 292B Waveguide Adapter, WR-75-to-WR-90 guide; (b) MP 292B Wave. guide Adapter, WR.75-to-WR-62 guide; 628A (a) NP 292A Waveguide Adapter, WR.S1.to-WR-62 guide; (b) NK 292A Waveguide Adapter, WR-51-to.WR. 42 guide.

Accessories avaliabie: 10503A Video Cable Assembly, \$7; for 626A: M362A Low-Pass Filter, $\$ 350$.
Price: HP 626A or $628 \mathrm{~A}, \$ 3600$ (cabinet); HP $626 A R$ or 628AR, $\$ 3640$ (rack mount).

FREQUENCY DOUBLER SETS

Generate stable signals to 40 GHz
Model 938A, 940A

Hewlett-Packard Model 938A and Model 940A Frequency Doubler Sets bring you low-cost signal-generation capability in K. and R-bands (18 to 40 GHz). Model 938A supplies power from 18 to 26.5 GHz when it is driven by a 9 to 13.25 GHz source; Model 940A supplies power from 26.5 to 40 GHz when it is driven by a 13.25 to 20 GHz source.

These frequency doubler sets consist of broadband crystal harmonic generators suitably mounted in a waveguide section, a power monitor, a broad stopband low-pass filter and ${ }^{2}$ precision attenuator. They may be driven by klystrons, by signal generators such as HP Models 626A and 628A, or by sweep oscillators such as HP Model 8690 B with 8694A,B or 8695A RF Units.

Since Model 938A and Model 940A are broadband instruments, the input signal may be CW, pulsed, or swept. Thus, the frequency doubler sets retain all the versatility of the driving source.

Output monitor

Models 938 A and 940 A have power monitors and pre-
cision cotary-vane attenuators for accurately setting output level over a range from 0 to -100 dB . Output power depends on input power and is typically 0.5 to 1 mW when a $626 \mathrm{~A}, 628 \mathrm{~A}$, or 8690 B is used as a driving source. Further, since Models 938A and 940A contain a power monitor, output power is known even though an uncalibrated signal source is used.

Signal generator or swept-frequency operation

Models 938A and 940A have the same output versatility as the driving source. For instance, if you drive Model 938A with Model 626A you may have CW output, pulsemodulated output with a repetition rate from 40 to 4000 pps, square-wave-modulated output with modulation frequencies from 40 to 4000 Hz , of 60 Hz (power line frequency) FM output. In addition, pulsed output may be synchronized with external signals or output may be externally pulse or frequency modulated.

To obtain a swept-frequency output, you simply drive the frequency doubler set from a swept-frequency source such as Model 8690 B with $8694 \mathrm{~A}, \mathrm{~B}$ or 8695 A RF Unit.

Speciflcations

Frequency range: 938 A .18 to 26.5 GHz : $940 \mathrm{~A}, 26.5$ to 40 GHz .
Conversion loss: less than 18 dB at 10 mW input.
Output power: depends on inpur porer supplied; approx. 0.5-1 mW when used with typical 626A, 628A Signal Generators.
Maximum ingut power: 100 mW .
Output monltor accuracy: $\pm 2 \mathrm{~dB}$.
Oulput attenuator accuracy: $\pm 2 \%$ of reading or $\pm 0.2 \mathrm{~dB}$, whichever is greater.
Attenuator range: 100 dB .
Output reflection coefficient: approximarely 0.33 (2 SWR, 9.5 dB return loss) at full output; less than 0.2 (1.5 SWR, 14 dB return loss) with attenuator set to 10 dB or more atten. uation.
Input flange: 938A, M-band that cover Hange for WR-75 wave. guide; 940A. N.band flat cover flange for WR. 51 waveguide.

Gaveguide (K-band): 940A, UG-599/L flat cover flange for WR-28 waveguide (R.band).
Dimensions: cabinet: $191 / 4^{\prime \prime}$ wide, $53 / /^{\prime \prime}$ high, $18^{\prime \prime}$ deep (489 x $137 \times 457 \mathrm{~mm}$).
Weight: net $20 \mathrm{lb}(9 \mathrm{~kg})$; shipping $35 \mathrm{lb}(15.8 \mathrm{~kg})$.
Accessorles avallable: 938A, X281A Waveguide-to Coax Adanter, 8.2 to $12.4 \mathrm{gc}, \$ 35$; MX292B and MP292B Wave-guin--to-Waveguide Adapters, $\$ 50$ and $\$ 40$ respectively (1 each furnished with 626A) : 11504A X-band Fle.vible Waveguide, \$35; 11503A P-band Flexible Waveguide, \$48; 940A. MP292B and NP292A Waveguide.to.Waveguide Adapters, $\$ 40$ each (1 each furnished with 628A) ; 11503A P-band Flexible Waveguide, $\$ 48$.
Complementary equlpment: 938A, 626A Signal Generator: 8690B Sweep Oscillator with 8694A,B and 8695A RF Unit. 940 A .626 A and 628A Signal Generators; 8690B Sweep Oscillator with 3695A RF Unit.
Price: HP 938A or HP 940A, $\$ 2250$ (cabinet). SIGNAL SOURCES

The Model 3205A FM Signal Generator is a self-contained, completely solid-state instrument designed for use in the measurement and calibration of FM telemetry receivers in the 1435 to 1540 MHz and 2200 to 2300 MHz frequency bands. Peak FM deviation of the RF output on one of five different ranges is indicated on a calibrated deviation meter. The generator has its own deviation meter callibration system
that does not require external instrumentation. A calibrated RF output level, adjustable from -10 dBm to -127 dBm is also included. An internal modulation oscillator permits selection of channels 1 through 21 of the standard IRIG (Inter-range Instrumentation Group) subcarsiex frequencies used for telemetry systems.

Specifications

RF characteristics

Frequency range: band 1,1430 to 1540 MHz ; band 2, 2150 to 2310 MHz .
Frequency accuracy (maln dlal): $\pm 0.3 \%$.
Vernier: 40 logging divisions, approx. $\pm 2 \mathrm{MHz}$.
Frequency stabllity (after $1 / 2$ hour warm-up with modulalation Input ac coupled): short term, 40 PPM per 10 minutes; long term, 150 PPM per hour; temperature coefficient, <30 PPM per ${ }^{\circ} \mathrm{C}$.
RF output (main): -10 to -127 dBm .
RF output levellng: 1.5 dB pk-pk maximum excursion across each band.
Spurlous output: non-harmonically related, $>50 \mathrm{~dB}$ below main output on either band; harmonically relared, >20 dB below main output.
Modulation characteristics
FM deviation: $\pm 3 \mathrm{MHz}$.
Modulation frequency response: $\pm 1 \mathrm{~dB}$ (referenced to 10 kHz) from dc (dc coupled) or 5 Hz (ac coupled) to $750 \mathrm{kHz} ;+2,-3 \mathrm{~dB}$ to 2 MHz .
FM non-linearity: Band 1:

$$
\begin{aligned}
& <0.5 \% \text { at } \pm .5 \mathrm{MHz} \text { deviation (} f_{\text {mod }} \text { to } .5 \mathrm{MHz} \text {) } \\
& <1.0 \% \text { at } \pm 1 \mathrm{MHz} \text { deviation (} f_{\text {nuar }} \text { to } 1 \mathrm{MHz} \text {) } \\
& <7.0 \% \text { at } \pm 3 \mathrm{MHz} \text { deviation (} f_{\text {mod }} \text { to } 2 \mathrm{MHz} \text {) }
\end{aligned}
$$

Band 2:
$<0.3 \%$ at $\pm .5 \mathrm{MHz}$ deviation ($\mathrm{f}_{\text {mod }}$ to .5 MHz)
$<0.7 \%$ at $\pm 1 \mathrm{MHz}$ deviation ($\mathrm{E}_{\text {mod }}$ to 1 MHz)
$<4.0 \%$ at $\pm 3 \mathrm{MHz}$ deviation ($\mathrm{f}_{\text {mod }}$ to 2 MHz)
FM callbratlon: 30 kHz to 3 MHz full scale in 5 ranges; accuracy, $\pm 5 \%$ of full scale ($f_{\text {mad }}=5 \mathrm{~Hz}$ to .5 MHz) internal deviation calibrator provides 1% calibrate point at .667 MHz on band 1 and 1.00 MHz on band 2.
Residual FM: less than 1.5 kHz on band $1,2.0 \mathrm{kHz}$ on band 2, measured in a 1.5 MHz equivalent rectangular bandwidth.
External FM Input: impedance: 600 ohms shunted by less than 45 pF (75 PF , option 001) ; sensitivity: band 1, $<1.5 \mathrm{~V} \mathrm{rms}$ for 1 MHz deviation; band $2,<1 \mathrm{~V} \mathrm{mms}$ for 1 MHz deviation.
Internal modulation oseltiator: frequencies: IRIG propor. tional subcarrier channels 1 through 21; accuracy: $\pm 2 \%$ THD : < 0.5%.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $83 / 4^{\prime \prime}$ high, $183 / 3^{\prime \prime}$ deep, (425 x $222 \times 467 \mathrm{~mm}$).
Weight: net $52 \mathrm{lbs}(23,4 \mathrm{~kg})$; shipping $67 \mathrm{lbs}(30,2 \mathrm{~kg})$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ to $400 \mathrm{~Hz}, 50$ wath.
Price: $\$ 5,750$.
Option 001: all front panel connectors moved to rear panel. Add $\$ 50$.

SIGNAL SOURCES

The HP 8925A DME/ATC Test Set is specifically designed for testing and calibrating DME (Distance Measuring Equipment) and ATC (Aic Traffic Control) transponder aircraft equipment. When used with suitable modulators, the test set will also simulate some TACAN and IFF sig. nals. Completely self-contained (except for video modulators), the system consists of a continuously tuneable signal generator (HP Hol-8614A), direct-reading frequency counter (HP 3245L), solid-state modulator (HP H028403A), frequency converter (HP 5254A), wavemeter (HP 8905A), peak power measuring system (HP 8900B), and all necessary circuitry for interconnection to the radio

Specifications

RF accuracy: determined by ability to set to desired reading

RF stablity: temperature, approx 0.005% per degree C; line
RF output: range: -10 to -100 dBn cross external 30.0 hm
set under test (HP 13505A).

Radio frequency characterlstics

RF range: 962 to 1213 MHz

 on counter.RF settabililty: better than 100 kHz . voltage, $<0.003 \%$ ($\pm 10 \%$ line voltage change). load at output jack, accuracy:

8925A

DME/ATC TEST SET

Calibrates DME and ATC equipment
Model 8925A

Altenuator setting	$\underset{(1015 \text { ATC } 1045 \mathrm{MHz})}{\text { ATC }}$	$\begin{gathered} \text { DME } \\ (982 \text { to } 1213 \mathrm{MHz}) \end{gathered}$
-10 to -17d8m	+0.7 to 1.2 dB	+1.1 to 1.6 dB
-17 dBm	$\pm 0.6 \mathrm{~dB}$	- $=1 \mathrm{~dB}$
-17 to -100 dBim	$\begin{aligned} & \pm(0.8+0.06 \\ & \text { per } 10 \mathrm{~dB}) \delta 8 \end{aligned}$	$\begin{aligned} & \pm(1.2+0.06 \\ & \text { per } 10 \mathrm{~dB}) \mathrm{dB} \end{aligned}$

Leveled output: (fiked atten. position) ATC, $\pm 0.2 \mathrm{~dB}$; DME, $\pm 0.6 \mathrm{~dB}$; impedance: 50 ohms; VSWR: 1.35:1.
Pulse modulation characteristics
PM source: suirable external video modulators.
Pulse shape: with suitable modulators, meets general requirements of DME/ATC.
Side-lobe suppression: the second pulse of a train of 2 (or 3) pulses may be varied +1 to -10 dB from the first pulse when its leading edge is $\geqq 2 \mu_{\mathrm{s}}$ from the first pulse leading edge; calibrated SLS control accurate to $\pm 0.5 \mathrm{~dB}$.
Simulated bearlng Input: audio frequency input to BNC jack under TACAN button will simulate bearing modula. tion to a depth of 55% max. (3.8 dB above pulse tips).

Power measurement characterlstics

RF range: 962 to 1213 MHz ; RF power range: 100 to 2000 watts peak (ARINC units), 10 to 200/100 to 2000 watts peak (Gen. Aviation and ARINC units) available as factory modification with accessory attenuator; RF power accuracy: $\pm 1.2 \mathrm{~dB}$ from calibration curve).
Frequency measurements characteristics
RF range: 1070 to 1120 MHz ; RF accuracy; $\pm 0.5 \mathrm{MHz}$; direct meter indication for peak power 250 to 1000 watts at $25^{\circ} \mathrm{C}$; video output for external scope indication for input peak porver down to approx 10 watts.

Monitor characterlstics

Signal geneyator monitor (Monitor-Sig Gen), heterodyne monltor (Het Mon): frequency range: 1018 to 1032 MHz (for beating oscillator 102s $\pm 1 \mathrm{MHz}$); output level: 0.3 volts peak min at -10 dBm RF level (at IF center fre. quency): load impedance: 150 ohms nominal; bandwidth: 9 MHz nominal (equivalent low pass bandridth 4 MHz); linearity: $\pm 0.5 \mathrm{~dB}$ (-10 to -20 dBm RF level).
Dlode monitor (Diode Mon); frequency range: 962 to 1213 $\mathrm{MHz}_{\text {; }}$ output level: 0.1 V peak min at -10 dBm RF level; low pass bandwidth: 5 MHz nominal.
Transmitter monltor (Monitor-Xmtr): output level: approx 0.2 V peak for 200 watts peak input (100 to 2000 watts peak power range), 20 watts peak input (10 to 200 watts peak power range); load impedance: 150 ohms nominal; bandwidth: 10 MHz nominal; linearity: $\leq 1 \mathrm{~dB}$ for 200 to $2000 / 20$ to 200 watts peak input; transmitter interlock: terminals are provided for de-energizing the transmitter when the system internal load is removed from the trans. mitter antenna.
Dimenslons: $23^{\prime \prime}$ wide, $3214^{\prime \prime}$ high, $26^{\prime \prime}$ deep ($584 \times 819 \times 660$ mm).

Waight: net $310 \mathrm{lbs}(139,5 \mathrm{~kg}$); shipping $350 \mathrm{lbs}(157,5 \mathrm{~kg}$).
Power: 10s to 125 or 210 to 250 volts, 50 to $60 \mathrm{~Hz}_{3} 400 \mathrm{~W}$.
Price: HP 8925A, \$12,135.
Options: 01: Less 5245L/5254A Counter, 38,860 ; 02: less cab. inet, $\$ 11,545$; 03: Jual power range (10 to 200/100 to 2000 suatts), add $\$ 100$; 04: HP 5246L Counter instead of HP 5245L, $\$ 11,435$, specify by option number.

SIGNAL GENERATORS Test and calibrate aircraft VOR and ILS Models 211A, 232A

 SIGNAL SOURCES
211A Signal Generator

The HP 211A Crystal-Monitored Signal Generator is spe. cifically designed for the testing and calibrating of aircraft VOR and ILS localizer radio receiving equipment operating within the frequency range from 88 to 140 MHz . It also may be used for laboratory and development work where a preci-sion-type amplitude-modulated RF signal source is required.

232A Signal Generator

The EAA Instrument Landing System for aircraft in. cludes a glide slope receiver for indicating the proper rate of descent. The HP 232A Glide Slope Signal Generator was designed for use in testing and calibrating these glide slope receivers.

Specifications, 211A

Radlo frequency charactertstics

RF range: master oscillator: 88 to 140 MHz in one range; crystal oscillator: 110.1 and 114.9 MHz .
RF output: range: $0.1 \mu \mathrm{~V}$ to 0.2 volt (across external 50 ohm load); impedance: 50 ohms; spurious output: all spurious RF ourput voltages are better than 40 dB below desired output.
Amplitude modulatlon characterlstles: AM range, 0 to 100% in two ranges.
Physical characteristics
D-menslons: 211A and 211AP1 (Power Supply): 191/2" wide, $101 / 2^{\prime \prime}$ high, $91 / 2^{\prime \prime}$ deep ($495 \times 267 \times 241 \mathrm{~mm}$).
Weight: net $63 \mathrm{lbs}(28,4 \mathrm{~kg})$; shipping $86 \mathrm{lbs}(38,7 \mathrm{~kg})$.
Power: 105 to $125 \mathrm{~V}, 50$ to $60 \mathrm{~Hz}, 150 \mathrm{~W}$.
Price: HP 211A, $211 A P 1, \$ 2900$.

Specifications, 232A
Radio frequency characteristics
RF range: (A) 329.3 to 335 MHz in increments of 0.3 MHz ; (B) 20.7 MHz ; other frequencies between is and 30 MHz available on special order.
RF accurecy: $\pm 0.0065 \%$ (crystal controlled).
RF output: range: $1 \mu \mathrm{~V}$ to 0.2 V (across external 50 -ohm load); accuracy: $\pm 10 \%$ approximately; impedance: 50 ohms.
RF leakege: sufficiently low to permit measurement at $1 \mu \mathrm{~V}$.
Amplitude modulation characteristics
Am range: internal: 0 to 100% in two ranges; external: 0 to 100% in two ranges.
AM callbratlon: increments of $2 \%, 0$ to 50%; increments of $10 \%, 0$ to 100%.
Demodulated output: available at front-panel posts through $2 \mu \mathrm{~F}$ сарасіtor.
Modulating oscillator characteristlcs
OSC frequency: (A) 1000 Hz ; (B) 90 and 150 Hz in the following tone ratios: $0 \mathrm{~dB}, \pm 0.5 \mathrm{~dB}, \pm 1 \mathrm{~dB}, \pm 2$ $\mathrm{dB}, \pm 3.3 \mathrm{~dB}, \pm$ in Enite dB (calibrate).

Physical characterlstics

Dimenslons: $207 / 8^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $12^{\prime \prime}$ deep (511 x $267 \times 305 \mathrm{~mm}$).
Wejght: net $64 \mathrm{lbs}(28,8 \mathrm{~kg})$; shipping $75 \mathrm{lbs}(33,8 \mathrm{~kg})$.
Power: 105 to $125 \mathrm{~V}, 60 \pm 1 \mathrm{~Hz}, 150 \mathrm{~W}$.
Price: HP 232A, \$3200.
Optlon 01: 105 to $125 \mathrm{~V}, 50 \mathrm{~Hz}, 150 \mathrm{~W}$; add $\$ 50$.

SIGNAL SOURCES

SPECTRUM GENERATOR/DOUBLER

Versatile broadband operation
Models 10511A, 10515A

HP 10511 A Spectrum Generator

The Hewlett-Packard 10511A Spectrum Generator is a passive device that generates a train of 1 nanosecond wide pulses when driven by a sinusoidal signal source. The 105lla was specificaliy designed as an accessory to the HP 5100 A Frequency Synthesizer. However, it is useful with any 50 n source that can provide the proper input signal.

With a sine wave input, in the frequency range of 10 MHz to 75 MHz , a spectrum of harmonics is generated. This spectrum contains all harmonics of the input frequency to the 1 GHz region. To extract a desired harmonic, a son bandpass filter can be cascaded with the 10511A to give a sinusoidal output. The HP 230A Power Amplifier (tuned) may be used for higher level outputs for harmonics up to 500 Hz .

Operation of the 10511 A with the 5100 A without 2 bandpass filter on the output produces a pulse train whose repetition rate is precisely controlled. The 10511 A , with a tuned filter, produces precise CW frequencies between 50 MHz and 500 MHz .

Speciffcations 10511A

Input requlrements

Frequency range: 25 to 50 MHz .*
Drive level: 1 to 3 volts RMS available to 50Ω.

Output

Pulse width: 1 nanosecond, $\pm 15 \%$ at mid-amplitude.
Pulse helght: 0.75 volt minimum for minimun drive level. Impedance: 50Ω (nominal).
Avallable harmonlc power: -19 dBm minimum for any harmonic number between 1 and 10 .

General

Dimensions: 3 in. long, $15 / 8 \mathrm{in}$. $\mathbf{~ J i a}$. ($76 \times 41 \mathrm{~mm}$).
Welght: net, 3 oz (85 grams). Shipping, $1 \mathrm{lb}(0,45 \mathrm{~kg}$). Price: model 10511 A. $\$ 150,00$.
-Useful oderation Is obrained for Input frequencles from 10 MHz to 75 MHz .

HP $10515 A$ Frequency Doubler

The Hewlett-Packard Model 10515A Frequency Doubler is an ideal accessory for use in extending the usable frequency range of signal generators, frequency synthesizers or other signal sources. Operating on input frequencies of 0.5 MHz to 500 MHz it prorides a doubled output in the range of 1 MHz to 1 GHz . This 50 ohm device uses a full-wave rectifier circuit which is extremely flat over its entire frequency range. The frequency response is very flat ($< \pm 1 \mathrm{~dB}$ over entire range typically), and undesired harmonics are very wel! suppressed.
The output of this unit does not have an internal $d c$ return so that it will provide a very broadband ac to de conversion only if not de terminated. This mode of operation is useful for detection of low level amplitude modulations.

The 10515A may be used with the following HewlettPackard instruments (this is only a partial listing):
5100A Frequency Synthesizer 606A Signal Generator 5102A Frequency Synthesizer 3200 B VHF Oscillator 5103A. Frequency Synthesizer 608 Signal Generators 5105A Frequency Synthesizer

Specifications 10515A

Frequency range: $0.5-500 \mathrm{MHz}$ input; 1.1000 MHz output. Impedance: 50 n nominal (source and load)
Imput signal voltage: $0.5-3.0 \mathrm{~V}_{\text {RMs }}$.
Input signal power: 180 mW (maximum).
Conversion Ioss:*
$<12 \mathrm{~dB}$ (typically $<11 \mathrm{~dB}$) for >1 volt
$<13 \mathrm{~dB}$ (typically $<12 \mathrm{~dB}$) for >0.5 volt
Suppression of 1st and 3rd harmonic of Input:*
$>30 \mathrm{~dB}$ for 0.5 to 50 MHz input (typically $>35 \mathrm{~dB}$).
$>10 \mathrm{~dB}$ for input to 500 MHz (typically $>15 \mathrm{~dB}$).
Connectors: input: BNC male; ourput: BNC female.
Dimenslons: diameter: $0.7^{\prime \prime}$ (18 mm); length: $2.5^{\prime \prime}$ (64 mm).
Weight: net, approximately 2 oz (56 grams); shipping, 1 lb $(0,45 \mathrm{~kg})$.
Price: modei 10519A, S120.00.
atwith a 50 ohm resistive load and a single input trequency. Suppression values are relerred to the desirad output level.

Sweepers are used to present a dynamic or real time display of the amplitude and/or phase response of a device under test. When a sweeper is used in testing devices, it can quickly provide important information that might otherwise require laborious time-consuming tests. For example, in the design of a feedback amplifier, point-by-point measurements are time-consuming; and, if the amplifier de. sign is changed, it is necessary to repeat the test to see the effects of the change.

The sweeper avoids this problem by swerping the frequency range of interest so that the response of the device under test can be displayed. When selecting a sweeper, consider the characteristics needed: sweep frequency range, linearity. Hatness, and dial accuracy. Other considerations are linear or \log sweep, variable sweep speed, blanking, and pen lift.

Hewletr-Packard sweepers include fre. quencies from 0.1 Hz to 40 GHz , and most of the above mentioned requite. ments are described in the instrument's specifications. Table 1 on page 415 briefiy describes the characteristics of all Hew-lert-Packard sweepers and associated plugin units. The following paragraphs discuss these sweepers beginning with the lonest frequency models.

Model 3305A

The $3305 A$ is a \log sweep plug. in for the 3300 A Function Genecator mainframe. This combination provides a lowfrequency, wideband sweep generator in addition to the other features of a versa. tile plug.in function generator.

The 3305A sweeps up to 4 decades in a single soueep covering frequencies írom 0.1 Hz to 100 kHz in three overlapping ranges $(0.1 \mathrm{~Hz} \cdot 1 \mathrm{kHz}, 1 \mathrm{~Hz} .10 \mathrm{kHz}, 10$ $\mathrm{Hz}-100 \mathrm{kHz}$). The start and stop frequencies can be independently adjusted to any point on any one range. The sweep of the preser frequencies allors loga. rithmic frequency plots to be made, and a good approximarion to a linear sweep can be obtained when the swreep width is small. A linear sawtooth output is available for the X -axis of oscilloscopes or X .Y recorders. This sweep plug. in also includes signal blanking and pen lift during retrace.

The $3305 A$ has four modes of opera. tion: 1) automatically repetitive sweeps, 2) a single sweep per trigger pulse (local or remote), 3) manual sweep, and 4) remotely programmed or swept up to 4
decades by setting the start control to a desired frequency and applying $2 n$ external voltage.

High-accuracy sweep generator

The Hewlett-Packard 675A is an essential tool for the design, test or production engineer. With it an engineer can test such broadband circuits as amplifiers and attenuators over a $31 / 2$ decade range in one $10 \cdot \mathrm{kHz}$ to $32 \cdot \mathrm{MHz}$ sweep, with. out changing plug-in units. In addition, because the instrument has exceptional frequency stability and low residual frequency modulation, it can measure the response of narrowband circuits, high-Q filters, and crystals. The generator's startstop and center frequency sweeps have $\pm 1 \%$ end point accuracy, eliminating the need to calibrate each sweep setring individually.

For most lab applications the 675A of. fers meaningful measurements of amplitode versus frequency without the use of markers because its dial accuracy and linearisy permit readings directly from the oscilloscope graticule or X.Y record. ing coordinates. For additional accuracy the $1-\mathrm{MHz}$ and $100 \cdot \mathrm{kHz}$ harmonic mark. ers are available. Problems of FM on a CW signal or jitter display during sweep are solved by the 675 A with residual FM less than 70 Hz peak. The 675 A is ideally suited for applications such as testiog narrowband and broadband amplifiers, filters, (bandwidrh 1000 Hz or greater) and attenuations, and transmitter and receiver alignment. Test laboratories with automatic measurement systems will also benefit from the versatility, and programmability the 675A offers.

Figura 1. Equivalent circult of the variablefrequency oscillator.

Behind these unusual capabilities is the voltage tuned oscillator (VTO) shown in Figure 1. Field-effect transistors are used to provide the high- Q in the tank circuit ensuring good frequency stability and low residual FM. A tempera-ture-controlled oven minimizes frequeacy variations. The generator output is the difference frequency between the output of the VFO (ranging from 100 to 132 MHz) and the output of $100-\mathrm{MHz}$ crystal oscillator. A voltage proportional to the geoerator's output is derived from a peak detector with exceptionally flat frequency response. This voltage is used for output monitoring and also feeds an (ALC) automatic leveling loop. An ALC modulator directly controls the $100 . \mathrm{MHz}$ signal to the mixer and, thus, the amplitude of the final output signal. A volt-age-variable capacitor allows for electronic, rather than mecharical, tuning. Depending upon the funcrion selected. the tuning voltage is derived by summing ramps and/or adjustable signals. During sweep operation, front panel contcols select the de and ramp voltage required. In CW operation, the de voltage alone sets the output frequency.

Phase and amplitude detector

A new Phase and Amplitude Tracking Detector (HP 676A) combined with the HP 675A Sweeping Signal Generator of. fers an amplitude response of 80 dB dynamic range, accompanied by 360° (or multiples thereof) of phase measurement capability. This 675A/676A combination is an ideal network analyzer for both narrowband and broadband frequency sweeps. Transfer characteristics, impedance plots, dynamic ingut and output impedance, system flatness, return loss, time delay, small signal analysis, and open- and closed-loop response are some of many possible network analyzer applications. A great advantage that the 676A Tracking Detector has over most broadband detectors used in sweeping signal generators is that the 676A de. tects only the fundamental swept output of the sweeper, thus eliminating un. wanted harmonic responses. The 676A and 675 A compare a device under test against a known standard and display amplitude and phase information simultaneously on an oscilloscope.
The 676A is a two channel phase and amplitude tracking detector. The swept signal generated by the 675A is split into two equal channels by the power divider
of the 676 A , and then excites the device under test in each channel. The detected outputs from each channel are then com. pared for phase and amplitude difference. A very important feature of the 676A is the narrow (8 kHz) tracking "window" through which the detector sees incoming signals. Because the window tracks along the frequency scale locked to the 675A sweep, the 676A sees only the fundamental of the 675A, thas providing 80 dB of dynamic range. The window is the 8 kHz bandpass of the 676A IF strip. The IF amplifier has a logarithmic gain characteristic providing an output pro. portional to the \log of the input. Since the same local oscillator is used for both channels, any phase difference between channels is eliminated.

A typical application of network analysis is shown in Figure 2. Other ap. plications are shown on pages 418 and 468.

Figure 2a demonstrates the 675A's and 676A's ability to portray on an oscilloscope an $80-\mathrm{dB}$ bandpass of a Chebishev

Figure 2. (a) Amplitude response of filter from 100 kHz to 20 MHz at $10 \mathrm{de} / \mathrm{cm}$. (b) Amplitude response of sams filter 100 kHz to 5 MHz al $1 \mathrm{db} / \mathrm{cm}$.
filter. Simultaneously the 675A and 676A has the ability to portray minute aberca. tions over an expanded portion (Figure 2b) as well as the complete bandpass of the filter. $1-\mathrm{MHz}$ markers are easily identified in Figures 2a and 2b.

Wideband RF and microwave sweepers

Application Note 65 covering the use and accuracy of swept frequency techniques for attenuation, impedance, power. and frequency calibration measurement provides an up-to-date compendium of the latest developments in mictowave

Figure 3. 8699 B 100 MHz to 4 GHz Rf Unit Block Diagram.
swept measurements. This Note may be obrained from any Hewlett-Packard field office at no charge.

The HP 8690 Series Sweep Oscillators cover the frequency range 400 kHz to 110 MHz and i to 40 GHz . They provide calibrated broad and narrow sweeps, and markers which amplitude-modulate the RF may be used on either. The markers also may be used as end points of a second broadband sweep. Manual 5 weep reduces $\mathrm{X} \cdot \mathrm{Y}$ recorder set-up time, and push-buttons greatly simplify operation. The RF ourput frequency may be swept slowily enough for presentation on an X.Y recorder or fast enough for noficker presentation on an oscilloscope.

The 8690 Series sweep oscillators have been designed to incorporate plug-in RF units enabling the operator to change frequency bands quickly. This eliminates the need for duplicate equipment to cover each RF or microwave band. The 8690 B Main-frame provides two independent broad-band sweeps, start-stop, marker sweep, and one precision narrow band sweep, a calibrated $\Delta 6$ sweep. Included is internal square-wave modulation with a range of 950 to $1,050 \mathrm{~Hz}$ plus external AM and FM. External FM permits fre-quency-programming, including exter. nally controlled sareeps over the whole range or any part of it.

New microcircuít, Y/G-tuned RF unit

The 8699B all-solid-state RF Unit (page 430) for the 8690 B covers the entire $100-\mathrm{MHz}$ to $4-\mathrm{GHz}$ spectrum in only two ranges. This makes the 8690 Series Sweep Oscillators uniquely superior, with BWO coverage available all the way to 40 GHz and RF coverage down to 400 kHz with the 8698 B .

Design of the 8699B is shown in Fig. 3. The use of an exremely broadband microcircuit amplifier allows signals to be mixed at low levels, keeping spurious responses down, but still providing adequate power over more than five octaves. The YIG-tuned oscillator is inherently linear, eliminating the need for complicated frequency-shaping networks. The result is $\pm 0.3 \%$ linearity over the entire range.

The significant impact of HewlettPackard's microcircuit technology is exemplified by the 8699 B 's performance in the heterodyne mode: Hewlett-Packard hybrid microcircuit capability makes manufacture of the broadband amplifier and rapid cutoff filter possible. The use of Herlect-Packard microwave chip transistors and s-parameter design methods has resulted in this YIG-tuned solid-state oscillator that has no match on the market today.

Swept signal generator design Wide frequency range

The HP 8601A Generator/Sweeper and the 8698 BF Unit pleg. in for the 8690B Sweep Oscillator achieve very wide frequency coverage on each band using a beat frequency technique. A 200 MHz signal from a crystal-controlled oscillator is modulated before becoming the linear input to a balanced mixer. A voltage-tuned oscillator (VTO) operating berween 200.1 (200.4 in 8698 B) and 310 MHz drives the mixer. The difference frequency is filtered and fed to a thin. film video amplifier whose maximum out. put is $100 \mathrm{~mW}(+20 \mathrm{dBm})$. A detector at this output provides a dc signal (proportional to RF level) to the meter (8601 A) and to one input of a differential amplifier. The other input is a voltage reference comprised of level, calibra. tor, AM, and blanking commands. The output of this amplifer to the modulator completes the automatic level control (ALC) loop. The level vernier controls signal level over a $13-\mathrm{dB}$ range, and an outpet attenuator provides $10 \cdot \mathrm{~dB}$ steps.

Low harmonic distortion

To reduce harmonic distortion, the video amplifier provides 100 mW (+20 dBm) output at the +20 dBm artenua. tor setting only; other settings provide +10 dBm at the input to the attenuator.

Linearity

VTO nonlinearities are avoided by a feedback loop containing a very linear 0.1 (0.4 in 8698 B) to 11 MHz pulse count discriminator. In the 1 - to 110 . MHz range, the unmodulated RF output of a second balanced mixer is frequency. divided by ten and applied to the dis. criminaror (low range operation by. passes the divider). The discriminator output voltage is one input of a second differential do amplifier. The other input is the kuning command voltage. The output of this amplifier controls the frequency of the VTO in such a way that a very linear voltage-to-frequency characteristic is obtained. The bandwidth of the frequency control loop is reduced for $C W$ and manual operation on che 1 - to $110-\mathrm{MHz}$ range to improve spectral quality.

CW and sweep modes

In CW, a calibrated precision potentiometer across the extremely stable
power supply provides a low-noise tuning voltage. In swept and FM modes, the tuning voltage is obtained from a monolithic (operational) amplitier maintained at constant temperature by a solid-state oven. This amplifier sums the various control voltages.

Crystal calibrator

The crystal calibrator mixes harmonics of a $5 \cdot \mathrm{MHz}$ crystal with the output of the frequency control loop mixer. The markers are applied to the ALC loop to produce "dips" in the CW output at 5. MHz intervals.

Auxiliary output

The input to the discriminator is also an auxiliary output, allowing the CW frequency to be monitored by an inexpensive low-frequency counter.

Models 8691A/B through 8697A RE Units contain voltage tuned backward wave tubes covering the frequency range 1 GHz to 40 GHz . RF units in the 1 to 12.4 GHz range can be provided with PIN diode attenuators which permit all of the amplitude modulation functions, including leveling, to be performed in. dependently of the backward-wave tube. The result is virtual elimination of trequency pulling, which, in turn, results in extremely high frequency accuracy and linearity and very low incidental FM.

Control unit, RF unit holder, and signal multiplexer

A simple and inexpensive solution to the problem of broadband sweep capa. bility (more than an octave) is offered by Hewletr-Packard's Model 8706A Control Unit with the Model 8707A RF Unit Holder (see page 432 and 433). When used with the Model 8690 B Sweep Oscil. lator and appropriate RF units, a compact, bench.top multiband source is formed.

The Model 8706 Control Unir, with its nine band selector buttons, replaces the usual $R F$ unit as a plug-in for the sweep oscillator mainframe. It supplies power for and controls as many as three Model 8707A RF Unit Holders, each of which accommodates three RF units. A system with three Mode! 8707A's can be used to select instantly all or part of the complere 400 kHz to 40 GHz range.

Units may be programmed by either front panel control unit pushbutton selec-
tion or sequentially by remote contact closure to ground. The 8706A also can provide voltages for control of remote circuits, relays, etc. By utilizing these voltages to program a coaxial switch, for example, you can channel the output signals of several RF units through a single system output connector. Multiband rests can then be made quickly and easily: changing RF units and cable connections is handled automatically at the rouch of a burton. The Model 8705A Signal Multiplexer ideally satisfes this switching requirement to allow timesaving broadband measurements. It switches RF signals up to 12.4 GHz from three 8690 -Series RF Units to a choice of two RE output ports.

Unnecessary operation of BWO tubes should be avoided to prolong their life. At the same time it is desirable to have the output of any RF unit quickly available. The $8706 \mathrm{~A} / 8707 \mathrm{~A}$ sweep system maintains the BWO's on standby, removing the high voltage when not in use to extend tube life. When a single band is not to be used over some period of time, for example, during a laboratory setup procedure, an individual RE unit may be easily turned off, minimizing all aging effects.

Figure 4. Basic closed.loop leveling system.

Leveled output from sweep oscillators

The development of closed-loop feed. back systems for leveling sweep oscillator output power has greatly expanded the practical scope of swept-frequency measurements. The basic closed-loop system is shown in Figure 4.

The HP 8690 Series Sweep Osciliators contain a leveling amplifier for automatic level control (ALC) ; the power variation that occurs at the system output is primarily determined by coupler and de. tector variation. For coaxial systems, Hewlett-Packard has developed the 780 Series Directional Detectors (page 297) which consist of a high directivity, flat directional coupier combined with a high sensitivity, Blat-response crystal detector. System flatness of better than $\pm 0.3 \mathrm{~dB}$ over octave bandwidths is typical, using Hewlett-Packard directional detectors.

To level output power in waveguide systems, HP 752 Series Waveguide Directional Couplers (page 299) and 424A Series Waveguide Crystal Detectors (page 307) are used. With better than 40 dB directivity, 792 Series Couplecs in leveled systems provided good equivalent source match-nominally 1,02 SWR. Waveguide couplers will typically exhibit $\pm 0.5 \mathrm{~dB}$ coupling variation over the band. In conventional refection or transmission measurement systems em. ploying two couplers, this vatiation of

Figure 5. "Back-to-back" waveguide eoupler arrangement for extremely flat output.
coupling with frequency is of little consequence because both couplers demonstrate the same coupling characteristics; hence, the variations with frequency effectively cancel. Where a greater degree of leveling is needed in waveguide, a pair of 752 couplers are connected "back. to-back" as in Figure s. In this configuration the insertion loss of the 3 dB coupler (752A) follows a curve directly opposite to the coupling curve of the mainline 752 C or D coupler. The resulting power reiationship between port 1 and port 2 is flat to better than $\pm 0.2 \mathrm{~dB}$ over full waveguide bands.

Swept-frequency systems, reflectometer systems

Probably the major usage of sweep oscillators is io reflectometer systems for broadband messurement of refiection and transmission characteristics. Leveling the signal source brings new latitude of readour to the user, for measurement results can be read directly rather chan on a ratio basis. Sophisticated instrumentation systems employing the principles of reflectometry such as HP 8540-series Automatic Network Analyzer system de. scribed on page 478, rely upon the 8690 B Series Swept Oscillators for frequency accuracy and operational simplicity.

Higher power systems

Typical backward.wave oscillators supply leveled power outputs in the

Figure 6. The E15.8690A systam genorates highievel (750 mW), flat output power. The pad between the sweep oscillator and the TWT ampllfier is used to keep the signal level into the amplifier below that which would saturate the TWT.
milliwatr region. Applications such as REI-susceptibility tests and high attenua. tion swept measurements often require 750 mW outputs. The E15.8690 system shown in the block diagram in Figure 6 will provide better than 730 mW from 1 to 12.4 GHz .

Special calibration systems

Leveled systems have also been designed to level on the net formard power
applied to a device, permitting the examination, for example, of the efficiency and calibration factor of coaxial and waveguide devices.

Swept frequency display devices

Especially useful is the new. HP 1416A plug-in for the 140A and 141A Oscilloscopes. Designed expressly for use in leveled reflectometer systems using square-law detectors, the 1416 a provides an accurate 30 dB of dynamic range when used with HP 423A and 424A Series Crystal Detectors. It also provides excellent resolution; sensitivity of $0.5 \mathrm{~dB} /$ cm permits close examination of resulrs. The 1416 A is particularly effective with the 141A variable persistence oscilloscope as a readout device for a swept slotted line measurement system.

Stabilized sweep osciliator systems

Applications such as microwave spectroscopy and high-Q swept frequency cavity measurements have brought about the need for phase-locked fixed or swept frequency operation of the 8690 Series sweep oscillators.

Hewlett-Packard stabilized sweep oscillator systems are available for swept and CW operation or CW operation only in the coaxial (1 ro 12.4 GHz) and wave. guide bands (12.4 to 40 GHz). In these systems an 8690 B Sweep Oscillator with appropriate interchangeable RF unit is phase-locked to a $240-400 \mathrm{MHz}$ refer. ence oscillator. The reference oscillator stability is thereby transferred to the sweep oscillator. The reference osciliator is continuously tunable, so the sweep oscillators can be stabilized at any frequency in their respective ranges quickly and casily; there are no crystals to change.

Phase-locking the system is simple. The desired frequency is set on the sweeper dial and the reference oscillator is then tuned to obtain the desired sureeper frequency on the counter (although the counter indicates sweeper irequency, is counts the reference oscillator). The sweeper is then tuned to the appropriate lock point. The wide spacing of the lock points (240 to 400 MHz) makes picking the right lock point easy.

Table 1. Hewlett-Packard sweepers

HP madol	Freq. range	Max dutpul	Flatness	Residual FM	Sweep IInearily	Sweop time	Sweep modes			$\begin{gathered} \text { Bullf- In } \\ \text { markers } \end{gathered}$	Page
							Auto	8ingle	Manual		
$3300 \mathrm{~A}(.03 \mathrm{~Hz}-100 \mathrm{kHz}$) Function Generator, 2 sweeper plug-ins											
3304A	$0.1 \mathrm{~Hz}-100 \mathrm{kHz}$	5 V mm into 600Ω	$\pm 1 \%$ to $=3 \%$		1\% (linear)	0,01-100 s	Yes	No	No	No	340
3305A					logarithmic			Yes	Yes		416
675A (10 kHz-32 MHz) Sweepar, I range, no plug-ins*											
675A	$10 \mathrm{kHz}-32 \mathrm{MHz}$	$\begin{aligned} & 1 \mathrm{Vrms} \\ & \text { into } 50 \Omega \end{aligned}$	$\begin{aligned} \pm & =0.15 d 8 \text { to } \\ & \pm 1 \mathrm{~dB} \end{aligned}$	70 Hz peak	$\pm 0.5 \% \text { of }$ sweepwidth	$0.01-100 \mathrm{~s}$	Y8s	Yes	Yes	Opt	417,
$3211 \mathrm{~A}(100 \mathrm{kHz-110} \mathrm{MHz)} \mathrm{Swesp} \mathrm{Oscillator}$.6 plug-ins											
3212A	$100 \mathrm{kHz}-30 \mathrm{MHz}$	$\begin{gathered} >0.7 \mathrm{~V} \text { rms } \\ \text { into } 50 \Omega \end{gathered}$	$\pm 0.25 \mathrm{~dB}$	< $\times 5 \mathrm{kHz}$	$\pm 10 \%$	$\begin{gathered} 0.01-0.1 \mathrm{~s} \\ \text { continuous } \\ 1-10 s \\ \text { (single) } \end{gathered}$	Yes	Yes	No	Opt	422
3213A	8.16 MHz			$\begin{aligned} & <=0.005 \% \\ & \text { center freq } \end{aligned}$	$\Rightarrow 1 \%=10 \%$						
3214A	$12-28 \mathrm{MHz}$										
3215A	20-45 MHz										
3216A	$30-70 \mathrm{MHz}$										
3217A	50.110 MHz										
8601A	$\begin{aligned} & 100 \mathrm{kHz}-1 \mathrm{MHz} \\ & 1 \mathrm{MHz}-110 \mathrm{MHz} \end{aligned}$	$2.24 \mathrm{VIms}$ $\text { into } 50 \Omega$	$\begin{aligned} & \pm 0,25 \mathrm{~dB} \text { over } \\ & \text { vull range } \end{aligned}$	$\begin{aligned} & <50 \mathrm{~Hz} \mathrm{pk} \\ & <500 \mathrm{~Hz} \mathrm{pk} \end{aligned}$	$\pm 0.5 \%$	Fast: 6 to 50 sweep/sec var slow: 8 to 80 sec/ sweep var.	Yes	Yes	Yes	Yes	387 420, 421
8690B (0.4 MHz to 40 GHz) Convertiola Sweep Oscillator - see plug-ins below											
Plug-in RF units for 86908											
Freq. range	HP model	Max output	Flatness	Rosidual FM	Swoep Ilnearly	sweeg tlme	8weop modes			Bulk.In markert	Page
							Auto	Sinila	Marual		
$\begin{aligned} & 04-11 \mathrm{MHz} \\ & 1-110 \mathrm{MHz} \end{aligned}$	8698B	$\begin{aligned} & 1.0 \mathrm{Vrms} \\ & \text { into } 50 \mathrm{n} \end{aligned}$	$=0.25 \mathrm{~dB}$	$\begin{gathered} \quad<150 \mathrm{~Hz}- \\ <500 \mathrm{~Hz} \text { peak } \end{gathered}$	$\pm 0.5 \% ~ 0!$ sweepwidth	0.01-100 s	Yes	Yes	Yes	Yes	$\begin{gathered} 423 \text { to } \\ 430 \end{gathered}$
$\begin{aligned} & 100 \mathrm{MHz}-2 \mathrm{GHz} \\ & 2 \mathrm{GHz}-4 \mathrm{GHz} \end{aligned}$	86998	$\begin{aligned} & +13 \mathrm{dBm} \\ & \text { into } 50 \Omega \\ & +10 \mathrm{dBm} \\ & \text { into } 50 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \pm 1.5 \mathrm{~dB} \\ & \text { external lev } \\ & \pm 0.3 \mathrm{d8} \\ & \text { external lev } \\ & \hline \end{aligned}$	$<10 \mathrm{kHz} \mathrm{px}$ in 10 kHz bw	$\pm 0.5 \% \text { of }$ sweepwidth						
$1-2 \mathrm{GHz}$	8691 A	$\geq 100 \mathrm{~mW}$	$\pm 0.2 \mathrm{~dB}$	$\begin{gathered} <30 \mathrm{kHz} \\ \text { peak } \end{gathered}$	$\pm 1 \%$						
$1-2 \mathrm{GHz}$	86918	$\geq 70 \mathrm{~mW}$	± 0.188	$\begin{gathered} <10 \mathrm{kHz} \\ \text { peak } \end{gathered}$	$\pm 10 \mathrm{MHz}$						
2-4 GH2	8692A	270 mW	$\pm 0.2 \mathrm{~dB}$	$\begin{gathered} <30 \mathrm{kHz} \\ \text { peak } \end{gathered}$	$=1 \%$						
$2-4 \mathrm{CHz}_{2}$	86928	$\geq 40 \mathrm{~mW}$	$\pm 0.1 \mathrm{~dB}$	$\underset{\substack{\text { peak }}}{15 \mathrm{kHz}}$	$\pm 10 \mathrm{MHz}$						
1.7-4.2 GHz	H01-86928	$\geq 15 \mathrm{~mW}$	$\pm 0.1 \mathrm{~dB}$	$\begin{gathered} <20 \mathrm{kHz} \\ \text { peak } \end{gathered}$	$\pm 13 \mathrm{MHz}$						
$4-8 \mathrm{GHz}$	8693A	$\geq 30 \mathrm{~mW}$	$\pm 0.2 \mathrm{~dB}$	$\begin{gathered} <50 \mathrm{kHz} \\ \text { peak } \end{gathered}$	$\pm 1 \%$						
$4-8 \mathrm{GHz}$	86938	$\geq 15 \mathrm{~mW}$	$\pm 0.1 \mathrm{~dB}$	$\underset{\substack{r \\ \text { peak }}}{15 \mathrm{kHz}}$	$\pm 20 \mathrm{MHz}$						
$3.7-12.4 \mathrm{GHz}$	H01-8693B	$\geq 5 \mathrm{~mW}$	± 0.188	$\underset{\text { peak }}{<20 \mathrm{xHz}}$	$=25 \mathrm{MHz}$						
$8-12.4 \mathrm{GHz}$	8694A	$\geq 50 \mathrm{~mW}$	$=0.2 \mathrm{~dB}$	$\begin{gathered} <60 \mathrm{k} \cdot \mathrm{~Hz}_{2} \\ \text { Deak } \end{gathered}$	$\pm 1 \%$						
$7-12.4 \mathrm{CHz}$	H01-8694A	$\geq 25 \mathrm{~mW}$		$\underset{\substack{ \\p \in a k}}{\substack{k H z}}$							
$7-11 \mathrm{GHz}$	H02-8594A	$\geq 25 \mathrm{~mW}$		$\begin{gathered} <80 \mathrm{kHz} \\ \text { peak } \end{gathered}$							
8-12.4 GHz	8694B	$\geq 30 \mathrm{~mW}$	± 0.108	$\begin{gathered} <15 \mathrm{kHz} \\ \text { Desk } \end{gathered}$	$\pm 30 \mathrm{MHz}$						
$7-12.4 \mathrm{GHz}$	H01-8694B	$\geq 15 \mathrm{~mW}$		$\begin{gathered} <20 k H z \\ \text { peak } \end{gathered}$	$\pm 40 \mathrm{MHz}$						
7-11 GHz	H02-86948	$\geq 15 \mathrm{~mW}$		$\begin{gathered} <20 \mathrm{kHz} \\ \text { peak } \end{gathered}$	$\pm 30 \mathrm{MHz}$						
12.4-18 GH_{2}	8695A	$\geq 40 \mathrm{~mW}$	$\pm 0.2 \mathrm{~dB}$	$<150 \mathrm{kHz}$	$\pm 1 \%$						
18-26.5 GHz	8696A	$\geq 10 \mathrm{~mW}$		$<200 \mathrm{kHz}$							
$26.5-40 \mathrm{GHz}$	8697A	$\geq 5 \mathrm{~mW}$		$<350 \mathrm{kHz}$							

[^33]
SWEEP PLUG-IN FOR 3300A
 Logarithmic 4-decade or linear 1-decade
 Models 3305A, 3304A

3304 A

3305A shown in 3300A

HP 3304A one-decade linear sweep plug-in

The 3304A plug.in for the 3300A Function generator pro. vides narrow sweeping or over a decade of sweeping on any one range. A sawtooth output is available for external single direction sweep while internally sweeping the main frame. For more details and specifications refer to pages 372 and 373 .

HP 3305A 4-decade log sweep plug-in

The 3305A Sweep Plug-in combined with the 3300A Function Generator is an automatic, manually or externally trig. gered 4.decade sweeper and an external, 4-decade frequency. controlled signal source.

Four-decade logarithmic sweep

The $3300 \mathrm{~A} / 3305 \mathrm{~A}$ will sw'eep logarithmically between any two frequencies in one of the three (4-decade) ranges- 0.1 Hz to $1 \mathrm{kHz}, 1 \mathrm{~Hz}$ to 10 kHz , and 10 Hz to 100 kHz . Calibrated independent start-stop controls greatly simplify serting desired sweep end points. Adjustable sweep time from 0.01 to 100 seconds provides sweep times slow enough for accurate response testing of low-frequency high-Q systems and fast enough for good visual displays of higher frequency responses. A frequency range greater than the audio band can be swept without any range switching or display equipment readjustment.
The manual sweep, vernier adjustment of frequency between the start-stop limits, allows close observation of a small portion of a response curve. This manual control also permits measurement of a critical frequency with counter accuracy and simplier set-ups for oscilloscopes or X-Y recorders.

Programming

For automated testing, the $3300 \mathrm{~A} / 3305 \mathrm{~A}$ frequency can be analog-programmed over any one of the 4 decade ranges. Also, a single sweep can be externally triggered.

Sweep output

X-axis readjustment is eliminated since the sweep output amplitude is independent of start-stop, sweep time and sweep width settings.

Specifications, 3305A*

Frequency range: 0.1 Hz to 100 kHz in 3 overlapping ranges. Sweep width: limits adjustable 0 to 4 decades in any of three 4 -decade bands- 0.1 Hz to $1 \mathrm{kHz}, 1 \mathrm{~Hz}$ to $10 \mathrm{kHz}, 10 \mathrm{~Hz}$ to 100 kHz .
Start-stop dal accuracy: $\pm 10 \%$ of setting.

Sweep modes

Automatic: repetitive logarithmic sweep between start and stop frequency sertings.

Manual: vernier adjustment of frequency between start and stop frequency sectings.

Trigger: sweep between start and stop Frequency settings and retrace with application of external trigger voltage or by depressing front-panel trigger button.

Trigger requirements: ac coupled, positive-going, at least 1 V peak with $>2 \mathrm{~V}$ per ms rise rate.

Maximum input: $\pm 90 \mathrm{~V}$ peak.
Sweep time: 0.01 s to 100 s in 4 decade steps; continuously adjustable vernier.

Retrace time: $<0.003 \mathrm{~s}$ for 0.1 to 0.01 is sweep times, <0.03 s for 1 to 0.1 s sweep times, $\langle 4 \mathrm{~s}$ for 100 to 1 s sweep times.

Blanking: oscillator disabled during retrace.
Pen lift: terminals shorted during sweep, open during eetrace in auto and trigger modes for 100 to 1 s sweep times.

Sweep outpur: linear ramp at Channel B output (plug-in): amplitude adjustable independently of sweep width; max. output $>$ LS V p.p into open circuit, $>7 \mathrm{~V}$ p•p into 6000 .

External frequency control

Sersitivity: $6 \mathrm{~V} /$ decade (eeferenced to start secting), ± 24 V max.

V-to-F conversion accuracy: for each 6 V change in programming voltage, frequency changes 1 decade $\pm 5 \%$ of final frequency.

Input Impedance: $400 \mathrm{k} \Omega \pm 9 \%$.
Maximum rate: 100 Hz .

General

Dimensions: $61 / 10^{\prime \prime}$ wide, $43 / 3^{\prime \prime}$ high, $101 / 4^{\prime \prime}$ deep ($154 \times 121 \times$ 260 mm)

Welght net 4 lbs 6 oz (2 kg); shipping $6 \mathrm{lbs} 60 z(2,9 \mathrm{~kg})$.
Price: HP 3305A, \$975; HP 3304A, \$26s.

[^34]
SWEEP SIGNAL GENERATOR 10 kHz to 32 MHz in one range; 0.15 dB flatness Model 675A

SIGNAL SOURCES

Description

The HP 675A sweeper, when employed tor the 10 kHz . 32 MHz range, has such accuracy and linearity that it can be used as a sweeper for an overall "look" as well as a CW generator for detailed analysis. Sweep end points and CW frequencies can be set with an accuracy of 0.5% of full scale. The 675A's sweep linearity is better than 0.5% of sweep width, permitting the graticule of a monitoring oscilloscope to be used as a frequency scale for easy location of response points and center frequencies. Counter accuracy can be obtained using the auxiliary output on the rear panel. Manual sweep permits mea. surement of frequency at important points, such as peaks or 3 dB and 6 dB points.

Frequency stability of the 675A is exceptional. Residual FM is less than 70 Hz peak, especially important foc narrow-band sweeping measurements on devices with sharp cut-off characteristics, such as high-Q filters. This stabiliry, especially im. portant in repetitive production tests, was achieved by housing the RF oscillator in an oven.

Output amplitude over the 200 kHz .32 MHz range is held constant within $\pm 0.15 \mathrm{~dB}$ (at 1 V) by a sensitive aucomatic leveling control (ALC) loop. Output leveling is accomplished either with an internal detector or, if long cables are used between generator and tested device, by an external detector. Because of good leveling and the precision of the frequency sweeps, responses of tested devices can be determined precisely without resorting to point-by-point measurements. Output waveform distortion is low; harmonics are $>30 \mathrm{~dB}$ below the fundamental; other frequencies are $>50 \mathrm{~dB}$ below. Features offered by the 675A make it an extremely functional tool.

$31 / 2$ decade range

Frequency response tests on broadband circuits can be performed over a $31 / 2$ decade range withour switching or plug.in changes. Sweep width is $10 \mathrm{kHz}-32 \mathrm{MHz}$ or any portion thereof. Sweep end points are set with three-place digital dials plus an interpolation scale with markings every 0.02 MHz . For precision
narrow-band sweeps, center frequency is set with one control while another calibrated control sets swcep width from 1 kHz to 10 MHz .

In single-sweep operation, voltage remains at the end of the trace until manually reset. Setup of the oscilloscope trace or X-Y recorder at frequency end points is speeded and simplified by this ability to retain the sweep at either end of its travel. (Por X-Y recorder use, an automatic pen-lift-during-retrace output is provided.)

Programming

The 675A is a programmable signal source. A dc-coupled input is provided, and frequency over the full sweeping range can be controlled by an analog signal. The amplitude can be programmed over a 10 dB range.

Blanking

To provide a display baseline, there are two types of blank. ing-conventional, in which output RF is turned off during setrace, and "vertical" in which the vectical output channel is grounded during retrace, allowing the $R E$ to remain at all times. Vertical blanking avoids the transients sometimes caused in circuits under test when the RF is switched on and off.

Markers

When greater precision is required than the horizontal linearity of conventional scopes, markers are available as an option. There is provision for up to five crystal markers and two frequency-comb markers. Marker width and amplitude can be varied with front panel controls (standard on 675A) thus adjusting the markers with even the narrowest sweep widths. Capability is also provided for making the markers appear horizontally for easier identification of steeply-rising response curves. Sweep specifications are found on page 419 (refer to page 386 for Signal Generator data).

Network analyzer: concurrent phase \& amplitude Model 676A

Description

The 676 A is a tworchannel, phase and amplitude detector, specifically designed to operate with the 675A Sweeping Signal Generator. The swept signal generated by the 675A is split into two channels by the 676A and then excites the device under test in each channel. The detected outputs from each channel are then compared for phase and amplitude difference.

Network analyzer

This is the first Nerwork Analyzer (675A and 676A) of its kind to provide swept phase and emplitude information over the 10 kHz to 32 MHz range. Both laboratory and production oriented, the 675A Srweeping Signal Generator and 676A Phase/ Amplitude Tracking Detector system provides an amplitude response with 80 dB dynamic range, accompanied by 360° (or multiples of) phase measurement capability. Because the swept frequency can be chosen anywhere in the prescribed range, this technique is amenable to both narrow and broadband frequency sweeps for both amplitude and phase.

Transfer characteristics, impedance plors. dynamic input and output impedance, system flamess, return loss, time delay, small signal analysis, open and closed loop response are some of the applications that are made practical by amplitude and phase information obtained through a swept technique.

Amplitude and phase

Four scope ourputs (A, B A B B PHASE A-B) are provided at the front panel of the 676A Tracking Derector. A and B represent 80 dB of log amplitude dynamic range ($50 \mathrm{mV} / \mathrm{dB}$) for each channel. A-B is the \log difference of the two channels. The PHASE A.B is a dc voltage linearly proportional (10 mV) degree) to phase from 0° to 360°.

Phase is also conveniently calibrated using the 5° or 100° "PHASE CAL CHECK" buttons. With the "PHASE CHAN. NEL A" control, continuous 0° to 360° phase shift is provided in channel A. For more phase resolution the sensitivity of the
scope can be increased to provide $1^{\circ} / \mathrm{cm}$, for example, with the "PHASE CHANNEL A" control providing a variable phase offser.

Figure 1. Phase response showing <10 phase resolution.

Figure 1 (a) illustrates the pulse response of a 1000 ft cable viewed on an oscilloscope using the 675A and 676A. Exact length of a cable can be calculated from roral phase shift over a given frequency increment. Figure 1 (b) shows the difference in phase response between two "identical" 1000 ft cables. Variations indicate that the two cables do nor have equal electrical lengths at every frequency. Phase shifts of less than 1° are clearly shown.

The dual channel approach is particularly useful when a device under test is compared to a "standard" device. Both PHASE A.B and amplitude difference (A-B) are available as scope outputs for time saving and convenient comparison tesring. A-B is useful for expanding the amplitude display to a fraction of a $\mathrm{dB} / \mathrm{cm}$. The "standard" device may be an accurate attenuator, or as shown in Figure 1, the device may be a roll of cable.

Specifications

Model 675A Sweeping Signal Generator
 Model 676A Phase/Amplitude Tracking Detector

675A Specifications*

Frequency range: 10 kHz to 32 MHz in one range.
Output: maximum, +13 dBm (1 V rms into $50 \Omega, 2 \mathrm{~V} \mathrm{~mm}$ open circuit) ; continuously adjustable. Impedance: 50Ω.

System flatness**: Using Internal RF Detactor, internally leveled: $10 \mathrm{kHz} \quad 50 \mathrm{kHz} \quad 200 \mathrm{kHz} \quad 1 \mathrm{MHz} \quad 10 \mathrm{MHz} \quad 32 \mathrm{MHz}$

$$
\begin{array}{|l|l|}
\hline \pm 1 \mathrm{~dB} & =0.4 \mathrm{~dB}
\end{array} \quad \pm 0.25 \mathrm{~dB}
$$

Using External RF Detectort

externally leveled $\dagger \mathrm{t}: 10 \mathrm{kHz} \quad 100 \mathrm{kHz} \quad 1 \mathrm{MHz} 10 \mathrm{MHz} \quad 32 \mathrm{MHz}$

Internal detector output (vertical): at least 1.2 V de for 1 V rms. Attenuator

Renge: 99 dB in 10 and 1 dB steps.
Accuracy; $\pm 0.3 \mathrm{~dB},+10 \mathrm{db} 10-12 \mathrm{~dB} ; \pm 0.4 \mathrm{~dB},-13 \mathrm{~dB}$ to $-89 \mathrm{~dB},+6 \mu \mathrm{~V}$ constant error.
Output monitor
Range: -3 to $+3 \mathrm{~dB}(0,5 \mathrm{~V}$ to 1 V$)$.
Accuracy: $\pm 0.3 \mathrm{~dB}, 200 \mathrm{kHz}$ to 32 MHz .
Distortlon
Harmonle: $>30 \mathrm{~dB}$ down from fundamental.
Spurlous: $>50 \mathrm{~dB}$ down from fundamental.
Residual (Ilne related) FM: $<70 \mathrm{~Hz}$ peak.
Spurlous FM: $<60 \mathrm{~Hz}$ rms.
Auxiliary output (rear panel): 100 MHz to 132 MHz unleveled.

Sweep functions

Linearity: $\pm 0.5 \%$ of sweep width $\pm 100 \mathrm{~Hz}$.
Start-stop: sweeps up or down from start to stop frequency settings.
$F_{0} / \triangle F$: sweeps $\triangle F$ centered on F_{g} setting.
Fo range: 10 kHz to 32 MHz . F_{0} accuracy: $\pm 0.5 \%$ of full scale.
ΔF width: continuously adjustable from 200 Hz to 10 MHz , or
calibrated steps in 1.2 .5 sequence from 1 kHz to 10 MHz .
ΔF width accuracy: $\pm 5 \%$ of calibrated steps $\pm 100 \mathrm{~Hz}$.
Sweep modes
Auto; repetitive sweeps; single: beginning-ton-end sweep.
Retrace: end-to-beginning eetrace.
Manual: manual control of sweep and retrace.
NOTE: specials with 60 Hz line lock in either 90Ω or 75Ω are available. Price on request.
Sweep tima: 0.01 s to $100 \mathrm{~s} \pm 20 \%$; in 4 decade steps, with vernier.
Horlzontal outputi 0 to $+s \mathrm{~V}$ dc.

Blanking

RF: RF output of during retrace.
Vertical: vertical ourpur shorted to ground during retrace.
Pen llit: terminal shosted during sweep, open during retrace.
Crystal markers (optlonal): $100 \mathrm{kHz}, 1 \mathrm{MHz}$ harmonic comb and/ or up to 5 fixed frequencies - from 100 kHz to $32 \mathrm{MHz}=\mathrm{HP}$ 11300 A single (requency marker (frequency mosi be specified).
Accuracy: $\pm 0.005 \%$ of frequency.
Wldth: adjustable 5 steps, 4 kHz to 100 kHz .
External markar: front-panel BNC input (50Ω impedance), 50 mV to 500 mV rms.

Signal generator functions (Refer to page 386).

General

Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 30 to $400 \mathrm{~Hz}, 80 \mathrm{~W}$ max
Dimensions: $16^{3} / 4^{\prime \prime}$ wide, $83 / 4^{\prime \prime}$ high, $18^{3} / 8^{\prime \prime}$ deep ($425 \times 221 \times$ 467 mm), rack mount kit for $19^{\prime \prime}$ rack is included.
Weight: net $46 \mathrm{lbs}(20,8 \mathrm{~kg})$; shipping $51 \mathrm{jbs}(23,2 \mathrm{~kg})$.

Accessories furnlshed: HP 11048B sas Feed-Thru Termina. tion.
Acces5ories avallable: HP 11300A Singlc. Frequency Marker (frequency must be specified), $\$ 75$ ea. (For factory instailation of one to five markers, add $\$ 25$.
HP Model 1 1097A RF Detector, $\$ 30$.
Maximum input: 2.5 V rms; input impedance: 50Ω; output: positive, $>1.2 \mathrm{~V}$ for 1 V tms input into $500 \mathrm{k} \Omega$ load; frequency range: 10 kHz to 32 MHz ; fainess: $\pm 0.25 \mathrm{~dB}$ at 1 V level, 10 kHz to 32 MHz used with the 675A and 11098 A .
HP Model 11098A Leveling Detector, $\$ 30$.
Flatness: 675A RF output, $\pm 0.15 \mathrm{~dB}$ at 1 V level, (negative). maximun input: 2.5 V rms. Price: HP 11098A, $\$ 30$.
Price: HP 675A, Sweeping Signal Generator, $\$ 2250$.
Option OL: with 1 MHz harmonic marker, add $\$ 75$.
Optlon 02: with 100 kHz harmonic marker, add $\$ 7 s$.
Option 03: with 100 kHz and 1 MHz hammonic markers, add $\$ 125$.

676A Tentative Spec|fications*

(when used with 675A)

Systam flatness

Unleveled

$\pm 0.8 \mathrm{~dB}$	Internatly Leveled		
200 kHz			$\pm 0.8 \mathrm{~dB}$

RF output (channel A and 日)
RF 'OUT' level: $+2 \mathrm{dBm} \max (0.28 \mathrm{~V}$ rms into 50Ω) for each channel with 675 A level sel to +13 dBm max.
Isolation (between channels): 16 dB .
Impedance: 50Ω.
RF Input (channel A and B)
Dynamle range; 80 dB ; impedance: 50Ω; isolation: $>85 \mathrm{~dB}$ between channels.

Ampiltude

Range: 80 dB channel A and B , and $\mathrm{A}-\mathrm{B}$.
A and B level: (display) 4.2 V de adjustable over $\pm 5 \%$ range at $+2 d B m$ RF output. (50 mV per dB with CAI adjustment).
Accuracy: ouput level of each channel is proportional to \log of input $\pm 1.9 \mathrm{~dB}$ over 80 dB dynamic range.
Nolse: $<-83 \mathrm{dBm}$ with input terminated in 50Ω.
Spurlous: $<-83 \mathrm{dBm}$ with input terminated in 50Ω.
$A \cdot B$ level: derived by analog subtraction of A and B outputs. $\pm 4.2 \mathrm{~V} \mathrm{dc}$.
Dynamic range: 80 dB for each channel (25 kHz to 32 MHz). 35 dB for each channel (10 kHz to 25 kHz).

Phase

Range: $+180^{\circ}$ to -180° at 360° muluples. Phase can be shifted continuously from 0° to 360° with phase control.
PHASE A-B level: 3.6 V at $+180^{\circ}$ and O V at -180° adjusmble over $\pm 5 \%$ range, with voirage linearly proportional to phase. ($10 \mathrm{mV} /$ degree with CAL adjustment.)
Accuracy;
Frequency dependency: $\pm 1^{\circ}, 100 \mathrm{kHz}$ to $32 \mathrm{MHz}: \pm 2^{\circ}$, 10 kHz to 100 kHz ; amplitude dependence: $\pm 5^{\circ}$ over entire 80 dB dyoaraic range.
Jitter: $<5^{\circ}$ average at 80 dB down.
PHASE CAL CHECK accuracy: $100^{\circ} \pm 1.0^{\circ} ; 5^{\circ} \pm 0.2^{\circ}$.

General

Accessorles turnished: cables to connect 676A to 675A.
Power: ils or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 80 \mathrm{~W}$ max.
Waight: net $46 \mathrm{jbs}(20,8 \mathrm{~kg})$; shipping $51 \mathrm{lbs}(23,2 \mathrm{~kg})$.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $3-15 / 32^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep (425 x $85.2 \times 467 \mathrm{~mm}$). Joining brackets to connect to the 673 A are included.
Price: HP 676A, Phase/Amplitude Tracking Detector, $\$ 1275$.

[^35]
GENERATOR/SWEEPER
 Small, ultra-versatile broadband source Model 8601A

Two instruments in one

Covering 100 kHz to 110 MHz , the 8601 A Generator/ Sweeper combines the high linearity and flatness of a precision sweeper with a signal generator's frequency accuracy and wide range of calibrated power levels. Though it's small and lightweight, it does the work of two instruments easily and conveniently.
As a signal generator (see page 387), the $860!$ A output is accurate to $\pm 1 \mathrm{~dB}$ from +13 dBm to -110 dBm . Harmonics and spurious signals are very low. The digital frequency dial is accurate to $\pm 1 \%$ of frequency; higher accuracy is achieved with 0.01% crystal checkpoints at 5 MHz incervals. Internal modulation is 1 kHz , AM or FM , or you can modulate externally.
As a sweeper, the 8601A offers a new approach to swept measurements. Elaborate marker systems are no longer needed for accurate frequency identification. The 8601 A takes the messy trace and the ambiguity out of swept measurements by substituting linearity and frequency accuracy for markers.

Three convenient sweep modes

The FULL mode sweeps more than a two-decade band from either 0.1 to 11 MHz of 1 to 110 MHz with flatness of $\pm 0.25 \mathrm{~dB}$, providing a fast look at the complete frequency response of the device under test.

In the VIDEO mode, the 8601 A will sweep from the bottom of the band to the frequency selected on the digital readout. This feature is valuable for those who wish to look at the response of a low pass filter or video amplifier.

SYMMETRICAL mode provides five calibrated sweep widths for each band and a vernier for continuous sweep width adjustment. The center frequency is selected on the digital readout. When the sweep width is in a calibrated position, the horizontal gain of an oscilloscope or recorder may be adjusted so that the ends of the sweep coincide with calibrated markings. The sweep can then be defined in MHz / cm , MHz /inch, etc. The center frequency may be set to counter accuracy by turning the sweep width vernier fully
counterclockwise and monitoring the auxiliary output (always 100 kHz to 11 MHz regardless of band) with a low frequency counter. A simple low frequency counter, the HP H01.5321A, is especially designed to complement the 8601 A.

Versatility

All sweep modes may be run in FAST sweep for oscilloscope work, SLOW for recording, or MANUAL. Triggering may be manual, line-synchronized, or free-running. This wide range of swreep modes, rates, and triggering makes the 8601A a truly versatile sweeper, suitable for nearly any low. frequency sweeper application.

Low residual FM

Frequency-lock circuits lead to low residual FM (total noise including line related components in 10 kHz band. width is less than 500 Hz cms on high band, 50 Hz rms on low band) enabling narrow band measurements previously impossible with conventional low-frequency sweepers.

Applications

The 8601 A satisfies a wide range of laboratory and production applications. A partial list is given here.

Fillers. Filter testing is easy with the 8601 A . Low pass filters are examined rapidly using the VIDEO sweep. Bandpass filters and circuit Q can be measured down to $10-\mathrm{kHz}$ bandwidths on the high range and i kHz on low range before residual FM interferes. Calibrated SYMMETRICAL sweep and power output provide fast and accurate identification of center frequency and 3 dB points.

Active sircuirs. Amplifier bandpass, IF strip response, phase shift, and other frequency-dependent device measurements are no problem for the 8601 A due to its excelient flatness, broad range, and frequency accuracy.

Components. Components can be tested with confidence for attenuation, insertion loss, and frequency response. The $8601 A$ is also suitable for use with VSWR bridges and hybrid detectors.

Receiver measurements. Usable sensitivity can be measured down to 1 microvolt due to the 8601 A 's low leakage. Frontend response of a receiver may be observed with SYM. METRICAL sweep and passband sensitivity recorded by noting the attenuator setting for frequencies in the passband. Discriminator and IF strip alignment is accomplished by using the 8601A as an IF source, or through the front end of a receiver.

FM distortion and signal-to-noise measurements are good down to $-40 \mathrm{~dB}(1 \%)$. Similar AM measurements can be made when the 8601 A is used with the Model 10534A Mixer/Modulator and an audio oscillator.

8601A Specifications
 Frequency characteristics

Coverage: low range, $0.1-11 \mathrm{MHz}$; high range, $1-110 \mathrm{MHz}$. Accuracy: (In CW, stop frequency of VIDEO sweep, and center frequency of SYMMETRICAL sweep.)
Low range, $\pm 1 \%$ of frequency or $\pm 10 \mathrm{kHz}$, whichever is greater.
High range, $\pm 1 \%$ of frequency or $\pm 100 \mathrm{kHz}$, whicherer is greater.

GENERATOR/SWEEPER Small, ultra-versatile broadband source Model 8601A

Settability: vernier settability, $\pm 0.01 \%$; range, $\pm 0.1 \%$; coarse settability using 10 turn pot is 5 kHz , low range; 50 kHz , high range.
LInearity: $\pm 0.5 \%$, full and video sweep.
Drift in CW:
$(0.01 \%+500 \mathrm{~Hz}) / 10 \mathrm{~min}$, high range, after 1 hr . warm-up.
$(0.01 \%+50 \mathrm{~Hz}) / 10 \mathrm{~min}$. , low range, after 1 hr . warmup.
$0.025 \% /{ }^{\circ} \mathrm{C}$ temperature change.
$0.001 \% / \mathrm{V}$ line voltage change.
Less than 5 minutes to stabilize for any frequency change on each band.
Harmontes and spurious signals (CW above 250 kHz , output levels below +10 dBm on the +10 dBm attenuator step or below): harmonics ar least 35 dB below carrier. Spurious signals ar least 40 dB below carrier.

Residual FM In CW:

Line related components:
Less than 50 Hz peak, low range. Less than 500 Hz peak, high range.
Nolse In $10 . \mathrm{kHz}$ bandwidth Including line related components:
Less than 50 Hz rms, low range.
Less than 500 Hz mms , high range.
Incidental FM with 30% AM:
Less than 100 Hz peak, low range.
Less than 1 kHz peak, high range.
Incidental FM in CW is negligible.
Resldual AM: AM noise modulation index (rms, 10 kHz bandwidth) is $<-50 \mathrm{~dB}$. (Typically -60 dB at $25^{\circ} \mathrm{C}$.)
incldental AM: incidental AM modulation index is <-55 dB with 75 kHz deviation.

Output characteristics

Level: +20 to $-110 \mathrm{dBm} .10 \cdot \mathrm{~dB}$ steps and $13 \cdot \mathrm{~dB}$ vernier provide continuous settings over entire range. Meter monitors output in $\partial \mathrm{Bm}$ and rms volts into 50Ω.
Accuracy: $\mp 1 \mathrm{~dB}$ accuracy for any output level from +13 dBm to -110 dBm .
Flatness: $\pm 0.25 \mathrm{~dB}$ over full range, $\pm 0.1 \mathrm{~dB}$ over any $10-\mathrm{MHz}$ portion.
Impedance: $50 \Omega, 5 W R<1.2$ on 0 dBm step and below:
RF leakage: low leakage permits receiver sensitivity measurements down to 1 microvolt.

Sweep characteristics

Full: approximately 0.1 .11 MHz and 1.110 MHz indepen. dent of dial setting.
Video: sweep extends from low end of range to frequency dial setting. Start frequency accuracy is $\pm 1 \%$ of stop frequency, or $\pm 100 \mathrm{kHz}$, high range; $\pm 10 \mathrm{kHz}$ low range.
Symmetrical: center frequency may be tuned to any point on either range.
Sweep width: 0.1 MHz low range; 0.10 MHz high range. There are 5 calibrated sweep width positions as well as an uncalibrated vernier to provide continuous adjustment.
Sweep width accuracy: $\pm 5 \%$ of sweep width or $\pm 1 \mathrm{kHz}$ on
low range; $\pm 5 \%$ of sweep width or $\pm 10 \mathrm{kHz}$ on high range, whichever is greater.
Sweep speeds: fast, typicaliy 6 to 60 sweeps per second, variable. Slow, typically 8 to 80 seconds per sweep, variable. Manual, continuous tuning over present limits.
Trigger modes: manual trigger with reset, line-syachronized, or free-running.

Amplitude modulation

Internal AM: $30 \% \pm 5 \%$ at 1 kHz , less than 3% distortion. Typically $<1 \%$ distortion for output readings on upper half of meter scale.
External AM: 0 to 50%, up to 400 Hz .0 to 30%, up to 1 kHz . Applied through external AM input on front panel. Sensitivity typically 2 V peak/ 10% modulation index at 400 Hz ($10-50 \% \mathrm{AM}$).

Frequency modulation
Internal FM : high range: $75 \mathrm{kHz} \pm 20 \%$ peak deviation, l. kHz rate; low range: $7.5 \mathrm{kHz}_{20 \%}$ peak deviation, $1-\mathrm{kHz}$ rate; less than 3% distortion. Typically $<1 \%$.
External FM: sensitivity: 5 MHz per volt $\pm 5 \%$, high range; 0.5 MHz per volt $\pm 5 \%$, low range; negative polarity.

Deviations to the band edges are possible for rates to 100 Hz ; voltage to frequency linearity is $\pm 0.5 \%$, allowing remote frequency programming. FM rates to 10 kHz are obtainable with less linearity and accuracy.

Crystal calibrator

Internal 5 MHz crystal allows frequency calibration to $\pm 0.01 \%$ at any multipie of 5 MHz .

Auxiliary outputs

Front panel: sweep output: approximately 0 to +7 volts. Auxiliary output: always $0.1-11 \mathrm{MHz}$ for low frequency counter monitoring.
Rear panel: sweep reference output: provides voltage analog to frequency output approximately 0 to +3 V . Uncalibrated RF output: -5 dBm minimum, unmodulated. VTO output: $200.1 \cdot 310 \mathrm{MHz}$. Output level -25 dBm , minimum. Blanking: -4 volt pulse concurrent arith RF blanking.

General

Power: 115 or $230 \mathrm{~V}, \pm 10 \%, 50.400 \mathrm{~Hz}, \pm 10 \%$; approximately 50 watts.
Weight: net, $21 \mathrm{lb}(9,5 \mathrm{~kg})$; shipping, $27 \mathrm{lb}(12,3 \mathrm{~kg})$.
Dimensions: $7.25 / 32^{\prime \prime}$ wide, $6.3 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep ($190 \times 155 \times 416 \mathrm{~mm}$) .
Complementary equipment:
Frequency Doubler, Model 10515 A : extends 8601A's range to 220 MHz with low conversion loss, $\$ 120.00$.
Double Balanced Mixers, Models 10514A/B, 10534A/B; serves as a mixer, phase detector, balanced modulator, and amplitude or phase modulator. Model 10534A, $\$ 70.00$.
RF Detector, Model 8471A; fat to $\pm 0.1 \mathrm{~dB}$, over 100 MHz range, SWR typically 1.3, \$50.00.
Frequency Counter, Models H01-5321A and 53218 utilize 8601 A Auxiliary Output to accurately monitor up to $110 \mathrm{MHz}, 5655.00$ (H01.5321A), $\$ 700.00$ (5321 B).
Price: Model 8601A, $\$ 1,975.00$.

Advantages:

RF and marker plug-ins Individual on-off marker switches Continuous or single sweep with variable rate Continuous sweep width adjustment
Width and level controls to optimize marker display
The HP 3211 A Sweep Oscillator, with its 3221A Marker Plug-in and choice of six frequency plug-ins, is a low-cost, versatile, high-performance sweep oscillator ideally suited for use in the design, calibration, and alignment of FM funers and receivers, and the general testing of IF sections of TV receivers, radar and communication systems, and other video to VHF circuits. Its high output ($>.7 \mathrm{~V}$ ms) and accurate $59 \cdot \mathrm{~dB}$ attenuator make the instrument a valuable tool for the testing of both high and low.gain circuits under variable signal conditions.

Specifications (Main Frame)

RF output

Level: greater than 7 V rms into 50 -ohm load, greater than 1.4 V rms into open circuit.
Impedance: 50 ohms, 1.2 to 1 VSWR in 0 dB attenuator position; 1.1 to 1 for attenuator settings greater than 10 dB .
Attenuatlon: 0 to 59 dB in 1 and $10 \cdot \mathrm{~dB}$ steps. Electrical vernier provides level adjust between $1-\mathrm{dB}$ steps.
Attenuator accuracy: $\pm .25 \mathrm{~dB}$ for $1-\mathrm{dB}$ steps; $\pm 0.5 \mathrm{~dB}$ on $10,20,30 \cdot \mathrm{~dB}$ steps; $\pm 1 \mathrm{~dB}$ an 40 and $50-\mathrm{dB}$ steps.

Sweep charactaristics

Rate: variable; repetive sweep 10 to 100 Hz nominal; single sweep 1 to 10 second's nominal. Line lock provided.
Blanking: switch selects RF blanking or unblanking during retrace; marker blanking on retrace at all times.

Vertical channel
Detector: half-wave peak detector; input VSWR less than 1.05 to 1 ; flatness $\pm .1 \mathrm{~dB}$; video bandwidth 20 kHz ; freq. range: 0.5 to 110 MHz .
Output: internal $50-\mathrm{ohm}$ detector, greater than .4 V dc for 1 V rms input; external detector, greater than 4 V dc for 1 V dc input.
Horizontal channel output: 0 to $15 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ triangular.

Marker characteristics

Type: birdie by-pass; beat note detected and used to generate high-level marker pulse.
Display: front panel control and switch permit either addjtion of marker pulse to the vertical channel output or Z axis modulation of oscilloscope with 0 to $\pm 20 \mathrm{~V}$ pulse.
Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $183 / 8^{\prime \prime} \operatorname{decp}(426 \times$ $140 \times 552 \mathrm{~mm}$).
Weight: net $30 \mathrm{lbs}(13,5 \mathrm{~kg})$; shipping $40 \mathrm{lbs}(18,2 \mathrm{~kg})$.
Power: 105 to 125 V or 210 to $250 \mathrm{~V}, 50$ to $1000 \mathrm{~Hz}, 25 \mathrm{~W}$.
Price: 3211A Sweep Oscillator, \$865; 3221A Marker Plug-
in, \$85; 3212A RF Plug-in, \$225; 3213A-3217A RF
Plug-ins, $\$ 150$ ear; 13511 B Marker Oscillators, $\$ 40$ ea.
Complete instrument consists of 3211A Sweep Oscillator,
3221A Marker Plug-in, and one RF plug-in.
Marker Plug-In-Model 3221A
Internal markers: accepts up to 8 crystal-stabilized 135118 marker oscillators. Specify frequencies desired.
External markers: front panel BNC input from CW source or marker generator; input requiremeats, 1 to 3 V rms into 50 ohms.
Marker Oscillators-Model 135110
Frequency: I to 110 MHz ; accuracy: . 005%; output level: 35 mV cms into 50 ohms.

RF Plug-ins

Spoolfioution	HP Madel Numbee					
	32128	3213A	32144	3216A	8218 A	3217A
RF range	$\begin{gathered} 100 \mathrm{kHz} \mathrm{top} \\ 30 \mathrm{MHz} \end{gathered}$	89016 MHz	121028 MHz	201045 MHz	30 to 70 MHz	50 to 110 MHz
Flatness	$\pm .25$ dB across 50 -ohm load over frequency range of plug-in					
Spurious oulpul	50 dB down	None. $3213 \mathrm{~A}-3217 \mathrm{~A}$ operate at fundamental trequency				
Harmonic output	30 dB below output level					
Residual F M	$<=5 \mathrm{kHz}$	$< \pm .005 \%$ of center frequency				
Sweep width	Continuousiy adjustable to 100% of frequency range					
Linearity	$=10 \%$ of absolute frequency at max sweeg widh	$\pm 1 \%$ over any 25% of segment of range; $=3 \%$ over any 50% segment of range: $\pm 5 \%$ over any 75% segment of ranga; $\pm 10 \%$ over full range; massured as percent of absolute frequency				
Price	\$225	\$150	$\$ 150$	\$150	\$150	\$150

Multiband capability provides unprecedented versatility

Here is the first inexpensive solution to broadband sw'ept operation over the complete RF and microwave spectrum: 100 kHz through 40 GHz .
The Model 8706A/8707A RF Unit Control Systems allow programmable selection of multiple RF units by pushbutton or remore contact closure. The 8705A Signal Multiplexer switches RF signals up to 12.4 GHz from three RF units to either of two RF output ports.
The system offers operational simplicity and maximizes BWO life. Multiband tests can be made quickly and easily.

Stabilized systems provide phase-locked signals for sophisticated applications

Phase-locked CW and swept frequency systems from 1 through 40 GHz are available to satisfy the exacting needs of such applications as microwave spectroscopy, high. Q stwept frequency measurements. Doppler system sousces, and narcow. band receiver or filter testing.

These systems are stabilized at any frequency in their operat. ing range. Short term stability is that of the reference oscillator employed.

Interchangeable RF units offer multiband capability at low cost

Choose from a wide selection of RF units for the 86908 Sweep Oscillator. Units are available to cover the entire 100 kHz through 40 GHz range. The Model 86910 RF unit extends magnetic shielding capability to all seven microwave bands.

PIN diode modulation and leveling is available in " B " and " D " type RF units from 1 to 12.4 GHz . The 8691D and 8691.4B RF units offer exceptionally good frequency accuracy (between 0.25% and 1%) over a wide tange of modulation conditions. Frequency pulling is practically nonexistent over a 10 dB dynamic range.

Rear loading uses minimum panel space, permits compact size with full width, high resolution dial
RF units that preserve integral sweeper performance can be changed in seconds without adjustment. One snap of the posi-tive-locking rear handle and the RF unit is installed, ready to provide superior performance over the frequency range your application requires.
The 86908 Sweep Oscillator combines interchangeable RF units with high accuracy, versatility, and ease of operation to bring you all the advantages of single unit sweep oscillators plus economical ultrawide frequency coverage.

Dials are easy to change, keyed for accurate positioning

The snap-in scale that accompanies each RF unir illustrates the ease of obtaining ultrawide frequency coverage. The high resolution frequency scale is cypical of many features that enhance user convenience and allow straightforward operation.

Among the outstanding features that make the 8690 B Sweep Oscillator easy to use are pushbutton function selection, logical and easy-toread frequency settings and operation modes, and independently adjustable sweep modes.
For versatile performance to meet all of your swept measurement needs, there are START/STOP, MARKER, and calibrated $\Delta \mathbf{F}$ sweeps, all of which offer highest accuracy, linearity. and resolution.

8690-series sweep oscillators

The HP 8690B Sweep Oscillator and 8690A/B/D Series RF Units offer you all the advantages of single-unit sweep oscillators plus economical multiband capability. All BWO tubes carry an unconditional 1-year warranty. Careful design of new all-solid-state power supplies results in exceptionally Low residual FM and provides rugged protection against system transients.

RF units combine to provide complete 400 kHz to 40 GHz coverage with a choice of features including PIN diode modulation (B and D Models), grid-modulated BWO units (A Models), and optional internal leveling. RF units can be changed quickly and without adjustment. The new all-solid-state 8699B utilizes Hewlett-Packard-unique YIG technology and hybrid microcircuits to achieve greater than 5 octaves of spectrum from 100 MHz to 4 GHz in one RF unit.

Snap-in scales are keyed for easy changing and accurate positioning. The full-width maximum-resolution scale and a carefully designed layout of the front pancl controls allow simple, uncomplicated operation. Ease of operation is enhanced by pushbutton function selection, lighted function indicators adjacent to the scale, presentation of all frequency information which may be read at a glance, and simplifed X-Y recorder serup through the use of manual sweep control.

Highly accurate, calibrated frequency displays, broadband and narrow band sweeps, external FM for frequency sweep programming, CW operation, automatic triggered or manual sweep control pius leveling in all modes of operation combine to give you unequaled performance and versatility in a space-saving package design.

The Model 8706A Control Unit, which plugs into the sweep oscillator like an RF unit, permits immediate band switching between up to eight selected RF units contained in up to three Model 8707A RF Unit Holders.

Systems capability is enhanced with the introduction of the 8705A Signal Multiplexer. This unit complements the 8706A Control Unit and the 8707A RF Unit Holders by providing automatic or pushbutton switching of multiple RF unit out-
puts to a choice of either a single output port or multiple output ports.

Sweep oscillator features: Sweep modes

Automatic, triggered, and manual sweeps are available, in addition to CW operation. Autornatic and triggered sweep times are adjustable from 0.01 to 100 seconds, and the triggered sweeps can be synchronized from an external source on started manually from a front panel pushbutton.

To enhance the clacity of oscilloscope presentations, RF power is blanked during retrace to produce a zero base line; however RF is restored before the start of the next sweep to eliminate transients during the early part of the sweep. Oscilloscope photography at slow sweeps is simpliged by a front panel sweep indicator that lights automatically during the sweep.

For X-Y recording, an automatic pen lift circuit is provided. The circuit drops the pen ducing the stabilizing period prior to the sweep and lifts the pen during the second stabilizing period which occurs at the end of the sweep just before retrace. Thus, teansients and retrace lines are eliminated from X.Y plots. During manual sweep, a front panel control varies the RF frequency between the limits set on the selected sweep function. With the use of manual sweep, X-Y recorder setup time is just a few seconds.

Sweep functions and monitors

Two independent frequency markers can be set separately on the "start-stop" sweep whose end points can be set anywhere in the band. Independent controls set the stant and stop frequencies on the scale. Thus, the set frequency range can be swept up or down, depending only on the setting of the start frequency with respect to the stop frequency.

Two independent frequency markers, set separately on the scale and direct-reading in GHz , can be positioned anywhere in the band. The markers amplitude-modulate the RF output, providing triangular markers sharp enough to give high resoIution on narrow sweeps, yet broad enough to be quite visible on the widest sweeps. Marker amplitude can be adjusted from the front panel.

The markers can be used as end points for a second broadband sweep which starts at the Marker 1 frequency and stops at the Marker 2 frequency. The marker sweep is especially advantageous. Extensive Hewlett-Packard design experience using swept-frequency techniques has proven that valuable time can be saved by bracketing circuit discontinuities with the markers. By pressing the marker sweep button, expanded investigation of the frequency range of interest is immediately available. Thus, the two iadependently adjustable broadband sweeps can be set for study of either broadband or narrow band frequency ranges.

Besides sweeping from a start frequency to a stop frequency, the 8690 provides a continuously calibrated nacrow band sweep, the ΔF sweep, which is symmetrical about a center frequency. Calibrated directly in MHz , the $\triangle \mathrm{F}$ sweep width is continuously adjustable from 0 to 10% of the band. Frequency markers can be applied to the ΔF as well as the start-stop sweep.

Leveling

Leveling minimizes the variations in RF output amplitude with frequency. The 8690's are designed for external, closedloop leveling. This is accomplished by driving the built-in leveling amplifer with a signal derived by sampling RF output power with a directional coupler and detector. The amplified signal is applied to the modulating circuits in the RF unit to maintain a constant power at the output of the directional coupler. External leveling eliminates the fre-quency-dependent transmission characteristics of any components between the oscillator and sampling point and also virtually eliminates source mismatch. Thus, leveled power can be established at any point in the system even though it is remote from the source. The degree of leveling is determined primarily by the coupler and detector variation.

Internal leveling is available as Option 01 on all gridmodulated BWO RF units below 12.4 GHz , Models 8691 $4 A$, and on PIN diode attenuator-modulated RF units above 4 GHz , Models 8693-4B. Internally leveled RF units are useful in less critical applications in which transmission variations between oscillator and test point are not significant or when a package free of external elements is desired.

Modulation

All modulation functions are selected by pushbutton, and can be used simultaneously. Included is internal square-wave modulation, 950 to 1050 Hz , plus external AM and FM. External FM permits frequency programming, including externally controlled sweeps over all or any part of the band.

Plug-in RF units

Several types of RF units are available permitting selection to meet any application requirement.

Model 8698B: 400 kHz to 110 MHz

This RF unit is a low-frequency swept signal generator of heterodyne design. It brings 8690 B microwave sweeper sophistication, precision, and operating features into the RF region. Features include a calibrated 1% frequency dial, 0.5% linearity, and +13 dBm max leveled output into 50 ohms that is calibrated from +10 to -110 dBm .

A unique frequency control feedback loop maintains very low residual FM and excellent stability over a broad frequency range. The ability to provide highly accurate, calibrated swept displays without the need for markers establishes measurement confidence. A built-in crystal calibrator allows true signal generator frequency accuracy of $\pm 0.01 \%$ at $5-\mathrm{MHz}$ intervals.

One naurow band and two broadband continuously adjustable and calibrated sweeps with automatic, triggered, or manual control are available. The unit offers AM and FM modulation capabjlities including internal squace-wave AM. See page 428.

Model 8699B: 100 MHz to 4 GHz

Here is a high quality signal source covering the entire $100-\mathrm{MHz}$ to $4-\mathrm{GHz}$ range. This range is important for many applications, including the ability to make broadband network analysis measurements efficiently.

Two ranges, 100 MHz to 2 GHz and 2 to 4 GHz , are provided by an inherently linear YIG-tuned solid-state oscillator. This device eliminates the shaping discontinuities encountered in varactor-tuned units, allowing 0.5% linearsty over this vast spectrum. The unit contains a PIN modulator for superior modulation and external leveling in addition to keeping down frequency pulling with load impedance changes. A hybrid micracircuit high-gain output amplifier provides high power output while keeping spurious and harmonic content very low.

The Model 86998 is an economical unit, providing more than five octaves of coverage at significantly less expense than many comparable units. The 8699B's range includes L. and S-bands, and is only slightly more expensive than the separate BWO-type units for these bands alone. See page 430.

Models 8691-4A/B and 8691 D: 1 to 12.4 GHz

Th 8691D extends BWO magnetic shielding to the $1-2$ GHz band. All coaxial " B " and " D " models feature FMN diode attenuators which permit all of the amplitude-modulation functions, including leveling, to be performed indepen. dently of the backward-wave oscillator tube. The result is a virtual elimination of frequency pulling, enabling excellent frequency accuracy and linearity, low incidental FM, permitting a wide variety of modulation conditions over a $10-\mathrm{dB}$ dynamic range.

The " A " models contain grid-modulated BWO's. Option 01 internal leveling is available on all $R F$ units covering 1 to 12.4 GHz except the $8691 \mathrm{~B} / \mathrm{D}$ and the 8692 B . Models are available on special order to cover every frequency range for which there is a BWO. See page 427.

Models 8695-7A: 12.4 to 40 GHz

Th P., K., and R-waveguide bands are covered by the Models 8695A, 8696A, and 8697A, respectively. The units contain grid-modulated BWO's and have a frequency range and linearity of $\pm 1 \%$ over a $6-d B$ power range. Output power variation with external leveling is $\pm 0.2 \mathrm{~dB}$. See page 427.

Specifications, 8690B Sweep Oscillator (with RF Unit installed)

Frequency range: determined by RF unit. Sweep functlons

Stert-stop sweep: sweeps from "start" to "stop" frequency setting.
Range: both settings continuously and independently adjustable over the antire frequency range; can be set to sweep either up or down in frequency.
End-point accuracy: same as RF unit frequency accuracy. Marker sweep: sweeps from "Markec 1" to "Marker 2" frequency setting.
Range: both settings continuously and independently ad. justable over the entire frequency range; can be set to sweep either up or down in frequency.
End-polint accuracy: same as RF unit frequency accuracy.
ΔF sweep: sweeps upward in frequency, centered on $C W$ setring.
WIdth: continuously adjustable from zero to 10% of the frequency band; calibrated directly in MHz .
Width accuracy: $\pm 10 \%$ of $\triangle \mathrm{F}$ being swept $\pm 1 \%$ of maximum $\triangle \mathrm{F}$ ($\pm 20 \% ~ \pm 2 \%$ respectively with 8691 A/B RF Units).
Center-froquency accuracy: same as RF unit frequency accuracy.
Frequancy markers: two frequency markers, independently adjustable over the entire frequency range, amplitudemodulate the RF output; amplitude is adjustable from the front panel; the markers are also available for external use.
Accuracy: 1% of full scale for all RF units.

RF unit specifications, series $\mathbf{8 6 9 0}$

Fesidual fm specifications glve peax deviations for modulating components within a 10 kHz bandwidith. Peak deviation may vary $\pm 50 \%$ for a 10% line voitage change. Specificatlons apply for unlovaled operation of A Model RF Units and both levaled and unleveled operation in B/D Modal RF units. Spectications tor all B/D Model RF Units are typlistly the same as above when used In an 8707A RF Unit holder. However, the maximum 日/0 Model RF Unit specificatlons are twice the above for use in the 8707A.
a Exeluaing coupler and detector variation.
${ }^{3}$ B519D has shielded 8wo.

4 Down from maximum leveled power.
\& With $6-d B$ power level change down from maximum leveled power.

- Whth 10-48 power level change.

Resolution: better than 0.05% of RF unit bandwidth.
Marker output: triangular pulse, typically -5 V peak into 1000 -ohm load.
CW operation: single-frequency RF output selected by START/CW or MARKER 1 control, depending on sweep function selected.
Accuracy: same as RF unit frequency accuracy.
Preset frequencies: start-stop sweep end points and marker frequencies can be used as four preset CW frequencies.

Sweep mode

Auto: sweep recurs automatically.
Manual: front-panel control provides continuous manua! adjustment of frequency between end frequencies set in any of the above sweep functions.
Triggered: sweep is actuated by front-panel pushbutton or by externally applied signal $<-25 \mathrm{~V}$ peak, $>1 \mu \mathrm{~s}$ pulse width, and $>0.1 \mathrm{~V} / \mu s$ rise.
Sweep time: continuously adjustable in four decade ranges, 0.01 to 100 seconds; can be synchronized with the power line frequency.
Sweep indicator: front-panel indicator lights during the sweep, providing indication of sweep duration on slower sweep times.
Sweep output: direct-coupled sawtooth, zero to approximately +15 V , concurrent with swept RF output; zero at start of sweep, approximately +15 V at end of sweep regardless of sweep width or direction; source impedance, 10,000 ohms.
Frequency linearlty:* same as RF unit frequency accuracy.
Blanking: RF automatically turned off during retrace, turned on after complation of retrace. On automatic sweeps, RF is on long enough before sweep starts to stabilize external circuits and equipment whose response is compatible with the selected sweep rate; blanking disable 5 witch provided.
Blanking output: direct-coupled rectangular pulse approximately -4 V coincident with RF blanking; source impedance approximately 3000 hms .
Pen ilft: for use with X.Y graphic recorders; pen lift terminals shorred during sweep, open during retrace.
Power levellng amplifier: internal dc-coupled leveling amplifier provided. (Not used with 8698B.)
Crystal input: approximately -20 to -350 mV for specified leveling at rated output, for use with negativepolarity detectors such as 780 Series Directional Detectors, 423 A and 424 Series Crystal Detectors.

Modulation*

Internal AM: square-wave modulation continuously adjustable from 950 to 1050 Hz on all sweep times; on/off ratio greater than 20 dB at rated output.
External AM:
Frequency response: dc to 350 kHz unleveled, dc to 50 kHz leveled.
Sensitivity: -10 V reduces RF level output at least 30 dB below rated CW output (A Model RF units); 25 dB below rated CW output (B/D Model RF units).
Input Impedance: approximately 1000 ohms.

External FM:

Frequency yesponse: dc to 3 kHz .
"Listed separately for 85988; see page 429.
\#Correlation between ireouency and both the sweep and reference output.

Sensltivity: deviation from CW setting approximately 6% of the frequency band per volt.
Maximum range: full band for modulation frequencies up to 150 Hz (approximately 17 V p-p input), decreases to about 20% of the band for 3 kHz modulation.
Input Impedance: approximately 100,000 ohms.

General

Power: 115 or 230 volts $\pm 10 \%, 50$ to 60 Hz , approximately 350 watts.
Dlmensions: $163 / 4^{\prime \prime}$ wide, $9^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep (426 x $229 \times 467 \mathrm{~mm}$); hardware furnished for rack mount $19^{\prime \prime}$ wide, $8-23 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panel ($483 \times 221 \times 416 \mathrm{~mm}$).
Weight (not Including RF unit): net $53 \mathrm{lb}(23,9 \mathrm{~kg})$; shipping $71 \mathrm{lb}(32 \mathrm{~kg})$.
Furnished: $71 / 2$ foot (2290 mm) power cable with NEMA plug; rack mounting kit.
Avaliable:
HP K04-8690A Calibrator (page 425), \$350.
HP 8706A Control Unit (page 432), $\$ 500$.
HP 8707A RF Unit Holder (page 432), \$1,050.
Price: HP 8690B, $\$ 1,600$.

External leveling accessories available

Directional detectors: 780 Series (page 297), 1 to 12.4 $\mathrm{GHz}, \$ 300$ to $\$ 350$.
Directlonal couplers: coaxial: 790 Series (page 297), 1 to 8 $\mathrm{GHz}, \$ 200$ to $\$ 225$; waveguide: 752 Series (page 299), 2.6 to $40 \mathrm{GHz}, \$ 145$ to $\$ 600$.

Crystal detectors: coaxial: 423A (page 307), 10 MHz to $12.4 \mathrm{GHz}, \$ 135$; waveguide: 424A Series (page 307), 2.6 to $18 \mathrm{GHz}, \$ 155$ to $\$ 275$ and 422A (page 307), 18 to $40 \mathrm{GHz}, \$ 230$.

For all 8691-8697 RF units

Magnetic shlelding: all 8691-8697 RF Units except 8691A/B have shielded BWO's. All BWO's are unconditionally warranted for 1 year.
Residual AM: at least 40 dB below CW output.
Spurious signals: harmonics, at least 20 dB below CW output; nonharmonics, at least 40 dB below CW output.
Reference output: direct-coupled voltage proportional to RF frequency, approximately 0 V at the low end of the band, increasing approximately $40 \mathrm{~V} / o c t a v e$; output impedance, 25,000 ohms.
Levellng Indicator: front-panel indicator lights when power level set too high to permit leveling over entire selected sweep range or when operating in unleveled mode.

Equivalent source match

Externally laveled: depends on coupler.
Unleveled: less than 2.5:1.
Power variation, unleveled: $<10 \mathrm{~dB}$ over the entire band.
Weight
8691A, 8692A: $17 \mathrm{lb}(7,6 \mathrm{~kg})$; shipping $25 \mathrm{lb}(11,3 \mathrm{~kg})$.
$8691 \mathrm{~B}, 8692 \mathrm{~B}: 20 \mathrm{lb}(9 \mathrm{~kg})$; shipping $28 \mathrm{lb}(12,6 \mathrm{~kg})$.
$8691 \mathrm{D}: 22 \mathrm{lb}(10 \mathrm{~kg})$; shipping $30 \mathrm{lb}(13,6 \mathrm{~kg})$.
8693A-8697A: 10 lb ($4,5 \mathrm{~kg}$); shipping $18 \mathrm{lb}(8,1 \mathrm{~kg})$.
8693B, $8694 \mathrm{~B}: 12 \mathrm{lb}(5,4 \mathrm{~kg})$; shipping $20 \mathrm{lb}(9 \mathrm{~kg})$.

NOW! .. SATISFY LOW FREQUENCY CW AND SWEEP SIGNAL GENERATOR DESIGN AND
TEST REQUIREMENTS.. IF STRIPS - RF COMPONENTS - VIDEO AND OPERATIONAL
AMPLIFIERS - RADIO AND TELEVISION CIRCUITS - FILTER PARAMETERS

Description

The Model 8698B RF Unit for the Model 8690B Sweep Oscillator is a low-frequency sweep signal generator. It covers the frequency range from 400 kHz to 110 MHz in two ranges. All of the performance features designed into the 8690 B Sweep Osciliator for microwave use are retained with the 8698B RF Sweep Signal Generator.
The all-solid-state Model 86988 RF Unit makes an outstanding low-frequency contribution for several reasons:

- Sweep linearity is exceptionally good, departing less than $\pm 0.5 \%$ from a straight-line function, and frequency accuracy is $\pm 1 \%$. Residual FM is very low, less than 150 Hz (low range) and 500 Hz (high range). The user is thus able to define the roll-off characteristics of amplifiers and filters accurately.
- Output power is calibrated from +10 to -110 dBm with vernier adjustment between steps. Calibrated power makes it easier to define gain and loss in networks and amplifers.
- Maximum output is +13 dBm into a 50 ohm load. Output power at this level enables noise-free measurements on networks with high attenuation.
- A built-in leveling circuit holds the output flat within $\pm 0.25 \mathrm{~dB}$ throughout the maximum sweep width (100 MHz) and flat within $\pm 0.1 \mathrm{~dB}$ over any $10-\mathrm{MHz}$ portion of the band. This assures accuracy in measuring amplifies and network frequency response.

Operation

Besides the greater precision and higher accuracy that this

RF unit brings into the radio frequency range, there are also operating features of special import. Start and stop sweep points are continuously adjustable and calibrated over the full range, and the instrument sweeps up or down in frequency. Two continuously adjustable markers identify the frequencies of any part of the sweep and can also serve as the end points of another sweep. This marker sweep can be used to expand a small portion of a broadband sweep enabling resolution of displayed discontinuities. A $\Delta \mathrm{F}$ sweep function sweeps over a calibrated frequency ange symmetrically on either side of a selected center frequency.

Design

The accuracy and linearity of the Model 8698B sweep has never before been approached by a sweep oscillator in this frequency range. To achieve this, a frequency comparator technique uses a pulse count discriminator in a frequencycontrolling feedback loop. This discriminator generates a voltage proportional to the frequency output of the RF Unit. This voltage is compared to the linear tuning voltage ramp reference furnished by the 8690B Sweep Oscillator. The 8690 B voltage comparison results in tuning voltage compensation applied to a voltage-tuned-oscillator (VTO) to ensure an accurate and linear swept frequency output with time. This technique also substantially reduces residual FM . The output frequency will track an externally applied control voltage faithfully at any deviation rate up to 2 kHz and up to the full 110 MHz frequency deviation range.
The 8698B start-stop type sweep, frequency accuracy and linearity eliminate the need for crystal markers to identify sweep width or points intermediate in the sweep. A crystal calibrator is provided for true signal generator accuracy of
0.01% at $5 . \mathrm{MHz}$ intervals when required. Frequency settability of $\pm 1 \%$, low residual FM, and calibrated power output permit the 8698 B to satisfy many RF signal generator CW applications.

An auxiliary RF output provides a $0.4 \cdot 11 \mathrm{MHz}$ (low range) or $0.1-11 \mathrm{MHz}$ (high range) signal to allow inex-
pensive low-frequency counter monitoring of RF outpur all the way to 110 MHz . Crystal reference counter Models $\mathrm{HO1}$ $5321 \mathrm{~A}, 5321 \mathrm{~B}$, and 5221 B are ideally suited for this purpose.

The VTO and Uncalibrated Outputs provide signals for applications requiring external mixing techniques.

Specifications, 8698 installed in 8690 Sweep Oscillator

Frequency range; 0.4 to 11 MHz or 1 to 110 MHz , selecied by front-panel switch.
Power output: at least $+13 \mathrm{dBm}(1.0 \mathrm{~V} \mathrm{rms})$ max into 50Ω; calibeated power output adjustable from +10 to -110 dBm in $10 . \mathrm{dB}$ steps; $10 . \mathrm{dB}$ vernier permits continuous adjustment between steps; source impedance son,
Output accuracy (vernier in calibrate position): $\pm 1 \mathrm{~dB}$.
Flatness (vernier in calibrate posicion):*
1 to $110 \mathrm{MHz}: \pm 0.25 \mathrm{~dB}$.
Over any 10 MHz range: $\pm 0.1 \mathrm{~dB}$.
Frequency stablify:
With temperature:
0.4 to $11 \mathrm{MHz}: \pm 0.05 \% 1^{\circ} \mathrm{C}$.

1 to $110 \mathrm{MHz}: \pm 0.05 \% /{ }^{\circ} \mathrm{C}$.
With 10% line voltage change:
0.4 to $11 \mathrm{MHz}: \pm 5 \mathrm{kHz}$.

1 to $110 \mathrm{MHz}: \pm 50 \mathrm{kHz}$.
Residual FM: \dagger
0.4 to $11 \mathrm{MHz}:<150 \mathrm{~Hz}$ peak.

1 to $110 \mathrm{MHz}:<500 \mathrm{~Hz}$ peak.
Spurious signals:
Nonharmonics: at least 40 dB below CW output.
Harmonles (vernier in calibrate position) : at least 30 dB below CW output from 1 to 110 MHz .

Sweep functions

Start-stop sweep: sweeps from "start" to "stop" frequency set. ting. Range: both settings continuously and independently adjust. able over the entire frequency range; can be set to sweep either up or down in frequency.
End-point accuracy:
0.4 to $11 \mathrm{MHx}: \pm 1 \%$ of full scale.
i to $110 \mathrm{MHz}: \pm 1 \%$ of full scale.
Marker sweep: sweeps from "Marker 1" to "Marker 2" fre. quency setring.
Range: boch settings continuously and independently adiustable over the entire frequency range; can be set to sweep either up or down in frequency.
End-point accuracy:
0.4 to 11 MHz : $\dot{1} \%$ of full scale.
l to $110 \mathrm{MHz}: \pm 1 \%$ of full scale.
$\triangle F$ sweep: sweeps uppard in frequency, centered on CW setting. Width: continuously adjustable from zero to 10% of the frequency band; calibrated directly in NHz .
Width accuracy;
0.4 ro $11 \mathrm{MHz}: \pm 3 \%$ of $\triangle \mathrm{F}$ being swep: or $\pm 20 \mathrm{kHz}$, whichever is greater.
1 to $110 \mathrm{MHz}: \pm 3 \%$ of $\triangle \mathrm{F}$ being swept or $\pm 200 \mathrm{kHz}$, whichever is greater.
Center-frequency accuracy: 0.4 to 11 MHz : 1% or $\pm 100 \mathrm{kHz}$, whichever is greater. I to $110 \mathrm{MHz}: \pm 1 \%$ or $\pm 500 \mathrm{kHz}$, whichever is greater.
Linearity: $\pm 0.5 \%$ of sweep width.
Frequency markers: two frequency markers, independencly adjustable over the entire frequency range, amplitude-modulate the $R F$ output: amplitude is adjustable from the front panel; the markers are also available for external use.

Accuracy:

0.4 to $11 \mathrm{MHz}: \pm 1 \%$ of full scale.

1 to 110 MHz : $\ddagger 1 \%$ of full scale.
Resolutlon: better then 0.05% of RF unit bandwidih.
Marker output: triangular pulse, rypically - 9 V peak inco 1000 ohm load.
-When messurad with negative-deak detecting device havins 500 impedance.
tpower line related components.

Crystal callbrator: internal 5 MHz crystal calibrator allows frequency calibration to $\pm 0.01 \%$ at any multiple of 5 MHz .

CW operatlon: single-frequency RF output selected by START/CW or MARKER 1 control, depending upon sweep function selecsea. Accuracy:
0.4 to $11 \mathrm{MHz}: \pm 2 \%$ or $\pm 100 \mathrm{kHz}$, whichever is greater.

1 to $110 \mathrm{MHz}: \pm 1 \%$ or $\pm 500 \mathrm{kHz}$, whichever is greater.
Preset frequencies: srart-stop sweep end points and marke: frequencies can be used as four preset $C W$ frequencies.

Sattability: using Auxiliary output and crystal reference councer; 200 Hz (low range); 2 kHz (high range).

Sweep mode

Auto: sweep recurs automatically.
Manuaf: front-panel conrrol provides continuous manual adjust. ment of frequency berneen end frequencies set in any of the abore sureep functions.
Triggered: sweep is gctuated by front-panel pushbutton or by externally applied signal <-25 V peak, >1 us pulse widih. and $>0.1 \mathrm{~V} / \mu \mathrm{s}$ rise.
Sweep time: continuously adjuscable in four decade ranges, 0.01 to 100 seconds; can be synchronized with the power line frequency.
Sweep indicator: front-panel indicator fights during the sweep to provide indication of sheep duration on slower sweep times.
Auxiliary outputs:
Sweep output: direct-coupled sawtooth, zero to approx - 15 V , concurrent with swept RF output; zero at start of sweep, approx +15 V at end of sweep regardless of sweep width or direction; source impedance, $10 \mathrm{k} \Omega$.

Sweep reference:

0.4 to 11 MHz : approx $1 \mathrm{~V} / \mathrm{MHz}$. 110 I 10 MHz approx $1 \mathrm{~V} / 10 \mathrm{MHz}$.
Auxiliary RF output: $0.4-11 \mathrm{MHz}$ (low range) : $0.1 \cdot 11 \mathrm{MHz}$ (high range) for lou-frequency counter monitoring.
Uncalibrated RF output; CW signal corresponding to frontpanel output; output level at least -s dBm.
VTO output: 200 to $310 \mathrm{~N} / \mathrm{Hz}$ CW'; ourpur jevel at least -15 dBm.
Blanking: RF automatically turned off during retrace, zurned on after completion of retrace; on automatic sweeps, RF is on long enough before sweep starts to stabilize external circuits and equip. ment whose response is compatible with the selected sweep rate: blanking disable switch provided.
Blanking output: direct-coupled rectangular pulse approx $\mathbf{- 4} \mathrm{V}$ coincident with RF blanking; source impedance approx 3000 ohms.
Pen lift: for use with X.Y graphic recoriers; penlint terminals shorted during sweep, open during retrace.

Modulation:

Internal AM: square-wave modulation continuously adjustable from 950 to 1050 Hz on all sweep rimes.
External AM: bandwidth rypically $>5 \mathrm{kHz}$.
External FM: Max p-p deviation: 110 MHz . Max ratc (any deviation) : 2 kHz . Linearity: $\pm 0.5 \%$ of p.p deviation.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ to 60 Hz ; approx 350 W .
Weight:
8698B: net $11 \mathrm{lb}(5 \mathrm{~kg})$; shipping $20 \mathrm{lb}(9 \mathrm{~kg})$.
8690B; net $53 \mathrm{lb}(23,9 \mathrm{~kg})$; shipping $71 \mathrm{lb}(32 \mathrm{~kg})$.
Price: HP Model 9698B, $\$ 1350$. HP Nodel $8690 \mathrm{~B} \$ 1,600$.

RF UNIT

Covers 5 Octaves: 100 MHz to 4 GHz

 Model 8699B

- Ultra-Broadband Solid-State Sweeper
- All Solid-State
- Linear YIG Tuning
- PIN Leveled
- Economical and Convenient
- Wide Spectrum Sweeps

Ultra-broadband solid state sweeper

The use of thin-film technology, hybrid microcircuits, and s-parameter design methods has provided an RF unit for the 8690B Sweep Oscillator that covers more than 5 octaves from 100 MHz to 4 GHz . The inherent linearity of a YIG. tuned oscillator produces a very linear swept frequency, and the utilization of integrated circuit oscillator technology provides good frequency stability. A flat, high gain microcircuit amplifier permits high power output with low spurious and harmonic content. Frequency pulling with any load change is less than 500 kHz .

Design

A 2.3- to $4.2 \cdot \mathrm{GHz}$ signal from the linear YIG-tuned oscil-

lator mixes with a $2.2 \cdot \mathrm{GHz}$ signal from the solid-state fixed oscillator to produce the $100 . \mathrm{MHz}$ to $2 \cdot \mathrm{GHz}$ output. A PIN modulator is placed before the mixer. This design has the advantage of offering PIN quality modulation down to 100 MHz . When less than maximum power is required, less power is sent to the mixer and output amplifier, keeping spurious signals very lorw. Feedthrough of the $2.2-\mathrm{GHz}$ oscillator is prevented by an HP microcircuit low-pass filter that has rery low insertion loss at 2 GHz but better than 40 dB attenuation above 2.5 GHz .

The high range, 2 to 4 GHz , is provided directly by the YIG oscillator via the PIN modulator.

Specifications

8690B Specifications with RF Unit installed also apply. Refer to page 426.
Frequency range: 0.1 to 4 GHz in two ranges (0.1 to 2 GHz and 2 to 4 GHz).
Frequency accuracy: $\mathrm{CW} \mp 10 \mathrm{MHz}$.
Start endpoint.
$\pm 10 \mathrm{MHz}+1 \%$ of sweep width on fastest sweep.
Stop endpoint.
$\pm 10 \mathrm{MHz}-2 \%$ of sweep width on fastest sweep.
Lnearity: $\pm 0.5 \%$ of sweep width (except for first 10% of sweep on fastest range).
Frequancy stability
Varsus temperature: $\pm 200 \mathrm{kHz} /{ }^{\circ} \mathrm{C}$.
Versus power change from max. leveled power:
(2 to 4 GHz) less than 100 kHz for $10-\mathrm{dB}$ change.
(0.1 to 2 GHz) less than 1.5 MHz for $3-\mathrm{dB}$ change.
(0.1 to 2 GHz) less than 100 kHz for -3 dB to -13 dB .
Versus 10% line voltage: less than 100 kHz .
Less than 500 kHz frequency pulling with change of load impedance.

Harmonics: 0.1 to 2 GHz : more than 25 dB down at rated power.
2 to 4 GHz : more than 20 dB down at rated power. Performance improves with decrease in power level.
Spurious signals (nonharmonies); more than 30 dB down.
Residual FM (in CW): less than 10 kHz peak in $10 \cdot \mathrm{kHz}$ bandwidth.
Output range: 0.1 to $2 \mathrm{GHz},+13 \mathrm{dBm} ; 2$ to $4 \mathrm{GHz},+10$ dBm .
Flatness
Leveled: 0.1 to $2 \mathrm{GHz}, \pm 1.5 \mathrm{~dB}$ using 778D Dual Direc. tional Coupler.
2 to $4 \mathrm{GHz}, \pm 0.3 \mathrm{~dB}$ using 787D Directional Detector.
Unleveled: $\pm 7 \mathrm{~dB}$.
Phase-lock: options available to work with 8709A (see next page) available on request.
VSWR: 3:1.
Sweep reference: $0-40 \mathrm{~V}$ on 2- to $4 . \mathrm{GHz}$ range only.
Construction: all solid-state.
Price: less than $\$ 3,000$.

SIGNAL SOURCES

Uses:

Narrowband receiver os filter test Parametric amplifier pump Doppler system source

Features:

Stabilized at any frequency
-1 to 40 GHz
Stabilized CW or swept,
$3 \times 10^{-1} / \mathrm{s}, 1 \times 10^{-4} / \mathrm{hr}$
Positive frequency indication

E20 Series Stabilized Sweep Osc|llator Systems

The E20 Series Stabilized Sweep Oscillator Systems satisfy the requirement for high stability in many microwave applica. tions. These systems offer both CW and swept operation in the 1 to 40 GHz range. Phase-lock stabilization is provided by the 8709A Synchronizer.
The 8709A Synchronizer phase-locks the 8690 Series Sweep Oscillators by providing a voluge output that is proportional to the phase difference between the synchronizer input signal and a highiy stable internal reference signal. The inpur signal is derived by mixing the sweep oscilliator output with a highly stable external reference oscillator. The lock-points are spaced by the reference oscillator frequency instead of the IP frequency because the synchronizer rejects the lower of two possible lack. points for any given frequency.

The H15-8691-7A/B RF Units include the Shunt Tube BWO Coupler that permits control of the BWO helix voltage by the low voltage output of the 8709A Synchronizer.

Frequency calibration of the RF unit is maintained because the BWO is calibrated with the shunt tube in the circuit. Phaselock loop gain can be adjusted by changing one resistor so that
phase detectors with lower error voltage ourputs may be used. The H15.8691.7A/B is compatible with the HP 2650A, HP 2590 A , and HP 8709A, and most other commercially available synchronizers.

Major speciflcatlons, H15-8691-7A/B Serles RF Units
Input voltaga: $\leq \pm 20 \mathrm{~V} d c, 40 \mu \mathrm{~A} d c$ max.
Modulation sensitivity:

1.0 to $4.0 \mathrm{GHz}:$	1	$\mathrm{MHz} / \mathrm{V}$
4.0 to $12.4 \mathrm{GHz}:$	$2.5 \mathrm{MHz} / \mathrm{V}$	
12.4 to $40.0 \mathrm{GHz}:$	$6 \mathrm{MHz} / \mathrm{V}$	

12.4 to $40.0 \mathrm{GHz}: 6 \mathrm{MHz} / \mathrm{V}$

Frequency response; de to 500 kHz .
Prlee: RF unir plus $\$ 230$.
Several reference oscillators are available for HP phase. locked systems. Using the 8464A Reference Oscillator provides $5 \times 10^{-1} / \mathrm{s}$ short term stability for CW operation. The 8466 Reference Oscillator provides 5×10^{-1} short term stability with the additional capabiliry of phase-locking while sweeping. For additional stability, the HP 8708A Synchronizer may be used to lock the reference oscillators to satisfy more rigid requirements.

Further information on these systems is avaitable on the E20.8690A Data Sheet and from your local HP sales engineer.

Major specifications, E20 Series 8690A

CW systems:

E20-8690A: 1 to 12.4 GHz
E21-8690A: 12.4 to 40 GHz
CW and swept systems:
E22-8690A: : to 12.4 GHz
E23.8690A: 12.4 to 40 GHz
Stabilized fraquency stability:
Short term: $\leq 5 \times 10^{-1} / \mathrm{s}$
Long teim: $\leq 1 \times 10^{-8} / \mathrm{hr}$
Residual F : $\leq 5 \times 10^{-1}$

SIGNAL SOURCES

CONTROL UNIT, RF UNIT HOLDER Programmable sweeps, 400 kHz through 40 GHz

Inexpensive multiband coverage

A simple and relatively inexpensive solution to the problem of broadband sweep capability is offered by Hewlett-Packard's Model 8706A Control Unit with the Model 8707A RF Unit Holder, When used with the HP Model 8690B Sweep Oscil. lator and appropriate RF units, a compact, bench-top multiband source is formed.

The Model 8706A Control Unit with its aine band selector buttons replaces the usual RF unit as a plug in for the sweep oscillator mainframe. It supplies power for and controls as many as three Model 8707A RF Unir Holders, each of which accommodares three RF units. Each 8707A RF Unit Holder provides coverage for three bands; one of these bands extends from 400 kHz to 110 MHz : others are of approximately octave width each and can cover from 1 to 40 GHz .

Operation

Units may be programmed either by front panel control unit pushbutton selection, or sequentially by remote contact closure to ground. The 8706A also can provide voltages for control of remote circuits, relays, etc. By utilizing these voltages to program a coaxia! switch, foc example, you can channel the output signals of several RF units through a single system output connector. The 8705A Signal Multiplexer (see page 433) is especially designed to accomplish this task efficiently and conveniently through 12.4 GHz . Multi-band tests can then be made quickly and casily; changing RP units and cable connections is handled automatically at the touch of a button.

Two separate types of sweep capability are available in each band. If normal sweep is selected for one or more of the RF units in the 8707A RF Unit Holder, the breadth of the RF
unit sweep will correspond to the setting of the start/stop cursor on the sweeper mainframe- 100% if 0 and 100 are selected, or any proportion as designated on the start/stop dial. A second preset mode is available for one or more RF units by pre-adjusting start-stop frequency settings made on porentiometers adjacent to each RF unit plug in in the 8707A RF Unit Holder.

Design

Switching time between bands is one second, with no deg. radation of BWO life. This is an exclusive accomplishment. Unnecessary operation of BWO tubes should be avoided to prolong their life; at the same time, it is desirable to have the output of any RF unir quickly available. The 8707A sweep system maintains the BWO 's on standby, removing the high voltage when not in use to extend tube life. When a single band is not to be used over some period of time, for example during a laboratory set-up procedure, an individual RF unit may be easily turned off, minimizing all aging effects.

Specifications 8706A

Compatiblity: the 8706A controls up to three 8707A RF Unit Holders. Selection of RF unit is by front-panel pushbutton or cemore contact closure (see Remore Control below).
Swltchling time betwaen RF units: I second.
Remote control: connector on rear panel permits selection of RF units from remote location or control of remore circuits or switches from the 8706A. There are nine control pins, each corresponding to a front-panel pushbutton, plus a common ground pin, Mating connector (not supplied), Amphenol 57-30140 (also available from Hewlett-Packard under part number 1251-0142).
RF unit selection: momentary grounding of appropriate control pin.
Control pln voltage: pins are at 0 V (ground) when RF unit is selected, otherwise at -5 V when RF unit is not in use (standby). These voltages can be used to program external devices such as coaxial switches.
Minimum external resistance (per control pln) for Unselectad RF units: 50 ת.
Maximum external reststance for positive selection of RF unit: 2Ω.
Maximum current par control pln: 100 mA
Weight: net, $16 \mathrm{lb}(7,3 \mathrm{~kg})$; shipping, $22 \mathrm{lb}(10 \mathrm{~kg})$.
Price: Model 8706A, $\$ 500$.

Specifications 8707A

Compatabllity: accepts up to three 8691D*, 8692-8698 RF units. No modification of the RF units is necessary. Maximum number of BWO tube units is seven, plus one 8698 B , for a total of eight.

Frequency range: 400 kHz to 110 MHz , 1 to 40 GHz .
Froquency accuracy: same as RP unit accuracy.
"Cautiont Nonshlelded s88iN/s's are not compatible with and should not DE installed in the 8707A.

SIGNAL MULTIPLEXER Auto switch ALC, sweep reference and RF to 12.4 GHz Model 8705A

Maximum leveled power: same as $8691 \mathrm{D}, 9692.8698$ RF units.
Levelling capablity: same as 8691D, 8692-8698 RF units.
Output impedance and connector: same 85 RF units.

Sweep functions

Normal: permits any sweep function available from the 8690B.

Preset: provides start-stop sweep determined by preset ad. justments on the 8707A. Sweep end points can be set independently for each RF unit.

Dimenslons: $163 / 4^{\prime \prime}$ wide, $9^{\prime \prime}$ high, $183 / \mathrm{g}^{\prime \prime}$ deep ($424 \times 229 \times$ 467 mm) ; hardware furnished for rack mount, $19^{\prime \prime}$ wide, $8.23 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panel ($483 \times 221 \times 416$ mm).

Power: approximately 385 Wh for sysem with one each 8690 B , 8706A, 8707 A , and three RF unirs; approximately 25 W for each additional RF unit.

Weight: net, $28 \mathrm{lb}(12,7 \mathrm{~kg})$; shipping, $34 \mathrm{lb}(15,4 \mathrm{~kg})$.
Accessory available: K04-8690A Calibrator, $\$ 350$.

8705A

Price: Model 8707A, $\$ 1,050$.

Description, 8705A

The 8705A Signal Multiplexer switches RF signals up to 12.4 GHz from three 8690 -series RF units to either of two RF ports. The 3705A is designed to complement the ideal wideband signal source combination; an 8690 B Sweep Oscillator, an 8707A RF Unit Holder/8706A Control Unit, and 8690 -series RF units.

A combination of three input ports and two output ports allow's a variety of input-output configurations. Sweep reference signals for each RF unit sweep width are also switched to provide a single Sweep Reference output that corresponds

Specifications, 8705A

Swltching time between ports: 40 ms .
Frequency range: $d c$ to 12.4 GHz .
Output port reflection coefficient: ≤ 0.25 (VSWR $\leq 1,67$).
Input port reflection coefficlent: ≤ 0.15 (VSWR ≤ 1.35).
Insertion loss: 3 dB.
Connectors: type N , stainless steel; other optional.
Power: 115 or 230 V. 8 W.
Weight: approximately $20 \mathrm{lb}(9 \mathrm{~kg})$.
Dimenslons: $31 / 4^{\prime \prime}$ high, $163 / 4$ " wide, $183 / 8^{\prime \prime}$ deep ($8,3 \times 42,3 \times$ 46.5 cm).

Price: $\$ 1.750$.
to the spectrum being swept. To provide leveled power at the B703A RF output ports, a detector operating from a wideband coupler in the 870SA provides an ALC signal for sweep oscil. lator leveling circuits.

Frequency band selection is controlled by front panel push. buttons on the 8706A Control Unit or by remote contact closure. Selection of the RF ourput port may be made by 8705 A front panel pushbuttons or by binary logic signals from a com. puter operating the 8705 A logic conversion and switching circuits.

[^36]
DISTORTION ANALYZERS

The goal of audio and commenications equipment is to reproduce input signals faith. fully at the output. System nonlincaricy dis. torts the waveshape of the signals. Poor reproduction brought about by distortion will appear to the user of audio equipment as a change in the quality or as noise: to the user of communications gear, it appears as thannel crosstalk.
Distortion in amplifiers, creared by nonlinear circuits, consists of components present in the outpur that are not contained in the input signal. Distortion in a sine.rave sig. nal source consists of frequency components that exist in the ourput in addition th the fundamental frequency. An ac signa! that appears to be a pure sine wave as viewed on an oscilloscope (Figure 1) may have some harmonic distortion. The iotal of chese frequency components present in the signal in addition to the fundamental frequency can be measured quickly and easily with HewietPackard distortion analyzers.
One type of distortion amalyzer contains a narrow-band reiection fiter which, when properly tuned, remores the fundamental frequency so that the amplitude of the remain. ing components can be measured simultaneously. HP distortion analyzers are used for fast quantivarive measurements of retal harmonic distortion and noise.

Figure 1. Output signal of nonlinear system, with the fundamental filtered out, is the lower trace on the oscilloscope screen. The residual output shows that a seemingly pure sine wave does in fact contain harmonics.

Total harmonic distortion analysis

This measurement technique compases the amplitude of the harmonics to that of the original signal at the output, where the original signal becomes the fundamenal frequency of the barmonics. The defining equation is
(1)
utal harmonic distortion $=\frac{\sqrt{\sum(\text { harmontes })}}{\text { Gundamental }}$
A frequency-selective valemerer is needed to measure the fundamental and either a selective rolmeter with a wide dynamic
range or a frequency reiection circuit with a true rins detector to measure the harmonics. The frequency rejection circuit nulls the fundamental and passes its harmonics to the detector with no attenuation, so the ratio beween the fundamental and harmonics can be determined.

A less expensive way to measure the total harmonic distortion, however, is to use a rejection filer and a broadband detectne. Since the fundamental is not direcrly measured, the equation becomes
(2)
$\mathrm{THD}=\frac{\sqrt{\sum(\text { hafmonics })^{2}}}{\sqrt{(\text { fundamental })^{2}+(\text { harmonics })^{2}}}$
If the distortion is less than 10%, the de. nominator of equation 2 will be within $1 / 2 \%$ of the denominator in equation 1 , which is as accurate as any frequenc selective rolt. meter

There are two difficulties in making total harmonic distortion measurements. First, in get a measurement within the desired accuracy. the harmonic content of the lest signal must be not more than a third of the distortion expected to be caused by the system. Second, the chore of nulling the fundamental can be time-consuming. Oscillators that meet the distortion requirenents and autonatic nulling equipment, which has recently be. come available, can biercome the difficultits.

Automatic null

Since the nulting of the fundamental is normally the time-consuming portion of toral harmonic disrortion measurement, great sal. ings can be realized, especially in productom line testing with an analyzer which automatically rejects the fundamental. The cime sased is as much as 25 seconds of a 30 . second measurement. W'ith automatic nulling, the accuracy of the null acheeved is no longer a function of operator training, manual dexterity or signa! source frequency drift.

Automtais nulling circuitry in Hewlett. Packard distortion analizers, the H.P $; 33 \mathrm{~A}$ and 334 A , operates on the principle that the fundomental at either side of a W'ien bridge off null follows well-known phase relation. ships.

In this instrument, (Fipure 2) phase-sensitive feedback loops are employed which drive phorocells in parallel with the resistances on either side of the bridge. These loups reject the fundamensal and are not critical to adjust, since any imbalance on one side of the bridge is automatically compensated for on the other. Imbalances on either side cause phase errors in the fundamental which are in quad. rature, so the phase-sensitive feedback loops are independent of each other.

The analyzer will maincain a null even though there is a slow drify in the input frequency. This ability to "pull" the null has

Figure 2. Rejection amplifier with automatic nulling circuitry. Phase detectors sense bridge unbalance and control intensity of lamps to change reslstance of photoconduclors, thus adjusting bridge to raject fundamental fre. quency of input signal.
opened the door to a number of applications where the total harmonic distortion measurements were not readily applied in the past. Among them are:
3. Single frequency production line test. ing of such components as integrated-circuit amplifiers or transfomers. As long as the long-cerm drift of the signal sourse is less than $\pm 1 \%$, a good null will be achiered.
2. Optimizing the performance of an oscillator. Here, any variation in the paramerers causes the frequency to shift slightly. The automatic nulling of the analyzer allows the oscillator performance to be improved on a continuous basis rather than by relying on a point-to-point check which may or may' not find the optimum point.
3. Correcting discomion in signal generators which produce sine waves by mixing or 'by non-linear shaping. The small frequencr shifes would cause the loss of the null if it were not for the automatic null feature.

Selecting an analyzer

Disrortion Analyzers may be regarded as the inverse of wave analrzers. Distortion analyzers remore any signal component to which they are tuned, having the rest of the signal for measurement. In pracrice, distor. tion analyzers are tuned to the fundaniental frequency and. by measuring the amplitude of the remaining harmonic componenes all at once. they provide an indication of percent. age total harmonic distortion. Distortion analyzers do not provide information about individual distortion products-Wave Analyzers (See page 437) and Spectrum An. alyzers (See page 448) do this job, but they do not provide fast readings of the signal's total departure from sine wave purity.

331 A

$334 A$

Description

Distortion Analyzers have gone solid-state, offering extended tuning range, greater set-level sensitivity, improved selectivity and greater overall accuracy. The Model 331 A , 332A, 333A, 334A Distortion Analyzers measure total distortion down to 0.1% full scale at any frequency between 5 Hz to 600 kHz ; harmonics are indicated up to 3 MHz . These instruments measure noise as low as 50 microvolts, and measure voltages over a wide range of level and frequency. All four models may be used as sensitive widerange transistorized voltmeters for general-purpose voltage and gain measurements. The transistorized ac voltmeter provides 13 ranges from $300 \mu \mathrm{~V}$ to 300 V rms full scale.

Automatic fundamental nulling

Automatic fundamental nulling (available in HP Models 333 A and 334A) speeds up the normally time-consuming portion of the measurement. This is done by manualiy nulling with the coarse tuning and balance controls to less than 10% of the Set-Level Reference. The automatic mode is used to complete rejection of the fundamental on more sensitive ranges without any further manual tuning.

Amplitude modulation detector

The HP Models 332A, H05-332A, 334A and H05-334A Analyzers are provided with an amplitude modulation detecror having a frequency range from 550 kHz to greater than 65 MHz .
The high-impedance dc restoring peak detector which utilizes a semiconductor diode measures distortion at carrier levels as low as 1 V . The input to the detector is located
on the rear of the instrument. The Model 334 A is similar to Model 332A, but is provided with Automatic Fundamental Nolling and a High-Pass Filter.

The H05.332A and H05.334A meet FCC requirements on broadeast distortion levels. Both models measure total distortion down to 0.1% full scale. The Model H05-334A features automatic fundamental nulling. The H05-332A and 334A have a switchable low pass filrer to reduce the effect of unwanted high frequencies (noise, etc.) when measuring lower frequency signals with high accuracy.

High-pass filter

In order to reduce the effect of hum components, a high. pass filter is provided which attenuates frequencies below 400 Hz . The filter may be activated by a front-panel switch when measuring distortion of signals greater than 1 kHz in frequency.

Models And Avallable Features

Model No.	Automatla Fundannental Nulling	HI.Pass Flifer	Le.Pass FIMer	AN Detector	Casp Reduotion Tuning
331 A					X
332A				X	X
H05.332A			X	X	X
333A	X	X			
334A	X	X		X	
H05.334A	X		X	X	

Optional, for each modal. reatures VU meter characteristics conforming to $F C C$ requirements.

Option 01, for each model, features VU meter characteristics conforming to FCC requirements.

Specifications

Model 331A

Distortion measurement range: any fundamental frequency, $s \mathrm{~Hz}$ to 600 kHz . Distortion levels of $0.1 \% \cdot 100 \%$ are measured full scale in 7 ranges.

Distortion measurement accuracy

Harmonic measurement accuracy (ful! scale)
Fundamental Ingut Less Than 30 V

Range	$\pm 3 \%$	$\pm 5 \%$	$\pm 12 \%$
$100 \% \cdot 0.3 \%$	$10 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$	$10 \mathrm{~Hz} \cdot 3 \mathrm{MHz}$	
0.1%	$30 \mathrm{~Hz} \cdot 300 \mathrm{kHz}$	$20 \mathrm{~Hz} \cdot 500 \mathrm{KHz}$	$10 \mathrm{~Hz} \cdot 1.2 \mathrm{MHz}$

Fundamental Input Orealer Than 30 V

Renge	$\pm 3 \%$	$\pm 8 \%$	$\pm \sum 2 \%$
$100 \% \cdot 0.3 \%$	$10 \mathrm{~Hz} \cdot 300 \mathrm{kHz}$	$10 \mathrm{~Hz} \cdot 500 \mathrm{kHz}$	$10 \mathrm{~Hz} \cdot 3 \mathrm{MHz}$
0.1%	$30 \mathrm{~Hz} \cdot 300 \mathrm{kHz}$	$20 \mathrm{~Hz} \cdot 500 \mathrm{kHz}$	$10 \mathrm{~Hz} \cdot 1.2 \mathrm{MHz}$

Elimination characteristics

Fundamenta\} rejection $>80 \mathrm{~dB}$.
Second harmonic accuracy for a fundamental of: 5 to 20 Hz : betrer than +1 dB . 20 Hz to 20 kHz : better than $\pm 0.6 \mathrm{~dB}$. 20 kHz to 100 kHz : better than -1 dB 100 kHz to 300 kHz : better than -2 dB . 300 kHz to 600 kHz ; better than -3 dB .

Distortion introducad by instrument: $<0.03 \%$ from 5 Hz to $200 \mathrm{kHz} ;<0.06 \%$ from 200 kHz to 600 kHz .
Meter indication is proportional to the average value of a sine wiave.

Frequency calibration aceuracy

Betrer than $\pm 5 \%$ from 5 Hz to 300 kHz .
Better than $+10 \%$ from 300 kHz to 600 kHz .
Input Impadance: distortion mode: $1 \mathrm{Mn} \pm 5 \%$ shunted by less than 70 (${ }^{(90)}$ pF ($10 \mathrm{M} \Omega$ shunted by $<10 \mathrm{pF}$ with HP 10001A 10:1 Divider Probe).
Voltmeter mode: $1 \mathrm{Mn}=5 \%$ shunted by <30 ("50) pF 1 to 300 V sms; $1 \mathrm{Mo} \pm 5 \%$ shunted by <70 (20) pF , $300 \mu \mathrm{~V}$ to 0.3 V rms.
Input level for distortion measurements: 0.3 V tms for 100% set level or 0.245 V for 0 dB set leve!. (U p to 300 V may be attenuated to sec-level reference.)
DC Isolation: signal ground may be $\pm 400 \mathrm{~V}$ dc from externa! chassis.
Voitmeter range: $300 \mu \mathrm{~V}$ to 300 V rms full scale (13 ranges) 10 dB per range.
Voltmeter accuracy: (Using front pane! input terminals.)

Rense	$\pm 2 \%$	$\pm 6 \%$
$300 \mu \mathrm{~V}$	$30 \mathrm{~Hz} \cdot 300 \mathrm{KHz}$	$20 \mathrm{~Hz} \cdot 500 \mathrm{kHz}$
$1 \mathrm{mV} \cdot 30 \mathrm{~V}$	$10 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$	$5 \mathrm{~Hz} \cdot 3 \mathrm{MHz}$
$100 \mathrm{~V} \cdot 300 \mathrm{~V}$	$10 \mathrm{~Hz} \cdot 300 \mathrm{xHz}$	5 Hz .500 kHz

Noise measurements: voltmerer residual noise on the $300 \mu \mathrm{~V}$ range: $<25 \mu \mathrm{~V} \mathrm{~ms}$, when terminated in 600 ohms, <30 $\mu \mathrm{V}$ rms terminated with a shielded 100 k ohm resistor.
*WHh rear Input modifications,

Output: $0.1 \pm 0.01 \mathrm{~V}$ rms open circuit and $0.05 \pm 0.005 \mathrm{~V}$ rms into $2 \mathrm{k} \Omega$ for full scale meter deflection.

Output Impedance: $2 \mathrm{k} \Omega$.
Power supply: 115 or 230 volts $\pm 10 \%$, 50 to 400 Hz , approximately 4 watts. Terminals are provided for external battery supply. Positive and negative voltages between 30 V and 50 V are required. Current drain from each supply is 40 mA .

Model 332A

Same as Model 331A except as indicated below:
AM detector: high impedance de restoring peak detector with semiconductor diode operates from 550 kHz to greater than 65 MHz . Broadband input, no tuning is required.

Maximum Input: $40 \mathrm{~V} p \cdot \mathrm{p}$ ac or 40 V peak transient.
Distortion introduced by detector: carrier frequency: 550 kHz $1.6 \mathrm{MHz}:<50 \mathrm{~dB}(0.3 \%)$ for 3.8 V ms carriers modulated 30%. $1.6 \mathrm{MHz} .65 \mathrm{MHz}:<40 \mathrm{~dB}(1 \%)$ for 3.8 V rms carriers modulated 30%.
NOTE: distortion introduced at carrier levels as low as 1 V is normally $<40 \mathrm{~dB}(1 \%) 550 \mathrm{kHz}$ to 65 MHz for carriers modulated 30%.
H05-332A: same as 332A except low-pass filter is added (4 pole, 3 dB down at 30 kHz); meter reads in dBm .

Model 333A

Same as Model 331A except as indicated below:
Automatic nulling mode
Set level; at least 0.2 V rms.
Frequency ranges: X1, manual null tuned to less than 3% of set level; total frequency hold-in $\pm 0.5 \%$ about true manual null. X 10 through X 10 k , manual null tuned so less than 10% of set level; total frequency hold-in $\pm 1 \%$ about true manual null.

Automatic null accuracy

S Hz to 100 Hz ; meter reading within 0 to +3 dB of manual nult. 100 Hz to 600 kHz ; meter reading within 0 to +1.5 dB of manual null.
High-pass filter: 3 dB point at 400 Hz with 18 dB per octave roll off. 60 Hz rejection $>40 \mathrm{~dB}$. Normally used only with fundamental frequencies greater than 1 kHz .
Power supply: same as Model 331A except current drain from each supply is 80 mA .

Model 334A

Same as Model 333A excepr includes AM Detecror described under Model 332A.
H05-334A: same as 334 A except a low-pass filter is substituted for the high-pass filter: meter reads in dBm.

General

Weight: net $173 / 4 \mathrm{lbs}(8 \mathrm{~kg})$; shipping $26 \mathrm{lbs}(11,8 \mathrm{~kg})$.
Dimensions: $163 / 4$ " wide, $5^{\prime \prime}$ high ((rithout removable feet), $131 / 4^{\prime \prime}$ deep ($426 \times 126 \times 337 \mathrm{~mm}$).

Accessories furnishad: rack mounting kic for 19 " rack.
Price: HP 331A, 5650: HP 332A, 5680; HP 333A, \$865: HP 334A, \$895; H05.332A, \$890; H03-334A, $\$ 980$.
Option 01, indicating meter has VU characteristics conforming to FCC requirements for AM/FM and TV broadeasting; add $\$ 1 s$.

WAVE ANALYZERS

What is a wave analyzer?

A wave analyzer can be thought of as a finite bandwidth window filter which can be tuned chroughout a particular frequency range.

Figure 1. Wave Analyzer Tunable Filter.
Signals located on the frequency spectrum will be selectively measured as they are framed by the window. Thus, for a particular signal, the wave analyzer can indicate its frequency (window position) and amplitude. Amplitude is read on an analog meter; frequency is read on either a mechanical or electronic readout.

Wave analysis measucement tech. niques were introduced some twenty-five years ago and are used more today than ever before. Continued improvement in sensitivity and dynamic range along with frequency resolution has opened many new applicarion areas.

Today's wave analyzer measurements can be divided into three broad areas:

1. Selecrive measurements of signals with large differences in level. Examples are distorrion analysis, measurements of low level signals very close in frequency to much larger signals, or iden. tification of low level signals obscured by broadband noise.
2. Determination of noise characteristics (noise/ $\sqrt{\mathrm{Hz}}$) by utilizing the welldefined bandwidth of a wave analyzer. Noise power spectral density can also be measured over the entire frequency eange of the instrument.
3. Frequency response testing, using the tracking output as an excitation source to make tests at ultea-low threshold levels. The wave analyzer's high sensitivity eliminates harmonics, spurious responses and ground loop effects.
Each generation of wave analyzers has seen increasingly useful improvements. First, there was the basic tunable fitter and broadband voltmeter. Now there are features such as autoranging, automatic frequency control (AFC), electronic sweeping, counter digital readout, select-
able bandwidths, and recorder outputs. These convenience and performance features make the instrument easy to use, but they are not the only considerations in selecting a wave analyzer.

The selectivity of a wave analyzer is its greatest asset and a most important specification. Selectivity is defined by the 3 dB bandwidth and the shape factor of the bandpass. The sma!ler the shape factor number, the more selective the instrument will be. Note the passband (dorted line) in Figure 2. Specifying just the 3 dB bandwidth (bandwidth C) can be misleading-but specifying the ratio of two selected bandwidths (usually - 3 or -6 dB and the -60 dB points) provides further definition of the sharpness of the skirt (solid line in the diagram).

Figure 2. Shape fectors for olfferent wave analyzers.

A shape factor so defined gives a true picture of the bandpass. 'Today's wave analyzers have shape factors as low as 2:1. These are especially useful in making critical frequency measurements where signal density is high.

Dynamic range is an important wave analyzec characteristic. It defines the range of the smallest to the largest sig. nal the instrument can accommodate simultancously. Some wave analyzers are capable of an 85 dB range. The relation. ship between dynamic range and attenuator range is shown in Figure 3. The top end of the atrenuator range is limited by the amount of attenuation built-in, and

Figure 3. Relationship betwean ottenuation and dynamic range.
the bottom end by the instrument's sensitivity. Dynamic range is limited by nonlinearities and noise.

Wave analyzers designed with two attenuators allow tracking of the dynamic range of the input. This helps to avoid input overloading that causes measure. ment inaccuracies. Autoranging further extends the capability of a wave analyzer to track the dynamic range of the input.

To obtain high sensitivity measurements without loading a low-level circuir under test, a wave analyzer with high input impedance is necessary. There is always a trade-off betreen high sensitivity and high input impedance. Trade. off optimization depends on the application. Input impedances range from $10 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ while full scale sensitivities range from $3 \mu \mathrm{~V}$ to $50 \mu \mathrm{~V}$.

Hewlett-Packard wave analyzers cover a broad frequency range from 20 Hz up to 22 MHz . The 3590 A covers the audio range plus the RF range to 620 kHz . The 302 A covers the audio range and frequencies to 50 kHz . The 310 A provides coverage in the video range, 1 kHz to 1.5 MHz . The 312A extends the coverage to 18 MHz in 18 overlapping bands (22 MHz with the H01-312A). This analyzer is useful for testing multiplex communications systems, IF and video amplifers, filters and attenuators. Each HewlettPackard wave analyzer contains specia! features which adapt it to specific uses. Many features are included for ease of operation, accuracy of readings and ability to compare signals of great variation in amplitude. The selective bandwidths, the shape factor of these bandwidths and the dynamic range (from 72 $d B$ to greater than $85 d B$) enhance the use of thest wave analyzers. The follow. ing individual description of each instrument enlarges upon the features concained by each model.

Model 3590A

The new 3590A Wave Analyzer measures the frequency components of simple or complex signals over an extramely wide amplitude range-more than 85 dB -without manual range switching. Automatic ranging makes successive measurements of all signal components quick and easy. It also gives the instrument ability to make linear $d B$ recordings over the full 85 dB dynamic range. No time is lost making the many up-and-down range changes usually required with wave analyzers when signal components have widely difering amplitudes.

The 3590A also has a wide frequency range; it tunes from 20 Hz to 620 kHz in two overlapping ranges (20 Hz to 62 kHz and 500 Hz to 620 kHz).

Figure 4. Recording shows the intermodulathon distortion products of an amplifier driven by algnal \mathbf{f}_{1} and f_{3}.

Wide range recorder outputs

Of particular importance, the new Wave Analyzer has both logarithmic and linear do outputs to drive the X and Y axes of recorders. One Y-axis output is linearly proportional to the measured voltage amplitude and the second ourput is proportional to the logarithm of the measured amplitude (linear dB). This voltage spans the instrument's morethan 85 dB dynamic range, making this the first wave analyzer to provide a wide. range output suitable for driving all kinds of recorders. With the builtin electronic sweep ruring, a full frequency range plot is easily made of the spectral frequency distribution. Also, fequency response recordings can be made over the entire 85 dB dynamic amplitude tange. In addition, the front-panel meter can be switched to read the logarithmic Y-axis voltage, thus displaying amplitude over the full dynamic range on a single, linear, 0 to -90 dB scale. This simplifies reading interpretation when many diferent amplitude levels are involved.

For driving the X-axis of recorders, another output supplies a voltage proportional to the instrument's tuning. This output can be linearly proportional to frequency, generacing X.Y recordings with a linear frequency scale on which harmonic relationships are determined easily. Alternatively, the output can be switched to make the oucput voltage logarithmically proportional to frequency. With the logarithmic X and Y outputs, wide-range frequency response measurements can be made on the fam. iliar semilog paper (See Figure 5), enabling Bode plors of amplifier or filter frequency response to be made directly. If one wishes, recordings can be made with any combination of linear and 10 garithmic axes (log-log, lin-log, log-lin, lin-lin).*

[^37]

Figure 5. Bode plats can be recorded directly by 5 weeping and stimulating the device under test with the 3590 's internal tracking output ($\mathrm{B} F \mathrm{O}$) and using the log.log recorder outputs.

The new generation

The new Hewlett-Packard Model 3590A Wave Analyzer is easier to use than previous instruments. Annunciator lights show overall sensitivity in response to settings of both the interstage range switch and the input attenuator. In the auromatic mode, the interstage ranges are switched automatically, with the an. nunciator lights showing the selected interstage $d \mathrm{~B}$ range and the overall voltage sensitivity. Meter scales are backlighsed to show which scale is in use.
Grequency is likewise easy to read on this new instrument. Prequency readout is in plug-ins, one of which contains a s-digit electronic counter. The counter measures the tuning frequency with an accuracy of better than 0.001%, with 10 Hz resolution on the 200 Hz -to- 620 kHz frequency range and with 1 Hz resolution on the $20 \mathrm{~Hz} \cdot$ to -62 kHz range. The counter also supplies inscantaneous readings of frequency as the instrument sweeps.

Where 5 -digit resolution is not requited in frequency measurements, a second plug-in has a mechanical 3 -digir-plus-vernier readout. This gives frequency readout with 1% accuracy and with 100 Hz resolution on the high range and 10 Hz resolution on the low range. Should higher resolution and accuracy be desired on some occasion, an external electronic counter can be used to read the "restored frequency" output, an amplified replica of the selected input signal component, available at a front. panel connector.
The instrument tunes easily. It is only necessary to approach the correct tuning, and an automatic frequency control (AFC) circuit then "pulls in" the selected component. The AFC circuit slaves the instrument's tuning to any signal component within the passband, making it possible to use very selective filters without danger of signals drifting out of the tuning "window" before an accurate amplitude measurement can be made. Should the AFC circuir become unlocked,
a front panel lamp alerts the operator that his reading may not be valid.

Selectable bandwidths

The instrument has four selectable bandwidths. The 10 Hz bandwidth, for use on the $20 \mathrm{~Hz}-62 \mathrm{kHz}$ range, separates closely-spaced frequency components, but requires more careful tuning of the instrument. A 100 Hz bandwidth allows easier tuning where selectivity is not so important, and a 1000 Hz bandwidth permits wide range sweeps at faster rates. The fourth bandwidth is 3100 Hz useful when one wishes to measure a complete multiplexed telephone voice channel or other similar communications channels.

Figure 6. Line-frequency pelated FM sidaband detection is accomplished by using the $3590 A^{\prime} \mathrm{s} 10 \mathrm{~Hz}$ bandwidih. Note that no side. bands are generated by the analyzer.

Bandwidth shape factor (ratio of bandwidth at -60 dB to bandwidth at -3 dB) is a very low $3.5: 1$, indicating that the analyzer's passband has very steep skiers. Bandwidth shape factor is more important for highly selective mea. surements than a simple expression of 3 dB bandwidth. Crystal filters, for in. stance, typically have shape factors of 10:1 or greater, making separation of closely.spaced frequencies more difficult.

Electronic tuning

The instrument is tuned electronically, simplifying frequency sweeping. Five sweep rates ($1,10,100,1000$, and 3100 Hz / s) are provided, so the operator can select the optimum trade-off between sweep rate and bandwidth. A front-panel indicator lights if the sweep rate is too fast for the bandwidth selected (narrow. band filters do not respond quickly enough if the sweep rate is too fast). The instrument sweeps upward to the top of the range from the start frequency selected by the turing control.
Programmed tuning by an externally. supplied de voltage is possible because of the electronic tuning. And where extreme precision is desired, another input allows a frequency synthesizer or other frequency source to serve as the Wave

Figure 7. The HP 35s0A Wave Analyzer provides automatic ranging of the signal ampilitude and allows 0 to -90 dB meter display and recorder output.

Analyzer's local oscillator. (The 3592A, a low-cost plug-in without a local oscillator, is available if the analyzer is to be used only with an external oscillator or as a frequency slave to another ana. lyzer.)

Automatic ranging

The input to the autoranging circuit originates from the output of the merer circuit. When autoranging is turned on, the signal goes to the high.low comparator which samples the signal to determine if its level is between $1 / 3$ and full scale (Figure 7). If the signal is too high or too low. the comparator sends a digital command to the logic circuit which in turn triggers the drivers. The drivers are responsible for switching the dynamic range atrenuator reed relays and driving the readout lighrs on the front panel.

Linear dB output

As a by-product of the autoranging, linear $d B$ outputs to the meter and re. corder \log output have been made pos. sible. The entire dynamic range can be presented linearly from $0 d 8$ to -90 $d \mathrm{~B}$ on one scale.

Information in the form of a de analog signal is raken from the meter circuit output and supplied to the \log amplifier. The amplifier logarithmically shapes the linear volts signal into a linear dB signal from $1 / 3$ scale to full scale (10 dB) and -70 dB to -90 dB on the -70 dB sange. When autoranging is on, the log amplifier output has ranging discontinuities due to switching of the attenua. tor reed relays. To avoid the range discontinuities, a step generator, triggered by the autoranging logic circuit, is used to supply a de step offset to compensate for the range change at the output of the log amplifier.

Special outputs

As in other Herrlett-Packard wrave analyzers, the new Model 3590A has a
"8FO" output. This is a constant level signal which tracks with and is controlled by the instrument's tuning. The BFO output is useful as a test stimulus, enabling the wave analyzer to serve as both the signal generator and the measuring voltmeter in frequency response measurements on amplifiers, filters, and the like. The advantage of this arrangement is that the narrowband response of the wave analyzer zemoves any noise and distortion products from the measurement, products which could affect accuracy if a separate broadband voltmeter were used. Furthermore, the "voltmeter" tuning always tracks the "generator" frequency since both are tuned by the same control.

Other modes of operation in the new Wave Aralyzer are slanted toward com. munications usage. There is a carrier reinsertion oscillator to detect either upper sideband (USB) or lower sideband (LSB) single-sideband signals. There is also an AM detector.

Another version of the new Wave Analyzer is identical to the Model 3590A except that the input is designed for communications system test and analysis. The input of this one (Model 3591A) can bridge a communication line or it can terminate it. A front panel switch selects the input impedance, - 75, 135, 150, or $600 n$ terminated or 100 kilohms bridged. In addition, the impedance selector switch adjusts the instrument's gain so that amplitude can be read in dBm directly, regardless of the input im. pedance selected.

Model 302A

The 302A Wave Analyzer is a tunable voltmeter covering the frequency range of 20 Hz to 50 kHz . The frequency scale is linear throughout the band with a constant resolution of a division per 10 Hz . It can be used as a tuned voltrneter which will read absolute or relative levels. The 7 Hz bandwidth permits the separation of closely spaced signals.

The automatic frequency control used in all Hewletr-Packard wave analyzers greatly facilitates wave analysis. With the 7 Hz passband of the 302 A , a slightly unstable input signal could easily drift out of the passband during measurement. The automatic frequency control locks the analyzer's tuning to the frequency of the signal component so that measurements are not affected by drift in the source signal.

Semi-automatic plots of amplitude vs frequency can be made with the 302A or 310 A in the BFO operation by using the 297A Sweep Drive unic and an X-Y recorder.

Model 310A

The 310A Wave Analyzer is a tunable voltmeter covering the frequency range of 1 kHz to 1.5 MHz . This wave analyzer offers a front panel selection of three bandwidths: 200 Hz for maximum resolution; 1000 Hz to simplify calculations of noise power/ Hz measurements; and 3000 Hz for operation of the wave analyzer as a receiver. In this mode. IF band. width is sufficient to recover voice modulation from either standard AM or single sideband systems (a carrier reinsection ascillator is provided to permit detection of either normal or inverted single sideband transmissions).

The 310A Wave Analyzer features a wide dynamic range (-75 dB) over the eatire frequency band, automatic frequency control, high sensitivity and a restored frequency outpur.

Models 312A/313A

The 312A Wave Analyzer is a tuned voltmeter with selectable bandwidths of $200 \mathrm{~Hz}, 1000 \mathrm{~Hz}$ and 3000 Hz . The op. erating frequency range is 10 kHz to 18 MHz in 18 overlapping bands (to 22 MHz with the $\mathrm{H} 01-3(2 \mathrm{~A})$. Using the narrowest bandwidth, the instrument will function down to 1 kHz . With these bandwidths and Frequencies, the 312A can be used for communication system measurements including long haul toaxial cable carriers. The 312 A can be used for measurements of harmonics, intermodulation distortion, and crosstalk. It is a sensitive derector for bridge measurements, and with the use of the 313 A Tracking Oscillator it will measure frequency vs amplitude for response curves of IF amplifiers, attenuators, and crystal. filter circuits.
In addition the operation of the $312 A$ is simple and is enhanced by logical panel layout. The digital readout indicates the frequency of the center of the passband With 10 Hz resolution.

For maximum flexibility, the 312A inpur may be operated eicher balanced or unbalanced. In the terminated mode, the
input signal is terminated in a selectable impedance of $50,60,75,124,135,150$. or 600 ohms. The meter indicates power in dBm absorbed by the selected imped. ance. In the bridged mode, the input impedance is $20 \mathrm{k} \Omega$ balanced and $10 \mathrm{k} \Omega$ unbalanced. In the bridging mode, the meter can indicate dBm according to the impedance selected, or it can indicate voltage by selecting the volis calibrated position of the impedance selector switch.

The high impedance 11530A Probe also can be used for bridging measurements to eliminate the loading effects.
The input signal enters the instrument through either the bridgedterminated connector or the probe connector. The probe contains a unity gain isoiation amplifier at the end of a cable. The BAL/ UNBAL switch grounds one end of the input terminal in the unbalanced posirion.

In the heterodyning process of the 312A. the local oscillator uses a synthesis technique stabilized by a 1 MHz crystal timebase oscillator. The output of this local oscillator is mixed with the input frequency to form a 30 MHz inter. mediate frequency for uniform amplification. The signal is then divided into two channels, shifted in phase and mixed with a 30 MHz crystal oscillator
input, resulting in information centered on a zero frequency. Boch of these quad. rature channels contain three cascaded lowpass filter-amplifiers which produce a fiat response within the passband with symmetrical slopes of 72 dB per octave beyond cutoff. These two channels are mixed with two 250 kHz carriers and phased so that the difference frequency is obtained. The resultant is amplified and detected to drive the meter. The AFC circuit keeps the inpur frequency centered in the passband, and a decade counter is designed to read the center frequency of the passband.
The single sideband detector circuit consists of an upper sideband carrier reinsertion crystal oscillator which operates at 248.2 kHz and a lower sideband osciliator which operates at 251.8 kHz . A product detector and appropriate switching provide for the demodulation of upper and lower sidebands when using the 3 kHz bandwidth for both aural and recorder purposes. The analyzer also detects AM signals.
The 313A Tracking Oscillator complements the 312 A Wave Analyzer in mak. ing distortion checks, loop gain measurements and analyzing frequency response characteristics. The 313A has two modes of operation, a track 312A mode and a
free-running internal mode. In the track 312A mode of operation, the 313A utilizes the 30 MHz crystal oscillator and the local oscillator from the 312A to obtain a beat frequency at the tuned frequency of the 312A. In the internal mode of operation, the 313A uses its own in. ternal local oscillator and 30 MHz crystal oscillator for adjustable frequencies from 10 kHz to 22 MHz in one single band. Any 313A Tracking Oscillator can be used with any 312A Analyzer. Output levels from +10 dBm to -99.9 dBm are available adjustable in 10,1 and 0.1 dB steps.
An important feature of the 313 A Tracking Oscillator is its meter expand function. Any 2 dB range of the 312 A meter indication from -7 to +3 dB can be expanded for full-scale coverage. This is accomplished by using the 312 A recorder output and placing the 313 A meter mode switch to 312A expand position.

The standard 312 A and 313 A have a high frequency of 18 MHz while the H01.312A and 313A have a high frequency of 22 MHz . Specifications for special instruments, page 325, give differences in connectors and impedance. Table 1 summarizes the basic specifica. tions of HP wave analyzers.

Table 1. HP wave analyzers.

HP wave analyzeri	Fracuensy rang	Salaotive bindgacses	Dynamlo rande Absoluts Redeliva		$\underset{\text { readouts }}{\text { Frequ }}$	Typt al Inpult	Type of outpute	Modet of oparation
$\begin{aligned} & 302 \mathrm{~A} \\ & \text { (p. 444) } \end{aligned}$	20 Hz to 50 HHz	7 Hz	$\begin{aligned} & 30 \mathrm{~V}-300 \mathrm{~V} \\ & \text { full scale } \end{aligned}$	$>75 \mathrm{~dB}$	dial	banana jacks	rec: 1 mA de into 1500Ω full scale 8F0: 2 V open circult, metar al full scale	AFC, normal, BFO
$\begin{aligned} & 3590 \mathrm{~A} / \\ & 3594 \mathrm{~A} \\ & (\mathrm{p} .441) \end{aligned}$	20 Hz to 620 kHz	$\begin{array}{r} 10 \mathrm{~Hz} \\ 100 \mathrm{~Hz} \\ 1000 \mathrm{~Hz} \\ 3100 \mathrm{~Hz} \end{array}$	$3 \mu \mathrm{~V}-30 \mathrm{~V}$ full scale	$>85 \mathrm{~dB}$	5.place	8NC unbalanced	rec: X and Y axes \log and linear. 8f0: to 1 V rms. L.O. : ($1.28 \mathrm{MHz}-1.9 \mathrm{MHz}$) 0.65 V rms.	AFC, restorad, 8FO, US8, LSB, AM sweap
$\begin{aligned} & 310 A \\ & (\rho, 845) \end{aligned}$	1 kHz to 1.5 MHz	$\begin{array}{r} 200 \mathrm{~Hz} \\ 1000 \mathrm{~Hz} \\ 3000 \mathrm{~Hz} \end{array}$	$\begin{aligned} & 10 \mu \mathrm{~V}-100 \mathrm{~V} \\ & \text { full scale } \end{aligned}$	$>75 \mathrm{d8}$	dial	banana jacks	rec: 1 mA de into 1500 a full scale BFO:0.5 V open circuit, meter al full scale output impedance $135{ }^{\prime} \Omega$	AFC, normal BFO, USB, LSB AM
$\begin{aligned} & 312 A / \\ & 313^{*} \\ & (\mathrm{p} .446) \end{aligned}$	10 kHz to 18 MKz 18 ranges	$\begin{array}{r} 200 \mathrm{~Hz} \\ 1000 \mathrm{~Hz} \\ 3000 \mathrm{~Hz} \end{array}$	$\begin{aligned} & 3 \mu V-3 V \\ & \text { full scale or } \\ & -9710+23 \mathrm{dBm} \\ & -109 \text { to }+13 \mathrm{dBm} \\ & (600 \mathrm{on} \text { only }) \end{aligned}$	$>72 \mathrm{~dB}$	7-place decade counter	probe 11530A bridged/ terminated balanced or unbalanced	rec: IV de full scale $1 \mathrm{k} \Omega$ source aux: 1 MHz ($1 \mathrm{~V} \cdot \mathrm{p} \cdot \mathrm{p}$) $30 \mathrm{MHz}(40-60 \mathrm{mV}) \mathrm{ms}$ L.O. ($30-48 \mathrm{MHz}) 601080 \mathrm{mV} \mathrm{mms}$ audia: -5 Vinto 10 kn 313A: Track or tuned 75Ω unbalanced, -99.9 to +10 dBm	AFC, AM, beat LSB, USE
$\begin{aligned} & 3591 \mathrm{~A} / 3594 \mathrm{~A} \\ & (\mathrm{p}, 324) \end{aligned}$		Same as 3590A/359ad except input brioged/terminated bal. or unbal. and modifled input circuitry.						
$\begin{aligned} & \mathrm{HO1.312A/313A} \\ & (\mathrm{p} .447) \end{aligned}$		Same as 312 A except 10 kHz to 22 MHz and WE-4778 input untalanced.						
$\begin{aligned} & \text { H05-312A/313A } \\ & (\text { p. 325) } \end{aligned}$		Same as H01-3J2A except 50Ω unbalanced input with BNC connector.						

[^38]

3590A/3594A

Description

The Hewletr-Packard Model 3590A Wave Analyzer offers automatic, stare-of-the-art detection of signal amplitude and frequency information. Over a frequency range of 20 Hz to 620 kHz , the analyzer can separate frequency components of an inpur signal to locate the fundamental, harmonics, inter. modulation products, or any other signals present in the spectrum, Selectable bandwidths of $10,100,1000$ and 3100 Hz permit easy location of signals and separation of closely spaced components. Operation has been greacly simplified by automatic amplitude ranging and electronic sweeping. X.Y recorder outputs permit frequency spectrum recordings to be made covering the entire frequency range with a linear dB amplitude display of 90 dB .

Automatic operation

The 3590 A features automatic amplitude ranging and electronic sweeping. During autoranging, the analyzer maintains a meter indication between one-third and full scale, except on the lowest range where the meter can go to zero. Once the input voltage level is adjusted for a proper inpur level, the autoranging will step through the entire dynamic range in eight 10 dB steps.

Electronic sweeping is simple to use and permits X-Y recordings to be made quickly and easily. Operation involves selecting one of five sweep rates, tuning to a start frequency, and starting the sweep. Maximum sweep time is 620 s , or until the end of the frequency range is reached.

Measurement performance

The key measurement characteristics of the 3590A are 85 dB of dynamic range. $3 \mu \mathrm{~V}$ fuli-scale sensitivity, 10 Hz to 3.1 kHz bandwidths with a constant factor of 3.5 , and 1 Hz frequency resolution. Significant features include waraing lights, direct range readout, automatic ranging, electronic sweep, remote tuning, linear 0 to 90 dB meter display, and meter scale lights.

High performance combined with maximum operational ease enables the analyzer to make distortion, filter, noise, side band, and spectrum measurements previously unatainable.

Generator-receiver

Besides being a waveform analyzer, the 3590A is also ex. tremely effective as an oscillator-tracking derector combination. By using the BFO output, an operator can stimulate a device under test and detect responses at the analyzer input over a 20 Hz -to 620 kHz range. The BFO output and the analyzer input track together and follow the frequency serting. This feature is particularly useful for measuring transmission and rejection characteristics of systems and filters. Because the analyzer selecrively measures only the fundamental of the input signal, distortion products and noise will have negligible effect on the reading accuracy.

Dynamic range

The $3590 A^{\prime} s>85 \mathrm{~dB}$ of dynamic range can be referenced to 0 dB from 30 V to 10 mV .86 dB below 10 mV corresponds to $.5 \mu \mathrm{~V}$. Presentation of the dynamic range up to 90 dB can be displayed in linear $d B$ on the third meter scale. Lights behind the meter face indicate the proper scale to be read to help eliminate erroneous scale readings.

Selectable bandwidths

Bandoridths of $10,100,1000$ and 3100 Hz can be selecred from the front panel. Active filvering is used to provide flat passbands with steep skirts. All bandwidths have a 1 Hz rejection notch at midpoint for precise frequency determination. The shape facror is a constant $3.5 / 1$ at $-60 \mathrm{~dB} /-3 \mathrm{~dB}$. Because of the high selecrivity and narrow 10 Hz bandwidth, line frequency side bands can be measured as well as other closely spaced signals. Other bandwidths provide useful flexibility for easy location of signals. The 3100 Hz bandwidth is also useful for detection of line communication channeis.

WAYE AMALYZERS عantinued

85 dB dynamic range; electronic sweeping Model 3590A

Recorder outputs

Both X and Y recorder outputs are available at the rear panel of the 3590A. These outpurs produce either logarithmically or linear varying de voltages. Any combination of X and Y log or linear outpurs (lin-lin, lin-log, log-lin, $\log \cdot \log$) can be chosen to provide maximum Hexibility. For example, the operator can make recordings with a linear decibel amplitude scale including the full dynamic range. Recordings can also be made on standard semi-log graph paper to produce direct Bode plors.
Y -axis \log and linear outputs occur simultaneously, but the X-axis output is switched to choose the output function. When the swith is in Linear (ramp only), the do offset produced by the start frequency location is blocked out. This permits wide expansion of a narrow sweep segment without having to buck out the offset voltage.

The pen lift operates by dropping the open (contact closure) during the sweep. During retrace and standby, the pen is lifted.

Low frequency spectrum analyzer

All low-frequency sweeping analyzers must sweep slowly to allow theí high-resolution, narronv filters time to fully respond to inpur signals, For this reason, the 3590A employs an X.Y recorder as a display device. Refer to page 448.

Specifications

3590A Wave Analyzer
Frequency range: 20 Hz to 620 kHz .
Amplitude ranges: $3 \mu \mathrm{~V}$ to 30 V fuli scale in 15 ranges.
Amplitude accuracy (meter switch In normal position)
Overall accuracy: $\pm 0.5 \mathrm{~dB}$ or $\pm 5 \%$ of reading, including the following:
Frequency response flatness: $\pm 0.2 \mathrm{~dB}$ or $\pm 2 \%$.
Meter tracking: $\pm 0.1 \mathrm{~dB}$ or $\pm 1 \%$ of reading. 0 dB to -10 dB indication.
Amplitude accuracy (meter switch in linear dB position)
Overall accuracy: $\pm 1 \mathrm{~dB}$.
Internal calibrator
Frequency: $100 \mathrm{kHz} \pm 10 \mathrm{~Hz}$.
Amplitude: full scale on 0 dB range in CAL mode.
Amplitude accuracy: $\pm 0.1 \mathrm{~dB}$.
Dynamic range (IM and harmonic distortion products)
$>85 \mathrm{~dB}$ below zero dB reference level when ABSOLUTE mea. surements äe being made ($>70 \mathrm{~dB}$ for 20 Hz to 50 Hz).
$>80 \mathrm{~dB}$ below zero dB reference level when RELATIVE ad. justment is used ($>70 \mathrm{~dB}$ for 20 Hz to 50 Hz).
Dynamic range (residual responses)
$>80 \mathrm{~dB}$ below zero reference ($>70 \mathrm{~dB}$ for 20 Hz to 50 Hz). Nolse level

Bandwldths	Input Noise Lêvel (800 n Source Impadance)
10 Hz and 100 Hz 1 kHz and 3.1 kHz	or at least 90 dB below zero dB reference $<1.0 \mu \mathrm{~V}$ or at least 80 dB below zero dB reference

Selectivity:

Rejection	Bandwluths			
	10 Hz	100 Hz	1 kHz	3.1 kHz
3 dB	${ }_{30}^{10} \mathrm{~Hz}$	100 Hz	1 kHz	3.1 kHz
60 dB	35 Hz	320 Hz	3.1 kHz	9.6 kHz

Automatic frequency control

Capture threshold: 75 dB below 0 dB reference.
Dynamic hold-in range: >3 bandwidths.
Tracking rate proportional to banduidth.
Input impedance
Resistance: $100 \mathrm{k} \Omega$ ali ranges.

Capacitance: $<50 \mathrm{pF}$ for $10 \mathrm{mV}, 30 \mathrm{mV}$, input ranges: <30 pF for 100 mV to 30 V input ranges.
Automatic ranging: 8 ranges, 0 dB to -70 dB . Ranging rate pro. portional to bandwidth.

Output

Amplltude: adjustable 0 to 1 V rms open circuit,
BFO frequency response flatness: $\pm 0.2 \mathrm{~dB}$ or $\pm 2 \%$.
Resistance: 600Ω.
L.O. output:

Frequency: 1.28 MHz to $1.90 \mathrm{MHz}(1.28 \mathrm{MHz}+$ tuned frequency).
Amplitude: 0.65 V rms $\pm 20 \%$ open circuic.
Resistance: 250n.
Recorder outputs

$\begin{gathered} \text { X-AX/a } \\ (3693 A / 3594 A \text { only) } \end{gathered}$		
X-axis linear oulput:	-12.4V	0 to -12.4
(1 k Ω source resistance)	$(200 \mathrm{mV} / \mathrm{kHz}=5 \%)$	($20 \mathrm{mV} / \mathrm{kHz}=5 \%$)
X-axis log output:	5 V decade $\pm 5 \%$	5 V decade $=5 \%$ (500 Hz . 620 kHz

Y-axis

Linear Y axis output: +10 V dc -2% for full salle meter indication, $1 \mathrm{k} \Omega$ source resistance.
Log Y axis output: +1 V to +10 V dc , proportional to linear dB meter indication (-90 to $0 \mathrm{~dB}, 0.1 \mathrm{~V} / \mathrm{dB}$) $\pm 1 \mathrm{~dB}, 1 \mathrm{k} \Omega$ source resistance.
Pen lift: contact closure during sweep, open during reset (3593A/ 3594A only).
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$, 50 Hz to $400 \mathrm{~Hz},<70 \mathrm{~W}$. (includes plug-in).
Dimenslons: $163 / 4^{\prime \prime}$ wide, $81 / 4^{\prime \prime}$ high (ivithout removable feer), $163 / 8^{2}$ deep ($425 \times 210 \times 416 \mathrm{~mm}$).
Weight: net $37 \mathrm{Jb}(16,8 \mathrm{~kg})$; shipping $47 \mathrm{lb}(21,3 \mathrm{~kg})$.
Accessorles furnlshed: rack mounting kit for $19^{\prime \prime}$ rack.

Available companion X-Y recorders

The HP 7005日 has an $11^{\prime \prime} \times 17^{\prime \prime}$ recording area giving high resolution and 0.2% accuracy. This recorder is well suited for 3590A applications and features a low price, $\$ 1195$. See page 139.

The HP 7004A also has an 11 " $\times 17^{\prime \prime}$ recording area, but has higher performance specifications. Plug-in capabitity, greater accelemation and higher sensitivity allow an extremely wide range of applitations. The 7004 A is recommended where the 3590 A will nor be the recorder's only application, $\$ 1295$. See page 143.

The HP 7033B is a compact, lighrweighe recorder with an 81/2" $\times 11^{\prime \prime}$ recording area." Where transportability and low cost are prime concerns, the 7035A is recommended for use with the $3590 \mathrm{~A}, \$ 985$. See page 139.

The HP 7050 A is a high performance $81 / 2^{2} \times 11^{\prime \prime}$ recorder. ${ }^{*}$ Its high sensitivity, acceleration and versatility suggest that the 7030A is a good all-around recorder for many applications besides being a 3590 A companion, $\$ 1895$. See page 142.
Price: HP 3590A, $\$ 3200$.

HP 3592A Auxiliary Plug-in

The 3592A Auxiliary Plug-in for the 3590 A Wave Analyzer was especially designed as a slave unit where the cost was kept to a minimurn. The 3592A plug-in must be controlled by an external oscillator. The inpur filter switch on the front panel charges the 3590 A input flter depending upon which frequency range is being used. Any of the three plug.ins for the 3590 A Wave Analyzer can be used in a slave unit when the tuning of two or more 3590 A's is accomplished by one master unit. However, the 3592 A is the most economical.

Specifications

3592A Auxiliary Plug-in

External L.O. input: $0.65 \mathrm{~V} \pm 0.2 \mathrm{~V}$ rms, 1.28 to 1.90 MHz ($1.28 \mathrm{MHz}+$ tuned frequency).
Input impedance: $10 \mathrm{k} \Omega$ in parallel with $<100 \mathrm{pF}$.
Weight: net $2 \mathrm{lb}(.9 \mathrm{~kg})$; shipping $3 \mathrm{lb}(1,4 \mathrm{~kg})$.
Dimensions: $41 / 2^{\prime \prime}$ wide, $8^{\prime \prime}$ high, $11^{\prime \prime}$ deep ($11 \times 20 \times 28 \mathrm{~cm}$). Price: HP 3592A, 880.

[^39]
PLUG-INS FOR THE 3590A Versatility with the choice of three plug-ins Models 3592A, 3593A, 3594A

WAVE ANALYZERS

3593A Sweeping Local Oscillator

The 3593A Sweeping Local Oscillator Plug-in for the 3590A Wave Analyzer contains a 3 digit mechanical frequency display. Coarse and fine frequency controls are for two selectable frequency ranges: 500 Hz to 620 kHz and a range of 20 Hz to 62 kHz to provide 10 times the resolution and stability for low frequency applications. Remote runing can be accomplished in the Ext. L.O. position of the Erequency Range switch by applying a 0.65 ims external frequency source from 1.28 MHz to 1.90 MHz .

One of s sweep rares can be selected. If the rate is excessive, the Reduce Sweep Rate light will go on indicating that the sweep rate should be lowered or the bandwidth increased. Sweep circuits are placed in standby when the Sweep switch is rurned on. DC programming or sweeping can be accomplished by applying a do voltage to the BNC connecr desigoated when the slide switch is in External position. For internal sweeping the base or start frequency is set by the coarse frequency control and the level switch placed in the start position. The recorder pen is dropped and the sweeep begins. At the end of the sweep time the pen will lift and travel to the Y axis zero. During reset, the pen will return to the start position.

Specifications

3593A Sweeping Local Oscillator

	Frequensy Ranges	
	20 Hz to 62 kHz	600 Hz to 820 kHz
Frequency accuracy:	$\begin{aligned} & =(1, \%+20 \mathrm{~Hz}) \text { of dial } \\ & \text { setting } \end{aligned}$	$\pm(1 \%+200 \mathrm{~Hz}) \text { of dial }$ setting
Frequency resolution:	$10 \mathrm{~Hz} / \mathrm{minor}$ div.	100 Hz /minor div.
Ext, frequency control:	$\begin{aligned} & 01015.5 \mathrm{~V}(250 \mathrm{mV} / \\ & \mathrm{kHz}=5 \%) \end{aligned}$	$\begin{aligned} & 01015.5 \mathrm{~V}(25 \mathrm{mV} / \\ & \mathrm{kHz}=5 \%) \end{aligned}$
Bandwid!h specified:	10, 100, $1000,3100 \mathrm{~Hz}$	100, $1000,3100 \mathrm{~Hz}$

Sweep rates: $1 \mathrm{~Hz} / \mathrm{s}, 10 \mathrm{~Hz} / \mathrm{s}, 100 \mathrm{~Hz} / \mathrm{s}, 1000 \mathrm{~Hz} / \mathrm{s}, 3100$ Hz / s.
Sweep linearity: $\pm 1 \%$ of final value.
Maximum sweep time: $620 \mathrm{~s} \pm 15 \%$.
Start frequency: determine by frequency control setting.
Pen lift: contact closure during sweep, open during reset.

External L.O. Input: $0.65 \mathrm{~V} \pm 0.2 \mathrm{~V}$ rms, 1.28 to 1.90 MHz (1.28 MHz + tuned frequency). Inpur impedance: $10 \mathrm{k} \Omega$ in parallel with $<100 \mathrm{pF}$.
Weight: net $7.5 \mathrm{lb}(3,4 \mathrm{~kg})$; shipping $9 \mathrm{lb}(4,1 \mathrm{~kg})$.
Dimensions: $8^{\prime \prime}$ high, $41 / 2^{\prime \prime}$ wide, $1!^{\prime \prime}$ deep ($20 \times 11 \times 28 \mathrm{~cm}$). Price: HP 3593A. $\$ 1100$.

3594A Sweeping Local Oscillator

The 3594A Sweeping Local Oscillator Plug-in for the 3590A Analyzer has all of the features of the 3903 A Plug. in with the addition of a 5 digit electronic frequency counter to replace the 3 digit mechanical counter. The 3594A features frequency accuracy and resolution plus the ability 10 track and display sweeping frequencies.

Specifications
3594A Sweeping Local Oscillator

	Fraquenoy Rangos	
	20 Hz to 82 kHz	600 Hz to 620 kHz
Frequency accuracy:	$\begin{aligned} & \pm(1 \mathrm{Mz}+\text { time base } \\ & \text { accuracy) } \end{aligned}$	$\begin{aligned} & \pm(10 \mathrm{~Hz}+\text { time base } \\ & \text { accuracy } \end{aligned}$
Frequency resolution:	1 Hz	10 Hz
Ext, frequency control:	$\begin{aligned} & 0 \text { to } 15.5 \mathrm{~V}(250 \mathrm{mV} / \mathrm{kHz} \\ & =2 \% \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \text { t0 } 15.5 \mathrm{~V}(25 \mathrm{mV} / \mathrm{kHz} \\ & \pm 2 \%) \end{aligned}$
Banduidth specified:	10, 100, 1000, 3100 hz	100, 1000, 3100 Hz

Time base accuracy: temperature coefficient: $+15^{\circ}$ to $+35^{\circ} \mathrm{C}$ $\pm 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\left(+25^{\circ} \mathrm{C}\right.$ rel $)$. Aging rate: $\pm 3 \mathrm{ppm}$ per month.
Sweep rates: $1 \mathrm{~Hz} / \mathrm{s}, 10 \mathrm{~Hz} / \mathrm{s}, 100 \mathrm{~Hz} / \mathrm{s}, 1000 \mathrm{~Hz} / \mathrm{s}, 3100$ Hz / s.
Sweep llnearlty: $\pm 1 \%$ of final value.
Mamixum sweep time: $620 \mathrm{~s} \pm 15 \mathrm{c} \%$.
Start frequency: derermined by frequency serting.
Pen lift: contact closure during sweep, open during reset.
External L.O. input: $0.65 \mathrm{~V} \pm 0.2 \mathrm{~V}$ rms, 1.28 to 1.90 MHz ($1.28 \mathrm{MHz}+$ tuned frequency). Jnpur impedance: $10 \mathrm{k} \Omega$ in parallel with $<100 \mathrm{pF}$.
Weight: net $7.5 \mathrm{lb}(3,4 \mathrm{~kg})$; shipping $9 \mathrm{lb}(4,1 \mathrm{~kg})$.
Dimenstons: $8^{\prime \prime}$ high, $41 / 2^{\prime \prime}$ wide. $11^{\prime \prime}$ deep ($20 \times 11 \times 28 \mathrm{~cm}$).
Price: HP 3594A, $\$ 1600$.

WAVE ANAL YZERS

WAVE ANALYZER, SWEEP DRIVE Measures wave components with narrow B.W.

The HP Model 302A Wave Analyzer is a tunable voltmeter of high selectivity and high sensitivity covering the frequency range of 20 Hz to 50 kHz . The frequency scale is linear throughout the band with a constant resolution of one division per 10 Hz .

The instrument separates an input signal into its individual frequency components so that fundamental hatmonic and intermodulation products may be separately measured and evaluated. It may also be used as a narrow-band selective voltmeter which will read absolute or relative levels.

An automatic frequency control (AFC) circuit locks the measuring system to the frequency of the incoming signal. eliminating any need for frequency tracking while making a measurement.

Besides its primary funcrion as a waveform analyzer, the 302 A can be operated as an oscillator-selective voltmeter combination. In BFO operation, an oscillator and the tuned roltmeter track together over the entire frequency range (20 Hz to 50 kHz) of the Model 302A. One control tunes both the oscillator and the voltmeter simultaneously, making filter and amplifier response measurements easy.

Specifications, 302A

Frequency range: 20 Hz to 50 kHz .
Frequency scale: 1 division per 10 Hz .
Dial accuracy: $\pm(1 \%+5 \mathrm{~Hz})$.
Amplitude range: $30 \mu \mathrm{~V}$ to 300 V full scale, 15 ranges in 10 dB steps. An absolute-relative switch, in conjunction with a variable 10 dB control, is provided for adjustment for intermediate values.
Voltage accuracy: $\pm 5 \%$ of foll-scale value.
Residual modulation products and hum voltage: $>75 \mathrm{~dB}$ down.
Intermedate frequency rejection: intermediate frequency present in input signal rejected by at least 75 dB .
Single fixed bandwidth: 7 Hz .
Bandpass shape

Relection	Bandwidth
$\geq 3 d \mathrm{~B}$	7 Hz
$\geq 50 \mathrm{~dB}$	50 Hz
$\geq 80 \mathrm{~dB}$	140 Hz

Ingut impedance: derermined by setting of input attenuator. $100 \mathrm{k} \Omega$ ($<100 \mathrm{pF}$ shunt) on 4 most sensitive ranges; $1 \mathrm{M} \Omega$ ($<20 \mathrm{pF}$ shunt) on remaining ranges.
Restored frequency output: 1 V across 600Ω at output ierminals for full-scale meter defection; oucput roltage proportional io meter reading: output level concrol provided: frequenç response $\pm 2 \%, 20 \mathrm{~Hz}$ to 50 kHz : output impedance approximately 600Ω.
Osclllator output: 1 V across 600Ω at output terminals (mode se. lector in BFO) ; output level control provided; (requency response $\pm 2 \%, 20 \mathrm{~Hz}$ to 50 kHz ; outpur impedance approximately 600Ω.
Recordar output: 1 mA do inco 1500Ω or less at fulf-scale merer indication for grounded or ungrounded recorders.
Automatic frequency control: range of frequency hold-in is ± 100 Hz minimum.
Power: $1!5$ or $230 \mathrm{~V} \pm 10 \%, 30$ to 400 Hz , approx. 3 W : terminals are provided for powering instrument from external battery source; battery supply range, 28 V to 18 V .
Dimensions: cabinet $121 / 2^{\prime \prime}$ high, $203 / 4^{\prime \prime}$ wide, $141 / 2^{\prime \prime}$ deep behind panel ($318 \times 527 \times 368 \mathrm{~mm}$).
Welght: cabinet net $43 \mathrm{lbs}(19,5 \mathrm{~kg})$, shipping $53 \mathrm{lbs}(23,9 \mathrm{~kg})$; rack mount ner $35 \mathrm{lbs}(16 \mathrm{~kg})$, shipping 49 lbs $(22,1 \mathrm{~kg})$.
Price: HP 302A, $\$ 1900$ (cabinet) ; HP 302AR, $\$ 1885$ (rark mount).

297A Sweep Drive

The 297A is a motor-drive unic designed to enhance the usefulness of the HP 302A, 310A or 312A Wave Analyzers. With the 297A you may sweep through all or any part of the 302 A range. Because the 297A produces an X-axis output, you may easily make semi-automatic plors of harmonics, intermodulation products and response characteristics with an X-Y recorder such as Model 7035A.

The 297A may also be used to drive other tunable devices through their ranges. A stand (HP 11505A) allows the shaft height to be ad. justed from 4 to 12 inches (102 to 305 mm).

Specifications, 297A

Sweep limits: any interval from 64 revolutions to 10 degrees.
Sweep speed with 302A: 170 and $17 \mathrm{~Hz} / \mathrm{s}$.
Shaft speed: $10 \mathrm{rpm}, ~ I \mathrm{rpm}$, and neural; other shaft speeds nail. able on special order; neurral permits manual operation.
Sweep voltage output: at least 12 V maximum; full output is ob. rained with either 2.1 or 50 revolutions of the shaft.
Torque; 9 in/oz at 10 rpm (approx, $22 \mathrm{in} / \mathrm{oz}$ max, at 1 rpm).
Power: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 12 \mathrm{~W}$ running or stalled.
Welght: net $41 / 4 \mathrm{lbs}(3,9 \mathrm{~kg})$; shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: HP 297A, $\$ 375$.
НР $\mathrm{HO} 03-297 \mathrm{~A}(230 \mathrm{~V}, 50 \mathrm{~Hz}), \$ 400$.

WAVE ANALYZER Measure harmonics, intermodulation products Model 310A

Description

The HP 310A High-Prequency W ave Analyzer is a narrow. band selective voltmeter. Selectivity allows analysis of closely spaced fundamental signals, harmonics, and intermodulation products. Signal components between 1 kHz and 1.5 MHz may be measured in both relative and absolute terms. Absolute read. outs in volts and dBm , and relative readings in percent and dB are easily made. BFO operation allow's use of the 310A as a signal generator and response meter suitable for measuring both amplifier and passive element characteristics. Also, provisions have been made for derecting and monitoring single side-band and $A M$ signals.

Specifications

Frequency range: 1 kHz to 1.5 MHz (200 Hz bandwidth) ; 3 kHz to $1.5 \mathrm{MHz}(1000 \mathrm{~Hz}$ bandwidth) : 10 kHz to 1.5 MHz (3000 Hz bandwideth).
Frequency accuracy: $\pm(1 \%+300 \mathrm{~Hz})$.
Frequency scble: linear graduation, 1 div per 200 Hz .
Selectivity: 3 IF bandwidths, $200 \mathrm{~Hz}, 1000 \mathrm{~Hz}$ and 3000 Hz ; mid. point of the passband (f_{0}) is readily distinguished by a rejection region 1 Hz wide between the 3 dB points.

	$200 \mathrm{~Hz}$ handwidth	$\begin{gathered} 1000 \mathrm{~Hz} \\ \text { bandwidth } \end{gathered}$	$\begin{gathered} 3000 \mathrm{~Hz} \\ \text { bandwidth } \end{gathered}$
Rejeotion ${ }^{\text {a }}$	Irequenay (Hz)	frequenoy (H_{t})	trequency $(H y)$
≥ 3 d8	$\mathrm{f}_{0}=108$	$\mathrm{r}_{0} \pm 540$	$\mathrm{f}_{0} \pm 1550$
≥ 6088	$f_{0}=630$	$f_{0}=3130$	$1_{0} \pm 9633$
$\geq 75 \mathrm{~dB}$	$10=1000$	$\mathrm{f}_{0} \pm 5000$	$i_{0}=17000$

*Refoction Increases smoothly beyond the -75 d8 points.
Voltage range: $10 \mu \mathrm{~V}$ to 100 V full scale, ranges provided by inpur atrenuator and meter range switch in steps of $1: 3 \mathrm{OI} 10 \mathrm{~dB}$.
Voltage accuracy: $\pm 7 \%$ of full scale.
Internal callbrator stability: $\pm 1 \%$ of full scale.
Dynamic range: $>75 \mathrm{~dB}$.
Nolse and spurious response: at least 75 dB below a full-scale reference set on the 0 dB position of Range swirch,
input resistance: determined by input attenuator; $10 \mathrm{k} \Omega$ on most sensitive range, 30 ks on next range, $100 \mathrm{k} \Omega$ on other ranges; shunt capacitance $<100 \mathrm{pF}$ on three most sensitive ranges, <50 pF on other ranges.
Automatic frequency control: dynamic bold-in range is $\pm 3 \mathrm{kHz}$ minimum at 100 kHz ; tracking speed is approximately 100 Hz / s ; locks on signal as low as 70 dB below a full-scale reference set on the 0 dB position of the Range switch.
Restored-frequency output: restored signal frequenc' maximum ourpur is at least 0.25 V (meter at full scale) across 1350 , with approximately 30 dB of level control provided; output impedance approximately 135Ω.
BFO output: 0.5 V across 135Ω with approx. 30 dB of leve! control provided; output impedance approx. 135Ω.
Recorder output: 1 V dc into an open circuit from 1000Ω source impedance for singie-ended recorders; output of 1 mA de into 1500 ת or less available on special order.
Receiver function (Aural or Recording provision): internal car. rier reinsertion oscillator is provided for demodulation of either normal or inverted single sideband signals; AM signal also can be detected.
RFI: conducted and radiated leakage limits are below those specified in MIL-J.6181D
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz} ; 205$ W max.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $103 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ($426 \times 274 \times$ 167 mm) : hardware furnished for conversion to rack mount 19 " wide, $10.15 / 32^{\prime \prime}$ high, $163 / 3^{\prime \prime}$ deep behind panel ($483 \times 266 \times 416$ лาก).
Weight: net $45 \mathrm{lb}(20,3 \mathrm{~kg})$; shipping $52 \mathrm{ibs}(23.4 \mathrm{~kg})$.
Accessories available: 11001 A Cable Assembly, $\$ 6 ; 10503 \mathrm{~A}$ Cable Assembly, $\$ 7$; 10111 A Adapter, $\$ 7$; 297A Sweep Drice, $\$ 350$: 11505A Bench Stand for 297A, $\$ 25$: K02-310A Bracker for mounting the 297 A when the 310 A is rack-mounted, $\$ 35$.
Price: HP 310A, \$2300.

Options

01: internal frequency calibrator providing check points every; 100 kHz ; interpolation accuracy (between check points): $\dot{\ddagger}$ kHz up $101.4 \mathrm{MHz} . \pm 3 \mathrm{kHz}$ between 1.4 and 1.5 MHz : add $\$ 105$.
02: dB scale uppermost on meter face and extended $(n-2 s d B$. add $\$ 25$.

312A Waveform analyzer

Model 312A permits analysis of complex wave forms whose spectra extend to 18 MHz . The Wave Analyzer utilizes the tuned-voitmeter technique to separate the various components of an input signal so that the fundamental, harmonics, and intermodulation products can be located and measured. The instrument is particulariy well suited for measurement in communications systems accommodating basebands to 18 MHz . The high selectivity, wide dynamic range, and high sensitivity of the 312A greatly simplify measurements such as distortion, attenuation, cross talk, frequency response, etc. Versatility is enhanced by three selectable bandwidths: 200 Hz for maximum resolution, $\mathrm{I}, 000$ Hz for simple calculations of noise power per Hz , and 3,000 Hz for easy location of signals or operation as a receiver.

For maximum fexibility, the 312A input may be operated either balanced or unbalanced. In the Terminated mode, the input signal is terminated in a selectable impedance of 50 , $60,75,124,135,150$, or 600 ohms. The merer indicates power in dBm absorbed by the selected impedance; in the 50 ohms position, the meter also indicates voltage. In the Bridged mode, the input impedance is 20 kilohms balanced and 10 kilohms unbalanced. When bridging an externally terminated transmission line of the same impedance selected on the 312A, the meter indicates dBm . In this mode the 312 A can also indicate voltage by selecting the Volts Calibrated position of the Impedance Selector. The high impedance 11530 A Probe can also be used for bridging measurements to eliminate the loading effect of the input cable on the circuit under test.

The 312 A has two signal attenuators. One, at the input. prevents the applied signal from overdriving the inpur amplifier. The second attenuator provides up to 60 dB actenuation in the IF channel and permits measurement of signals which are at least 65 dB below a full-scale reference set on the $0 . d B$ position. Thus, low level distortion products may be readily measured.

Tuning is accomplished in 18 overlapping bands. The frequency to which the analyzer is tuned is indicated by an in-line digital readout with $10 . \mathrm{Hz}$ resolution.

For use with equipment requiring only 75 -ohm unbalanced measurements, the HP H01-312A provides wave analysis ca pability to 22 MHz .

313A Tracking oscillator

HP 313A Tracking Oscillator provides a tracking output to complement the 312A Wave Analyzer. The frequency of this output signal automatically cracks the center of the 312A passband, so the 312 A and 313 A are excellent for analyzing the frequency response characteristics of amplifers, filters, etc.
The output of the 313 A is extremely flat over the entire frequency range and is calibrated in dBm . A precision 100. dB attenuator, calibrated in 0.1 dB steps, adds to the versatility. Together with the wide dynamic range of the 312A, the output flexibility of the 313A permits high values of gain and attenuation to be checked easily and accurately.

The 313A can also be used to provide increased amplitude resolution by expanding selectable $2-\mathrm{dB}$ ranges of the 312 A meter to full scale on the 313A meter. Any $2-\mathrm{dB}$ range between -7 and +3 dB on the 312 A meter may be selected for display. Amplitude variations as small as 0.01 dB can be resolved. Thus, minute variations in filter passbands or long-term gain variations in a communications channel can be analyzed easily.

The 313 A can be operated as a signal source independent of the 312A Wave Analyzer. As such, the 313 A has a frequency range from 10 kHz to 22 MHz in a single band. The ourput is extremely flat over the entire range and is adjustable from +10 to -99.9 dBm .

Specifications, 312A
Tuning characteristics
Frequency renge: 10 kHz to 18 MHz in 18 overlapping bands. 200 kHz overlap berween bands. Usable to 1 kHz with 200 Hz bandwidth.
Frequency accuracy: \pm (10 Hz . + time-base accuracy). Frequency indicated on in-line digital readout with $\pm 10 \mathrm{~Hz}$ resolution.
Time-base stability
Aging rate: less than ± 2 ppm per week.
As a function of ambient temperature: $+15^{\circ}$ to $+35^{\circ} \mathrm{C}$. less than $\pm 20 \mathrm{ppm} ; 0^{\circ}$ to $+55^{\circ} \mathrm{C}$, less than $\pm 100 \mathrm{ppm}$.
As a function of line voltage: less than $\pm 0.1 \mathrm{ppm}$ for changes of $=10 \%$.
Selectivity

Rejeothon	200 Hz bendwldth	1000 Hz bandwldth	8000 Hz bendwldth
3 dB	$200 \mathrm{~Hz}=10 \%$	$1 \mathrm{kHz} \pm 10 \%$	$3 \mathrm{kHz}=10 \%$
60 dB	$<470 \mathrm{~Hz}_{2}$	$<2350 \mathrm{~Hz}$	$<6680 \mathrm{~Hz}$

(Midpoint of the band is marked br rejection notch 3 Hz wide.) Automatic frequency control

Dynamic holdIn range: $=3 \mathrm{kHz}$ at 3 kHz bandxidth (0 dB ref.).
Tracking speed: $100 \mathrm{~Hz} / \mathrm{s}$; locks on to signals as low as 60 dB below zero reference. Zero reference level set with Amplicude Range switch sec to 0 dB .

Amplitude characterlstics

Amplltude range: 50 to $150 \Omega,-97 \mathrm{dBm}$ to +23 dBm full scale: $600 \Omega,-107$ to +13 dBm .
Voltage; $3 \mu \mathrm{~V}$ to 3 V full scale ($50 \Omega \mathrm{~s}$ reference).
Amplitude accuracy
Amplitude range: attenuator: $\pm 0.1 \mathrm{~dB}$ (1% of reading).
Reference fevel attenuator: at $1 \mathrm{MHz} . \pm 0.2 \mathrm{~dB}$.
Frequency response (bridging inpuk with external termination of $50 \Omega \pm 1 \%$): 10 kHz to $10 \mathrm{MHz}, \pm 0.2 \mathrm{~dB}$ (2% of reading) 10 MHz to $18 \mathrm{MHz}, \pm 0.5 \mathrm{~dB}$ (5% of reading).
Meter tracking: $\pm 0.1 \mathrm{~dB}$ to -10 dBm (1% of reading).
Internal callbrator output
Frequency: i MHz square wate (derived from time base).
Amplitude: -40 dBm into 75Ω termination.
Amplitude stabijity; $\pm 0.1 \mathrm{~dB}$.
Output connector: BNC female.
Matching impedance: $50,60,75,124,135,150$ or 600Ω, balanced or unbalanced.
Bridging impedance: $20 \mathrm{k} \Omega \pm 3 \%$ shunted by $<30 \mathrm{pF}$ (balanced): $10 \mathrm{k} \Omega \pm 3 \%$ shunted by $<60 \mathrm{pF}$, reference level attenustor at $\sim 40 \mathrm{~dB}$ (unbalanced).
Common-mode rejection (balanced input): 10 kHz to 5 MHz , $>40 \mathrm{~dB} ; 5 \mathrm{MHz}$ to $18 \mathrm{MHz},>30 \mathrm{~dB}$.
Input connector: BNC female (2).
Harmonic distortion: 10 xHz to $1 \mathrm{MHz},>15$ dB below zero reference with Amplicude Range switch sel at $0 \mathrm{~dB} ; 1 \mathrm{MHz}$ co $18 \mathrm{MM} \mathrm{M},>65 \mathrm{~dB}$ below zero reference with Amplitude Range switch set at 0 dB .
Residual responses: 72 dB below zero reference with no input and reference level in any position.
Noise fevel, referred to input: 50 to $150 \Omega,-120 \mathrm{dBm}(200 \mathrm{~Hz}$ bandwidth) ; $600 \Omega,-130 \mathrm{dBm}$ (200 Hz bandwidth).

Recelver characteristics

Receiver made outputs:
AM and AM/AFC: diode-demodulated audio.
Beat: beat frequency audio center at f_{0}.
LSB: product-demodulated audio, carrier reinserted at $f_{\text {. }}-1.8$ kHz.
USB: product-denodulated audio, carrier reinserted at $f,-1.8$ kHz .
Output connector: BNC female.
Autio output level (into at least 10 k): 0.5 V mis with full. seale meter deflection.

General

Recorder output level: $1 \mathrm{~V} \pm 0.1 \mathrm{~V}$ with full.scale meter deflec. tion across open circuis. Output connector, BN'C female. Tracking accurag' better than $上 0.1 \mathrm{~dB}$ to 20 dB beluw full-scale reference on 0 dB position of Amplitude Range swith; better than $\pm 0.2 \mathrm{~dB}$ to 30 dB below full-scale reference. Output resistance, $1 \mathrm{k} \Omega$.
Auxillary outputs
$1 \mathrm{MHz} 1 \mathrm{~V} p \cdot \mathrm{p}$ sine wale intn 1 ks : oueput connector, BNC female.
$30 \mathrm{MHz}: 40 \mathrm{mV}$ in 70 mV ems ints 50 ?; sutpui zennectur. BNC female.
Local oscillator (30 to 48 MHz): 60 mV 1090 mV rms into 50 : output connector, BNC female.
Power: 11s or $230 \mathrm{~V} \pm 10 \%, 50$ to $400 \mathrm{~Hz}, 90 \mathrm{~W}$.
Dimensions: $163 / 4^{\prime \prime}$ wide. $103 / /^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ($426 \times 274 \times$ 467 mm) : hardware (urnished for conversion to rack moune 19 " wide, 10 15/32" high, $163 / 8$ " deep behind panel ($483 \times 266 \times$ 416 mm).
Weight: ner $46 \mathrm{lbs}(20,7 \mathrm{~kg})$: shipping $59 \mathrm{lbs}(26,6 \mathrm{~kg})$.
Accessory available: $11530 \wedge$ Probe provides amplitude accurac (probe and divider only) of $\pm 0.5 \mathrm{~dB}: ~ \$ 200$.
Probe input impedance (at 1 MHz)

Probe divider	Unbalanced Input impedanoe Balarsoed	
$1: 1(0 \mathrm{~dB})$	$20 \mathrm{k} \Omega$ shunted by $<20 \mathrm{pF}$	$40 \mathrm{k} \Omega$ shunted by $<10 \mathrm{pF}$
$10: 1(20 \mathrm{~B} B)$	$20 \mathrm{k} \Omega$ shunted by $<12 \mathrm{pF}$	$40 \mathrm{k} \Omega$ shunted by $<6 \mathrm{pF}$
$[00: 1(40 \mathrm{~dB})$	$20 \mathrm{k} \Omega$ shunted by $<7 \mathrm{pF}$	$40 \mathrm{k} \Omega$ shunted by $<4 \mathrm{pFF}$

5060.0216 Joining Bracket Kit for joining two full-module instru. ments, $\$ 25$.
Prlce: HP $312 \mathrm{~A}, \$ 3900$.

HP 312A option 01 (carrier noise measurement) add $\$ 100$.
HP C01-312A, furnished with WE-465C cosxial inpur connector and WE.477B coaxial connector for the internal calibrator output, \$3975.

Specifications, H01-312A ${ }^{\text {s }}$

(Same as 312A with following exceptions)
Frequency range: 10 kHz to 22 MHz in 22 overlapping bands.
Amplitude accuracy: reference level (matched 75Ω input); ± 0.2 $\mathrm{dB}\left(+15^{\circ} 10+40^{\circ} \mathrm{C}\right), \pm 0.3 \mathrm{~dB}\left(0\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$.
Meter calibration: dBm only (75Ω reference).
Input impedance: 75Ω ar bridging ($10 \mathrm{k} \Omega$) shunted by $<35 \mathrm{p} F$, unbalanced, selectable at front panel. Input connector equivalent to WE-477B.
Receiver output connector: accepts WE. 289 B ewin plug or single two-conductor teleptone plug.
Internal callbrator output connector: equivalent to WWE-477B.
Price: HP H01.312A, \$3850.

Specifications, 313A

Frequency range

As tracking oscillator: same as 312 A (18 MHz) or H01-312A. H05-312A and H10.312A (22 MHz). Refer to page 325.
As signal source: 10 kHz to 22 MHz in one band, consinuous tuning.
Frequency accuracy
As tracking oselllator: $\hat{5} 5 \mathrm{~Hz} \pm 4 \mathrm{~Hz}$ above 312A tuning.
As signal source: $\pm 1 \%$ of maximum dial seting from 10 kHz to $2 \mathrm{MHz}: \pm 3 \%$ of meximum dial sening from 2 to 8 MHz ; $\pm 5 \%$ of maximum dial setting from 8 to 22 MHz .
Frequency stability
As tracking osciflator: same as 312 A time base $\pm 100 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}$.,
As signal source: short term (5 min) drift $<1 \mathrm{kHz}$ in stable environment after marmup.
Frequency response: $\pm 0.1 \mathrm{~dB}, 10 \mathrm{kHz}$ to 22 MHz .
Amplitude stability: $\pm 0.1 \mathrm{~dB}$ for 90 days $\left(0\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$.

Meter mode

312A Expand: meter expands any 2 dB range of 312 A meter indication from -7 to +3 dB using 312 A recorder output. Meter range, -1 to +1 dB ; tracking error, $\pm 0.05 \mathrm{~dB}$ over full 2 dB range (operates with any $1 \mathrm{~V}, 1 \mathrm{k} \Omega$ recorder output).
Output monitor: meter indicates rolage level at the input of the attenuator and can be calibrated frem the front panel.
Maximum output: 0 or $+10 \mathrm{dBm}=0.1 \mathrm{~dB}$, selectable at front panel.
Oukput attenuator: 3 -section atrenuator provides 0 to 99.9 dB attenuation in 0.1 dB steps.
Attenuator accuracy: 0.9 dB section (0.1 dB steps), $\pm 0.02 \mathrm{~dB}$; 9 dB section (1 dB steps), $\pm 0.1 \mathrm{~dB} ; 90 \mathrm{~dB}$ section (10 dB steps), $\pm 0.1 \mathrm{~dB}$ to $50 \mathrm{~dB}, \pm 0.2 \mathrm{~dB}$ to 90 dB .
Output impedance: 75Ω umbalanced (50Ω optional, see Option ol below).
Output connector: BNC female (also see C01.313A below).
Harmonic dlstortion: more shan 34 dB below fundamental.
Non-harmonic distortion As tracking oscillator: more than 40 dB below fundamental. As signal source: more than 50 dB below Eundamental.
Recorder output: +0.3 V for full-scale deflection. Outpus im. pedance ikR, BNC fernale connecior.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 30 \mathrm{~W}$ maximum.
Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $183 / /^{\prime \prime}$ deep ($426 \times 141 \times$ 467 mm).
Weight: net 25 lbs ($11,3 \mathrm{~kg}$): shipping $29 \mathrm{lbs}(13,2 \mathrm{~kg}$).
Accessories furnished: 11086A interconnerling cables for use with HP 312A, each cable 2 ft (610 mm) long with BNC male sunnectors (3).
Price: HP 313A. $\$ 1300$.
C01-313A, furnished with outpue connector equivalent to WE. 477B; $\$ 1355$.
Option O1: outpel impedance 50Ω unbalanced; no additional charge.
For other special 312A's, refer to page 325.

FREQUENCY DOMAIN MEASUREMENT

Signal analysis in the frequency domain is basic to engineering measurements. Eval uation of the relative amplitudes and frequencies of the discrete components of RF signals yields information on bandwidths, distortion, modulation characteristics, spur ious signal generation and other valuable data impossible or impractical to obtain by any other means. This analytic capability makes the spectrum analyzer an exceptionally versatile instrument for general laboratory use - an "oscilloscope in the frequency domain."
Every elecrical signal is a function of both frequency and time. The familiar time domain oscilloscope displays the instantaneous amplitude of the signal as a function of time. All frequency components of the signal are combined in a single trace to display the time-varying properties of the composite signal.
Analysis in the frequency domain separates these individual frequency components and displays the amplitude of each as a function of frequency. Thus the spectrum analyzer provides a visual display of the Fourier transform for the complex signal. In the frequency domain, signals which contain many frequencies of widely different amplitudes can be separated for easy, ac. curate analysis. Figure 1 shows a three dimensional representation of the time/frequency domains.
Hewlett-Packard spectrum analyzers provide frequency coverage from 1 kHz to 40 GHz. The model 8553L/8552A covers the $1 \cdot \mathrm{kHz}$ to $110-\mathrm{MHz}$ frequency range with an extremely flat frequency response of ± 0.5 dB. Major features of this analyzer include absolure vertical calibration in both dBm and voltage, and high resolution (minimum bandwidth of 30 Hz). Only fundamental mixing is used, eliminating image, multiple, and harmonic responses,
The basic frequency range of the Model $851 \mathrm{~B} / 8931 \mathrm{~B}$ Spectrum Analyzer is 10 MHz to 12 GHz with $1-\mathrm{kHz}$ resolution. The
addition of external waveguide mixers pro. vides coverage from 8.2 GH 2 to 40 GHz .

Broadband applications

Radio frequency interference (RFI) test. ing, specrrum surveillance, and gathering of spectrum signatures are important felds being revolucionized by spectrum analyzers. The far-ranging sidebands of radar transmitters, intermodulation products of muluple transmissions, and spurious signals generated by electronic and electrical devices can be quickly detecred and measured with a spectrom analyzer.
The HP Model 8441A Preselector is a valuable tool to aid RFI and spectrum surveilance measuremeats when using the $851 \mathrm{~B} / 8551 \mathrm{~B}$ analyzer. The 8441 A is a volt-age-tuneable bandpass filter using an yttrium iron-garnet (YIG) current-tuneable filter to pass a desired signal and reject others. By automatically tracking with the desired spectrum analyzer tuning response, ir vittually eliminates muluple, image, and spurious re. sponses in the 1.8 to 12.4 GHz range. The preselector also extends the dynamic range of the $851 \mathrm{~B} / 8931 \mathrm{~B}$ analyzer for distortion measurements as much as an additional 35 dB , permitting distortion measurements as low as 0.01%.
The extreme flatness, absolute amplitude calibration, and high sensitivity (to -130 dBm) ideally suit the $8553 \mathrm{~L} / 8552 \mathrm{~A}$ anaJyzer to RFI/EMI measurements below 110 MHz.
Fast rising, short duration pulse wave. forms in the nanosecond region can be generated by semiconductor diodes driving a shorted transmission line. With the broad frequency display (Figure 2) and flat amplitude response of the $851 \mathrm{~B} / 8951 \mathrm{~B}$, it is a simple cask to measure narrow, fast-rising pulse spectra and make adjustments for discontinuities in the generating system. The adjustment of paramerric amplifiers and varactor-tuned multiplier strings is also greatly simplified since the wide $2 . \mathrm{GHz}$ spec

Figure 1. The Frequency/Time Domalns, a. Three-dimensional coordinates showing time, fre. quency, and amplitude. The addition of a fundamental and its second barmonic is shown as an example. b. Viow seen in the t. A plane. On an oscilloscope, onty the composite $f_{4}+2 f$, would be seen. c. View seen tn the f. A plane. Note how the components of the compasite signal are clearly seen here.

Eigure 2. Nanosecond pulse and spectrum resulting.
trum width of the $851 \mathrm{~B} / 8951 \mathrm{~B}$ allows all frequencies to be observed simultaneously.

Variable persistence

Display sections with variable persistence/ storage CRT's are available for both the 851B/8551B Microwave Spectrum Analyzer and the 8953L/8352A RF Spectrum Analyzer. Variable persistence is virtually indispensable in providing a bright, steady trace

Figure 3. A low modulation level such as this (2% AM) would be difficult 10 measure n the lime dom n the rime domain in the frequency domain however, the measurement can still be made hasily and accurately. Sidebands as low as 70 dB below the carrier could be measured (0.06% A.M)
without ficker for the slow sweeps required in achieving the maximum sensitivity and resolution of the anslyzer, as well as analyzing low-repetition-rate phenomena such as radar pulses and modulation spectra (Fig. ure 3)

Figura 4. Simplfied Spectrum Analyzer of the Swept-Recelver Design.

General analyzer requirements

The basic functions of a spectrum analyzer are to translate elecuical functions into their various frequency components and present their amplisudes on a visuel display. To be versatile and effective, the spectrum analyzer should have: 1) the ability to locate and identify signals over a wide frequency spectrum, 2) the ability to magnify portions of the spectrum for detailed analysis with stable, calibrated sweeps and resolution, 3) minimum display clutter from spurious iesponses in the analyzer, and t) wide dynamic range and fat frequency response.
The usual method of obraining a visual amplitude-vs-frequency display is to apply the output of a "swept receiver" to a CRT. The receiver is electronically tuned by a linear ramp voltage. This runing voltage is also spplied to the horizontal defection plates of the CRT so that the horizontal position of the spot is proportional to frequency.

The derected output of the receiver is ap. plied to the vertical deflection plates. When a signal is received, a verrical deflection proportionsl to the amplitude of the signal is produced, thus displaying a plot of amplitude versus frequency on the CRT. If the analgzer sweeps through a CW signal slowly. the resulting response on the CRT is a plot of the passband of the analyzer's IF amplifier.

Either the first or second local oscillatos (LO) of the receiver can be swept. Sweeping the first LO (Figure 5a) has the advantages of providing very good frequency response fatness, wide spectrum widths, and generally lower distorion.

In the swept-second-LO type of malyzer (Figure 5 b) a portion of the spectrum is heresodyned to a broadband frst IF where is is scanned by the swept second LO. Thus
in this type of analyzer, maximum spectrorn width is limited by the bandpass of the first IF, typically 100 MHz . Frequency response fatness and distortion characteristics of the analyzer now depend on the first IF and second mixer as well as the first mixer.
Frequently, the two types of analyzers are combined, as in the 8553L/8552A. Here the first $L O$ is swept for the wide scans, and the third LO is swept for the natrower scans. This approach combines the wide sweep capabilities of swept-first-LO analyzers with excellent stability in the narrow scans since the first 10 is phase-locked to a stable crystal oscillator when the third LO is being swept.
Many spectrum analyzers use harmonic mixing to extend the frequency range of the analyzer economically; the RF input sigral is mixed with a harmonic of the first local oscillator to hererodyne it to the first IE. The HP 8551 B is a typical example; harmonics as high as $n=10$ are lesed to extend the frequency range to 40 GHz .

Spurious responses

If the amplitude of the RP input signals is senall (compared to the amplitude of the local oscillator), the mixer does not generate harmonics (distortion producs) of the input signal. The input attenuators of HP spectrum analyzers allow the analyzer to operate over a wide range of input levels without overloading the input mixer, thus minimizing the generation of spurious responses. Reduction of spurious responses is essential to achievigg a wide dynamic range such as the $70 . \mathrm{dB}$ dynamic range of the Model 8553L/ 8552A.

Resolution

Resolution is the ability of the analyzer to separate signals ciosely spaced in fre-

a

Figure 5. Two Methods of Obtaining Swept-Frequency Capability, a. Spectrum Analyzer using swept first LO. b. Spectrum Analyzor Using swept second LO.
quency. Since the response of the analyzer to a CW signal is a plot of the passband of the analyzers IF amplifier, the width and shape of this response are che major limita. tions on resolution. Two CW signals with a frequency separation less than the IF bandwidth would both be in the passband at the same time, thus they could not be separated.

Two other factors are also imporiant: the sweep rate and the stability of the analyzer. If the analyzer is swept through a signal too fast, the apparent bandwidth displayed on the CRT will be wider than the acrual bandwidth. Sensitivity is also reduced under these conditions since the signal does not remain in the IF passband long enough for the amplifer to fully respond. The Auso Band. width Select mode of the $851 \mathrm{~B} / 8551 \mathrm{~B}$ automatically chooses the minimum IF bandwidth useable withour this limitation. A special logic circuit in the $8553 \mathrm{~L} / 8592 \mathrm{~A}$ identifes the condition and lights a frontpanel waming lamp to alert the operator.
It frequency modulation is present on the local oscillator (other than the linear sweep voltage), the effect is equivalent to having a signsl that is frequency-modulated. As a result the analyzer will present an FM spectrum rather than a single response, Both the FM deviation and the modulating rate of any residual $F M$ in the analyzer must be less than its minimum IF bandwidth.

Series 63 application notes

A series of application notes containing detailed information concerning spectrum analysis are available on request through your Hewlett-Packard Sales Office.
Application Note 63 contains an introduction to spectrum analysis which explains the basic principles of frequency domain measurements. Illustrations of spectral displays and examples of their interpreation form a considerable portion of the text. An appendix provides a rigorous treatment of Fourier analysis as applied to spectrum analyzer displays.

AN63A through AN63D detail measurement techniques with Hewlett-Packard spec. trum analyzers, For example, AN63B dis. cusses the use of the 8441A Preselector, AN63C describes the measurement of white noise power density, ana AN63D describes accurate Irequency olibration (tapically to 0.01%) of spectrum analyzers using the HP 8406A Frequency Comb Generator.
A manual, "EMI Measurement Procedure," describes RFI/EMI measurements with the $851 \mathrm{~B} / 8551 \mathrm{~B}$ to satisfy requirements of MIL-STD-826A, ineluding details of test setups and procedures. A slide rule for simplifying calibration of the analyzer is included with the manual.

Low-frequency, narrow-band analyzer

Wave Analyzers offer another method of measuring both the amplitude and frequency of an input signal's components.

The electionic sweeping and amplitude autoranging of the new HP 3590 A wave analyzer permit X.Y and strip chart plots of amplitude versus frequency over a frequency range of 20 Hz to 620 kHz and a dynamic range of more than 85 dB . For additional information, see pages 437 to 443 .

$1 \mathrm{kHz}-110 \mathrm{MHz}$
 Absolute amplitude calibration to -130 dBm Model 8553L/8552A

141S/8553L/8552A

The Model 8553L/8552A Spectrum Analyzer provides frequency domain analysis from 1 kHz to 110 MHz - audio to VHF. The traditional capaidilities of low.frequency, highly selective wave analyzers are combined with wide dynamic range and sweep capabilities to produce a new advance in spectrum analysis. New features such as absolute amplitude calibration in voltage and power greatly simplify many otherwise tedious measurements in linear circuit design and sys. tems analysis.. Instrument controls are easy to operate and the display is easy to interpret.
The analyzer consists of an 8553L RF Section and an 8552A IF Section combined in a 140 S or 141S Display Section. The $140 S$ has a fixed-perisistence, non-storage CRT; the 1415 has a vaciable-persistence/storage CRT. Both display sections have an internal graticule for parallax-free measurements on the CRT. The graticules are specially calibrated with $\log (\mathrm{dB})$ and linear (voltage) scales for spectrum ana. lyzer use. With the 141 S you can adjust the trace persistence from 0.2 second to more than a minute to achieve a bright, steady trace that does not flicker even on slow sweeps. The long persistence also permits intermittent signals occurring over a period as long as a minute to be captured and displayed; because of their short duration, such signals are nearly impossible to measure using conventional techniques. The 141S also provides storage for side-by-side comparison of changing signals-and normal persistence as well.

All HP 1400-series oscilloscope plug-ins will at these display sections for complete fexibility in both the frequency and time domains. The spectrum analyzer RF and IF plug. ins will also operate with the standard 140A, 141A, and 143 A Oscilloscope display sections. However, these units do not have the additional shielding and filtering for low-level use (such as RFI) or the special spectrum analyzer graticule.

A set of overlays is available for the 140 A and 141 A to provide the \log and linear calibrations.

Wide frequency range

The 8553L/8552A Spectrum Analyzer has fully calibrated swept coverage from 1 kHz to 110 MHz with a spurious-free display. The feequency response is exceptionally flat (± 0.5 dB over the entire frequency range) for precision swept measurements from audio to VHF.

Calibrated scan widths 0.100 MHz

Calibrated symmetrical scan widths are selectable from $0.2 \mathrm{kHz} /$ div to $10 . \mathrm{MHz} /$ div around the center frequency. For fast broadband analysis, the preset $0-100 \mathrm{MHz}$ scan can be selected, with the $300-\mathrm{kHz}$ IF bandwidth selected automatically. In preset scan à unique inverted marker identifies the center frequency of the display for ZERO scan or PER DIVISION scan. Figure 1 shows a $10-\mathrm{MHz}$ comb display with marker tuned to the sixth harmonic. Switching the SCAN WIDTH to PER DIVISION, Figure 2, expands the sweep symmerrically about the $60 . \mathrm{MHz}^{\text {component identi- }}$ fied by the marker. In ZERO scan, the analyzer is a fixedfrequency, selectable bandwidth receiver, manually tuned by the FREQUENCY control.

Stability

An automatic stabilization system phase-locks the first local oscillator to a stable crystal when the scan widdh is less than $50 \mathrm{kHz} /$ div, reducing the residual $F M$ of the analyzer to less than 20 Hz peak-to-peak. This high order of stability makes it easy to check signal generators for residual FM or

Figure 1. Preset 0.100 MHz SCAN displays output (fundamental througts ioth harmonic) of $10-\mathrm{MHz}$ comb generator. Highly linear scan makes it simple to measure the frequency of any component accur. ately. Note liverted scan marker beneath 6th harmonic (60 MHz); switching to SCAN WIDTH PER DIVISION expands the spectral display symmetrically about the frequency the marker identifies.

rigure 2. 60 MHz signal selected by the marker from the comb of Figure 1. SCAN WIDTH is 1 MHz /division: $1 F$ BANDWIDTH is 10 kHz . signal amplitude is 4.2 divisions, and the display is LINEAR (voltage). The LINEAR SENSITIVITY is $0.2 \mathrm{mV} / \mathrm{div}$, therefore the signal ampli. pude is 0.84 mV rms.

Erequency drift, measure phase noise in phase-lock systems, evaluate oscillator spectral purity, and to use the Bessel null sechnique for precise calibration of FM deviation meters.

Resolution

The If bandwidth of a spectrum analyzer determines its resolution (ability to sepacate closely spaced signals). The $3552 \mathrm{~A} / 8553 \mathrm{~L}$ has a minimum $3-\mathrm{dB}$ bandwidth of 50 Hz with a shape factor (60 dB to 3 dB bandwidth ratio) better than 25:1. Figure 4 shows the spectrum of a carrier with $30 \% \mathrm{AM}$ at 400 Hz . The sidebands are 16 dB below the zarrier but could be resolved as far as $50-60 \mathrm{~dB}$ below the zarrier. A choice of nine bandwidths from 50 Hz to 300 kHz allows selection of the optimum bandwidth for the sensitivity, resolution, and scan width required.

Absolute amplitude calibration - high sensitivity

One of the most important features of the $8553 \mathrm{~L} / 8552 \mathrm{~A}$ s its absolute vertical calibration; signal amplitudes are neasured directly in microvolts or dBm . The LOG display

Figure 3. Settings of INPUT attentator and LINEAR SENSITIVITY analyzer controls determine scale factor for absolute voltage callbra. tion. The '"X" lamp indicates that the scale factor is the product of the LINEAR SENSITIVITY dial readings (blue color-coded): $0.2 \mathrm{mV} / \mathrm{div} x$ I $=0.2 \mathrm{mV} / \mathrm{div}$.

Figure 4. LOG Disolay of Amplitude Modulated Carrier, SCAN WIDTH 8200 Hz / div: IF BANDWIOTH is 50 Hz . The modulation frequency is measured directly from the display as 400 Hz (2 division spacing of zarrier and sidobands). The modulation percentage is measured from :he 16 da a mplitude ratio of the carrier and sidebands . . . modulation دercentage is 30%. The $800 \cdot \mathrm{~Hz}$ second harmonic distortion comsonents are 40 d below the fundamental, indicating 1% distortion. Phe celibrated LOG display also shows the carrier level to be - 31 18 m (see Figure 5),

Figure 5. Setlings of the INPUT ATTENUATOR and LOG REFERENCE LEVEL controls determine the scale factor for absolute amplitude callbration. LOG is selocted and " + " lamp lights to indicate that $20 G$ REFERENCE LEVEL is the sum of the black ector-coded dial readings: .e.، LOG REF $=-30 \mathrm{dBm}+0 \mathrm{dBm}=-30 \mathrm{dem}$. Carrier signal leval n Figure 4 is 1 dB (0.1 dlv) below LOG REF graticula line, so signal amplitude is $(-30 ه \mathrm{Bm}-1 \mathrm{I} \mathrm{B})=(-31 \quad 88 \mathrm{~m})$. The level of the other 3igna! components ean be measured as easily; for example, the 400 Hz sidebands are each -57 dEm and the $800-\mathrm{Hz}$ sidebands are -85 dBm .
$50 \cdot \mathrm{~Hz}$ Resolution
Model 8553L/8552A
(Fig. 4 and 5) reads directly in dBm ; the LINEAR display (Fig. 2 and 3) is calibrated in voltage. The high sensitivity of the analyzer permits its use as an RF voltmeter or power meter to levels as low as 0.07 microvolts (-130 dBm). You can also measure distoction in an amplifier or oscillator as a function of output level and check output levels of oscillators and signal generators. In EMI studies field strength can be measured with a calibrated antenna.

The absolute calibration of the analyzer can be verified easily with a built-in calibrator (-30 dBm at 30 MHz). In addition, a red front-panel lamp warns when the displayed amplitude is uncalibrated because the scan rate is too fast for the IF bandwidth selected.

70 dB display range

The full 70 dB displayed dynamic range of the $8553 \mathrm{~L} /$ 8552 A is free of distortion products generated by the analyzer itself. An RF Input Attenuator (0 to 50 dB) prevents overloading of the input mixer to keep analyzer distortion products more than 70 dB below any signal input level up to +10 dBm . With this extremely clean display you can measure distortion levels as low as 0.03% or monitor signals of widely varying amplitudes, such as in EMC, RFI, and surveillance work. Another application is displaying the frequency response characteristics of amplifiers and filters for measurement or alignment (Figure 6).

Figure 6. LOG Display of swept filter test. 70 dB dynamic range of analyzer easily alsolays spurious filter response 63 dB below principal filter response. BASE LINE CLIPPER IS adjusted to blank lower portion of display, useful in photography so the bright base line will not over. expose the firm. Center frequency is 50 MHz, SCAN WIDTH is 10 $\mathrm{MHz} /$ div. The 141 S Variable Persistence/Storage Display Section is used here to hold the display for comparison as the filter is adjusted.

Video filter

The video filter smooths the detected signal before it is displayed on the CRT, adding additional convenience to the analyzer. This is especially useful in averaging noise or other broadband signals, e.g., measuring noise power density. Very small signals near the residual noise level are also easier to see with the noise components averaged by the video filter.

Specifications for RF and IF sections RF input and tunling characteristics

Frequency range: 1 kHz to 110 MHz .
Frequency response; $\pm 0.5 \mathrm{~dB}, 1 \mathrm{kHz}$ to 110 MHz (for attenuator settings $\geq 10 \mathrm{~dB}$). Typical fine grain fatness, $\leq 0.1 \mathrm{~dB}$ per MHz .
Input impedance: 50Ω nominal.
Reflection coefficient ≤ 0.13 (1.3 SWR , 18 dB return loss) for input attenuator settings $\geq 10 \mathrm{~dB}$.
Maximum input level: peak or average power to input mixer $<+13 \mathrm{dBm}(1.4 \mathrm{Vac}$ peak; $\pm 50 \mathrm{~V} \mathrm{dc}$).
Sensitivity: $\frac{\text { Signal Power }+ \text { Noise Power }}{\text { Noise Pow'er }}=2$

IF Bandwldth	Sensitivity	Frequeney Range
(kHz)	(dBm)	(MHz)
1	-120	$1-110$
10	-110	$1-110$
100	-100	$1-110$

*Typiral sensitivity versus Input frequency curves for frequenclas from 1 kHz to 110 MHz are shown in Flg. 7.
Tuning dial accuracy: display center frequency is within ± 1 MHz of indicated dial frequency.
Center frequency identifler: marker in 0.100 MHz SCAN WIDTH mode identiaes display center frequency of SCAN WIDTH/DIVISION and ZERO SCAN modes.

Scan characteristics

Scan width: 15 calibrated scan widths from $200 \mathrm{~Hz} /$ div to $10 \mathrm{MHz} /$ div in a $1,2,5,10$ sequence plus ZERO and preset 0.100 MHz SCAN. Scan is displayed on a 10 division horizontal span of display section CRT.
Scan width accuracy: scan widths 10 MHz /div to 2 MHz / div and $20 \mathrm{kHz} /$ div to $200 \mathrm{~Hz} /$ div: frequency error between two points on the display is less than $\pm 3 \%$ of the indicated frequency separation between the two points. Scan widths i $\mathrm{MHz} /$ div to $50 \mathrm{kHz} /$ div: frequency ercor between two points on the display is $<10 \%$ of the indicated frequency separation, typically 5%.
Scan time: 16 rates from $0.1 \mathrm{~ms} / \mathrm{div}$ to $10 \mathrm{~s} / \mathrm{div}$ in a 1,2 , 5,10 sequence, INTERNAL and SINGLE SCAN modes only.
Scan time accuracy: $0.1 \mathrm{~ms} /$ div to $20 \mathrm{~ms} / \mathrm{div}, \pm 10 \%$. $50 \mathrm{~ms} / \mathrm{div}$ to $10 \mathrm{~s} / \mathrm{div}, \pm 20 \%$.
Scan mode
Internal: analyzer repetitively scanned by internally generated ramp; synchronization selected by SCAN TRIG. GER, SCANNING lamp indicates duration of scan.
Single: single scan actuated by front panel pushbutton. SCANNING lamp indicates duration of scan.
External: scan determined by 0 to +8 volt external signal; analyzer input impedance $>10 \mathrm{k} \Omega$. Blanking: -1.5 V external blanking signal required.
Scan trigger: required only when INTERNAI SCAN MODE selected.
Auto: scan free-runs.

Figure 7. Typical Sensitivlty vs. Input Frequency,

Line: scan synchronized with power line frequency.
External: scan synchronized with external 2 - to 20 -volt signal (polarity selected by internally located switch of Model 8552A YF Section).
Video: scan internally synchronized to envelope of RF input signal (signal amplitude of 1.5 major divisions peak-to-peak required on display section CRT).

Spectral resolution

IF bandwidth: $3 \cdot \mathrm{~dB}$ bandwidths of $50,100,300 \mathrm{~Hz}$, and 1 , $3,10,30,100$, and 300 kHz can be selected.
IF bandwidth aceuracy: individual bandwidths calibrated within $\pm 20 \%, 10-\mathrm{kHz}$ IF bandwidth calibrated within $\div 5 \%$.
1F bandwidth selectivity: $60 \mathrm{~dB} / 3 \mathrm{~dB}$ bandwidth ratio less than 20:1 for IF bandwidths from 1 kHz to 300 kHz . $60 \mathrm{~dB} / 3 \mathrm{~dB}$ bandwidth ratio less than $25: 1$ for IF band. widths from 50 Hz to 300 Hz .
Video silter bendwidth: wo post-detection bandwidths: 10 kHz and 100 Hz .
Video filter bandwidth accuracy: individual video bandwidths calibrated within $\pm 20 \%$.

Amplitude characteristics

Vertical display calibration (8 divisions full scale deflection) Logarithmic: calibrated directly in $d B m$ over $140-\mathrm{dB}$ range from -130 dBm to $+10 \mathrm{dBm}, 10 \mathrm{~dB} /$ div on 0 to -70 dB CRT display. LOG REFERENCE LEVEL control and \log reference vernier establish absolute power reference level in dBm for CRT display.

Linear: calibrated directly in $\mathrm{V} /$ div from $0.1 \mu \mathrm{~V} /$ div to $100 \mathrm{mV} / \mathrm{div}$ in a $1,2,10$ sequence. LINEAR SENSITIVITY and vernier controls establish absolute voltage calibration (deflection factor).
Callbrator: $30-\mathrm{MHz}$ signal provided as operating standard for absolute vertical calibration of display: -30 dBm $\pm 0.3 \mathrm{~dB}$.
Vertical display accuracy:

$\begin{gathered} \text { Logarithmic } \\ \mathrm{dBm} \end{gathered}$	LInear volts
Calibrator $\pm 0.3 \mathrm{~dB}$	$\pm 3.5 \%$
Log Reference Level (Linear Sensitivity) ... $\pm 0.2 \mathrm{~dB}$	$\pm 2.3 \%$
Log Reference Vernier (Linear Sensitivity Vernier) .. $\pm 0.1 \mathrm{~dB}$ *	$\pm 1.2 \%$ *
RF Input Attenuator Accuracy (excluding flatness) $\pm 0.2 \mathrm{~dB}$	$\pm 2.3 \%$
Analyzer Frequency Re. sponse (flatness) $\pm 0.5 \mathrm{~dB}$	$\pm 5.8 \%$
Switching between bandwidths (at $20^{\circ} \mathrm{C}$) ... $\pm 0.5 \mathrm{~dB}$	$\pm 5.8 \%$
Amplitude Stability: 100 Hz - 300 kHz bandwidth .. $\pm 0.05 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ 50 Hz bandwidth ... $\pm 0.1 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 0.6 \% /{ }^{\circ} \mathrm{C} \\ & \pm 1.2 \% /{ }^{\circ} \mathrm{C} \end{aligned}$
CRT Display $\pm 0.25 \mathrm{~dB} / \mathrm{dB}$ but not more than $\pm 1.5 \mathrm{~dB}$ over the full 70 dB display range.	$\pm 2.8 \% \text { of }$ full 8 diy deflection

[^40]Dlsplay uncallbrated light: panel lamp warns operator of uncalibrated amplitude display if selected IF bandwidth or video bandwidth is too narrow for combination of scan width and scan time selected.

Spectral purity

Automatic stabilization: first local oscillator automatically stabilized (phase-locked) to internal reference for scans of $20 \mathrm{kHz} /$ div or less.

Long term stability (after approximately one hour warmup):
Stabilized: $100 \mathrm{~Hz} / \mathrm{min} ; 500 \mathrm{~Hz} / 10 \mathrm{~min}$.
Unstabilized: $5 \mathrm{kHz} / \mathrm{min} ; 20 \mathrm{kHz} / 10 \mathrm{~min}$.

Residual FM:

Stabilized: less than 20 Hz peak-to-peak.
Unstabilized: less than 1 kHz peak-to-peak.
Noise sidebands: more than 70 dB below CW signal 50 kHz or more away from signal, with a $1-\mathrm{kHz}$ IF BAND. WIDTH setting.
Spurious responses: for -40 dBm signal level to input mixer: image responses, out-of-band mixing responses, harmonic and intermodulation distortion products, and IF feedthrough responses all more than 70 dB below the input signal level.
Residual responses: 200 kHz to $110 \mathrm{MHz}:<-110 \mathrm{dBm}$. 20 kHz to $200 \mathrm{kHz}:<-95 \mathrm{dBm}$.

Display Section Specifications

Model $140 S$ Specifications (for additional information, see Model 140A, page 512).
Plug-Ins: accepts Model 8553L /8552A Spectrum Analyzer plug-ins and Model 1400-series time domain plug-ins.

Cathode-ray tube:

Type: post-accelerator, 7300 volt accelerating potential; etched safety glass face plate reduces glare; transparent coating reduces RFI. P7, long persistence phosphor; light blue filter supplied.
Graticule: 8×10 divisions (approximately $7,2 \times 9,0 \mathrm{~cm}$) parallax-free internal graticule; five subdivisions per major division on horizontal and vertical axes.
Model 141S Specifications (for additional information, see Model 141A, page 513).
Plug-ins: same as 140 S .

Cathrode ray tube:

Type: post accelerator storage tube, 7300 volt accelerating potential; aluminized P31 phosphor; etched safety glass face plate reduces glare.
Graticule: 8×10 divisions (approximately $6,6 \times 8,2 \mathrm{~cm}$) parallax-free internal graticule; five subdivisions per major division on horizontal and vertical axes.

Presistence:

Normal: natural persistence of P31 phosphor (approximately 0.1 second).

Variable:

Normal writing rate mode: continuously variable from less than 0.2 second to more than one minute (typically to two or three minutes).
Max. writing rate mode: typically variable from 0.2 second to 15 seconds.
Erase: manual; erasure takes approximately 100 ms .

General Specifications

CRT base line clipper: front panel control adjusts blanking of CRT trace base line to allow more detailed analysis of low-repetition-rate signals and improved photographic records to be made.

Vertical display output: approximately 0 to -0.8 V for 8 div deflection on CRT; $2 \mathrm{k} \Omega$ output impedance.
Scan output: approximately -5 to +5 volts for 10 div CRT deflection; $5 \mathrm{k} \Omega$ output impedance.
RFI: conducted and radiated leakage limits are below requirements of MIL-I-16910C and MIL-I-6181D from 150 kHz to 110 MHz and below MIL-I-16910A from 14 kHz 150 kHz when 8553 L and 8552A are combined in a 140 S Display Section.

Temperature range: operating, 0° to $+55^{\circ} \mathrm{C}$; storage, -40° to $+75^{\circ} \mathrm{C}$.

Power requirements: 115 or 230 volts $\pm 10 \%, 50$ to 60 Hz , normally less than 225 watts (varies with plug-in units used).

Weight: Model 8552A IF Section: Net, 9 lb ($4,1 \mathrm{~kg}$). Shipping, 14 lb ($6,4 \mathrm{~kg}$).
Model 8553L RF Section: Net, $12 \mathrm{lb}(5,5 \mathrm{~kg})$. Shipping, $17 \mathrm{lb}(7,8 \mathrm{~kg})$.
Model 140S Display Section: Net, $37 \mathrm{lb}(16,8 \mathrm{~kg}$). Shipping, $45 \mathrm{lb}(20 \mathrm{~kg})$.
Model 1415 Display Section: Net, $40 \mathrm{lb}(18 \mathrm{~kg})$. Shipping, $51 \mathrm{lb}(23 \mathrm{~kg})$.
Dimenslons: $9-1 / 16^{\prime \prime}$ high (including height of feet) x $163 / 4^{\prime \prime}$ wide $\times 183 / 8^{\prime \prime}$ deep ($229 \times 425 \times 467 \mathrm{~mm}$).
Accessory equipment furnished: two $50 \Omega \mathrm{BNC}$ terminations for front panel 1st LO OUTPUT and 3rd LO OUTPUT (Model 8553L).
Accessory required for service: 11592A Service Kit, \$185. Includes extender cables, connector adapters, etc.
Accessorles available: Model 8406A Frequency Comb Gerrerator: provides frequency markers spaced 1, 10, and 100 MHz for precise frequency calibration of analyzer. Frequency accuracy is $\pm 0.01 \%$.
Price: Model 8552A IF Section, $\$ 1,900$.
Model 8553 L RF Section, $\$ 1,800$.
Model 140 S Display Section, $\$ 725$.
Model 141 S Variable Persistence Display Section, $\$ 1,525$.

$10 \mathrm{MHz}-40 \mathrm{GHz}$ Fully calibrated, 2 GHz spectrum width
 Model 8551B

 sPECTRUM ANALYZERS

Description

The Hewlet-Packard 8551B Spectrum Analyzer System is a fully calibrated, highly versatile analyzer which covers the range from 10.1 MHz to 40 GHz . The accuracy and flexibility of the instrument make it suitable for many applications beyond the capability of other spectrum analyzers. These include wideband yet rapid RFI measurements, spectrum surveillance and spectrum signature work, and semiconductor evaluations embracing such tests as fast pulsing viewed in the frequency domain.

The analyzer consists of two units, the $8551 B$ RF Section and either the 851 B or the 852 A Display Section, comprising a triple-conversion superheterodyne receiver with swept first local oscillator and oscilloscope readout. The 8551 BRF Section includes the mixers, local oscillators, and two of the three IF amplifiers. The 851 B or 852 A Display Section includes the final IF amplifier, IF attenuator and bandpass filters, and rideo detector plus the cathode-ray tube, sweep generator, and display controls.

Maximum RF input flexibility

The extremely wideband coaxial input system will accept signals from 10.1 MHz to 12 GHz . Use of the broadband, untuned first mixer permits simultaneous observation of widely spaced signals; testing of parametric amplifiers is an application in which this feature is useful, for you can observe the signal, pump, and idler frequencies on a single display and immediately note the effects of adjustments. When it becomes desirable or necessary to limit the input frequency range, this can be done easily by adding approptiate preselectors (such as filters, isolators, tuned amplifiers, etc.). The user has complete latitude in the choice of preselectors, for the anaiyzer imposes no arbitrary frequency biand limitations.

Additional input system flexibility and convenience are afforded by the inclusion of a high performance RF attenuator for use with the coaxial inputs when higher level signals are to be examined. Signal levels as high as 1 watt can be viewed without jeopardizing the input mixer. The attenuator has $60-\mathrm{dB}$ range in $10 \cdot \mathrm{~dB}$ steps, and because its residual attenuation is very small (less than 2 dB at 10 GHz), it can remain an integral part of the input system, thereby eliminating any need for cable patching. In addition, the attenuator provides a well-matched input for the analyzer. The match on the straight-through or $0-\mathrm{dB}$ position of the attenuator is also good with a maximum reflection coefficient of 0.5 (SWR of 3).

Flat response, high sensitivity

The HP-developed input mixer provides the analyzer with extremely flat frequency response. Over full 2-GHz spectrum widths, response is $\pm 2 \mathrm{~dB}$ on fundamental mixing, ± 2 to $\pm 3.5 \mathrm{~dB}$ on harmonic mixing to 12 GHz . Over spectrum widdhs of 100 MHz , frequency response is correspondingly better. Response over the 4 - to $6-\mathrm{GHz}$ cange is shown in Figure 1. Such fiat frequency response permits reliable quantitative measurements where amplitude comparisons of signals at different frequencies can be made (such as in measuring the harmonic content of signals). Very low-level harmonic and intermodulation products are generated within the mixer. For example, with a -30 dBm input level to the mixer, harmonic and intermodulation products are typically $>50 \mathrm{~dB}$ below the signal level when fundamental mixing is employed. An additional feature of the input mixer is that the diode is a standard, readily available item easily replaceable from the front panel.

The 8551 B has high sensitivity as well as flat frequency response. Sensitivity (10 kHz BW) ranges from -100 dBm in the lower coaxial ranges (where fundamental mixing is employed) to -65 dBm in the highest waveguide band (using harmonic mixing). This sensitivity plus the 60 dB range of the input attenuator enables the analyzer to handle an extremely broad range of signal levels.

The discussion above deals primarily with the coaxial input system of the analyzer. Analysis of signals at higher frequencies where waveguide systems are employed can also be performed. External waveguide mixers covering 8.2 to 40 GHz are used, with a simple coaxial cable serving as the link between the mixer and the 8551B. The single cable delivers local oscillator power to the mixer and returns the mixing products to the analyzer. Thus there is no need to use cumbersome flexguide or resort to awkward handling merely to observe signals in waveguide systems. External waveguide attenuators, such as the HP 382 series, can be used to control the input signal level.

$2 \cdot \mathrm{GHz}$ spectrum widith with clutter-free display

A fresh approach to spectrum analyzer design has resulted in an 8551 B offering up to 2 GHz of calibrated spectrum width with a display that is free from the spurious responses and images which historically have made interpretation of spectral displays very difficult. This is achieved through use of the 2.4 GHz backward-wave oscillator as the first swept

Figuro 1. Frequancy response, 4 to 6 GHz . Fundamental mixing is shown across the entire 2-GHz range, and thirdand second-harmonic mixing aro also shown over the ranges in which thoy occur. (Since odd harmonic mixing is selected. the mixer blas is not optimized for eveniharmonic mixing.)
local oscillator (LO) followed by a $2-\mathrm{GHz}$ first IF amplifier. Sweeping the first local oscillator allows use of fixed tuned, narrow-band IF amplifiess throughout the analyzer, eliminating the sources of spurious signals found in other spectrum analyzers. The high frequency first IF spaces images 4 GHz apart and therefore image signals do not clutter the display. The combination of a $2-4 \mathrm{GHz}$ swept LO and a $2-\mathrm{GHz}$ first IF provides low frequency coverage down to 10.1 MHz . When the LO is set to 2 GHz , the LO feeds directly through the IF and can serve as a signal source to perform self-checks on the analyzer's performance and calibration. Figure 2 illustrates the use of the $2 \cdot \mathrm{GHz}$ spectrum width in the evaluation of a frequency doubler.

When viewing signals very close to 2 GHz in frequency, a separate first IF of 200 MHz can be switch-selected. The $200-$ MHz first IF mode can be used to observe signals from 1.8 to 4.2 GHz ; sensitivity exceeds -100 dBm and images are 400 MHz apart. Flatness of response and freedom from intemally generated spurious signals are also characteristic of this mode.

In addition to its wide sweep capability, the 8551 B Spectrum Analyzer also excels in the presentation of narrow frequency sweeps. Spectrum widths as narrow as 100 kHz can be selected for detailed examination of individual signals, distortion products, etc. Figure 3 is the spectrum of an am-plitude-modulated signal in the VHF region. The narrow sweep capability of the analyzer is made possible by a selfcontained phase-lock system which reduces residual FM in the Grst local oscilator to less than 1 kHz . Stabilization of the local oscillator by means of phase-lock is possible for spectrum widths up to (10 n) MHz (where n is the harmonic number of the LO); this is well beyond the point where residual FM of the unstabilized LO could be detected on the display. For operator convenience, a front panel warning light indicates spectrom width too great for use of phase-lock stabilization.

Ficure 2. Braad spectrum-width capability permits simulianeous obsenation of tirst, second, thlid, and fourth harmonle output of an HP 10515A Frequency Doubler with a 1 -volt input at about 500 MHz .

Figure 3. Narrow.band capabllity permits examination of $V H F$ signal amplitude.modulated 40%. (HP 8442A 20-MHz Crystal filter used here for optimum resolution.)

The 8551B provides simplicity of tuning, particularly when the unit is operated with the LO stabilized. The phaselock system itself tracks with tuning so the LO remains scabilized while it is sweeping and also when its center frequency is changed. Thus, there is no need to re-establish phase-lock with every change of frequency, so the operator can continue to tune the analyzer with a single knob.

Two tuning speeds are available. The shift between coarse and fine tuning is accomplished by a pull-push selector on the tuning control. An ultra-fine vernier is also available during stabilized operation for precise positioning of the display.

Positive signal identification

Measurements with the 8551 B ace simplifed by the fact that all displayed signals are easily and positively identifiable. Factors contributing to the ease of signal identification are the $4-\mathrm{GHz}$ image separation and almost total absence of spurious signals which otherwise clutter the display and mask real signals. Actual identification is straightforward. A frontpanel conerol permits rapid determination of the LO mixing harmonic and identification of the signal as an upper or lower mixing product.

Specifications 8551B RF section
 (When connected to display section)
 Coaxial input characteristics

Frequency range: 10.1 MHz to 12 GHz . Input connector, Type N female.

Sensltuvity

$\left(\frac{\text { signal power }+ \text { noise power }}{\text { noise power }}=2 ; 10-\mathrm{kHz}\right.$ IF bandwidth $)$:
10.1 MHz to $100 \mathrm{MHz}_{4}-98 \mathrm{dBm}$, fundamental mixing

100 MHz to $1.8 \mathrm{GHz}_{\text {s }}-100 \mathrm{dBm}$, fundameatal mixing
1.8 to $4.2 \mathrm{GHz},-100 \mathrm{dBm}$, fundamental mixing (using 200 MHz 1st IF)
2.4 to $4.1 \mathrm{GHz},-90 \mathrm{dBm}$, second harmonic mixing
4.1 to $6 \mathrm{GHz},-100 \mathrm{dBm}$, fundamental mixing

6 to $8 \mathrm{GHz}^{2}-88 \mathrm{dBm}$, third harmonic mixing
8 to $10 \mathrm{GHz},-91 \mathrm{dBm}$, second harmonic mixing
10 to $12.0 \mathrm{GHz},-85 \mathrm{dBm}$, third harmonic mixing
With source stability better than 1 kHz , greater sensitivity can be achieved using narrower IF bandwidth.
Image separation: 4 GHz , (2 GHz First IF); 400 MHz separation wheo using 200 MHz IF.
Maximum input power (for 1 dB signal compression): Typical Max Input

Input Atten Setting	(peak or avera
0 dB	-10 dBm
10 dB	0 dBm
20 dB	+10 dBm
30 dB	+20 dBm
40.60 dB	+30 dBm

Mixer diode: standard 1N4603 replaceable from the front panel.
Residual responses (no Input signal): less than -90 dBm referred to signal input on fundamental mixing (-85 dBm when LO is within 60 MHz of 2 or 4 GHz).
RF input attencuator: 0 to 60 dB in $10 \cdot \mathrm{~dB}$ steps (attenuator residual loss and flatesss characteristics included in sensitivity and frequency response specifications). Input ac-coupled; maximum dc voltage: 30 V on $0 \cdot \mathrm{~dB}$ settiog, 7 V on all others.

Waveguide input characteristics

Frequency range: 8.2 to 40 GHz (accessory mixers and adapters required).
Sensitivity
$\left(\frac{\text { signal power }+ \text { noise power }}{\text { noise power }}=2 ; 10-\mathrm{kHz}\right.$ IF bandwidth $)$: 8.2 to $18 \mathrm{GHz},-80 \mathrm{dBm}$ 18 to $26.9 \mathrm{GHz},-75 \mathrm{dBm}$ 26.5 to $40 \mathrm{GHz},-65 \mathrm{dBm}$

Maximum input power (for 1 dB signal compression): 8.2 to 12.4 GHz (using 11521A Mixer) trpically -15 dBm peak or average.
12.4 to 40 GHz (using 11517 A Mixer) typically -15 dBm peak or average.
External mixer Input connector: BNC female; LO power to mixer and 2 -GHz IF signal from mixer use this connector.

SPECTRUM ANALYZERS contriucod

85518 RF section

RF sweep, first local oscillator (LO), and RF łuning characteristics

Spectrum width: 10 calibrated spectrum widths from 100 kHz to 2 GHz in a $1,3,10$ sequence to 1 GHz . Vernier allows continuous adjustment berween calibrated ranges and can be used to reduce width to 0 . Displayed over $10-\mathrm{cm}$ horizontal span on display section CRT.

Swept frequency linearlty: spectrum widths $200 \mathrm{MHz} / \mathrm{div}$ to 3 $\mathrm{MHz} / \mathrm{div}$: Frequency error between two points on the display is less than $\pm 10 \% \pm 3 \mathrm{MHz}$ of the indicated frequency separation between the two points.
Spectrum widths 1 MHz /div to $10 \mathrm{kHz} /$ div (stabilized uning mode): Frequedcy error between two points on the display is less than $\pm 5 \%$ of the indicated frequency separation between the two points.

First local oscillator: 2 to 4 GHz backward-wave oscillator.
Tuning accusacy: $\pm 1 \%$ of first LO fundamental or harmonic.
Tuning modes: selectable continuous coarse, fine, and stabilized (phase-Iocked) tuning determines center frequency about which first local oscillator (LO) is swept. Tuning accomplished with single front panel TUNE control (with FREQUENCY VERNIER control for increased settability when in stabilized tuning mode; vemier tuning range 100 kHz).
Frequency change of LO fundamental is 200 MHz per revolution of TUNE control for COARSE, 10 MHz per revolution for FINE.

LO stabillzation range: first LO can be phase-locked to internal voltage-tuned reference oscillator. LO sweep tracks reference oscillator sweep for spectrum widths up to (n) $\times(10 \mathrm{MHz})$; $(\mathrm{n}=$ harmonic number).

Stabilized tunlng: internal reference oscillator auromarically tracks with TUNE contral over full LO range to retain stabilization at any LO frequency. Frequency change of LO fundamental is 10 MHz per revolution of the TUNE control. FREQUENCY VERNIER control (100 kHz tuning range) permits precise setrability.

LO charactertstles

Residual FM: less than 1 kHz ($\mathrm{p}-\mathrm{p}$) when first 10 stabilized; typically less than 40 kHz ($\mathrm{p}-\mathrm{p}$) wheo LO not stabilized.
Nolse sidebands: more than 60 dB below CW signal level 90 kHz or more away from signal, using fundamental mixing.
Auxlliary RF output: approximately 20 mW available at rear panel Type N female connector for use with other equipment (e.g. frequency counter, wavemeter). Requires nominal 50 -ohrm load impedance; HP 908A termination furnished.

Frequency response, Coaxial input
(Includes mixer and RF attenuator response with attenuàtor satting $\geq 10 \mathrm{~dB}$):

Frequency range	n^{*}	Mixing mode \cdot IF (GHz)	Relative gain ${ }^{* *}$ $(\mathrm{dB})^{\circ}$	Flatness, full range (d8)	flatness, $100 \mathrm{MHz}_{2}(88)$
10.1 to 1.8 GHz	1-	2	0	± 2.0	± 2.0
(100 MHz to 1.8 gHz)	$1-$	2	0	± 1.5	± 1.0
1.8104 .2 GHz	$1 \pm$	0.2	0	± 3.5	± 2.0
2.4104 .1 GHz	2	2	-7	± 2.5	+ 2.0
4. 1106 GHz	$1+$	2	0	± 1.5	± 1.0
6108 GHz	3-	2	-11	± 2.0	± 1.5
8 to 10 GHz	$2+$	2	-7	$=2.0$	± 1.5
10 to 12.0 GHz	$3+$	2	-12	± 3.5	± 2.0

[^41]
SPECTRUM ANALYZER zominut

851B, 852A display section

Signal identification and
 self-check characteristics

Signal ldentlfier: front panel switch introduces precise frequency offsets to permit exact determination of LO harmonic number used for mixing. Direction of display shift indicates whether sig. nal frequency is higher or lower than LO harmonic. Concentric push button switch permits reestablishment of reference position to facilitate identification of drifting signals.
Selt-check: frst IF of 2 GHz permits use of 5 wep: LO (tuned to 2 GH 2) for calibration, alignment, and general performance checks. Stabilized LO provides sivept RF signal with very high linearity over $10 \cdot \mathrm{MHz}$ range for IF bandwidth calibrations.

General

IF output center frequency: 20 MHz (at rear panel BNC female connector for use with 851B or 852A Display Section).
RFI: conducted and radiated leakage are below requirements of MIL-I-16910C when the RF and display sections are fastened together with the bracket kit supplied.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 60 Hz , less than 275 W (less than 330 W , toral, when display section power supplied through 8551 B rear panel switched line output).
Weight: net $88 \mathrm{lb}(39,6 \mathrm{~kg})$; shipping $134 \mathrm{lb}(60,3 \mathrm{~kg})$.
Dimenslons: $163 / 4$ " wide, $12-7 / 32^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ($425 \times 310 \times$ 467 mm).
Accessory items furnished: $71 / 2 \mathrm{ft}(2290 \mathrm{~mm})$ power cable; rack mounting kit; cables to connect 8551B RF section to display section; 908 A Termination for rear panel auxiliary 10 ourput.
Price: Model 8ssLB, $\$ 7550$.

851 B display section

Display characteristics

Vertical display (7 cm full scale deflection):
Cathode-ray tube: 7.5 kV posc-accelerator tube with P 2 medium persistence phosphor (other optional) and internal graticule; light blue filter supplied; light-proof CRT bezel provides firm mount for oscilloscope camera
CRT internal graticule: parallax-free $7 \times 10 \mathrm{~cm}$, marked in centimeter squares with $2 \cdot \mathrm{~mm}$ subdivisions on major horizontal and verical axes.
CRT base line clipper: front panel control permits blanking of CRT trace base line, 10 allow more detailed analysis of Jor reperition rate signals.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$. 50 to $400 \mathrm{~Hz},<55 \mathrm{~W}$.
Welght: net $34 \mathrm{lb}(15,2 \mathrm{~kg})$; shipping $38 \mathrm{lb}(17,1 \mathrm{~kg})$.
Price: Model 851B, \$2400.
Options: 07;P7 phosphor in lieu of P2 (amber filter supplied) no additional sharge. 31;P31 phosphor in lieu of P2 (green filter sup. plied) no additional charge.

852A display section

Display characteristics

Cathode-ray tube:

Yype: post-accelerator storage tube, 7300 -volt accelerating poten. tial; aluminized P31 phosphor; etched sakery glass face place reduces glare.
Graticule: 7×10 divisions (approximately $8.5 \times 5.9 \mathrm{~cm}$) paral-lax-free internal graticule; 5 subdivisions per major division on major horizontal and vertical axes.
Warranty: CRT specifications (persistence, brightness, storage time) warranted for one year.

Persistence:

Short: natural persistence of P31 phosphor (approximately 01 second).

Variable: (typically to 2 or 3 min).
Normal writing rate mode: continuously variable from less than 0.2 sec to more than 1 min).
Max. writing rate mode: typically variable from 0.2 to 15 s .
Erase: manual; erasure takes approximately 0.5 s ; CRT ready to record immediately after erasure.
Brightness: greater than 100 footlamberts in NORMAL or VIEW; tapically s foolamberts in STORE.
Vertical display (7 div full scale deflection):

Mode	Scale Factor	Accuracy**
LINEAR	Resative voltage/div	$\pm 3 \%$ full scale
SQUARE	Relative power/div	$\pm 5 \%$ full scale*
LOGARITHMIC	10 dB/div calibrated	$< \pm 0.2 \mathrm{~dB} /$ but
	orer 0 to 60 dB on	nor more than $\pm 2 \mathrm{~dB}$
	CRT display	ove full calibrated
		60 dB CRT display
		range*

"Except pulse spectra on 1 mHz IF bandwldth.

- 0 to $40^{\circ} \mathrm{C}$.

CRT base line clipper: frons panel control permits blanking of CRT trace base line to allow more decaited analysis of low repericion rate signals.
Power: 115 or 230 voles $\pm 10 \%$, 50 to $400 \mathrm{~Hz}, 75 \mathrm{~W}$.
Welghts net $36 \mathrm{lb}(16,1 \mathrm{~kg})$; shipping $40 \mathrm{lb}(18 \mathrm{~kg})$.
Price: Model 852A, $\$ 3,400$.

851B, 852A display section

IF characterlstics
IF input center trequency: 20 MHz (accepts $20 \cdot \mathrm{MHz}$ oupput from 8551B RF Section).
IF bandwidth: manual: bandwidths of $1,3,10,100 \mathrm{kHz}$, and 1 MHz can be selected; AUTO SELECT: one of the above band. widths automatically selected for best resolution of a CW' signal for each combination of Specirum Width and Sweep Time; Bandwidth Accuracy: individual bandwidths are calibrated within $\pm 20 \%$, bandwidth repeatabiliey and stability typically better than $\pm 3 \%$.
IF galn set: 2-section atcenuator provides 0 to 80 dB attenuation in 1 -dB steps; one section provides 0 to 70 dB attenuation in $10-\mathrm{dB}$ steps; the ocher 0 to 10 dB in $1-\mathrm{dB}$ steps: IF Vernier provides conrinuous adjusiment berween $1 . \mathrm{dB}$ steps.
IF gain set accuracy: $70 . \mathrm{db}$ section. $\pm 0.5 \mathrm{~dB} ; 10 \cdot \mathrm{~dB}$ section. $\pm 0.1 \mathrm{~dB}$.

Sweep characteristics

Sweap time: six calibrated sates from $3 \mathrm{~ms} /$ div to $1 \mathrm{~s} /$ div in a 1 , 3, 10 sequence: Vernier provides continuous adjustment betreen calibrated rates and extends slowest rate to at least $3 \mathrm{~s} /$ div.
Sweep time accuracy: $\pm 3 \%$.
Sweep synchronization: INTERNAL: sweep free-runs; LINE: sweep synchronized with power-line frequency; EXTERNAL: sweep synchronized with externally applied signal of +3 so +15 volts peak amplitude: BNC female input connector on rear panel; SINGLE SWEEP: sweep actuated by front panel pushbutton; panel light signifies duration of single sweep
External sweep: input: 0 to \dagger is volt external signal (from 10 k ohm source impedance) results in full horizontal trace; BNC female connector on rear pancl, direct-coupled: blanking: - 5 rolt extemal blanking signal required to blank retrace; BNC female connector on rear panel.

General

Output signals: vertical and horizontal signals applied to CRT are available for external applications; rear panel BNC female connectors: sertical: 0 to approximately -4 volts, open circuit, 4700 ohms source impedance; horizontal: 10 volts p.p ± 0.3 volr, open circuit, sweep approximately symmetrical about 0 volts, source impedance 4700 ohms, IF test point (20 MHz) also provided, rear pancl BNC female connector.
RFI: conducted and radiated leakage are below the requirements of M1L-I-16910C when the RF and display section are fastened together with the bracker kit supplied.
Dimensions: $163 / 4$ " wide, $6.21 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panel ($425 \times 179 \times 416 \mathrm{~mm}$)
Accessory items available: 8442 A 20. MHz Crystal Filter for increased resolution on $1-\mathrm{kHz}$ IF bandwidth $\$ 225$. 197A Oscillo. scope Camera, \$540.

Accessorles

The HP 8441A Preselector is a voltage-runable bandpass filter designed primarily as an accessory instrument for the HP 8591B Spectrum Analyzer. The 8441A uses an ytrrium-iron-garnet (YIG) filter as the tunable element. The YIG sphere is runed by a current-controlled magneric field. Passband of the filter is about 30 MHz ; Erequency range is from 1.8 to 12.4 GHz . When used with the 8551 B , the preselector tracks the RF input frequency of the analyzer to reject all signals other than those desired. By automatically tracking the analyzer Front end, the 8441A Preselector virtually eliminates multiple responses, image responses and spurious responses. The display on the CRT is grearly simplified as only the band of frequencies desired is present on the display. The center frequency of the display may be read directly on the 8551 B runing dial, eliminating the need for signal identification.

The 8441A can be used as a manually tuned narrow-band microwave filter anywhere in the 1.8 to 12.4 GHz frequency range. Continuous tuning is controlled by one dial on the front panel. Also, the filter may be tuned across its range by an internal sweep oscillator. Center frequency and sweep limits are front panel selected. When internally swept, the 8441 A plus a broadband crystal detector and a sensitive oscilloscope form a simple spectrum analyzer.

Specifications, as preselector for 8551B

Frequency range: 1.8 to 12.4 GHz . Input connector, Type N female.
Insertlon loss: insertion loss in the passband is less than 5 dB ; minimum VSWR in the passband is less than 2:1. The fileer refiects applied signals at frequencies other than the pass. band, so the VSWR is very high outside the passband.
Undesired response reduction: (reduction of responses of the 8551 to harmonic mixing modes other than the one pre. selected) At least 35 dB .

Contribution to 8551 f frequency response:

Preselector Harmonic
Mlxing Moda

1士; 200 MHz IF
$1+; 2$ GHz IF
$2 \pm ; 2 \mathrm{GHz} \mathrm{IF}$
$3 \pm ; 2 \mathrm{GHz}$ IF

Addltion to 8551 B
Variation
$\pm 2.5 \mathrm{~dB}$ over 2 GH 2 range
$\pm 2.5 \mathrm{~dB}$ over 2 GHz range
$\pm 3.5 \mathrm{~dB}$ over 2 GHz range
$\pm 4.5 \mathrm{~dB}$ over 2 GHz range

Limiting level: (maximum input level for $<2 \mathrm{~dB}$ signal compression).
$-20 \mathrm{dBm}, 1.8 \mathrm{GHz}$ to 2 GHz .
$+10 \mathrm{dBm}, 2 \mathrm{GHz}$ to 12.4 GHz .
Absolute maximum input level: +30 dBm ; 8551 B Inpur Attenuator must be set to keep power to analyzer input mixer below 0 dBm to prevent damage to the mixer.
Reduction in 8551日 local oscillator emission: (LO emission is 2 GHz to 4 GH ; level is typically 0 dBm).
$\mathbf{2 ~ G H z}$ IF input: 50 dB (except when preselecting 2-harmonic mixing mode from 2 GHz to 4 GHz).
200 MHz IF input: 33 dB ($1^{\text {hharmonic mixing mode). }}$ 40 dB (1 harmonic mixing mode).
Dimensions: $163 / 4^{\prime \prime}$ wide, $31 / 4^{\prime \prime}$ high, $19^{\prime \prime}$ deep ($425 \times 83 \times$ 483 mm).
Maximum 851 or 852 sweep rate: 10 milliseconds/div.
Connections to 8551 B :
851B/852A Horizonral Output, BNC female.
8551B Preselector Drive Outpur, BNC female.
8551B RF Input, Type N Eemale.
RFI: conducred and radiated leakage are below those specified in MIL-I-6181D and MIL-I-16910C.
Power: I1s or 230 volts $\pm 10 \%, 50$ to 400 Hz .
Weight: net $19 \mathrm{lb}(8,6 \mathrm{~kg})$; shipping $23 \mathrm{lb}(10,5 \mathrm{~kg})$.
Accessory items furnished: $71 / 2$-foot power cable, rack mounting kit; cables to connect preselector to 8551 B .
Price: Model 8441A, $\$ 2,950$.

The HP 8442A $20 . \mathrm{MHz}$ Crystal Filter is a bandpass filter with a $20 . \mathrm{MHz}$ center frequency for use with the HP 8551 B Spectrum Analyzer. The filer, which has a $2-\mathrm{kHz}$ passband, improves the skirt characteristics of the $851 / 852$ display section of the analyzer for greater resolution of closely spaced signals. Filter bandwidth at the $60 . \mathrm{dB}$ points is less than 10 kHz . Small in size, the filter is easily connected in the $20 . \mathrm{MHz}$ line between the 855 IB and the display sections of the analyzer.
Price: HP 8442A, $\$ 225$.

SPECTAUM ANALYZER anminual

Accessorios

8439A 2-GHz notch filter
Model 8439A has an extremely narrow rejection notch (2 MHz at 60 dB down) at 2 GHz , thereby permitting observation of broadband signals without interference from signals at the $2-G H z$ IF (evidenced by the raising of the entire base line on the CRT). Price: HP 8439A, \$240.

External waveguide mixers, adapters
External waveguide mixers 11517A and 1521A permit direct observation of signals in waveguide systems. The 11517 A covers 12.4 to 40 GHz and requires adapters 11518A, 11519A, 11520A as transitions to P., K-, R-band waveguide respectively. The 11521A Mixer covers X-band (8.2 to 12.4 GHz). Price: HP 11517A Mixer (12.4.40 $\mathrm{GHz}), \$ 160,11518 \mathrm{~A}$ Adapter $(12.4 .18 \mathrm{GHz}), \$ 75 ; \mathrm{HP}$ 11519 A Adapter (18.26 .5 GHz), S75; HP 11520A Adapter (26.5.40 GHz), \$75; HP 11521A Mixer ($8.2 \cdot 12.4 \mathrm{GHz}$), $\$ 75$.

K15-8551B up-converter

The K15.8551B extends the lower frequency limit of the 8551 B spectrum Analyzer from 10 MHz to 10 kHz . With a sensitivity of about $-107 \mathrm{dBm}(1 \mu \mathrm{~V})$ throughout this range, the Up-converter/Spectrum Analyzer combination is equally well suited to the laboratory and the field. For example, the combination can be used in the design of low. level transistor oscillators; it can also serve as a spectrumsurveillance monitor for control of interference in radio communication. For maximum flexibility, the up-converter includes an input attentuator which provides up to 120 dB of attenuation in $10 . \mathrm{dB}$ steps plus an amplifier with 20 or 40 dB of gain. Price: HP K15-8551B, $\$ 1555$.

8406A frequency comb generator

Model 8406A provides frequency markers spaced 1, 10 , and 100 MHz apart for frequency calibration of the spectrum analyzer. Because the markers are harmonics derived from 0.01% crystal oscillators, accurate determination of absolute as well as relative frequencies is possible. An external oscillator can be used to produce a comb with different spacing; or each of the output combs can be phase-modulated with external oscillators to produce sidebands about each comb signal, thereby facilitating interpolation measurements. The combs are useable from the fundamental to beyond 5 GHz . Price: HP 8406A, $\$ 575$.

MEASURING TRANSMISSION AND REFLECTION MAGNITUDE AND PHASE

 NETWORK ANALYZERS

Microwave measurements, of necessity, are becoming more and more complex. Engineers today want full characterization of components, devices, and combinations of these components and devices. Amplitude measurement is no longer adequate in many cases. Full characterization of a microwave system can be obtained only by measuring the total amount of signal change caused when each component of the system is subjected to the conditions under which it will be used. Any devite may be characterized using the simple flow graph of Figure 1. If each component

Figure 2. Simple flow graph representation of a microwave device.
in a system can be characterized in this form for boih magnitude und phase, the flow graphs for each component may be combined into the final system confguration and an accurate predicion of the interaction of these components may be made. Without the phase relationships of the transmission and reflection parameters, only a gross approximation of the system response would be possible.

Consider, as in Figure 2a, a set of electronically tuned phase shifters for a phasedarray radar system. If one antenna signal leads that of the second antenna by 90°, then the pattern of Figure $2 b$ will be produced. The pattem of Figure $2 c$ will be produced if the signal lagged by 90°. Correct phase charactesization of the system allows the response to be predicted. Phase calibration of the phase shifters would allow the radiation pattern of the array to be simed without physically moving the amtennas.

Figure 2. Phase.shift allows prediction of pattern directlon, hence electronically steared antennes.

For assurance of maximum power transfer from transmission line to transmitting antennas, the input impedance of the antenna and output impedance of the cable must be complex conjugates. Determination of mag. nitude and phase relationships of the reHected signals at the ports in question allows a matching network to be inserted to accom. plish this match. The amplitude and phase response of the matching betwork must also be known.

If the resonant frequency of a crystal must be known accurately, Figure 3, its phase response versus frequency provides a much more accurate feadout than would a direct impedance readout. The phase shift of a refecred signal from the crystal will pass through 0° at its series resonant and then its parallel resonant frequencies. The impedance of the crystal slowly becomes small as it approaches series resonance and then peaks at a very large value for parallel resonance. The phase response, as in Figure 3. displays a very precise characteristic curve which changes sharply at the frequencies of interest.

Fizure 3. Phase rasponse of crystal and se. ioctivo tuning of resdout dovice allows crystal response to be massured quickiy and accu. ratoly,

Tracking detector

A new phase and amplitude tracking de. tector (HP 676A) combined with the Hew. letr-Packard 673A sweeping Signal Generator is the ferst of its kind to provide swept phase and amplitude information over the 10 kHz to $32-\mathrm{MHz}$ frequency range. The dual channel approach provides 360° of phase mearurements with continuous phase shift over the entire range. Because the swept frequency can be chosen anywhere in the $10 \cdot \mathrm{kHz}$ io $32 . \mathrm{MHz}$ range, this technique is ideal for both narrow and broadbend fre. quency sweeps of both amplitude and phase.

Transfer chacacteristics, impedance plots, dynamic inpur and ouput impedance, system Aatness, recurn loss, time delay, small signial analysis, and open- and closed-loop response are some of many practical applica. tions made possible by using the HP 675A/ 676 A . A great advantage of the HP 676 A tracking detector over most broadband de, tectors used in sweeping signal generators is that the 676 A detects only the fundamental swept output of the sweeper, thus eliminating unwanted signals and noise often only 30 dB down from the desired signal. The 675.A/675A dynamic range (80 dB) offers innumerable advantages. High.Q filters often attenuate signals as much as 80 dB , and low level signals are lost in the noise levels of
most detectors. The ability of the 675A/ 676A to compare a device under cest against a known standard, its capability to display amplicude and phase simultaneously on an oscilloscope, and its overall flexibility make the $675 \mathrm{~A} / 676 \mathrm{~A}$ Network Analyzer a sig. nificant instrument for making phase and amplitude measurements. Refer to pages 466 and 411-419 for additional information.

Vector volimeter

The Model 840sA Vector Voltmeter is a dual-channel RF millivolt moter and phase meter. It reads the absolute voltages on either of two channels and simultaneously derermines the phase relationship berween them. Its frequency range is 101000 MHz . The vector voltmeter is shown in Figure 4.

Figure 4. HP 8405A Vector Voltmoter.
CW measurements over this frequency range are made by means of sampling circuitry which converts the RF frequency to a $20-\mathrm{kHz}$ If frequency for processing. The conversion process is achieved by harmonic frequency conversion in which an oscillator is automatically tuned to sampling frequency such that the RF frequency minus a harmonic number times the VTO frequency is always equal to 20 kHz . This sampling cechnique provides a dynamic range greater than 90 dB . This large dynamic range is achieved by allowing a maximum voltage of I volt on each of the two RF probes with a residual system noise level of less than 10 microvolts.

To measure the transmission characteristics of a device full ${ }_{5}$, the A channel probe on the 8405A must be sampling an unchanging reference signa!. By sampling this same signal with the B channel probe, an amplitude and phase reference calibration may be ob. tained. A $10^{\circ} /$ step phase offset and continuous vernier allow the phase calibration berween A and B to be conveniently set at zero on the phase meter on the $\pm 6^{\circ}$ range. A range switch allows full scale ranges of $\pm 6, \pm 18, \pm 60, \pm 180$ degrees. The amplitude merer range begins ar 1 volt full scale and ranges in $10 . d B$ steps down to 100 microvolts full scale.

Figure 5 shows a typical secup for measuring the transmission characteristics of an unknown device. Note the inclusion of the power splitter to provide A and B channels, the probe tees to provide isolation of the probe from the raeasurement and the so. ohm terminations to eliminate refections in the system.

Figure 5. Transmission tosts for phase and amplltude response (attenuation or galn) of a tost device can de made over a dynamic range Rreater than 90 dB .

The vector volumeter does not need a highly stable source because any drift in frequency is compensated by the auromatic tuning circuitry. As frequency changes slightly, the phase-lock circuitry tunes the voltage-tuned oscillator unil the IF frequency equals 20 kHz . The signal source may have harmonics present which will be converted, through the sampling process, to harmonics of the IE frequency. A $1 \cdot \mathrm{kHz}$ pass band in the IF stage eliminates these harmonics and the voltage and phase of the fundamental are read out.

Circuits may be probed in much the same manner as is done with oscilloscopes. The absolute voltages at the points of contact of both probes with the circuit and the phase difference of the signals at those points may be read without loading the circuir because of the high impedance of the probes. How. ever, as frequency increases, even the small shunt capacitance of the probes becomes a factor and the probe tees must be used.
The input impedance or, more precisely, the complex reflection coefficient ar the input of the test device, can be measured as shown in Figure 6. This technique, called a" $1+\rho$ technique," is useful over the full frequency range of the vector voltmeter. The vector

Figure 6. Equipment satup for mossuring the reflection coofficient of a device with the $1+\rho$ techniaue.
volumeter is set up without the test device in place for calibration. A reading of uniry (1 mV is generally a good figure) full scale is obtained. The device is then inserted and the incident plus the reflected signal is read giving a $1+\rho$ reading on the vector voltmeter. If the phase shift is referenced to zero during calibration, the phase of the reflected signal can also be read by this method. Details on serup and use of the 8405A can be found in Application Note 77.3.
For frequencies above 100 MHz , refectometer systerns may be used to determine the
reflection coefficient of a device. Figure 7 shows a reflectometer setup using the vector voltmeter. The systern is calibrated with

Figure 7. Amplitude and phase of reflected signal from tost device can be measured d. rectly using dual directional coupler as shown.

The harmonic sampling technique allows the IF frequency to be held constant. Any deviation from this constant IF is then detected and a signal proportional to the difference is used to tune a voltage-tuned oscillator so that a constant IF frequency is preserved.

The network analyzer must have some means by which the power can be split into reference and test channels. There are a variety of methods for splitting power. The simplest is the power spliter (Figure 9a) used with the vector voltmeter. The path lengths of the two channels are approximately equal. The critical factors with such a power splitter are frequency response and relative tracking of the two channels. The power splitter can be used for transmission gain/attenuation tests.

Figure 8. Howlett.Packard Model 8410A Notwork Analyzer.
respect to a short circuit at the rest port of the coupler which gives a reflection coefficient of $1 / 180^{\circ}$. This is referenced on the meters of the 8405A and the device is then connected. The refection coefficient is the ratio of the reflected voltage read with the device connected to the reflected voltage read with the short connected. The phase may be read directly if the phase merer is referenced correctly.

Network analyzers

The HP Model 8410A Network Analyzer (Figure 8) is a unique instrument which covers the frequency range of 100 MHz chrough 18 GHz . It is capable of measuring the amplitude and phase relationships between two signals in both coaxial and waveguide transmission line. The network analyzer is capable of sweeping octave bands throughout its full frequency ragge. Here, as in the case of the 8405A Vector Volt meter, harmonic frequency conversion from RF to IF is used. For swept-frequency measurements, this frequency conversion is ac. complished in the 8411A harmonic frequency converter by means of an automatic phase. lock loop between the 8410 A and the 8411 A .

A second method for splitting power is to use a 3 -d d coupler (Figure 9b). The pach lengths will not necessarily be equal and allowance must be made for the coupling curves of the output ports of the coupler. Meaningful display for swept-frequency would be difficult due to the ratio readout of the network analyzer.
Still another merhod of splitting RF power for the network analyzer is two directional couplers as in Figure 9c. The first coupler

Figure 9. Reterence and test channals for the network analyzer may be obtainod using vari ous methods such as a) power splittors, b) $3 . d a$ couplers, c) dual directlonal or backoto bsek couplers, Tho second coupler in c would be turned around for transmission measure ments.
obtains incident power for the reference channel, the second obrains power for the test channel. Orientation of the second coupler for reflection tests or transmission tests would be chosen by the user. The path lengths of the two channels are unequal, the coupler outputs must track with frequency, and the couplers must be wide band with high directivity. The coupling coefficient of the two couplers should be the same.

Assuming good uracking, wide band frequency coverage, and reasonable frequency response characteristics, it is still necessary to equalize the lengths of the two channels no allow swept phase measurements. By adding a line stretcher in one of the channels. it is possible to equalize the lengths and, in some cases, measure the actual length of devices by observing the swept phase shift as the line stretcher is adjusted. No linear phase shift as a function of frequency is indicative of equal path lengrhs berween reference and test channels.

Once this power split is accomplished, all measurements can be made using the netrork analyzer in terms of a set reference in the reference channel. The reference channel is also used to regulate any commonmode variations in power. An AGC amplifier in the reference channel, in conjunction with its feedback circuitry. compensates for as much as 20 dB variation in the inpur power. The correction signal is also fed to a matched $A G C$ amplifer in the test channel. Any common-mode variations will thus be compensated and a leveled sigral source is unnecessary.

With the common-mode variations in RF power compensated by the AGC amplifiers in the network analyzer, it is now possible to measure the ratio of the cest channel sig. nal to the reference channel signal directly. Any deviation in the test channel can now be read directly from one of the plug-in modules which plugs directly into the 8410 A main frame.

The 8413A Phase Gain Indicator has a meter readout for $C W$ measurements or ana. \log outputs at 50 millivolts/dB and 10 millivolis/degree for swepi-frequency read. our on an oscilloscope or an X.Y recorder. The 8413 A also has a rear-panel output which is linear 0.1 volt proportional to the ratio bemeen the reference and test channels. The data can also be read on a linear polar readout, the 8414A Polar Display Unit, with linear radial scale for ratio of test to reference channel ar the inpur pors of the 8411 A . This display is a CRT display capable of making either swept-frequency or CW mea. surenents. The use of the 8413 A plug-in module allou's direct linear readout of both amplitude in dB and phase in degrees as a function of frequency. This rype of readout is useful for the conventional method of displaying the amplitude and phase response of such devices as filters, amplifiers, and attenuators. The 8414 A lends irself more readily to the measurement of amplitude and phase of reflected signals when measuring impedance. This becomes useful for direct impedance readout when a Smith Chart overlay is placed on the CRT face.

The network analyzer can be cuned very simply for swept-frecuency measurement. A front panel dial indicates the proper posision of the coarse frequency control for
bracketing the range of frequencies to be swept. Once the frequency range to be swept has been bracketed on the dial, a sweep stability control is adjusted to maintain phase lock across the full range of frequen. cies. This tuning is done simply and quickly by watching the trace of amplitude or phase on an oscilloscope. A swepr-frequency display of the response of an unknown device allows tuning of the device under test to get the proper response at a particular frequency and still allows the effect of that tuning to be observed at other frequencies in the band of interest. Swept-frequency measurements also allow rapid viewing of amplitude and phase response of devices over wide frequency ranges.

With the broad frequency range of the 8410A Network Analyzer, it is possible to obser'e several octave bands in minutes by merely switching the coarse frequency control knob on the system. This eliminates changing the transducer unit every time an octave band is changed.

Transmission measurements

When measuring the characteristic amplitude and phase response of a device to be inserted in a transmission line there are generally two important types of measuremencs. The first type is that of riewing the wide dynamic response of the device under rest and the second is riewing the wide scale blowup of some particular part of that wide dynamic range, even at an artenuation level of 90 dB or at a gain of 40 dB .

Wide dynamic range

The 8410A Nerwork Analyzer will measure more than 60 dB of attenuation or 40 $d B$ of gain in a single measurement. The swept-frequency measurement of a bandpass filter with at least 60 dB of rejection may be viewed with completely ficker-free display as in Figure 10. Due to the barmonic sampling technique and the last response time of the AGC circuitry and phase-lock circuitry, the sweep oscillator can sweep at least 150 GHz /s and remain phase-locked. A sweep reference connection from the rear of an

Figure 10. Swept-frequency display of an 8.10 GHz bandpass filter. Scale: $10 \mathrm{~dB} / \mathrm{cm}$ vertlcal; $500 \mathrm{MHz} / \mathrm{cm}$ horizontal. Sweep speed: 0.01 second.

HP 8690 B sweeper to the rear of the 8410A allows phase.lock at sweep speeds exceeding $600 \mathrm{GHz} / \mathrm{s}$.

A typical transmission test serup is shown in Figure 11. The 8740A Transmission Test Unit (Figure 12) is a combination power

Figure 11. Tyolcal test setup for measuring swept or CW phase shift and attenuatlon (galn) through a device.
spliter and line stretcher which operates from do through 12.4 GHz and is usable to 18 GHz . The line strecther allows electrical length adjustments between channels of up 1030 cm for phase-balancing the two channels. A $10 . \mathrm{cm}$ mechanical extension allows compensation for the physical length of a device. Additional sections of rigid 10- or $20 . \mathrm{cm}$ air line may be added to the reference channiel to compensate for any excra physical length. Hence, the response of a test device with more than 60 dB of insertion attenuation may be viewed. The rest channel gain on the network analyzer mainframe may be adjusted to allow increased resolution about any point in the $60-\mathrm{dB}$ "window" of the sysrem. A device having 60 dB of attenuation may be vieved about the $0-\mathrm{dB}$ reference line.

Figure 12. Hewlett.Packard transducer units, 8740A transmission test unit, de, 12.4 GHz; 874 IA reflection test unit, $100 \mathrm{MHz} \cdot 2.0 \mathrm{GHz} ; 8742 \mathrm{~A}$ reflection test unit, $2.0 \mathrm{GHz} \cdot 12.4 \mathrm{GHz}$.

High resolution measurements

For a device such as the filter of Figure 10 , the wide variation in response due to signal rejecrion is very important. Equally impor. cant, however, is the small insertion loss (residual artenuation) present in the passband. The high resolution readout of nonlinear phase shift as a function of frequency is also imporrant. Figure 13 a shows the insertion phase and attenuation of a PIN modulator. Figure 13b shows the same response with the linear phase shift compensated by the calibrated line stretcher allowing a scale change of $10: 1$ for high resolucion.
Direct phase and amplitude comparison
tension from the plane of connection on the reflection unir rest port.
If one were interested only in the amplirude of the reflected signal, the 8413 A Phase-Gain Indicator and an oscilloscope would allow swept or CW readout of return loss in dB. The phase information is also available if desired. A reflectometer calcu. lator is available from Hewlett-Packard for making rapid conversions between return loss, VSWR, and reflection coefficient magnitudes.
By measuring the reflection coefficient of a device, its impedance may be read as the reflection is plotted on a Smith Chart. If only the magnitude of the reflection is known, the plor of reflection coefficier

gure 13a. Insertion ohase and attenuation of a PIN moduletor showing both amplitude fre. quency response and the linear phase shift due to excess electrical length.
Figure 13b. The excess oloctrical length of the PIN modulator of figure $13 a$ has been compensated by the transmission unit llne stretcher. The phase display now shows the "nonlinear" portion of the phase transmission. Note the phase scalo change to $5^{\circ} / \mathrm{cm}$, The excess electrical length over coaxial air line is read from the transmission unit directly as 6.0 cm .
between a standard device and several other devices can be achieved by placing the standard in the reference channel and the device to be compared in the test channel. The swept response will then be the actual deviation of the test device from the standard as a function of frequency. This technique is useful in marching cables, amplifiers, modulators, etc. An X.Y recording of the response of each test device with respect to the standard allows rapid accept/reject tests for production lines.

Reflection measurements

All methods for measuring the mismatch of a device when it is placed in a perfect transmission line must, in some manner, detect the signal reflected from the device with respect to the signal incident upon the de. vice. Detecting probes or point conracr diodes can detect the amplitude of such a signal but they do not respond to phase information. By using a high directivity reflectometer system, such as the HP 8741A (.11 to 2.0 GHz) or HP 8742A (2.0 to 12.4 GHz) (Figure 12), in conjunction with the 8410A Nerwork Analyzer, the phase and amplitude of that refected signal can be measured. Figure 14 shows a reflection test setup for measuring the reflection coefficient mag. nitude and phase by means of wideband reflectometers. A line stretcher allows for phase-balancing of the reference and test channels. The line stretcher compensates for as much as 15 cm of reference plane ex-
would be a circle on the Smith Chart centered ar unity with a radius proportional to the magnirude of the reflection coefficient (see Figure 15). By referring the measure-

Figure 14. Reflectomoter setup for Smith Chan impedance measurements. Resdout of both the reflection coefficlent magnitude and anglo can also be mads directly from polar display unit.

gure 15 . Plot of the possible impedances is a reflaction coetflcient of $\rho=0.30$ when only the magnitude is known.
ment to a short circuit with a refection coefficient $\rho=1 / 180^{\circ}$, and measuring the magnitude and phase shift of the reflected signal, impedance can be read as a single value because the reflection coefficient is now a point as shown in Figure 16.

Figure 16. plat of the impedance for a re. flection confficient of known magnitude and phase $\rho=0.30 / 45^{\circ}$.

Using refectometer systems 8741A and 8742A, the refiection coefficient (magnirude and phase), can be measured and read out in polar coordinates on the 8414A Polar Dis. play Unit. A Smith Chart overlay can then be placed on the CRT face and normalized impedance can be read directly as a function of frequency. Using the 8741A and 8742A broadband refectometers, which cover fre. quency ranges of .100 GHz through 2.0 GHz and 2.0 GHz through 12.4 GHz respectively, it is possible to characterize a device through 7 octaves with only one minor change of equipment.

The step attenuator on the 8410 A mainframe allows the test channel gain to be varied for high sesolution readour of low reflection coefficients. By decreasing the test channel gain, the output reflection of an accive device, such as a tunnel diode (Fig. ure 17), can be measured. The compressed Smith Chart overlay used in Figure 17 provides for direct readout of negative im. pedance.

Figurs 17. Swept-frequency display of ímpedance of a tunnel diode when it is biased in the negative impedance region.

Reflection and transmission measurements

The incroduction of reliable, high quality. wide.band coaxial swiches, such as the HP 8761 A , brought about an arrangement of wide-band directional couplers such as the HP 778D and 779D, which allows refec. tion and uansmission tests of an unknown
device. The ability to measure both the input impedance and the transmission properties of a device using the same transducer saves time and money for the user. If the transmission and reflection characteristics can be measured with only one instrument setup, measurement accuracy will also be improved. A new measurement capability is achieved in determining the transmission and reflection characteristics of a two-port device at both porss with only one setup. The HewlettPackard Model 8743A Reflection/Trans. mission Test Unit in Figure 18 is capable of measuring the input impedance of a device and, by simply pushing a bution, the transmission coefficient of that device from input to output. The Model 874sA S-Pa. rameter Test Set in Figure 19 measures the input and output impedance and the forward and reverse transmission coefficients of a device with push-burton ease.

Figure 18. Hewlett-Packard Model 8743A Re. flection/Transmission Test Unit.

Figure 19. Hewlett-Packard Model 8745A S. Paramoter Test Set.

To speed the overall measurement-design process, it is necessary to define components in terms of some universally accepted language. Networks have been characterized for many years in terms of $2, y$, and h parameters. At frequencies abore 100 MHz , currents and a defined reference plane for an open cincuir are difficelt to measure. For these reasons, the microwave industry has found it necessary to define a set of descrip. tive network parameters which could be measured ar very high frequencies.

Transmission and reflection coefficients of devices in terms of incident and reflected voltages are parameters measured by all microwave engineers. If these coeffcients are defined in general terms and are measured in a syscem with a known characteristic impedance, they are given the title "scattering parameters." In Figure 20 (compare with Figure 1) the s parameters of a two-port device are named. They are like h, y, and z parameters because they describe the inpuls and outputs of a black box. S-parameters have the inherent advantage of being mea. sured while the device is terminated in its characteristic impedance or, more correctly, the characteristic impedance of the measuring system (50 ohms).
 two-port microwave device.

The outputs in Figure 20 can be related to the inputs by the equations:

$$
\begin{aligned}
& b_{1}=s_{11} a_{1}+s_{11} a_{2} \\
& b_{2}=s_{21} a_{1}+s_{22} a_{2}
\end{aligned}
$$

When $a_{2}=0, s_{11}=\frac{b_{1}}{a_{1}}, s_{71}=\frac{b_{1}}{a_{1}}$.
And when $a_{1}=0, s_{2}=\frac{b_{1}}{a_{2}}$ and $s_{22}=\frac{b_{2}}{a_{2}}$ where a_{1} and a_{2} are the square-root of the incident power and b_{1} and b_{8} are the square root of the reflected power as ports 1 and 2 respectively. (For more details see "TwoPort Power Flow Analysis Using Generalized Scattering Parameters" by George Bodway, Microwave Journal, May 1967.)

To measure the scattering parameters of a device, the above condition for inpur power equal to zero must be satisfied. When mea. suring the input reflection, s_{11}, and the forward cransmission, s_{21}, the incident power at port 2 must be zero. When measuring the output reflection, sua, and the reverse transmission, 5_{12}, the incident power at port 1 must be zero. This is accomplished by driv. ing one port with a $Z o$ source and terminaring the other port in Z_{0} characteristic im. pedance. (See Figure 21.)

Figure 21. Measurement of s_{11} and s_{21} is ac. complished by making $a_{2}=0$ with a Z_{0} termina. tion at port 2.

The characteristic impedance termination has the following advantages:

1. The termination is accurate ar high frequencies.
2. No tuning is required to terminate a device in the characteristic impedance.
3. Broadband swept-frequency measurements are possible because the device will remain terminated in the characteristic im. pedance as frequency changes.
4. The termination enhances stability providing a resistive termination that stabilizes many negalive resistance devices, which might otherwise tend to oscillate.
An advantage due to the inherent nature of s paramerers is:
5. Different devices can be measured with one setup because probes do not have to be located right at the test device.
A repical display of s_{11} for a rransistor is shown in Figure 22. The Smith Chart overlay allows direct impedance readout for the input of the transistor.

Figure 22. Swept.frequency display of s_{11} of a transistor with Smith Chart ovariay for direct impedance roadout. Frequency range :300 MHz to 700 MHz .

The ability of a cunnel diode to sustain oscillations, iss negative impedance region, can be displayed using the 8745A. The phoro display shown in Figure 17 shows the response of a tunnel diode biased for maximum tunneling (tuned while watching a swept-frequency display) over a frequency range of 113 MHz to 960 MHz . The network analyzer allows the full scale of the display to be adjusted for direct readout on a compressed Smich Chart. Fixtures which are capable of accepting various lengths of leads make characterization of transiscors and diodes for any lead length relatively simple. The Hewletr-Packard rransistor fix. tures allow s parameter measurement on transistors, diodes, and FET's at frequencies up to 2.0 GHz .
If the rate of change of the phase of sat or s_{12} is constant with respect to frequency for a given device, the ability of thar device to pass a pulsed signal undistorted can be predicted. A linear phase shift as a function of frequency denores constant "group delay:" Group delay is defined as:

$$
t_{d}=\frac{d \theta}{d_{a}}=\frac{1}{2 \pi} \cdot \frac{d \theta}{d f}
$$

where θ is the phase shift and ω is the radian frequency. A low-value, constant group delay is important in communication systems where several channels are carried on one link. If the group delay is not constant for all frequencies of interest, dis. toned information at the receiving end of the link is obrained. This is especially true of any pulse-coded communication system. Group delay can be read quickly and accurately from the swept display of phase when a test device is connected to the 8743A or 8745A. A typical display is sbown in Figure 23.

Figure 23. Linear phase shit indicates cont stant group dolay for frequencles between 4 and $6 \mathrm{GHz}, 150^{\circ}$ phase shift in 2 GHz gives group delay of 11.9 nanoseconds.
A further advanage of a unit which al. lows pushbutton reflection and transmission measuremencs presents itself for antenna measurements. It is important to know the inpur impedance of an antenna as well as its transmission partern as a function of azimuth and frequency. The Hewlett-Packard network analyzer system is a very ef. fective instrument for making many neces. sary microwave measuremens.

NETWORK ANALYZERS

NETWORK ANALYZER
80 dB amplitude response $/ 360^{\circ}$ phase
Models 675A \& 676A

Description

Network Analyzer (675A and 676A). This is the first of its kind to provide srept phase and amplitude information over the 10 kHz to 32 MHz range. Both laboratory and production oriented, the 675A Sweeping Signal Generator and 676A Phase/ Amplitude Tracking Detector system provides an amplitude response with 80 dB dynamic range, accompanied by 360° (or multiples of) phase measurement capability. Because the swept frequency can be chosen anywhere in the prescribed range, this technique is amendable to both narrow and broadband fre. quency sweeps for both amplirude and phase.

Transfer characteristics, impedance plors, dynamic input and output impedance, system fatness, return loss, time delay, small signal analysis, open and closed loop response are some of the applications that are made practical by amplitude and phase information obtained through a swept technique.

Start-stop, center and manual frequency sweep

The frequency can be manually positioned or automatically swepr between two preset limits, or swepr about a center frequency in calibrated increments. A frequency calibrated display with calibrated amplitude and phase is possible using a low frequency oscilloscope or x -y recorder. Along with the low residual FM ($<70 \mathrm{~Hz}$ peak) low spurious and low noise (-85 dB) these capabilities permit accurate measurements of devices with ultra steep responses. A wide range of sweep times in. sures display accuracy regardless of the bandwidth of the circuit under test.

A bypass marker system superimposes markers on all phase and amplitude channels for easy frequency identification and calibration. 100 kHz and I MHz comb markers, and up to five individual single frequency markers can be made available in the 100 kHz to 32 MHz range. An external marker can also be used to further extend frequency identity. Markers may also be horizontally oriented.

Amplitude and phase

Four scope outputs ($A, B, A \cdot B$, PHASE A.B) are provided at the front panel of the 676A Tracking Detector. A and B represent 80 dB of log amplitude dynamic range ($50 \mathrm{mV} / \mathrm{dB}$) for each channel. A.B is the log difference of the two channels. All are represented in linear dB . The PHASE $\mathrm{A} \cdot \mathrm{B}$ is a dc voltage linearly proportional ($10 \mathrm{mV} /$ degree) to phase from 0° to 360°.

The RF power ourput of the 675A is divided in the 676 A Tracking Detector so that an equal and in -phase voltage ap. pears at the "RF OUT" connectors of both channel A and B (+2 dBm max into 50Ω). Typically the device under test is connected between "RF OUT" and "IN" connectors of one channel and a short jumper placed across the other channel. The amplitude of borh channels are simultaneously adjusted over a 99 dB range in 10 dB and d dB steps plus vernier. To make using an oscilloscope or recorder more convenient a "CAL" is provided for the scope outputs to allow fine adjustment of the display. Phase is also conveniently calibrated using the 5° or 100° "PHASE CAL CHECK" butrons. Either push. button supplies a calibrated de offset to the Y input of the oscilloscope allowing a quick check of phase calibration of the display. With the "PHASE CHANNEL A" control con. tinuous 0° to 360° phase shift is provided in channel A.

For more phase resolution the sensitivity of the scope can be increased to provide $1^{\circ} / \mathrm{cm}$ with the PHASE CHANNEL.

Specifications

For complete specifications of the 675A Sweeping Signal Generator and 676A Phase/Amplitude Tracking Detector see pages 417-419.

VECTOR VOLTMETER Accurate voltage and phase measurements, $1-1000 \mathrm{MHz}$ - Model 8405A

8405A

The HP 8405A Vector Volumeter measures the magnitude of and the phase difference between two voltage vectors from 1 to 1000 MHz . Since RF voltages have both magnitude and phase, simple voltage measurements tell only half the story. Much circuit design is virtually impossible without phase information; both magnitude and phase data are required to optimize circuit design.

The HP 8405A provides high accuracy and resolution; direct readout, and operating convenience, features which enable you to make RF voltage and phase measurements more easily than ever before. It ceduces costs by minimizing equipment requirements, saves time by simplifying measurements, and increases effecriveness by extending capability in the RF range.

1.1000 MHz frequency range

The instrument uses phase-locked coherent sampling to translate 1- to $1000-\mathrm{MHz}$ RF signals to $20-\mathrm{kHz}$ IF signals. The IF signals retain the same wave shapes and the same amplitude and phase relationships as the original RF. Thus, the vector voluneter's performance is related to what you might expect from a precision laboratory receiver,

Automatic tuning over an octave

You simply rotate a front-panel switch to select any of the 21 overlapping octave ranges which include the input signal frequency, and the auromatic phase-locked tuning does the rest. To eliminate guesswork, a front-panel light tells you when the voltmeter is properly tuned. It can then follow slowly drifting signals automatically.

$100 \mu \mathrm{~V}$ sensitivity, $>90 \mathrm{~dB}$ dynamic range

Voltages from less than 100 microvolts to 1 volt can be measured on channel B of the 8405 A , from less than 300 microrolts to I volt on channel A . (Channel A requires the
higher input to operate the automatic tuning). External 10:1 dividers extend channel A and B measurements to 10 volts. Thus, readings can be taken over a $90-$ to $100 \cdot \mathrm{~dB}$ range. Either channel A or B voltages are read on a single frontpanel meter by simply setting a switch. Both voltage and phase meters have rugged, reliable taut-band suspensions with micror-backed scales individually calibrated to the meter movement.
The input signals are applied through convenient accoupled probes that are permanently attached to the instrument. These probes present a high input impedance (0.1 megohm shunted by 2.5 picofarads) for minimum loading effects when probing. The $10: 1$ dividers increase input impedance to 1 megohm shunted by 2 picofarads. The accoupling in the probes permits you to measure signals as much as 50 volts off ground. Output signals include the 20 kHz signals from each channel plus recorder outputs proportional to phase and amplitude.

360° phase range, 0.1° resolution

Phase is read on a zero-center meter with end-scale ranges of $\pm 180^{\circ}, \pm 60^{\circ}, \pm 18^{\circ}$, and $\pm 6^{\circ}$. The $\pm 6^{\circ}$ scale provides 0.1° resolution, and a meter offset selectable in precise 10° increments permits this resolution to be realized anywhere in the 360° range. Phase accuracy is $\pm 1.5^{\circ}$ at fixed frequencies and equal signal levels in channels A and B.

High selectivity, $1-\mathrm{kHz}$ bandwidth
Although the sampling system employed in the 8405 A results in wide frequency coverage, the actual measurement bandwidth in the $20 . \mathrm{kHz}$ IF preceding the voltage and phase measuring sections is only about 1 kHz , affording high selectivity. As a result, measurements are free from errors that might be encountered with a wideband system if signal harmonics or other spucious outputs were present.

VECTOR VOLTMETER 360° phase range, $100 \mu \mathrm{~V}$ sensitivity 8405A Vector Voltmeter

Specifications

Instrument type: two-channel sampling RF millivoltmeter-phase-meter, which measures voltage of two signals and simultaneously displays the phase angle between the two signals.
Frequency range: 1 MHz to 1 GHz in 21 overlapping octave bands (lowest band covers two octaves).
Tuning: automatic within each band, Automatic phase control (APC) circuit responds to the Channel A input signal. Search and lock time, approximately 10 ms .
isolation between channels:
1 to 300 MHz : greater than 100 dB .
300 to $1,000 \mathrm{MHz}$: greater than 80 dB .
Maximum ac Input: 2 V peak.
Maximum de input: $\pm 50 \mathrm{~V}$.
Voltage range (rms):

Channel	$1-10 \mathrm{MHz}$	$10-600 \mathrm{MHz}$	$600 \cdot 1000 \mathrm{MHz}$
A	$1.5 \mathrm{mV} \cdot 1.0 \mathrm{~V}$	$300 \mu \mathrm{~V} \cdot 1.0 \mathrm{~V}$	$500 \mu \mathrm{~V} \cdot 1.0 \mathrm{~V}$
B	$100 \mu \mathrm{~V} \cdot 1.0 \mathrm{~V}$	$100 \mu \mathrm{~V} \cdot 1.0 \mathrm{~V}$	$100 \mu \mathrm{~V} \cdot 1.0 \mathrm{~V}$

Range of each channel is extended to 10 V with 11576 A 10:1 Divider.

Voltmeter characteristics:

Meter ranges: $100 \mu \mathrm{~V}$ to 1 V rms full scale is $10-\mathrm{dB}$ steps. Meter indicates amplitude of the fundamental component of the input signal.
Voltage ratio accuracy: $<0.2 \mathrm{~dB}$.
Phasemeter characteristics:
Phase range: 360° indicated on zero-center meter with end-scale ranges of $\pm 180, \pm 60, \pm 18$, and $\pm 6^{\circ}$. Meter indicares phase difference between the fundamental components of the input signals.
Resolution: 0.1° at any phase angle.
Meter offset: $\pm 180^{\circ}$ in 10° steps.
Phase accuracy: at single frequency $\pm 1.5^{\circ}$ (equal volt. ages at Channel A and B).
Phase jitter vs. Channel B input level
Greater than 700 «V: typically less than $0.1^{\circ} \mathrm{p}-\mathrm{p}$.
125 to $700 \mu \mathrm{~V}$: typically less than 0.5° p-p.

20 to $125 \mu \mathrm{~V}$: typically less than 2° P-P.
Accessories furnished; two 11576A 10:1 Dividers to reduce voltage input 10 to 1 ; two 10216 A Isolators to eliminate errors due to the effects of changing test point impedance; two 102.18A BNC Adapters to convert probe tip to male BNC connector; six ground clips for 11576A or 10216A; six replacement probe tips.
Input impedance (nominal): $0.1 \mathrm{M} \Omega$ shunted by approximately $2.5 \mathrm{pF} ; 1 \mathrm{M} \Omega$ shunted by approximately 2 pF when 11576A 10:1 Divider is used; 0.1 Mn shunted by approximately S pF when 10216 A Isolator is used. AC coupled.
Residual noise: less than $10 \mu \mathrm{~V}$ as indicated on the meter.
Bandwidth: 1 kHz .
RFI: conducted and radiated leakage limits are below those specified in MIL-1-6181D and MIL-1.16910C except for pulses emitted from probes. Spectral intensity of these pulses is approximately $60 \mu \mathrm{~V} / \mathrm{MHz}$; spectrum extends to approximately 2 GHz . Pulse rate varies from 1 to 2 MHz .
20-kHz IF output (each channet): reconstructed signals, with 20 kHz fundamental components, having the same amplitude, waveform, and phase relationship as the input sig. nals. Output impedance, 1000Ω in series with 2000 pF ; BNC female connectors.

Recorder output:

Amplitude: 0 to $+1 \mathrm{~V} \mathrm{dc} \pm 6 \%$ open circuit, proportional to voltmeter reading in volts. Output tracks voltage reading within $\pm 0.5 \%$ of full scale. Output impedance, 1000Ω; BNC female connector.
Phase: 0 to $\pm 0.5 \mathrm{~V}$ dc $\pm 6 \%$, proportional to phasemeter reading, External load greater than $10,000 \Omega$ affects recorder output and meter reading less than 1%. Output tracks meter reading within $\pm 1.5 \%$ of end scale; BNC female connector.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ to $400 \mathrm{~Hz}, 35 \mathrm{~W}$.
Weight: net, $30 \mathrm{lb}(13,5 \mathrm{~kg})$. Shipping, $35 \mathrm{lb}(15,8 \mathrm{~kg})$.
Dimensions: $183 / 8^{\prime \prime} \times 7^{\prime \prime} \times 163 /$ " $^{\prime \prime}(467 \times 177 \times 425 \mathrm{~mm})$.
Price: Model 8405A, $\$ 2,750$.
Option 02. Linear $d B$ scale uppermost on voltmetec. Add \$25.00.

11535A 50 ת Tee, with Type N RF ititings, for monitoring signals in 50Ω transmission line without terminating the line. $\$ 75.0$

11549A Power Splitter, all connectors Type N female (UG-28A/U).
 908A Termination, for terminating 50 ת coaxial systems in their characteristic impedance.
$\$ 35.00$.

1512A Shorting Piug. Type N male. $\$ 5.00$.

8405A
11570A Accessory Xit, required for measurements in 50Ω systems. $\$ 318.00$.

8410A Network Analyzer
- ATTENUATION • PHASE • GAIN • IMPEDANCE • ADMITTANCE • COMPLEX REFLECTION COEFFICIENT 110 MHz to 12.4 GHz Wich One Simple System!

This one compact, low cost system measures all network parameters from 110 MHz to 12.4 GHz .

Complete description of microwave devices

Phase and amplitude data give complete description of micro. wave devices. A powerful tool for component and systems design and test without ambiguity.

Direct readout with choice of display

Plug-in meter indicates magnitude and phase at spot frequencies. Wideband auxiliary outputs for swept displays on oscilloscope or X.Y recorder.

Plug-in CRT display for sivept polar and Smith Chart readout. Auxiliary outputs for higher resolution X.Y piots.
Add display versatility with future plug-ins.
Fast sweeps over octave bands
Swept displays for fast resting over full band. Rapid sweep for dynamic CRT display-make adjustments to devices while viewing overall effecrs.

Wide dynamic range-high resolution

60 dB amplitude and 360° phase displays. Use precise offser controls to read amplitude and phase to 0.1 dB and 0.1 degree resolution. No phase ambiguity-meter indicates phase sense directly.

Easy setup

Transducer units complete the system; all RF hardware is connected and pre-calibrated inside convenient modules. They provide:
-A calibrated variable measurement plane (line strercher) to determine electrical and physical Jength of unknown devices in transmission tests. To eliminate graphical Smith Chart transformations in reflection tests
-Rigid coaxial air line for stable RF connections. Adjustable RF line length for easy connection to unknown withous fexible cables.
-Specified overall system accuracy for easier error analysis. -Pushbutton selection of device parameters.
-Swivel joints and air lines for connection to any geometrical configuration.

Accurate

Precision components assure basic system accuracy. Even greater accuracy is possible at spor frequencies because vector errors, such as reflectometer directivity, can easily be calibrated out. This is a direct benefit when measuring both phase and amplitude,

System description

The Hewlett-Packard Network Analyzer consisrs of the 8410A mainframe, 8411A Harmonic Frequency Converter, and the 8431A Phase-Gain Indicator or 8114 A Polar Display Unit plug in modules. The 8410A/8411A provide automatic RF tun. ing and IF conversion to 20 MHz over frequencies from 100 MHz through L 2.4 GHz for swept or CW' measurements. The phase and amplitude relationsthips of the RF are preserved in the IF. The 8410A/8411A include sampling and automatic tuning circuitry, IF amplifiers, precision IF gain control, amplitude and phasc verniers, and frequency range selection.

The 8413 A inciudes phase and amplitude circuitry. meter readout, \log converter circuitry, and calibrated analog ourputs at $50 \mathrm{mV} / \mathrm{dB}$ and $10 \mathrm{mV} / \mathrm{deg}$. Expansion of the meter scale is accomplished with pushbutton ease in ranges of $\pm 3, \pm 10$, $\pm 30 \mathrm{~dB}$ and ± 6. $\pm 18, \pm 60, \pm 180$ degrees full scale. Phase offset in 10 -degree steps allows higher resolution for phase readout. The 8414 A includes polar conversion circuirry for direct polar readout of ratio coefficient and phase shift. Ful! scale ratio is dependent upon the gain setting on the 8410 A mainframe.

A transducer unit or units selected to suit application and frequency range completes the system.

8410A
Network Analyzer
System

APPLICATIDN	TRANSDUCER UNIT	6(19A PHASE—QAIN INDICATDR	POLAR DALAPLAY UMIT
TAAMSMIAEIDN TEATA DNLY	Accessorias including adapters, pads, air lines are secommended (11587 A)	8413A recommended for all transmlasion measurements.	Sea 8413A for X-Y readout of trensmission charactaristics.
WIde Dynamie Rango filiters, atienualors, paramps, iC amplifiers, modulators, antennas	07404 Tientamienion Taty Unil 60 dB Dynamic Window for viawing am. glitude excursion of attenuation or gain. Correct power level relations betweer refarence and test channels must ba used according to type of response to be viewed. Fower levels wili not be the same for aitenuation as for gain.	Accurate meter readoul lor CW measuremenis. If oftisel a trenualor a lows greater resolutlon about any amplitude. Phase ofiset in 10° steps allows greater resolution about any phase shitit. Swept frequency resdout is provided ihru analog outputs at $50 \mathrm{mV} / \mathrm{de}$ and $10 \mathrm{mV} / \sigma \mathrm{eg}$.	Direct magnitude sind phase readout of Yansmissbont coefficiont of test device. EIfter CW or swept frequency display in polar coordinates. Markers allow freQuency readout.
Ins wilon Loata and Phasa (Residual Conditions) Unbiased PIN moduralor, coaxial pads, switches, cables, variable altenuators, pass band of filters	Comparison against amplitude and phase oftsats. Coaxial pads in reference and tost channels reduce mismatch amblguity in measurement of low amplitude values	Readout to within 1 oB and 5° is provided with amplitude and phase offsets. Rosolution lrom meter is then to . 05 dB and. I^{6}. Generally used where low insertion measurements ara made.	The polar plot provides easy direct readout of both magnitude and phase for transmission coefilcient. An X-Y record. ing alows resolution to within 1% of iult scale.
Combonant Malohing Pads, cables, antennas, amplifiers, phase shilters.	Standard device in reference channel; unknowns in test charneel. Actual devis. tion of test device from standard may be ploted diractly.	CW tests can be made accurately with meter. Residual traching bolween channels as a function of frequency can be eliminaled by X.Y recording the system response at the desired oifisels.	CW tests of a mplitude and phase variation shown as a dot on CRT. Swept display on CRT does nol eliminate traching error. $X \cdot Y$ recording allows grester resolution but iracking must be subtracted.
Oraup Dolay Filters, cables, system components 11-12.4 GHz.	Prysical lenglh is compensated in reference channel. Corrections must te made wilh line stretcher to offisal compensation.	Linearity of display on scope gives quich indication of conslanl group delay. By measuring phase for a glven frequency change the group delay can be computed.	With Δf swaep and phase reas olrectly from polar display, froup delay may de computed qutckly. Linearity of phase with frequency is notreadily detectable.
heflection teste only	Accossorias including adaptars, alr lines. pads, shorts, are resommended. (11587A)		84148 recommended for all reflection measurements.
Rediaction Cosfictert $0.0-10.0$ (VSWR 1.0-m)	a141A Reslation Tell Uati . $1-2 \mathrm{aHz}$. 974EA Rallesilan Tont Unil $2-12.4 \mathrm{GHz}$. Pads in reference and test channels reduce mismatch ambigulty and allow greater measurement range. High directivity reflectomater syslams allow sccurate messurement of reflection coefficlent.	CW and Swept measurement of return loss magnitude and phase relerenced to a shoft circuit. Fesidual tracking may be eliminated using $X-Y$ jecorder	Resdout ol reflection coefficient directly in bolh magnitude and phose. CW or swept lisquancy measurements apdear as a dot per frequency on scope lace. IF attenualor allows expansion and com. presslon of scope scale to provide direct readout.
Anlennas, loads, system components, impedance malching, cavities, filters, circuit design and test, dynamic luning on swept İrequency basis.	Slandard refleclometer systems allow broadband coversge.	CW and swepl seturn loss. Converting to enter Smith Chart with return loss and phase angle is time consuming. Use 8414A tor direct Smith Chart plots	CW and swept frequency display with transparent smith Charloveriay for direct normalized impodance resodoul. Overlays a a a svallable for compressed, normal, and expanded Smith Chart.
TRAHSMISSION AND REFLECTIDN TESTS	Accessorles Including adaplers, pads. shorts are recommended (11587A).	Scope, X-Y recorder, or meter readout of selecled parameters.	Polar readout of parameters of each port of a device.
Full TworPoll Charaelailution $.11-2.0 \mathrm{CHz}$.			
Component Toula Amplifiers, unilateral and bilateral devices, filters, attenuators, phase shilters.	Use 8745A with L1604A Universal Ex. tension calibraled al plane of connection to allow correct in puland oulput measurements.		
Tiambiar Tasla Any trensislor, FET, elc, with ine TO-5, TO.12, TO-18, or TO-72 package, with either E-E-C configuration or E-B-C conIfguration. Diodes for input impedance under various blas conditions.	Use:11500A transistor fixlure and 11601A calibration Kit ror T0-5 and TO-12 lypo transistors. 11602 A transistor fixturo and 11603a Califration Kit for T0-18 and T0-72 type transistors.	CW with meler resdout or swepl with scope readout to show full rasponse of device particuiarly for transmission char-acteristics-S21 and \$12. The input and output rellection parameters $\$ 11, \$ 22$ can be disolayed as return loss.	CW and swept Smith Chart readoul of all S-Paramstors. Direct impedance readout ai SII and S22 with Smilt Chart overlays. Transmimaion conelifeisnts S21 and ST2 may be read directly from linear scale at phase shifi indicateó.
single Porl Chasactrizallan $2,0-12,4 \mathrm{GHz}$	Trantmasion/Rylection Tast Unit	Read amplitude and phase response of transistors in edB and degrees directly from meter for CW or from ascilloscoope	Read amplitude and phase iesponise of tramsistors disectly Irom polar plot for sither CW or swept measurements. Test
Componan! Telting Amplifiers, pads, attenualors, phase shiflers, cables, joints.	Pushbution Soleclion of S11, S21, or S12, \$22, depending on device orientation and connection. The 11605A flexible arm (consists of cosx swivel joints and rigid alr line) allows rigid connection to any geometrical coniguration.	acterization under a variety of bias conditions.	chanrel gain control allows gain and isolation as well as input and oulput impedance to be displayer.
Waveguide-X-Bend, P-Band, or others on requasi.	A74 Wavapuldo Trantmiation/Rofaçion Tal \$y.lom.		
Retlection or transmission depending on point of connection in system.	Symmelrical bridge syslem using HP 752 directional couplers and a special oower solitler. See Application Note 92.		

Table 1. System check list

Modal	Funoilan	Fraquaney	Trank.	Rell.	Pribes
MAIHFRABE 8410A Notwork analyza!	AND gAMPLER Mainframe for readout modules includas tuning clrcults, if amplifisers, and precision IF sttenuator	0.11-12.4 6Hz			\$1800
8411A Harmonic convertor	Converts 2 af ligput signals ($110 \mathrm{MHz} .12 \mathrm{~A} \quad \mathrm{GHz}$) linto 20 MHz IF signals	$0.11 \cdot 12.46 \mathrm{Cz}$			\$2500
$\begin{aligned} & \hline \text { DIAPLAY } \\ & \text { 8419A } \\ & \text { Phssegain } \\ & \text { lidicetor } \end{aligned}$	Moter readoul module for 8410 A Maintrame. Provides CW display of relalive amplitude and phase between input signals. Auxiliary outpuls provide swept freguancy displays on a scopa or X-Y recorder		x	*	\$850
8\&14A Polar display			*	\times	\$1100
Aoomisorlas 11587A Accossory kit	Accessories normally used ion Transmission and reflection tests contained in sturdy carryIng case. Accossories included tansioni (2) 11524 A temale and (2) 11525 A mals APC. $7 / \mathrm{N}$ Coax Adsolers; (2) 8492 A, Oplion 10 , 10 dB snd (1) 30 dB Coax Atlonualors; (1) 11511a tomala and (1) 11512A male lype N coax short	-	x	x	\$795
Tranaguours 87and Trennmismion test unlt	Transmission measurements only. RF linput signal is split into ralerence and test changels. Cailbeatad lina strelchar In tost chamnel vafies the linear phese shift between channels	Jc .12 .4 GHz	*	-	\$1300
8741A Refectlon test unll	Refiection meas suraments only. Wida dand retlaclomater. Cali. brated line strelcher in relel. ence channel varles the tinazar phase shift batwaen channels	0.11-2 GHz	-	X	\$1500
$8742 A$ Rellection test unit	Refleclion measuremants only. Ultra-wlef band refiectometer. Cailbrated ling stretcher in reference chanmel varles the linear dhase shift between channals	$2-12.46 \mathrm{~Hz}$	-	*	\$1500
8743A Rellection/ transmission tasl unlt	Two pushtutions switch bsIwaen feliachon and lransmis. slon measurements. Calibrated line stretchel in reference channal varies fingar phase shlfl batwean channels	2-12. ${ }^{\text {GHz }}$	x	x	$\$ 2450$
$\begin{aligned} & \hline 11605 \mathrm{~A} \\ & \text { Flaxitio arm } \end{aligned}$	Mounts on fiont of 8743A; connecls to device under lest, Rotary ail lines and rolary joints comnect any iwo-port geometry	$\mathrm{dC}-12.4 \mathrm{OHz}$	*	x	\$550
$\begin{aligned} & \text { 8773A } \\ & \text { Sparameler } \\ & \text { test set } \end{aligned}$	four pushbuttons (5 In', si2', $S_{21}{ }^{\prime} \mathrm{S}_{22^{\prime}}$) swith belween re riection and Iransmission ce. sponse of two-ports. Calbrated lline slotcher in reference chamnel varias linear phese shif1 belween channsis	$0.11-2647$	${ }^{\times}$	x	\$3000
T1599A Qulck adapler	Mounts oniront ol 8745A; used ior atrictly connecting and dis. connecting 11600 A / 11602 A transistor fixlures or 11604A Univarsal Extenslon		*	\times	\$75
	Mount an tront ol 87a5A: for T0.18/TO-72 or T0.5/TO-12 transistor dackages, respectively. One transistor fixtura provides common emitter-base-coliector and common source-gate-train test configuralions. Each celleration kit provides thees references for calibrating fixlure		x	x	$\begin{aligned} & \$(55 \\ & (\$ 55) \\ & \$ 425 \\ & (\$ 75) \end{aligned}$
11604A Universal exionslon	For masasuing microwave comDoneals. Mounts on front of 8745A and connects devica under test. Rotary air lines and rotary joints connect to any two-gori geometry	96. 2 GHz	x	*	8800
	Foi reflection and iransmission measurements ol wevegulde components. Has callorated sliding shorl for varying Dhase shilt batween channels. Two models: X8747A ior X-bard. P-8747a lar P-band	$\begin{aligned} & 8.2 .12 .4 \mathrm{GHz} \\ & 12.4 .18 .0 \mathrm{GHz} \end{aligned}$	*	x	$\begin{aligned} & \$ 1500 \\ & \$ 1600 \end{aligned}$

8410A/8411A Network analyzer

Measures: attenuation, gain, phese shiff, refection coefficient, return loss, and impedance, Single swept frequency measurements.
Frequency rarge: 110 MHz to 12.4 GHz (useable to 18 GHz).
Input powar levels: +10 dBm or 10 mW , max.' over full frequency range.
Reference channef: -20 to -40 dBm typical (meter indicates proper range).
Test channel: -10 to $-80 \mathrm{dBm}(\sim 71 \mathrm{mV}$ to $22 \mu \mathrm{~V})$; not to exceed reference channel by $>20 \mathrm{~dB}$.

Dynamic range: 60 dB (observable on oscilloscope display).
Tunlng: automatic over ady octave band selected by front panel swich.

Swept-frequency measurements: all parameters observable versus frequency on oscilloscope display. Response time of nerwork analyzer permits up to 100 sweeps per second for flicker-free display over any ocrave band.
Dlsplay: meter readout for attenuation, gain, phase, and return loss. Amplitude range: $\pm 3,10,30 \mathrm{~dB}$ full scale.
Phase range: $\pm 6,18,60,180^{\circ}$ full scale.
Resolutlon: $0.1 \mathrm{~dB}, 0.1^{\circ}$.
Swept frequency readout: used with oscilloscope or recorder and HP 8413A Phase-Gain plug-in unit.
Amplitude: (attenuation, gain, return loss). Scale: $\mathrm{dB} / \mathrm{cm}$. Log. output of $50 \mathrm{mV} / \mathrm{dB} .10 \mathrm{kHz}$ bandwidth. Scale factor determined by scope or recorder input range switch. 60 dB display range.
Phase: scale: degrees/cm. $10 \mathrm{mV} /$ deg, output. 10 kHz bandwidth. Scale factor determined by scope or recorder input range switch. 360° display range.
Reflection coefficient; with HP 8414A Polar Display.
Amplitude; polar coordinate display on cathode-ray tube. Calibration divisions 20% of full scale setting.
Phase: polar display: 10 deg. radials over continuous 360° range.
Impedance: Smith Chart readour overlay on polar display. Normalized impedance readout, $\frac{R \pm, X}{Z_{0}}$. Overlays provided for full scale reflection coefficient of 0.2 (1.5 SWR), $1.0(\infty$ SWR), and 3.16.

Performance specificatlons

Transmission

Amplitude: attenuarion/gain. Accuracy': 0. to 60 dB range.

IF attenuator: $\pm 0.1 \mathrm{~dB} / 10 \mathrm{~dB}\} \pm .2 \mathrm{~dB}$ max. $\pm 0.05 \mathrm{~dB} / 1 \mathrm{~dB}$ cumulative
Meter: $\pm .05 \mathrm{~dB}$ (for readings between 0 and 1 dB only).
Noise, crosstalk and mixer non-linearity: add ± 0.2 dB error to above for 50 dB steps; add $\pm 1.0 \mathrm{~dB}$ to above for 60 dB step.

Altenuator Accuracy vs. Dynamic Range

IF attenuator. 69 dB in 10 and $1 \cdot \mathrm{~dB}$ steps. Amplitude vernier: $>2 \mathrm{~dB}$ range.

Frequency response':
0.1 to 2 GHz Test unht 2 2 012.4 GHz $\pm 0.35 \mathrm{~dB}$ HP 8745 A $\delta \mathrm{cto} 7 \mathrm{GHz}$ $\pm 0.75 \mathrm{~dB}$ HP 8743 A $\pm 0.50 \mathrm{~dB}$

Phase shift

Accuracy:

Phase offset: $\pm 0.2^{\circ} \pm 0.3^{\circ} / 10^{\circ}, 1.5^{\circ}$ max. for equal sig. nal levels between test and reference channels.
Signal levale: $\pm 1.5^{\circ}$ max. for $60 \cdot \mathrm{~dB}$ difference benween reference and test channels.
Meter: $\pm 0.1^{\circ}$ for merer reading berween 0 and 10° only.

Phase offset: $\pm 180^{\circ}$ in 10° steps. Phase vernier range 90°. Llne stretcher: 0 to 30 on variable elecural leagth. Readout by digital indicators. Resolution 1 mm . Rear panel connection on HP 8743A and 874sA for extending reference amm electrical length with coaxial line.

		TAst unt
0.11 to 2 GHz	$\pm 5^{\circ}$	HP 8745A
21012.4 GHz	$\pm 5^{\circ}$	HP 8743A
dc to 7 GHz	$\pm 3^{\circ}$	HP 8740A

Test port VSWR

Frequenoy	VSWR	Tast unlt
0,11 to 2 GHz	1.12	HP 8745A
2 to 12.4 GHz	1.25	HP 8743A
dc to 7 GHz	1.15	HP 8740A
7 to 12.4 GHz	1.25	

Test port connector(s): precision 7mm (APC-7).
Coupling factor (nominal):

	Tost unft		
	HP 8740A	HP 8743A	HP 9745A
Input to test port	1788	208 B	4 dB
Input to test chad. input	17 dB	20 dB	20 dB
Input to refer. chan. input	17 dB	30 dB	24 dB

Accessories

11587A Accessory Kit recommended for use in transmission and refection measurements. Provides APC-7 to type N adapters, 10 and $20 . \mathrm{cm}$ air lines, two $10 . \mathrm{dB}$ and one $30 . \mathrm{dB}$ APC. 7 attenuators, and rype N female and male shors.

Prlee: Model 11587A, 5795.

Reflactlon coofficient/impedance

Reflection coefficient measured using wide-band refectomerers, phase balanced for swept or CW frequency measurements with 84IOA Network Analyzer. Readout displayed on plug. in cathoderay tube unit for swept-frequency display on polar coordinate system. Smith Chart overlays provide direct impedance readout.
Magnitude: | fu | Readout on HP 841 AA Polar Display Unit. Displays amplitude and phase data in polar coordinates on s -inch cathode-ray tube.

Frequenay	Test unit		
	HP 8741A	HP 87454	HP 8742A/8743A
0.11101 GHz	. $015+.05\left\|\Gamma_{L}\right\|^{2}$. $015+.06 \mid \Gamma_{L}{ }^{2}$	- -
1.0 to 2.0 GHz	. $025+.05\left\|\Gamma_{L}\right\|^{2}$. $025+.06 \Gamma_{1} \Gamma^{2}$	
2.0 to 8.0 GHz	-	号	. $032+.03 \mid \Gamma_{L} L^{2}$
8.0 to 12.4 GHz	-	-	. $032+.06 \Gamma_{\text {L }}{ }^{2}$

($\Gamma_{\imath}=$ measured reflection coefficient)

Curve Al Indicates typical errors when directivity evrors are Included in the measurement. By means of a sllaing load techniaue, directivity can be measured and thus callbated out of the system accuracy. Curve A2 is the result of typical arrors with this technique.

Angle of reflection coefficient:
Accuracy $=\sin ^{-1} \Gamma \omega / \Gamma_{\text {L }}$ for $\phi \leq 90^{\circ}$ (see magoitude error (erm, [u, above).

Curve B1 inciudes directivity arror, curve B_{2} does not (note scale ctianges).
Frequency response: incident and reflected ouiputs rracking.*

	Ten valt			
	0.11 to 2 GHz		2 to 12.4 GHz	
	HP 8741A	HP 8745A	HP 8742A	HP 8748A
	$\pm 6 \%$	$\pm 6 \%$	$=9 \%$	$\pm 9 \%$
Phasa	$\pm 3^{\circ}$	$\pm 5^{\circ}$	$\pm 7^{\circ}$	$\pm 5^{\circ}$

Connectors: input: type N female; text pors and inpues to nerwork analyzer, APC. 7.
Impedance: sos.
Reference plane extenslon: 0 to 15 cm , variable electrical lengith: calibrated by digital dial indicator with $1 . \mathrm{mm}$ resolution. Adjustable for initial relative calibration. HP 8743A and HP 8745A models have rear panel connectors for exteading reference plane with coaxial line.
Poler display unlt (HP 8414A): cachode.ray tube with s-inch. $5 . k V$ post accelerator rube with P. 2 phosphor; internal polar graticule.
Marker input accepts maskers from HP 690- and 8690 -series Sweep Oscillators. - SV peak. Markers displayed as incensifed dot on CRT display.
Blanking Input: accepts -4 V RF blanking pulse from HP 690 and 8690 -series Sweep Oscillators to blank retrace duriag swepr operation.
Accessories furnished: three Smith Chart CRT overlays. Plastic scales overlay 8414A Display Unit to convent readout directly to normalized impedance. Full scale $\Gamma=1.0,0.2$, and 3.16 (for negative impedances).
I With 20 d coupling to test channel input.
? if atfenuator subsiliution method.

- Includes response of 8411a Harmonlc Converler.

4 Phase offset substitution method.
sAmphenol RF Olvision, Danbury, Comn.

TRANSMISSION AND REFLECTION TEST UNITS

The Model 8740A Transmission Test Unit splits RF power into reference and test channels for the 8411 A inputs. The 8740 A consists of a flat $50-0 \mathrm{hm}$ power spiitter, calibrated $30-\mathrm{cm}$ line stretcher, and a $10-\mathrm{cm}$ mechanical extension.

The Model 8741A/8742A Refection Test Units are broad band reflectometer systems. Calibrated line stretchers provide a movable reference plane as well as compensation for differences in reference and test channel lengths.

The $8740 \mathrm{~A} / 8741 \mathrm{~A} / 8742 \mathrm{~A}$ units were designed for specialized broad band coverage of either transmission ($8740 A$) or reflection ($8741 \mathrm{~A} / 8742 \mathrm{~A}$). If both transmission and reflection characteristics are desired, the 8745A S-Parameter Test Set or 8743 A Reflection/Transmission Test Unit should be used. They provide pushbutton selection of reffection and transmission parameters from 0.1 to 2 GHz and 2 to 12.4 GHz , respectively.

Specifications 8740A, 8741A, 8742A
Frequency range: $8740 \mathrm{~A}, \mathrm{dc}$ to $12.4 \mathrm{GHz} ; 8741 \mathrm{~A}, 0.1$ to $2 \mathrm{GHz} ; 8742 \mathrm{~A}, 2.0$ to 12.4 GHz ,
Frequency response: $8740 \mathrm{~A}, \pm 0.5 \mathrm{~dB}, \pm 3^{\circ}$ to 7 GHz , $\pm 1 \mathrm{~dB}, \pm 5^{\circ}$ to $12.4 \mathrm{GHz} ; 8741 \mathrm{~A} / 8742 \mathrm{~A} \pm 0.5 \mathrm{~dB}$, $\pm 5^{\circ}$.
Impedance: 50Ω, test port reflection coefficient ≤ 0.07 (1.15 SWR) to $7 \mathrm{GHz} ; 0.11$ (1.25 SWR) to 12.4 GHz .
Maximum RF input power: 1 watt when connected to 8411 A .
Insertion loss to test device: $8740 \mathrm{~A}, 17 \mathrm{BB} ; 8741 \mathrm{~A} / 8742 \mathrm{~A}$, 1 dB .
Directivity: $8741 \mathrm{~A}, \geq 36 \mathrm{~dB}, 0.11$ to $1.0 \mathrm{GHz}, \geq 32 \mathrm{~dB}$, 1.0 to $2.0 \mathrm{GHz} ; 8742 \mathrm{~A}, \geq 30 \mathrm{~dB}, 2.0$ to 12.4 GHz .

Welght: $8740 \mathrm{~A}, 171 / 2 \mathrm{lb}(7,9 \mathrm{~kg}) ; 8741 \mathrm{~A}, 161 / 2 \mathrm{lb}(7,5$ $\mathrm{kg}) ; 8742 \mathrm{~A}, 141 / 216(7,0 \mathrm{~kg})$.
Dimenslons: $6^{\prime \prime}$ high, $16-3 / 26^{\prime \prime}$ deep, $7-9 / 32^{\prime \prime}$ wide ($15,2 \times$ $41 \times 18,6 \mathrm{~cm}$) excluding knobs and connectors.
Price: Model 8740A, \$1300; Model 8741A, \$1500; Model 8742A, \$1500.

8743A

Model 8743A

The Hewlett-Packard 8743A Reflection/Transmission Test Unit combines in one unit a broad band (2.0 to 12.4 GHz) reflectometer system and a transmission test system. Reflection and transmission characteristics can be selected by pushbutton. All measurements are made on the coupled ports of $20-\mathrm{dB}$ couplers providing isolation from the RF source.

A calibrated line stretcher provides up to 15 cm of compensation for test device length for reflection tests and up to 30 cm compensation for test device length for transmission tests. To compensate for any excess length in the test channel which cannot be compensated by the line stretcher, rear panel access to the reference channel coaxial line is provided.

Connection to the test device is accomplished through front panel APC-7* connectors. The suggested transmission return path is the 11605A Flexible Arm consisting of three swivel joints and three swivel air lines which allow connection to virtually any geometrical configuration. The unit is constructed to allow calibration for both reflection and transmission at the plane of the unknown port.

Specifications

8743A

Frequency range: 2.0 to 12.4 GHz .
Frequency response: $1.5 \mathrm{~dB}, \pm 0.75 \mathrm{~dB}$.
Impedance: 50』, Test port reflection coefficient ≤ 0.13 (1.3 SWR).
Maximum RF input: 50 mW when connected to 8411 A converter.
Insertion loss to test device: 20 dB .
Directivily: $\geq 30 \mathrm{~dB}$.
Connectors: input, Type N female stainless steei; all other connectors APC-7.
Power: $115 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to 400 Hz .
Weight: $27 \mathrm{lb}(12,2 \mathrm{~kg})$.
Dimensions: $51 / 2^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $183 / 8^{\prime \prime}$ deep.
Price: Model 8743A, $\$ 2450$.

[^42]
11605A

Frequency range: dc to 12.4 GHz .
Impedance: 50Ω, port reflection coefficient ≤ 0.13 (1.3 SWR).
Insertion \{oss: 1.5 dB .
Price: HP $11605 \mathrm{~A}, \$ 550$.
Model 8747A
The 8747 A Waveguide Reflection/Transmission Test Systems allow tests to be made in waveguide using the S410A. Available in X-band and P-band, the high directivity of waveguide couplers in conjunction with a waveguide power splitter and special coupler provides the ultimate in accurate phase and amplitude measurement. The symmetrical arrangement of couplers allows close tolerances for phase and amplitude tracking as a function of frequency between the two channels. A calibrated adjustable short in the reference chanoel acts as a line stretcher for matching reference and test channel signal paths. The test device is isolated from the source as peell as from the waveguide-tocoax adapters on the input of the 8411 A .

Specifications

Frequency range: waveguide band, X (8.2 to 12.4 GHz); P (12.4 to 18.0 GHz).
Frequency response: reference and test channels track within $\pm .75 \mathrm{~dB}$ and $\pm 5^{\circ}$.
Impedance: waveguide characteristic impedance, test port reflection coefficient $\leq .05$ (1.1 SWR).
Insertion loss to test davice: $\$ \mathrm{~dB}$.
Directiviky: $\geq 40 \mathrm{~dB}$.
Weight: $10 \mathrm{lb}(4,7 \mathrm{~kg})$.
Price: X8747A, $\$ 1500 ;$ P8747A, $\$ 1600$.

8745A S.Parameter Test Set

The 8745A is used with the network analyzer or vector voltmeter to measure two-port raflection and transmission coefficients. The major components of the 8745A are two broadband directional couplers, a precision $30 . \mathrm{cm}$ line stretcher, and five coax switches. When an s-parameter button is pressed, the switches establish the measuring circuit and direct the proper coupler outputs to the network analyzer or vector voltmeter. The network analyzer or vector voltmeter reads the magnitude and phase of that parameter. Simply adjust tae line stretcher and the 8745 A is calibrated from 100 NHz to 2 GHz for all four s parameters. The $8745 A$ is completely programmable and can be used for automatic testing. A rear panel connector provides for remorely selecting s-parameters and biasing transistors through a built-in biasing network.

11600A and 11602A Transistor Fixtures

The 11600A and 11602A Transistor Fixtures accept TO.18/ TO-72, and TO. $5 /$ TO. 12 device confgurations and will accepi diodes, tunnel diodes, and other devices. The fixtures mount on the front of the 8745A and provide common emitter-base-collector and common source-gate-drain connections for bipolas and field-effect transistors. Each fixture is usable from dc to 2 GHz and accepts leads up to $1 / 1 / 2$ inches long.

11604A Unlversa\{ Extensian

The 11604A Universal Extension mounts on the frons of the 8745 A and is used for measuring microwave components. Since it is composed of rotary joints and rotary air lines, its APC. $\overline{7}$ connectors will connect to almost any two-port geometry. The 11604 A provides the fexibility of cable yet retains the accuracy of rigid air line.

11599A Quick.Connect Adapter

The 11599A Quick-Connect Adzpter quickly connects the 11604A Universal Extension or the 11600A/11602A Transistor Fixtures to the 8745 A by merely throwing a lever. Because connectors do not have to be screwed logether, the accessory is ideal for production. line testing and prolongs the life of the APC-7 connectors.

Specifications

Model 8745A S-Parameter Test Set

Function: the 8745A S-Parameter Test Set supplies the circuitry necessary to measure two-ports parameters with the 8405A Vector Voltmeter or the 8410A Network Analyzer.

Frequency range: 100 MHz to 2 GHz .
Impedance: 500 nominal.
Load match: 210 to $200 \mathrm{NH} z_{1}<1.22 ; 200 \mathrm{MHz}-2 \mathrm{GHz},<1.13$.
Source match: <1.06 at $110 \mathrm{MHz} ;<1.12$ at 2 GHz .
Maximum RF power: 2 W.
Insertlon loss: from RF input to test ports, 4 dB nominal. From test ports to 8405 A or 8410 A outputs, 20 dB nominal, increases 6 dB /ocrave below 120 MHz .
Tracking or frequency response
Magnitude: $\pm 0.35 \mathrm{~dB}$.
Phase: $\pm 5^{\circ}$.
Reference plane extenslon: maximum length $30 \mathrm{~cm}, 0.01 \mathrm{~cm}$ precision. Extends reference plane 0 to 15 cm beyond an 11600. or 11602 A Transistor Fixture or 11604 A Universal Extension.

Connectors

RF input: Type N female.
Test ports: APC. 7 precision connectors.
Outputs to 8405A or 8410A: mates with APC-7 precision connectors.
Mlcrowave coax switches: maximum switching time, 50 ms . Estimated switch liferime >1 million cycles.
Romote programming: remote s parameter selection by closing 2 contacts of 36 -pin rear panel connector to ground pin. Contact is at 12 volts and short to ground will draw 12 mA .
Transistor biasing: accomplished rhrough 36 -pin rear panel connector. Bias and bias sensing connections are made to biasing networks built into the 8745 A .
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ to $400 \mathrm{~Hz}, 40$ watts
Weight: net, $35 \mathrm{lb}(15,9 \mathrm{~kg})$.
Dimenslons: $53 / 2^{\prime \prime} \times 163 / 4^{\prime \prime} \times 253 / 4^{\prime \prime}(139 \times 423 \times 650 \mathrm{~mm})$.
Price: HP 8745A, $\$ 3,000$.

Models I 1600A and 11602A Transistor Fixtures

Function: used with or without the 8745A to measure transistors and other seariconductor devices. Mount directly on the 8745A and provide common emitter-base-collector and common source-gate-drain connections. Require 11601 A or 11603 A Calibration Kits.
Model 11600A: for TO.18/TO.72 or sumilar transistor packages. Has four snap-on dials, two for bipolars and two for FET's.
Model 11602A: for TO-5/TO-12 or similar cransistor packages. It has two snap-on dials for bipolars.

Frequency: de to 2 GHz .
Lead lengths: accepts leads up 101.5 inches long.
Lead diameters: 0.016 to 0.019 inch.
Impedance: $50 \Omega \pm 2 \Omega$,
Connectors: APC-7* precision connectors for input and ourpuc.
Option 01: precision type N connectors for input and output.
Maximum power: 10 W including RF signals.
Dimenslons: $43 / 8^{\prime \prime} \times 6^{\prime \prime} \times 11 / 2^{\prime \prime}(119 \times 152 \times 38 \mathrm{~mm})$.
Welght: 38 oz ($1,1 \mathrm{~kg}$).
Price: 11600A, $\$ 425: 11602 \mathrm{~A}, \$ 42 \mathrm{~s}$.

Models 11601 A and 11603A Calibration Kits

Function: Model 11601A used to calibrate the 11600A, and Model 11603A used to calibrate the 11602A Transistor Fixture. Three calibration references: a shors remmation, a son termination, and a $50 n$ through setion are concained in a protective case.
Case dimenslons: $23 / 4^{\prime \prime} \times 23 / 4^{\prime \prime} \times 11 / 8^{\prime \prime}(70 \times 70 \times 29 \mathrm{~mm})$.

Welght: 302 (84 g) including case.
Price: $11601 \mathrm{~A}, \$ 75$; 11603A, $\$ 75$.

Model 11604A Universal Extension

Functlon: used with the 8745 A to lest microwave components. Mounts on the fiont of the 8745A and conneets to almost any iwo-port geometry.
Frequency range: de 102 GHz .
Connectors: APC. 7 precision connectors.
Test port VSWR: 1.07:1.
Price: HP $11604 \mathrm{~A}, \$ 800$.
Model 11599A Qulck Connect Adapter
Function: quickly connects the 8743 A and the $11600 \mathrm{~A}, 11602 \mathrm{~A}$, or the 11604A.
Dimenslons: $3^{\prime \prime} \times 5^{\prime \prime} \times 41 / 4^{\prime \prime}(76 \times 127 \times 108 \mathrm{~mm})$.
Weight: 12 or $(21 \mathrm{~g})$.
Price: HP 11599 A, $\$ 75$.

8717A Transistor Blas Supply

The 8717A is a companion unit to the 11600A/11602A Tran. sistor Fixtures. It is an accurate, stable, manual and/or digitally programmable transistor bias supply. It features switching for conrenience in test set-ups and provides metering for accurate voltage/ current settings and readings. From panel switches on the 8717A quickly establish stable bias conditions for all mansistor configura. tions used in the $11600 \mathrm{~A} / 11602 \mathrm{~A}$ transistor fixtures. This eliminates the need for external wiring changes for each new confguration, i.e., common emitter-base-collector ber cornmon source-gate-drain. The uansissor under test is biased in a feedback circuit a hich maintains a highly accurate collector-eroituer voltage and emitcer curtent evers time a different unansisior is biased, when a common lead configuration is changed, or when temperature changes. Two meters inde pendently measure one of the voltages and one of the currents on any of the three leads of the transistur under rest. Transistors are protcsed by an emitecr custent limit shurdown circuit which removes biasing when the preser limis is exceeded.
The 8717A is digicaliy progranmed through an optional D/A converter plug.in with which the two internal supplies can be switched into an independent conseant rokage supply and an independent constant cu:tent supply. All the features otherrise remain the same as above.

Specifications, 8717A		
Outpular:	Manual control	Pragrammes donirol
$\begin{aligned} & \text { Normal } \\ & \text { Mode } \end{aligned}\left\{\begin{array}{l} V C E(V D S): 0-31.75 \mathrm{~V} \\ 1 E(1:), 0-500 \mathrm{~mA} \end{array}\right.$	continuously variable continuously variable (4 ranges) 0.01-1; 0.1-10; 1-100; $10-1000 \mathrm{~mA}$	min slep size:0.25 min. step s $12 \mathrm{e} .3 .2 \%$ ol full range
	continuousdr variable continuousiy variable (3 ranges) 0.01-1, 0.1-10: $1-100 \mathrm{~mA}$	min. step slea. 0.25 V min.step sine: 3.2% of full ranga
$\begin{gathered} \text { Normal } \\ \text { of } \\ \text { independent } \end{gathered}\left\{\begin{array}{l} \text { Vollape accuracy } \\ \text { Currentaccuracy } \end{array}\right.$	4% of meler full scalo 4% of materfull scala	$0.2 v+2 \%$ of normal 2\% of orogrammed valua

Mriose:	Valia	Millams*
Meter Iunctions full scale ranges	1.3. $10.30,100 \mathrm{~V}$	IE. 10.18 or 15.10 .10 $0.1,0.3 .1 .1 .3 .10,30,100,300$. 1000 mA

Rlpple: $\mathrm{V}_{\text {GI }}\left(\mathrm{V}_{\mathrm{Ds}}\right)<5 \mathrm{mV}, \mathrm{I}_{\mathrm{E}}\left(\mathrm{I}_{\mathrm{s}}\right)<100 \mu \mathrm{~A}$.
Optlon 01: digital/analog converter for semote programming capability.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 30 to $400 \mathrm{~Hz}, 65$ watts.
Dimensions: $163 / 4^{\prime \prime} \times 33 / \mathrm{B}^{\prime \prime} \times 131 / 2^{\prime \prime}(425 \times 86 \times 336 \mathrm{~mm})$.
Weight: $17.75 \mathrm{lb}(8,0 \mathrm{~kg})$.
Price: HP 8717A, \$129s.
Optlon 01: programmable A.D Converter, 5500.

11589A and 11590A Bias Networks

Function: provides de bias and bias sensing on 300 systems, Compatible with bias supplies using sensing like the 8717A, but can be used with or without bias sensing.

.	11589 A	11990 A
Frequency range:	$100 \mathrm{MHz}-3 \mathrm{GHz}$	$16 \mathrm{Cz}-12.4 \mathrm{GHz}$
VSWR	<1.2	<1.2
Insertlon loss	<0.589	$<0.5 \mathrm{~dB}$
Max bias voltage	100 V	100 V
Max bias current	1 A	0.5 A
RF Connectors	ApC)	APC-7
Price	Avallable on requert	$\begin{aligned} & \text { Avallable } \\ & \text { on } \\ & \text { request } \end{aligned}$

General description

The HP 8540-series Automatic Network Analyzer measures transmission and reflection characteristics of devices, providing output data in numerous forms, VSWR, return loss, impedance, admittance, gain or loss, nonlinear phase shift group delay, h and s parameters being common examples. Either active or passive devices may be completely characterized with both the amplitude and phase angle data of each measured parameter obtained over the frequency range from 110 MHz to 12.4 GHz .

Each system consists of three basic subsystems which are available with a large number of options enabling configurations to fit most application needs. A simplified block diagram of the system is shown in Figure 1. These subsystems are the Programmable Signal Source or the Multiband Programmable Signal Source (depending on whether one or more than one RF frequency range is to be covered), a Programmable Network Analyzer and a Control Section. Figure 2 shows a complete multiband system configuration.

System advantages

The 8540 -series system provides a great many advantages over conventional measuring systems. These advantages stem primarily from the system's ability to make very accurate measurements at high speed. By coupling the network analyzer's complete characterization of microwave signals in

Figure 1. Simpllfled system block diagram.
magnitude and phase angle with the computer's ability to store data and solve complex mathematics, the system can perform sophisticated error-correction procedures that are difficult or impractical to perform manually. Thus, 8540Aseries operation rypically breaks into two parts: calibration and a measurement sequence using stored calibration data. For refection measurements the system is calibrated by measuring three precision standards: a sliding load, a short and an offset short (a short located a precise distance along a precision air line). These three standards have highly predictable behaviors based upon precise physical dimensions. The system's reflection errors are computed from the difference between the standards' measured and theoretical values. For transmission measurements, the test ports are connected together and the transmission errors are determined from the measurement data with the refection errors subtracted. All of the calibration data is stored for later correction of test data.

The calibration procedure is spelled out step-by-step on the teletype. Therefore, there is no need to remember a complicated procedure. After the system types each instruction, such as "connect short", the zeletype waits for the operator to perform the operation and answer. The system then measures the standard at all frequencies requested, performs any mathematics necessary, and goes to the next instruction in the procedure.

This calibration procedure is supplied ready to use with enough options to cover a wide variety of test situations: fixed or sliding load, coaxial line or waveguide, single or multiband tests. Normally, the calibration procedure is followed by one of several standard test tapes designed to perform the most commonly needed measurements or by a special program written in either FORTRAN or BASIC.

A more complete discussion of the basic subsystems provides insight into how the system obtains its many advantages over manual measurements using conventional instruments.

Table 1. Frequency range options available for either single-band or multi-band programmable signal sources.

AF sourct Fraquancy Rang!	PF Units	Number of Programmabla Stap ovar Frequenay Renpe
$\begin{aligned} & \left\{\begin{array}{l} 100 \mathrm{MHz}-2.0 \mathrm{GHz}^{2} \\ 2.0 \mathrm{GHz}-4.0 \mathrm{GHz} \end{array}\right\} \\ & 1.0 \mathrm{GHz}-2.0 \mathrm{GHz} \\ & 2.0 \mathrm{GHz}-4.0 \mathrm{GHz} \\ & 4.0 \mathrm{GHz}-8.0 \mathrm{GHz} \\ & 8.0 \mathrm{GHz}-12.4 \mathrm{GHz} \\ & 12.4 \mathrm{GHz}-18.0 \mathrm{GHz}^{3} \end{aligned}$	$\begin{aligned} & C 04-8699 B \\ & C O 4-8691 D \\ & C 04-8692 B \\ & C 04-8693 B \\ & C O S-86948 \\ & C O S-8655 A \end{aligned}$	$\begin{gathered} \left\{\begin{array}{c} 1000 \text { steps: } 100 \mathrm{MHz}-2.0 \mathrm{GHz} \\ 1000 \text { steps: } 2.0 \mathrm{GHz}-4.0 \mathrm{GHz} \end{array}\right\} \\ 1000 \text { sleps } \\ 1000 \text { steps } \\ 1000 \text { steps } \\ 1000 \text { sleds } \\ 1000 \text { steps } \end{gathered}$

Other frequency ranges are avallable on special order - for example: 1.4 $\mathrm{GHz}-2.9 \mathrm{GHz}, 1.7 \mathrm{GHz} \cdot 3.4 \mathrm{GHz}$, and $7.0 \mathrm{GHz} \cdot 12.4 \mathrm{GHz}$.
2 The two oands In thls aptlon are selected manualiy in the single-band configurations and actomatically in the multiband conflgurations.
${ }^{3}$ The system's measurement accuracy is unspecifled over this frequency range.

Figure 2. Complete multiband system.

Subsystem description

Signal source subsystem

For systems covering a single frequency range as listed in Table 1, the Programmable Signal Source is used in the system. The hardware in this subsystem includes a programmable sweep oscillator, RF signal source, computer interface register, and leveling circuitry. For frequency ranges covering more than a single frequency range, the Multiband Programmable Signal Source must be used. The hardware comprising this subsystem includes a programmable sweep
oscillator, RF signal sources, multiband RF unit holder and control, signal multiplexer, computer interface register, and leveling circuitry. The modifications to the programmable sweep oscillator consist primarily of a digital frequency controller which permits the sweep oscillator to be operated either in its normal manner or under computer control. While under computer control, the RF signal frequency is set by first programming the desired frequency band and then selecting the correct frequency within this band. The desired test unit is selected manually from the system control panel and the multiplexer switches the RF signal to it automaticaily. A portion of the RF signal is detected in the multiplexing unit, permitting automatic level control ($A L C$). The single-band subsystem contains the same programmable sweep oscillator, but an RF signal source is used in place of the frequency-band control unit. The RF unit holder and signai multiplexer are not needed. Since the signal sources are easily removable plug-in units, this subsystem is ideal for those applications where all of the measurements are within one of the frequency range options or where changing RF plug-in units is not inconvenient.

Programmable network analyzer

This subsystem measures both magnitude and phase angle of the transmission and reflection coefficients over 360° of phase shift and 80 dB of dyramic amplitude range. The RF signal entering the subsystem is directed to the test unit which converts transmission or reflection measurements into a test and reference signal for the network analyzer. Table 2 describes the test unit options available.

Table 2. Test unit options

Tast Unil Opllani avallatio tet Progammable Natwork manlyzer					
T691 Unil Number	Frequanay Renpe (OHY)	Type of Manimementis Petslbite	Honinal Lngut Pawar To Dovias Under Tasl	Preoinlon Floxable Eyictalon	Trancised Fixtur 6
8743A	2.0-18.0	Transmisslon (521) and Reflaction (s_{1}) For all lour s para. melers. the device under test musi ha turned around.	-25 dBm	Yes	No
8744A	0.5-18.0	Transmission and Reflaction lor up to four-port devicessixteen s parameters maxlmum	$-5 \mathrm{dBn}{ }^{2}$	Yes	No
B745A	0.11-2.0	Transmission(521 and S(2) and Rellection (s11 and s22) with one connaction of the device under last.	-568m	Yes	Yes

This level can be reduced by inserting attenuators at the inout dort, all Dower levels shown are approximate and can be adjusted or will vary about 10 dB tram the nomlial.
$2 \mathrm{Th} / \mathrm{s}$ power level can be reduced in $10 . \mathrm{\sigma B}$ staps from -5 dBm to -75 gem under computer control.

AUTOMATIC NETWORK ANALYZER High accuracy from 110 MHz to 12.4 GHz 8540 Series Systems

In the test unit, the RF input is split into two signals. One is connected to the reference channel of the frequency converter. The other signal goes to the device under test. For transmission measurements, the signal through the device is connected to the test channel of the frequency converter. For reflection measurements, the signal reflected from the device is connected to the test channel. In both cypes of measurements, the network analyzer measures the magnitude ratio and phase difference between the rest and reference signals. These ratios are sent to the network analyzer interface where the analog information is converted to digital form for processing by the computer.

Control subsystem

This subsystem consists of an 8000 -word instrumentation computer and its associated peripheral devices such as a teleprinter, high-speed tape reader, high-speed tape punch, and a system control panel. The control subsystem performs the following functions:

Controls all instruments in the system.
Stores the calibration and measurement data.
Performs programmed calculations.
Displays data in the desired form on either an oscilloscope or teleprinter.

Three input/output peripheral devices are included with the system. The teleprinter (modified ASR-33) is used for programming and command and provides readout of data in "hard-copy" form. The teleprinter can also be used to generate a paper tape copy of a computer program.

The tape reader is used for high-speed entry of the punched paper tape programs into the computer. A highspeed tape punch is used for punching paper tapes for data outputs, edited versions of computer program tapes, or for the output of the FORTRAN of BASIC compilers. This peripheral device is especially useful in writing and compiling special computer programs since it is capable of punching tapes twelve times faster than the teleprinter. Optional peripheral devices are:

Heavy duty Teleprinter (Modified ASR-35).
Disc Memory (and Direct Memory Access).
X.Y Plotter.

Large Screen Oscilloscope Display.
Programmable Power Supplies.
For further information on the 8540 series System components, refer to the information in this catalog on the Instrumentation Computers, the 8410A Network Analyzer, and the 8690 -Series Sweep Oscillators.

System features

Software

Although the standard software supplied makes most of the commonly needed rests, the need to tailor a program to a specific engineering or production test also arises. Since the 8540 A -series hardware is general-purpose, its character is largely determined by the software, giving the user a high degree of Rexibility in designing special procedures. Two computer languages are available: BASIC and FORTRAN. Both are supplied with standard, corrected-measurement subroutines using data stored by the programmed calibration routines. Thus, a minimum of programming effort is required of the user. BASYC is an easy-to-learn, conversational computer language; the program can be typed into the teletype and executed immediately. A combination of key words and instant feedback makes it possible to teach any engineer how to use the BASIC Janguage within a few hours.

For users familiar with FORTRAN, a compiler comparable to FORTRAN 2 is supplied with a complete libracy of measurement, complex mach, and display subroutines.

Pricing

These advanced microwave measurement systems are tailored to meet individual customer needs and range in price from $\$ 77,000$ for a $1-2 \mathrm{GHz}$ single-band system to $\$ 95,000$ for a $110 \mathrm{MHz} \cdot 12.4 \mathrm{GHz}$ multi-band system. Included in the price of each system are installation and two days of on-site training by factory personnel. Preventive maintenance and service of the system will be performed for 90 days at no charge.

Leasing

The 8540 A -series systems are also available on a fouryear lease contract. To provide maximum on-site system support, a Hewlett-Packard Customer Assistance Agreement may be obtained.

For complete system information or a quotation on a system designed to meet your needs, call your Jocal Hewlett. Packard Geld engineer.

Amplifiers

Amplifiers have two basic functions in instrumentation: 1) ro amplify signals that are too low in level for intended applications, and 2) to isolate circuits.

General-purpose amplifiers

A typical general-purpose ac amplifier is the HP 465A. Designed to amplify low.level signals, it has a noise level of $25 \mu \mathrm{~V}$ and a bandwidth of 1 MHz .

This solid-state amplifier is ideal for increasing the power output of transistorized oscillators or amplifiers. Output power of HP oscillators can be increased 14 times into a 600Ω load with the 465 A , or by a factor of 180 into a 50Ω load.

The HP 467A Power Amplifier has an average ac power capability of s wats over a frequency range from $d e$ to beyond 1 MHz , (10 -watt peak-power output). It has an output impedance that is virtually zero ($<0.005 \Omega$ in series with $1 \mu \mathrm{H}$).
If signals >40 voles $p \cdot p$ are needed, two power amplifiers, driven from a differential source such as the HP 200CD Oscillator, may be connected in a pushpull arrangement. This combination will develop 80 volts $p-p$ at 1 ampere.

When the 465 A Amplifier is cascaded with the 467A Power Amplifier, Figure 1, the combination achieves 10 -watt peak. power output, an overall stable gain of 60 dB and a 1 MHz frequency response.

The 467 A also serves as a power sup. ply with an adjustable control that can

Figure 1, Cascading the HP 467A Power Amplifier with the HP 465 A Amplifier results In a stable 60 de amplifier with 10 Mn Input impadance and 10 W peak-power output.
provide maximum-negative to maximumpositive output voltage. The output voltage polarity may thus be changed without switching or lead changing, a useful feature in diode testing, where both reverse and forward bias are required.

Precision ac amplifier

Recentily introduced, the HP 463A is 2 precision, all solid-state amplifier delivering 100 volts ims at s watts. Aug. menting these features is the ultra-low distortion specification and three fixed. gain ranges (10,100 and 1000) with a continuously-adjustable gain capability from 0 to 1000.

The 463 A is valuable not only in precision measurements and calibration set-
ups, but as a general-purpose amplifer. It is ideal for amplifying the output of stable solid-state oscillators, or to isolate thermocouple transfer measurements.

High-frequency ac amplifiers

The HP Models 461A and 462A Am. plifiers have wide bandwidths plus input and output emitter-followers to match 50Ω coaxial lines. The 461A frequency response extends to 150 MHz . The 462 A . is rolled off aiong a Gaussian curve to preserve the wave-shapes of complex waveforms.
Sources of radio frequency interference generated by high-frequency or fast-pulse circuits can be located and identified by combining the HP Model 140A/1410A/ 142sA Sampling Oscilloscope with a 461A/462A Amplifier. An exploring loop of two or three rurns of wire attached to the amplifier input cable serves as a convenient probe as shown in Figure 2.

Figure 2. Block disgram shows use of amplifler with search exploring loop and oscilloscope to probe for RF radiation sources.

Power amplifier

An increasing demand has developed for higher RF power output levels for the resting of communications systems and for general laboratory measurements. The need for higher power signal sources stems mainly from the strong signal and cross modulation requirements of certain receiver tests and the large input signal requirements of bridge-type devices. Because of the large number of existing signal generators in the 0 dBm maximum outpur category, HP developed the Model 230A runable Power Amplifier for use as an accessory to amplify the RF output power of chese instruments. Consisting essentially of three tracked-runed, cascaded stages of grounded-grid amplification, the 230A is capable of providing up to 30 dB RF gain and 4.5 watts of power over a 10 to 500 MHz frequency range.

DC amplifiers

A widely-used technique for circum. venting the drift problems of directcoupled amplifiers is to convert the do to an equivalent ac (modulation). The ac is amplified in a gain-stable ac amplifier and reconverted to $d c$ (demodula.
tion). During amplification, the signal is represented by the difference between the maximum and minimum excursions of the ac waveform and is not affected by drift in the absolute voltage levels within the amplifier.
One method of converting the dc to ac is to switch the amplifier input alternately to both sides of a transformer, as shown in Figure 3. This periodically inverts the

flgure 3. Modulated amplifier.
polarity of the signal applied to the amplifier. The switches illustrated may be mechanical, transistor or photoconduc. tive. Another pair of contacts at the output establishes the ground level for a storage capacitor in series with the out. put. The output storage capacitor becomes charged to a level corresponding to the amplitude of the output square wave. Synchronous detection preserves the polarity of the input voltage and recovers both positive and negative voltages with the correct polarity.
The de amplifiers just described offer drift-free amplification of low-level signals in the microvoit region. Another modulation technique uses two photoconductors one in series with, and one parallel to the amplifier input, shown in Figure 4.
Photoconductors' resistance is proportional to their illumination. By illuminating the photoconductors altemately, the amplifier input is connected to the signa!

Figure 4. Amplifier with photoconductive and to ground. Photoconductors perform well as modulators at microvolt levels. They can be isolated from the deiving signal and designed with very low offset voltages.

Differential amplifiers

Differential data amplifiers have two identical inpur channels that function in push-pull fashion. The output generally
is single-ended and represents the amplified difference between the two input channels. This arrangement cancels hum or other interference picked up on the signal leads which appear in phase to the amplifier inputs (referred to as com-mon-mode signals). Examples are the HP Models 2470A and 8875A.

Since a differential amplifier is sensitive only to the difference between the two input signals, the transducer or other signal source need not be grounded. Therefore, differential amplifiers allow a bridge-type teansducer to be used with a grounded power supply.

Figure 5. Guard reduces capasitance between signal leads and ground.
The differential amplifier configuration also allores injection of a fixed dc voltage into either channel to permit establish. ment of a ner voltage-reference leved at the output (zero suppression).

When the input is floating. cable shielding may be connected to chassis ground rather than to signal ground. However, boch ac and de porentials can exist between two widely-separated earth grounds, and common-mode currents may circulate. The signa! leads and the internal capacitances are shown lumped as C_{a} in Figure 5 . Consequently, a ground loop may inject interference into the sig. nal path. A guard shield (Figure 5) pro. viding an electrostatic shield around the input circuitry breaks the stray capacitance into two series capacitances, C_{d} and C_{Q} A much higher impedance is then pre. sented to the flow of common-mode sig. nals. This type is termed a floated and guarded amplifer.
DC amplifiers asing choppers are able to couple the signal information out of the guard shield by means of transformers. No de connection between the output and input grounds is necessary: and no ground loops are formed between the input circuits and equipment connected to the output.

Amplifiers designed for use with guarded digital voltmeters or other guarded equipment (Models 2411A and $860-4300$) continue the guard shield through the output.

Microwave amplifiers

There often are applications requiring
high-quality microwave signals, such as those obtained from precision signal generators where the magnitude of signal power needed is greater than that available directly from the signal generator, Amplification of the signal generator out. put will fll this requirement. At frequencies from 1 to 12.4 GHz this is accom. plished by HP mierowave amplifers. Four broadband amplifiers are available, each using a traveling.wave tube that delivers at least one watt output with one milliwatt or less input. Excellent stability is achieved through the use of highly regulated power supplies for all elements of the TWT, including the flament. The amplifiers have provision for amplitude modulation and since the internal modulation amplifier is decoupled, remote programming and power leveling are possible. Sensitivity is bigh for large output poner changes from relatively small modulation signals, obviating the need for an external modulation amplifer.

Selecting an amplifier

Stability, noise and input-ourput impedances, as well as cost, are basic considerations. If an amplifier is to be wised for general-purpose applications, lore distortion and preservation of magnitude relations are essential. When selecting an amplifier for pulse applications, low rise times and low sag are of prime impor. tance. The differential amplifier is the most logical choice when interference from other connecting equipment is likely. To preserve guarding features of voltmeters or other connecting equip. ment, or to suppress cammon-mode noise, a floated and guarded amplifier is es. sencial.

All the Henletr-Packard amplifers described have been designed to max. imize performance for specific applications while minimizing cost. A Hewlert. Packard amplifer is available to meet your specific requirements. Refer to tables for relative functions and features.

General-purpose amplifiers

Model	Frequency response	Gain	$\begin{gathered} \text { Mrput } \\ \mathbf{z} \end{gathered}$	$\begin{aligned} & \text { Noisg } \\ & (\text { max }) \end{aligned}$	Outpul (max)	$\begin{gathered} \text { 3ee } \\ \text { page } \end{gathered}$
450A	$\begin{aligned} & =0.5 \mathrm{~dB}, 10 \mathrm{~Hz} \cdot 1 \mathrm{MHz} \\ & =1 \mathrm{~dB}, 5.10 \mathrm{~Hz} \text { and } \\ & =0.5 \mathrm{~dB}, 5 \mathrm{Mz}-1 \mathrm{MHz} \\ & =1 \mathrm{~dB}, 2.5 \mathrm{~Hz} \text { and } 1.1 .2 \mathrm{MHz} \end{aligned}$	40 dB 20 dB	1 M $/ 1.15 \mathrm{pf}$	$\begin{aligned} & 250 \mu v \\ & \text { (referred } \\ & \text { to input) } \end{aligned}$	$\begin{gathered} 10 \mathrm{Vinlo} \\ 3000 \mathrm{~s} \end{gathered}$	485
461A/462A	$\begin{aligned} & \pm 1 \mathrm{~dB}, 1 \mathrm{kHz}-150 \mathrm{MHz} \text { into } \\ & 50 \mathrm{n} \text { load } \end{aligned}$	$\begin{aligned} & 40 d B \\ & 20 d B \end{aligned}$	50Ω	$\underset{\operatorname{st} 40 \mathrm{~dB}}{\substack{\mu V}}$	$\begin{aligned} & 0.5 \mathrm{~V} \text { into } \\ & 50 \Omega \mathrm{logd} \end{aligned}$	488
465A	$\begin{aligned} & \pm 0.1 \mathrm{~dB}, 100 \mathrm{~Hz} \cdot 50 \mathrm{kHz} \\ & <2 d \mathrm{~B} \text {; } 5 \mathrm{~Hz} \text { and } \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 40 \delta B \\ & 20 \mathrm{~dB} \end{aligned}$	$10 \mathrm{MR} / 20 \mathrm{pF}$	$\begin{array}{\|c\|} \hline 25 \mu V \\ \text { referred } \\ \text { to input } \end{array}$	$5 V$ rms into 50Ω $10 V$ open circuit	486
466A	$\begin{aligned} & =0.5 \mathrm{~dB}, 10 \mathrm{~Hz} \cdot \mathrm{MHz} \\ & <3 \mathrm{~dB} \text { at } 5 \mathrm{~Hz} \text { and } 2 \mathrm{MHz} \end{aligned}$	$\begin{array}{r} 40 \mathrm{~dB} \\ 20 \mathrm{~dB} \\ \hline \end{array}$	$1 \mathrm{M} / 2 / 25 \mathrm{pF}$	$\begin{aligned} & 75 \mu \mathrm{~V} \\ & \mathrm{sms} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{Vms} \\ & \text { into } 1500 \Omega \\ & \hline \end{aligned}$	485
467A	$\pm 1 \% \mathrm{dc}-100 \mathrm{kHz}$ $=10 \%, 100 \mathrm{kHz}-1 \mathrm{MHz}$	$\begin{gathered} \mathrm{Xl}, \\ \times 2, \times 5 \\ \times 10 \end{gathered}$	$\begin{aligned} & 50 \mathrm{~K} \Omega / \\ & 100 \mathrm{pf} \end{aligned}$	$\begin{gathered} <5 \mathrm{mV} \\ \mathrm{p} \cdot \mathrm{p} \end{gathered}$	$\begin{gathered} =20 \mathrm{~V} \text { peak } \\ \text { al } 0.5 \mathrm{~A} \\ \text { Deak } \end{gathered}$	486
463A	$\begin{aligned} & <=0.01 \%, 10 \mathrm{~Hz} \cdot 10 \mathrm{kHz} \\ & < \pm 0.1 \%, 10 \mathrm{kHz} \cdot 100 \mathrm{kHz} \\ & < \pm 0.1 \%, 10 \mathrm{~Hz} \cdot 20 \mathrm{kHz} \\ & < \pm 1 \%, 20 \mathrm{kH} \cdot 100 \mathrm{kHz} \\ & < \pm 0.3 \%, 10 \mathrm{~Hz} \cdot 20 \mathrm{kHz} \\ & < \pm 3 \% 20 \mathrm{kHz} 100 \mathrm{kHz} \end{aligned}$	$\begin{array}{r} \times 10 \\ \times 100 \\ \times 1000 \end{array}$	$\begin{gathered} 1 \mathrm{mn} /<35 \\ \mathrm{pF}(\mathrm{fixed} \\ \mathrm{gajn}) \\ 50 \mathrm{kn} / \\ <200 \mathrm{pF} \\ \text { (Adj. gain) } \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline \text { (rms re- } \\ \text { ferred } 10 \\ \text { input) } \\ 1.5 \mathrm{mV} \\ 150 \mu V \\ 50 \mu V \\ \hline \end{array}$	$\begin{aligned} & 100 \mathrm{~V} \text { ims } \\ & (5 \mathrm{~W} \text { con- } \\ & \text { tinuous) } \end{aligned}$	487

Power and voltage amplifiers

Model	Instrument	Frequency response	Galn	Output	$\begin{array}{\|c} \hline \text { Soe } \\ \text { Page } \end{array}$
467A	Power amplifier is also $=1 \mathrm{IV}$ io $=20 \mathrm{~V} / 2 \mathrm{amp}$ power supply, input $250 \mathrm{k} \Omega / 100 \mathrm{pF}$, noise $<5 \mathrm{mV}$ $p-0$.	$\begin{aligned} & d c \cdot 100 \mathrm{kHz} \\ & (\pm 1 \%) \\ & 100 \mathrm{kHz} \cdot 1 \mathrm{MHz} \\ & (=10 \%) \end{aligned}$	X1, X2, X5, X10	$\begin{aligned} & 20 \mathrm{~V} \text { peak. } \\ & 0.5 \mathrm{~A} \text { peak } \end{aligned}$	486
230 A	Tunable Power Amplifier, sourco of high-level if power when used wlth signal generators.	10.500 MHz	30, 27, $2^{5} \mathrm{~dB}_{\mathrm{d}}$ depending on frequency	$\begin{aligned} & 0-15 \mathrm{~V} \text { into } \\ & 50 \Omega \end{aligned}$	489
489A	Microwave power amplifiers: TWT devices: amplisude modu. Iation capability with interna! 20 dB,500 kizmodulationamplifier.	1.2 GHz	30 dB	IW	490
491C		2.46 GHz	30 dB	IW	490
493A		4.8 GHz	30 dB	1 W	490
495 A		7.12.4 GHz	30 dB	IW	490

Data amplifiers

Model	Instrumont	Frequenay rasponse	Galn	$\begin{aligned} & \text { Noise } \\ & \text { (max) } \end{aligned}$	Output	$\begin{aligned} & \hline \text { Sog } \\ & \text { Page } \\ & \hline \end{aligned}$
2470A	Differential data amplifier (with internal power supply)	dc. $50 \mathrm{kH2}$	$\begin{array}{r} 1,10,30,100, \\ 300,1000 \\ \hline \end{array}$	$\begin{aligned} & 5 \mu \mathrm{rms} \\ & \mathrm{rti} \end{aligned}$	$\pm 10 \mathrm{~V}$	484
8875A	Differential data amplifier (with internal power supply)	dc. 95 kHz	1.1000	${ }_{5 \mathrm{t}}^{5} \mu \mathrm{Vms}$	- 10 V	483

DIFFERENTIAL AMPLIFIER
 Wideband amplifier for data acquisition systems Model 8875A

The Model 8875A is a differential dc amplifier that provides high gain (up to 3000) and wide bandwidth. It fea. tures low drift for reliable, long term measurements, a common mode rejection of at least 120 dB at 60 Hz (500 ohm source unbalance, gain of 1000) and a common mode toler. ance of $\pm 20 \mathrm{~V}$. Intermodulation distortion is avoided by use of direct-coupled input circuits (no choppers or modulators are used). An output having a capability of $\pm 10 \mathrm{~V}$ at ± 100 mA is standard, with a second independent output of $\pm 10 \mathrm{~V}$ at $\pm 10 \mathrm{~mA}$ optional. The 8875 A is available as a single unit, in banks of up to 10 channels for rack mounting or in portable cases.

The 8875 A is ideal for use with thermocouples, dc excited strain gages and other low level sources, with read out to devices such as digital voltmeters, optical oscillographs, analog-digital converters and similar units. Applications include space vehicle checkout, monitoring of physical variables, wind tunnel tests and arrangements with either input or output multiplexers.

Electrical Specifications

Bandwidth: de to 75 Hz arithin 3 dB , at fixed gain steps. Can be narrowed to as low as de to 2 Hz with optional switch-selectable filter.
Galn: fixed steps of $1,3,10,30,100,300,1000$ plus OFF. on any range, variable gain potensiometer may be switched to proside uncalibrared gain up to 3 X gain swith seting. Gain accuracy $\pm 0.1 \%$: gsin remier allows setting any ane fixed gain to an accuracy of 0.01%.
Input circuit: differential, active guarded; will accept floating input without ground return; may be used single-ended.
Input impedance: differential, $20 \mathrm{M} \Omega$ ($\pm 5 \%$) with less than $0.001 \mu \mathrm{~F}$ shunt; common mode (guarded), greater than $2000 \mathrm{~N} \Omega$ with less than 2 pF shuns.
Common mode rejection: at least 120 dB from de to 60 Hz for up to 5005 source impedance either side of inpur at gain of 1000 : 66 dB minimum at gain of 1.
Common mode tolerance: $\pm 20 \mathrm{~V}$.
Input overload tolerance: $\pm 30 \mathrm{~V}$ differential: $\pm 70 \mathrm{~V}$ common mode will not damage the amplifier.
Output circuit: $\pm 10 \mathrm{~V}$ across 1002 (100 mA), output impedance (dc) 0.2Ω max. Short circuit proof; current limited to approx 150 mA . Will not oscillare with any value of capacity load.
Zero drift: $\pm 3 \mu \mathrm{~V}$ referred to input, $\pm 0.2 \mathrm{mV}$ referred to ourpur. at constant ambient temperature for 30 days. $\pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ referred to input, $\pm 0.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ referred to output. $\pm 2 \mathrm{mV}$ referred to output for $\pm 10 \%$ change in line voleage.
Gain stability: $\pm 0.01 \%$ at constant ambient temperature fur 30 days. $\pm 0.005 \% /{ }^{\circ} \mathrm{C}$ (fixed gain steps only). $\pm 0.01 \%$ for $\pm 10 \%$ change in line voltage.
Nonlinearity: less than 0.01% of full scale 10 V output (zero based terminal linearity).
Current feed to source: $0.001 \mu \mathrm{~A}$ max at constant ambient tempera. ture: $\pm 0.001 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$.
Settling time: $100 \mu \mathrm{sec}$ to 99.9% of final valuc for step inpur.
Overload recovery time: from differencial overload signal of ± 10 V at gains of 300 to 1000 , recovery in 10 msec to within $10 \mu \mathrm{~V}$, referred to input plus 10 mV referred to ourpur: for gains of 1 in

100, recovery in 1 msec . For a 10 X full scale overload of any duration, recovery in 2 msec for gains of 300 to 100 , and $200 \mu \mathrm{sec}$ for gains of 1 to 100 .
Nolse: measured at gain of 1000 with respect to input, 1000Ω source impedance:

Eandwldth	Nolse	Bandwldith	Nolse
$\mathrm{dc} \cdot 10 \mathrm{~Hz}$	$1 \mu \mathrm{VPP}$	dc .10 kHz	$3 \mu \mathrm{Vrms}$
$\mathrm{dc}-100 \mathrm{~Hz}$	$3 \mu \vee \mathrm{Pp}$	dc. 50 kHz	$4 \mu \mathrm{~V}$ rms
dc .1 kHz	$6 \mu \vee \mathrm{p}$	do. 250 kHz	$5 \mu \mathrm{~V}$ ims

Slewing: gain of 1 or $3,0.7 \mu \mathrm{~V} / \mathrm{sec}$; gain greater than $3,1 \mu \mathrm{~V} / \mathrm{sec}$ referced to output, for 10 mV de offset at output with resistive load of 1008 or greater.
Input-output isolation: greater than $200 \mathrm{M} \Omega$ shunted by less than 2 pF .
Temperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

General Specifications

Power: $115 / 230 \mathrm{~V}=10 \%, 50$ to $400 \mathrm{~Hz}, 6 \mathrm{~W}$.
Dimensions: $43 / 4^{\prime \prime}$ high, $1-9 / 16^{\prime \prime}$ wide, $15^{\prime \prime}$ deep ($121 \times 40 \mathrm{x}$ 381 mm).
Waight: 3.5 lbs (1,6 kg).
Prices: 8875A Differential Amplifier, $\$ 495$.
Optlon 01: dual ourputs (10 mA and 100 mA capability: short un one has negligible effect on other), add $\$ 75$.
Option 02: 5 witch selected filers (single-pole. low pass, with rorner frequencies of $2,200,2000$ and $20,000 \mathrm{~Hz}$), add 575 .
Option 03: gain ranges of $10,20,50,100,200$. 500 and 1000 , add $\$ 25$.
Option 04: 14010 A Cord Connector Set for bench-top use (required for single-channel operation), add $\$ 65$.
Option 05; combines Option 01 and 02 (filters on 10 mA output only), add $\$ 150$.
Option 06: combines Option 02 and 03, add $\$ 100$.
Note: must order 1069-01A case for mulichannel banks of 10 or less, \$365. Sufficient blank panels (01069-61069) to fill cast are required to maintain temperature srabílity sperifications, $\$ 10$ each.

DATA AMPLIFIER
 Solid-state, wideband differential amplifier Model 2470A

The HP 2470A Amplifier is a flexible wideband differential amplifier exhibiting low drift and noise, achieved without the use of a chopper. The instrument will supply up to 1 watt output to a resistive or reactive load. Exceptionally high reliability and accuracy are achieved by the use of silicon semiconductors.

Applications include amplification of strain gage bridge. thermocouple and other low-impedance sensors. Amplifien provides an output suitable for data acquisition devices, in.
cluding recording galvanometers and oscillographs, analog recorders, servo control systems. Low instrument cost keeps per-channel price to the minimum. The 2470A also applies directly to many general-purpose laboratory uses, both differential and single-ended.

The amplifier with its power supply is packaged compactly. Tea instruments fit side-by-side in $51 / 4^{\prime \prime}$ of standard $19^{\prime \prime}$ rack space, or two instruments may be installed in a portable case as shown on page 247.

2470A Amplifier shown in combining case.

Specifications

Specifications include $\pm 10 \%$ line voltage variation, hold for 1 K max. source resistance, any unbalance, and assume calibration after specified warmup.
DC gain: 6 fixed steps of $\times 1, \times 10, \times 30, \times 100, \times 300, \times 1000$. Optional vernier (10 -turn potentiometer) extends gain to $\times 3.5$.
DC gain accuracy: calibrated gain: . 01% at output; other gains: $.03 \%$, consisting of $.02 \%$ gain-to gain accuracy and $.01 \%$ gain trim resolution.
Gain stabllity: dc: $\pm .005 \%$ of output per month; ac: $\pm .1 \%$ per month, for ac to 2 kHz ; temp. coeft: $\pm .001 \%$ per ${ }^{\circ} \mathrm{C}$.
Llnearity: ds: $\pm .002 \%$ of full scale, referred to straight line through zero and full scale outpur. $\mathrm{AC}: \pm .01 \%$ of full scale: inpurs to 2 kHz .
Zero drlft (oftset): per day: $\pm 5 \mu \mathrm{~V}$ rli (referred to input) $\pm 200 \mu \mathrm{~V}$ ro (referred to output); per month: $\pm 25 \mu \mathrm{~V}$ rri $\pm 500 \mu \mathrm{~V}$ rto: temp. coeff: $\pm 1 \mu \mathrm{~V} \pm .5$ namp rit $\pm 40 \mu \mathrm{~V}$ rio per ${ }^{\circ} \mathrm{C}$.
Maximum Input signal: $\pm 11 \mathrm{~V}$, differential plus common mode.
Differentlat Input impedance: 10° olims shunted by $.001 \mu \mathrm{~F}$.
Common mode rejection: 120 dB at 60 Hz for gains of $x 30$ and higher.

Common mode return: from input common to outpur common; 1 megohm, max
Noise: 0 to $10 \mathrm{H}_{2}: 1 \mu \mathrm{~V}$ p.p rti and $10 \mu \mathrm{~V}$ p.p rto; to 50 kHz : $s \mu \mathrm{~V}$ rms rti and $500 \mu \mathrm{~V}$ rms ito.
Output: $\pm 10 \mathrm{~V}$ max, 0 to 100 mA . Self-limits.
Outpat impedance: 0.1 ohm in series with $10 \mu \mathrm{H}$ max.
Load capability: 100 ohms or $01 \mu \mathrm{~F}$ for full output.
Slewing: $10^{\circ} \mathrm{V} / \mathrm{sec}$ at gain of $1: 5 \times 10^{\circ} \mathrm{V} / \mathrm{sec}$ at gain of 30 .

Bandwidth: for any gain step, 0 to $50 \mathrm{kHz} \pm 3 \mathrm{~dB} ; 0$ to 15 kHz $\pm 1 \mathrm{~dB} ; 0$ to $5 \mathrm{kHz} \pm 1 \% ; 0$ to $1.5 \mathrm{kHz} \pm 1 \% ; 0$ to 500 Hz $\pm 01 \%$.

Setkling time: $100 \mu \mathrm{~s}$ to 01% of final value.
Overload recovery: $200 \mu \mathrm{~s}$ to $.01 \%$ of final vaiue for signal of 10 rimes full scale, but less than 10 V ; less than 5 ms for signal plus common mode up to 20 V .
Overioad signal: -17.5 to -19.5 V with no overload, 0 to -1 V in overload; 5 mA drive capability; fronc panel lamp indication.

Operating conditians: ambient temperatures 0 to $55^{\circ} \mathrm{C}$; relative humidity to 95% at $40^{\circ} \mathrm{C}$.
Warmup: operates immediately after turn.on, but requires $1 / 2$ hours in free air, 30 minutes in Portable Case or Combining Case (plus I hour additional warmup for each $10^{\circ} \mathrm{C}$ difference between storage temperature and operating ambient) for specified accuracy and zero drift.
Reliability: predicted MTBF (90% confidence) 20,000 hours when operated at $25^{\circ} \mathrm{C}$ ambient.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 10 \mathrm{~W}$ max.
Dimensions: $1.9 / 16^{\prime \prime}$ wide, $47 / 8^{\prime \prime}$ high, $15^{\prime \prime}$ deep (39.7×123.9 $\times 381 \mathrm{~mm}$).
Welght: net 4 lbs ($1,8 \mathrm{~kg}$); shipping $61 / 2 \mathrm{Ibs}(2,9 \mathrm{~kg})$.
Accessories avallable: mating rear connector; mating rear connecror with power cord, input/output cables; combining case: contains up to 10 instruments in $51 / 4^{\prime \prime}$ of standard $19^{\prime \prime}$ rack space (mating connectors furnished) includes power cord and fan; portable case: holds tro amplifers (mating connectors furnished) and includes power switch, pilot light, power cotd and fan.
Price: HP 2470A Data Amplifier, $\$ 600$.

AMPLIFIERS
 Offer 20 or 40 dB gain Models 450A, 466A

AMPLIFIERS

The HP Model 450A is ideal as a general-purpose instrument wherever wide-frequency range and stable gain are essential. The instrument has an extremely stable 20 dB or 40 dB gain over a continuous frequency range of 10 Hz to 1 MHz . Either gain may be selected quickly with a toggle switch on the front panel.

The amplifier is resistance-coupled and does not use peaking or compensating networks. Optimum. performance is obtained enticely from a straightforward amplifier design in combination with inverse feedback.

Specifications, 450A

Gain: $20 \mathrm{~dB}(\mathrm{X} 10)$ or $40 \mathrm{~dB}(\mathrm{X} 100) \pm 0125 \mathrm{~dB}$ at 1000 Hz .
Frequency response: 40 dB gain: $\pm 0.5 \mathrm{~dB}, 10 \mathrm{~Hz}$ to 1 MHz : $\pm 1 \mathrm{~dB}, 5 \mathrm{~Hz}$ to $2 \mathrm{MHz} ; 20 \mathrm{~dB}$ gain: $\pm 0.5 \mathrm{~dB}, 5 \mathrm{~Hz}$ to 1 $\mathrm{MHz}:=1 \mathrm{~dB}, 2 \mathrm{~Hz}$ to 1.2 MHz (open circuic).
Stablity: $\pm 2 \%$, includes line voltage variation 115 or 230 $V=10 \%$.
Impedance: input, 1 megohm, 15 pF shunt; internal, less shan 150 ohms.
Distortion: less than $1 \%, 2 \mathrm{~Hz}$ to 100 kHz at maximum out. pue and rated load; 2% above 100 kHz .
Output: 10 V maximum into $3000 \cdot \mathrm{ohm}$ or greater load.
Nolse referred to input: 40 dB gain, $40 \mu \mathrm{~V} ; 20 \mathrm{~dB}$ gain, 250 $\mu \mathrm{V}$.
Power: 115 or (230 V must be specifed) $\pm 10 \%$, 50 to 100 Hz . 50 wates.
Dimensions: cabinet: $85 / 8^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $103 / /^{\prime \prime}$ deep (219 $\times 140 \times 273 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $105 / \mathrm{g}^{\prime \prime}$ deep behind panel ($483 \times 133 \times 270 \mathrm{~mm}$).
Welght: net $10 \mathrm{lhs}(4,5 \mathrm{~kg}$). shipping 15 lbs ($6,8 \mathrm{~kg}$) (cabinet): net $11 \mathrm{lbs}(5 \mathrm{~kg})$. shipping 23 (bs (10.4 kg) (rack mount).
Price: HP 450A, $\$ 220$ (cabiner): HP f50AR. $\$ 225$ (rack inount).

466A AC Amplifier

The HP Model 46GA AC Amplifier is ideal wherever low distortion, stability, wide-frequency range, and portability are desirable; and it may be used to increase the sensitivity of voltmerers and oscilloscopes, since its gain is accurate and stable.

Model 466 A is normally furnished with a plug-in supply for ac operation. For portable operation or for isolation from power lines, the supply may be quickly removed and replaced with batteries. If desired, specify hatteries in lieu of the plug-in supply (Option O1).

Specificatlons, 466A

Gain: $20 \mathrm{~dB}(\mathrm{X} 10)$ or $40 \mathrm{~dB}(\mathrm{X} 100) \div \mathrm{O} 2 \mathrm{~dB}$ ar 1000 Hz .
Frequency response: $\pm 0.5 \mathrm{~dB}, 10 \mathrm{~Hz}$ to 1 MHz down 3 dR , or less at 5 Hz and 2 MHz .
Output voltage: 1.5 V rms across 1500 ohms.
Output current: 1 mA rms maximum.
Noise: $75 \mu \mathrm{~V}$ rms ceferced to input, 10 n .00 n -ohm source.
Impedance: inpuk, 1 megohm. 25 pF shunt: nutput, 50 nhms in series with $100{ }_{\mu} \mathrm{F}$.
Distortion: less than $1 \%, 10 \mathrm{~Hz}$ bo 100 kHz ; less than 9% to 1 MHz .
Power: 115 or (230 V must the specified) $\div 10 \%$. 50 to 400 Hz . 1 watt (supply normally furnished): battery operation oprional: radin-type mercury bateries, TR23l.316619 or equiv. alent. 3 required ($\mathrm{HP}=1 .\{20.0006$); hattery life, 150 hours.

Dimensions: $61 / 4^{\prime \prime}$ wide, $4^{\prime \prime}$ high. $61 / 4^{\prime \prime}$ deep ($159 \times 102 \times 159$ mm).
Weight: net $21 / 2$ ths $(1.13 \mathrm{~kg}$: shipping $31 / 2 \mathrm{ths}(1.58 \mathrm{~kg}$)
Price: HP a6gA, S180. ac uperation
HP 466A Option 01: batteries in lieu of ac apply, dedurt $\$ 19$

SOLID-STATE AMPLIFIERS

Precision general-purpose amplifiers
Models 465A, 467A

The HP Model 46SA is a general-purpose amplifier and an excellent impedance converter (10 megohms to 50 obms). This amplifer has extremely stable 20 dB or 40 dB gain over a continuous frequency range of 5 Hz to 1 MHz . Either gain nay be selected rapidly with a switch on the front panel.
This solid-state amplifier is ideal for increasing the porver outpur of solid-state oscillators or amplifiers. The output stage
provides low outpur impedance and wide dynamic range. The HP 465 A is a threeterminal device isolated from chassis and may be foated up to 500 volts dc above chassis ground.

465A Specifications

Volkage gain: 20 dB (X 10) or 40 dB (X100), open circuit.
Galn accuracy: $\pm 0.1 \mathrm{~dB}(\pm 1 \%)$ at 1000 Hz .
Frequency response: $\pm 0.1 \mathrm{~dB}, 100 \mathrm{~Hz}$ to $50 \mathrm{kHz}<2 \mathrm{~dB}$ down at 5 Hz and 1 MHz .
Output: >10 volts rms open circuit; >5 volts rms into 50 ohms (0.5 wate)

Distortion: $<1 \%$, 10 Hz to $100 \mathrm{kHz},<2 \%$. 5 Hz to 10 Hz and $100 \mathrm{kHz} 10: \mathrm{MHz}$.
Input impedance: 10 megohms shunred by $<20 \mathrm{pF}$.
Output impedance: 50 ohms.
Noise: $<25 \mu \mathrm{~V}$ rms seferred to input (with 1 megolm source resistance).
Temperature range: 0 to $+50^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 10$ watts at full load.
Dimenslons: $51 / 8^{\prime \prime}$ wide, 3 " high (withour removable feet), $11^{\prime \prime}$ deep ($130 \times 76 \times 279 \mathrm{~mm}$).
Weight: net: $4 \mathrm{lbs}(1,8 \mathrm{~kg})$ shipping: $6 \mathrm{lbs}(2.7 \mathrm{~kg})$.
Price: HP 465A, $\$ 210$.

HP 467A Amplifier/Power Supply

The solid-stare HP 467A Poxer Amplifer/Supply is a 10 . watt peak power amplifier and -20 to +20 volt do pon'er supply. The power amplifier has a wide bandwidth and low dc drift, suitable for many applicarions wherever a power source is required. Unique features are low distortion ($<0.01 \%$), low drift and high.gain accuracy.

An output greater than ± 20 volts peak and ± 0.5 A peak is available from de up to 1 MHz . At full output the distortion of the 467 A is less than 3% up to 1 MHz . The amplifier is a three. terminal device isolated from chassis and may be floated up to 200 volts de above chassis ground.

467A Specifications

Power amplifier

Voltage gain (non-inverting): fixed steps: X1,X2.XS,X10. Varlable: 0-10 resolution is better than 0.1% of full output. Accuracy: $\pm 0.3 \%$ from de to 10 kHz ; $\pm 1.0 \%$ from 10 kHz 10100 kHz : $\pm 10 \%$ from 100 kHz to 1 MHz rich load of >40 ohms.
Output: $\pm 20 \mathrm{~V}$ peak at 0.5 A peak.
Distortion: $<0.01 \%$ at $1 \mathrm{kHz}:<1 \%$ at $100 \mathrm{kHz} ;<3 \%$ at 1 MHz .
Input impedance: sok ohms shunted by 100 pF .
DC power supply
Voltage range: $> \pm 20 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 4 \mathrm{~V}, \pm 2 \mathrm{~V}, \pm 1 \mathrm{~V}$, with adjustable vernier. Resolution: better than 0.1% of full output.
Current: ± 0.5 A peak.
Load regulation: (front panel) $<10 \mathrm{mV}$, no load to full load.
Line regulation: $<10 \mathrm{mV}$ for a $\pm 10 \%$ change in line voltage. General

Output impedance: (front panel): $s M \Omega$ in series with 1 ${ }_{\mu} \mathrm{H}$.

Capacitance load: $0.01 \mu \mathrm{~F}$ or less does not cause instability.
Ripple and noise: $<5 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$ (referred to outpur) for amplifier and power supply.
Current limit: $<800 \mathrm{~mA}$.
Temperature coefficient: $< \pm 0.05 \% /{ }^{\circ} \mathrm{C}$ of output or ± 2 $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ at output, whichever is greater.
Input-output terminals: front panel: $3 / 4^{\prime \prime}$ spaced banana terminals for input, output, and chassis. Rear panel: BNC terminals. Circuir ground can be floated 200 V de above chassis ground.
Operating temperature range: 0 to $+90^{\circ} \mathrm{C}$.
Power required: 115 or $230 \mathrm{~V} \pm 10 \%, 50.400 \mathrm{~Hz}$; $<35 \mathrm{~W}$. full load.
Dimenslons: $51 / 8^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (without removable feet), $11^{\prime \prime}$ deep ($130 \times 159 \times 279 \mathrm{~mm}$).
Weight: net: $10 \mathrm{lbs}(4,5 \mathrm{~kg})$; shipping: $16 \mathrm{lbs}(7,2 \mathrm{~kg})$.
Price: HP 467A, \$595.

PRECISION AC AMPLIFIER Low level measurements; precision application Model 463A

AMPLIFIERS

Description

A precision ac amplifer, the solid-state HP 463A has gain accuracy better than 0.01% with longrerm stability of 100 ppm/yr., distortion below 0.01%, and output capability up to 100 volts rms at 5 reatts continuous. The 463 A has a bandwidth from de to 100 kHz offering use in many applications. Unusual precision in the performance of the 463 A Amplifier suggests its usefulness in ac calibration procedures; an example is calibrating precision attenuators. The 100 -volt output capability makes it practical to measure as much as 110 dB of attenuation. It is ideal to amplify the output of the most stable solid-state oscillators, or to use as an isolator for thermo. couple transfer measurements. The Hewlett-Packard Model 463A Precision AC Amplifer was designed to meet the most critical requirements for wide-range. low-distortion applications.

Specifications ${ }^{* *}$

Flxed Gain (DC Coupled)

X10 Range

Accuracy: Dc to $10 \mathrm{~Hz},< \pm 0.3 \%^{* *} ; 10 \mathrm{~Hz}$ to 10 kHz , $< \pm 0.01 \%$: 10 kHz to $100 \mathrm{kHz},< \pm 0.1 \%$.
Distortion (100 V output, full load): 10 Hz to 10 kHz , $<0.01 \% ; 10 \mathrm{kHz}$ to $100 \mathrm{kHz},<0.1 \%$.

$\times 100$ Range

Accuracy: Dc to $10 \mathrm{~Hz},< \pm 3 \%^{* *}: 10 \mathrm{~Hz}$ to 20 kHz , $< \pm 0.1 \% ; 20 \mathrm{kHz}$ to $100 \mathrm{kHz},< \pm 1.0 \%$.
Distortion (100 V output, fuli load): 10 Hz to 10 kHz , $<0.03 \%: 10 \mathrm{kHz}$ to $100 \mathrm{kHz},<0.1 \%$.

X1000 Range

Accuracy: Dc to $10 \mathrm{~Hz},< \pm 30 \%{ }^{* *}$; 10 Hz to 20 kHz , $< \pm 0.3 \% ; 20 \mathrm{kHz}$ to $100 \mathrm{kHz},< \pm 3.0 \%$.
Distortion (100 V output, full load): 10 Hz to 10 kHz , $<0.1 \% ; 10 \mathrm{kHz}$ to $100 \mathrm{kHz},<0.5 \%$.
Fixed gain (AC Coupled): identical to de coupled except coupling capacitor causes 0.01% error at 25 Hz to 3 dB error at 0.35 Hz .
Adjustable gain (ac or dc coupled): gain may be adjusted from 0 to 100% of the fixed gain range.

[^43]Distortion: same as fixed gain range.
Long term stability (Fixed Gain):

Fraguency	X10	Gain, X100	X1000
10 Hz to 10 kHz	$0.003 \% / \mathrm{mo}$	$0.03 \% / \mathrm{mo}$	$0.3 \% / \mathrm{mo}$
	$0 \mathrm{0.01} \mathrm{\%} / \mathrm{yr}$	$0 \mathrm{or} 0.1 \% / \mathrm{yr}$	$0 \mathrm{or} 1 \% / \mathrm{yr}$
10 kHz to 100 kHz	$0.03 \% / \mathrm{mo}$	$0.3 \% / \mathrm{mo}$	$3 \% / \mathrm{mo}$

Temperature coefficient: $\mathrm{X} 10(10 \mathrm{~Hz}$ to 10 kHz$) 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (10 kHz to 100 kHz) $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$; X100 (10 Hz to 10 kHz) $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}(10 \mathrm{kHz}$ to 100 kHz$) 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$; X 1000 (10 Hz to 10 kHz) $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}(10 \mathrm{kHz}$ to 100 kHz) $500 \mathrm{ppm} /$ ' 7 (deviation from Cal. Temp. for fixed gain).
DC zero stabillty:
Short term: $\left(23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}\right)$ Gain range V / hr. (output)

X 10	0.05
$\mathbf{X} 100$	0.5
X 1000	5.0

Input impedance: fixed gain; $1 \mathrm{M} ?(\pm 5 \%)$, $<35 \mathrm{pF}$; adjust able gain: $50 \mathrm{k} \Omega,<200 \mathrm{pF}$.
Maximum input voltage: protected to ± 150 volts. Ac coupling capacitor ± 500 volts peak.
Noise (sms referred to input):

Galn range	$<1 \mathrm{k} \Omega$ soluroe	$>1 \mathrm{k} \Omega$ source \ddagger
$\times 10$	1.5 mV	1.5 mV
$\times 100$	$150 \mu \mathrm{~V}$	$300 \mu \mathrm{~V}$
$\times 1000$	$50 \mu \mathrm{~V}$	$200 \mu \mathrm{~V}$

fwith input shielded
Output characteristics:
Vortage: dc: $100 \mathrm{~V}, 20 \mathrm{~mA}$: ac: $100 \mathrm{~V} \mathrm{rms}, 50 \mathrm{~mA} . \dagger$
Power: 5 W continuous.
Impedance: from 0.05Ω to 20Ω.
Minlmum resistive load: 100Ω.
Maximum capacitive load: 300 pr on the X 10 range to 5000 pF on the X 1000 range (capacitive drive increased with a resistor in series aith the output).
General:
Temperature range: 0 to $+50^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V}, \pm 10 \%, 50$ to $400 \mathrm{~Hz}, 50 \mathrm{~W}$ full load.
Dimensions: $16 \frac{3}{4 \prime \prime}$ wide, $5^{\prime \prime}$ high (without zemovable feet), $131 / 4^{\prime \prime}$ deep ($426 \times 127 \times 337 \mathrm{~mm}$).
Weight: net $19 \mathrm{lbs} .(8,6 \mathrm{~kg})$; shipping $25 \mathrm{lbs}(11,3 \mathrm{~kg})$.
Accessorles furnlshed: rack mounting kit for $19^{\prime \prime}$ rack.
Price: HP $463 \mathrm{~A}, \$ 690$.

The solid-state HP 461A and 462A Amplifiers are excellent wherever wide-frequency range, low distortion and portability are desired.
The 461A Amplifier is a general-purpose instrument designed to deliver stable gain over a wide-Frequency range. Either 20 dB or 40 dB gain may be selected with a frontpanel switch. Figure 1 illustrates the typical frequency response of the 461 A . Both input and output impedances are matched to 30 ohms. Maximum output is $1 / 2$ volt rms.

Figure 1. Frequency response curve of HP 461A. Markers shown from left to right are: $50,100,150$ and 200 MHz . Gain control is sot in 20 or 40 dB position.

The ability of the 462 A to amplify very fast pulses can be seen in Figure 2. The upper trace (A) shows a 20 ns pulse applied to the input of the 462 A Amplifier. The lowex trace shows the same pulse amplified at 40 dB , as viewed on the HP 185 B Sampling Oscilloscope.

Figure 2. (A) Input Pulse to HP 462A (5 mV peak to peak). (8) Output Pulse of HP 462A (300 mV peak to peak). Galn control is set in 40 dB position. Sweep speed Is $5 \mathrm{~ns} / \mathrm{cm}$.

This amplifier gives maximum usefulness for fast-pulse applications, television, and vhf work.

Specifications, 461A

Frequency range: 1 kHz to 150 MHz .
Frequency response: $\pm t \mathrm{~dB}, 1 \mathrm{kHz}$ to 150 MHz , when operating inno a 50.0 hm resistive load (500 kHz reference).
Gain at $500 \mathrm{kHz}: 40 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$; or $20 \mathrm{~dB} \pm 1.0 \mathrm{~dB}$, selected by front-panel switch (inverting).
input impedance: nominal 50 ohms.
Maximum Input: 1 volt ems or 2 volts p-p pulse.
Maximum de input: ± 2 volts.*
Output: 0.5 volt rms into 50.0 hm resistive load.
Equivalent wideband Input nolse level: less than $40 \mu \mathrm{~V}$ in 40 dB position.
Distortion: < 5% at maximum output and rated load.
Overload recovery: <1 μ sor 10 times overload.

Specifications, 462A

Pulse response: leading edge and crailing edge: rise rime, <4 nanoseconds; overshoor, <3\%.
Pulse overload recovery: less than 1μ for 10 times overload. Pulse duration for 10% droop: 30μ s.
Equivalent input noise level: less than $40 \mu \mathrm{~V}$ in 40 dB position. Input impedance: nominal 50 ohms.
Maximum input 1 volt rms or 2 voits $p-p$ pulse.
Maximum de input: ± 2 volts.*
Galn: 20 or 40 dB selected by front-panel switch (inverting). Output: 1 volt peak-to-peak into 90 -ohn resistive load.
Delay: nominally 12 to 14 nanoseconds.

General Specifications

Dimenslons: $51 / 8^{\prime \prime}$ wide, $3^{\prime \prime}$ high (without removable feet), $11^{\prime \prime}$ deep ($130 \times 76 \times 279 \mathrm{~mm}$),
Welgit: net $31 / 4 \mathrm{lbs}(1,5 \mathrm{~kg})$; shipping $5 \mathrm{lbs}(2,3 \mathrm{~kg})$.
Power: 115 or 230 volts $\pm 10 \%, 50$ to $400 \mathrm{~Hz}, 5$ wats.
Connectors: BNC female.
Accessories available: 11048 B 50-Ohm Feedthru Termination, $\$ 10$; Combining Cases: $10 \$ 1 \mathrm{~A}, \$ 110$, or $1052 \mathrm{~A} \$ 120$, (each holds six HP 461A, Amplifiers).
Price: HP 461A, \$325; HP 462A, $\$ 325$.
F For the protection of the input circuitery.

POWER AMPLIFIER Provides more than 4.5 watts, 10 to 500 MHz Model 230A

AMPLIFIERS

The HP 230A Signal Generator Power Amplifier is the ideal solution to high RF power requirements, including receiver testing, waltmeter calibration, antenna testing, filter and component testing and attenuation measurements.

The amplifier may be conveniently driven with any conventional signal generator and is designed to reproduce
$A M, F M$ and pulse modulation characteristics of the driving generator with minimum distortion.

The 230 A employs three tuned, cascaded stages of grounded-grid amplification fed from a regulated power supply. An RF output voltmeter is also included and the unit is designed for either standard $19^{\prime \prime}$ rack or cabinet use,

230A

Specifications

Radio frequency characteristles

RF range: total range: 10 to 500 MHz ; number bands: 6 ; band ranges: 10 to $18.5 \mathrm{MHz}, 18.5$ to $35 \mathrm{MHz}, 35$ to $65 \mathrm{MHz}, 65$ to $125 \mathrm{MHz}, 125$ to $250 \mathrm{MHz}, 250$ to 500 MHz .
RF callbration: increments of approximately 10%, accurate to $\pm 10 \%$.
RF output: range: up to 15 volts (across external 50 -ohm load) ; calibration: 0.2 to 3 volts f.s-, increments of approx. 5\%; 1 to 10 volts f.s., increments of approx. $5 \% ; 2$ to 30 volts f.s., increments of approx. 5%; accuracy: $\pm 1 \mathrm{~dB}$ of f.s. (10 to 250 MHz), $\pm 1.5 \mathrm{~dB}$ of f.s. (250 to 500 MHz); leakage: effective shielding is greater than 40 dB .
RF bandwith:* $>700 \mathrm{kHz}$ (10 to 150 MHz ; $>1.4 \mathrm{MHz}$ (150 to 500 MHz).
RF input; level**: ≤ 0.316 volts, 30 dB gain, (10 to 125 MHz) ; ≤ 0.446 volts, 27 dB gain, (125 to 250 MHz); ≤ 0.63 volts, 24 dB gain, (250 to 500 MHz).

[^44]
Amplitude modulation characteristics

AM range: reproduces modulation of driving signal generator 0 to 100% t.
AM distortion: < 10% added to distortion of driving signal generator \dagger.

Frequency modulation characterlstics

FM range: reproduces modulation of driving signal gen. erator except as limited by the RF bandwidth.
Incidental AM: < 10% added to modulation of driving signal generator (at 150 kHz deviation).
FM distortion: negligible distortion added to distortion of driving signal generator for $<150 \mathrm{kHz}$ deviations and modulation frequencies.

Physical characteristics

Dimensions: $163 / 4^{\prime \prime}$ wide, $7-3 / 16^{\prime \prime}$ high, $18 \cdot 1 / 16^{\prime \prime}$ deep ($425 \times 183 \times 459 \mathrm{~mm}$).
Weight: net $37 \mathrm{lbs}(16,7 \mathrm{~kg})$; shipping $57 \mathrm{lbs}(25,7 \mathrm{~kg})$.
Power. 105 to 125 or 210 to $250 \mathrm{~V}, 50$ to $60 \mathrm{~Hz}, 150 \mathrm{~W}$.
Price: HP 230A, \$1350.

[^45]
Advantages:

DC-coupled modulation circuitry allows power leveling and remote programming
PPM focusing means fewer alignment problems

Uses:

Antenna eficiency and pattern measurements
Extends attenuation measuring systems capability by at least 30 dB .

Description

Amplification of frequencies from 1 to 12.4 GHz is accomplished in four ranges by the Hewlett-Packard microwave amplifiers. Each delívers at least 1 watt with an input of 1 mW or less, a gain of at least 30 dB .
Amplitude modulation circuitry has been designed for wide bandwidth (down to dc) and with internal amplifcation, so that small modulation signals cause a large output power change. This unique modulation circuitry also per.
mits power leveling with external eiements, plus remote programming. Spurious phase modulation of 0.1° or less and residual AM at least 45 dB below carrier are assured by regulation of the filament, anode, and helix power supplies. TWT cathode current is monitored by a front-panel meter and can be controlled by the gain adjustment for rated power output or for reducing rube current to extend tube life when full output power is not required. Helix, coilector, and anode current can be measured at an easily accessible test point board.

Periodic permanent magnet focusing reduces weight, size, and power consumption and at the same time alleviates alignment problems. Protective features incorporated to prevent TWT failure include an overload relay on the helix power supply, a three-minute time delay on the beam supply. and a fail-safe circuit that disconnects ac power whenever the regulated filament supply voltage exceeds a predetermined level.

Specifications

	489A	4910	493A	495 A
Frequency range (GHz)	1-2	2-4	4-8	7-12.4
Power output (with 1 mW or less input)	IW	1 W	1 W	1 W
Gain at rated output	30 dB	30 dB	30 dB	30 dB
Gain variation with freq. at rated output small signal across any 10% of band across full band	$\begin{aligned} & \leq 6 \mathrm{~dB} \\ & \leq 5 \mathrm{~dB} \\ & \leq 10 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \leq 6 \mathrm{~dB} \\ & \leq 5 \mathrm{~dB} \\ & \leq 10 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \leq 6 \mathrm{~dB} \\ & \leq 5 \mathrm{~dB} \\ & \leq 12 \mathrm{~dB} \end{aligned}$	
Gain variation with $\pm 10 \%$ variation from rated line voltage	≤ 1 dB	$\leq 1 \mathrm{~dB}$	$\leq 1 \mathrm{~d} 8$	$\leq 1 \mathrm{~dB}$
Noise max. noise figure typ. noise power out	$\begin{aligned} & 30 \mathrm{~dB} \\ & -10 \mathrm{dBm} \end{aligned}$	$\begin{gathered} 30 \mathrm{~dB} \\ -10 \mathrm{dBm} \end{gathered}$	$\begin{aligned} & 30 \mathrm{~dB} \\ & 0 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & 30 \mathrm{~dB} \\ & 0 \mathrm{dBm} \end{aligned}$
Price	\$2350	\$2350	\$2700	\$2700

For all models
Maximum RF input: 100 mW .
Input/output characteristics: impedance, 50』; reflection coefficient (cold), ≤ 0.43 ($2.5 \mathrm{SWR}, 7.3 \mathrm{~dB}$ return loss) ; connectors, type N female.

Amplitude modulation

Sensitivity: a modulation input of -20 V peak or more reduces the RF output by more than 20 dB from de to 50 kHz . Above 50 kHz modulation decreases ap. proximately 6 dB per octave. Frequency response: dc to $500 \mathrm{kHz}(3 \mathrm{~dB})$. Input impedance: $100 \mathrm{k} \Omega$ shunted. by approx. 50 p 「. Pulse response: $<1 \mu s$ rise and fall times.
Residual AM: at least 45 dB belaw carrier.
Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high. $183 / 8^{\prime \prime}$ deep (426 x $141 \times 467 \mathrm{~mm}$); hardware furnished for conversion to rack mount $19^{\prime \prime}$ wide, $5-7 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panel ($483 \times 133 \times 416 \mathrm{~mm}$).
Weight: net $38 \mathrm{lb}(17,1 \mathrm{~kg})$; shipping $43 \mathrm{lb}(29,4 \mathrm{~kg})$.
Power: 115 or 230 volts $\pm 10 \%$, 50 to 60 Hz , approx. 225 watts.
Accessorles available: 11500 A Cable Assembly, $\$ 15$; 11501A Cable Assembly, \$15.

The oscilloscope is an extremely fast X.Y plotter which displaps one input signal versus another signal, or versus time. The variations are displayed on the face of the cathode-ray tube. The "sty. lus" is a luminous spot which moves over the CRT in response to input voltages. In the usual scope application the X axis represents time. To do this a linear ramp of voltage is generated internally which moves the spot uniformly from left to right across the face of the CRT. The voltage being examined is applied to the Y axis input, moving the spot up or down in accordance with its instantaneous value. The spot then traces a curve which shows how the input voltage varies as a function of time.

Because the oscilloscope can display time varying voltages, it has become a universal tool in all kinds of electronic investigations. In addition, the oscilloscope can present a visual display of a variety of dynamic phenomena by the use of transducers which convert current, strain, acceleration, pressure, sound and other physical quantities into voltages.

The CRT is the readout device that dis. plays the plot of Y versus X or Y versus time.

Cathode-ray Tube

The cathode-ray tube is the heart of
the other pair move it from side to side. The electrodes that move the beam up and down are the vertical deflection plates and the pair that moves the spot sideways are called the horizontal deflec-

Figure 2. Some of the CRT's made in Hewlett.Packara's cathode.ray tube facility.
the oscilloscope, with the rest of the instrument consisting of circuitry for operating the CRT. As is commonly known. the tube has an electron gun at one end and a phosphor display screen at the other

Figura 1. Oscllloseope block diagram.

The primary sub-systems of an oscillo. scope are the vertical deflection system, horizontal deflection system, power supplies, and the cathode-ray tube. The vertical deflection system processes the X axis input signal to control the up and down movement of the CRT spot. The horizontal deflection system either generates the sweep to move the spot across the CRT or processes an external signal to control the horizontal movement of the spot. The low voltage power supply provides power for the scope circuitry and the high voltage porver supply provides porver for the carhode-ray tube.
end. The electron gun is made up of a thermonic cathode, various accelerating electrodes for directing emitred electrons toward the display screen, and controls necessary for focus and intensity. The resulting narrow beam of electrons from the gun strikes the phosphor in a small spot with enough energy to cause flourescence.

On leaving the gun, the electron stream passes between each of two pairs of defection electrodes. Voltages applied to these electrodes bend the beam. Voltages on one pair of electrodes move the beam up and down and voltages on
tion plates. These movements are independent of each other so that the spot may be positioned anywhere on the phosphor screen by the appropriate inpur voltages.

The accuracy with which the viewed waveform corresponds to the defection voltages depends to 2 large measure on the perlormance of the cathode-ray cube. Careful design of the electron gun structure and precision manufacturing techniques of the Hewlett-Packard cathoderay tube facility insure that the beam moves linearly with respect to the deflection voltages. Precision CRT's make it possible to measure accurately the input voltage amplitude at any point on the waveform by measuring the amount of deflecrion of the fluorescent spot.
In order to make measurements of the spor defection a rectangular grid (called a graticule) is scribed on transparent material and attached to the face plate of the CRT. All HP CRT's however, in. corporate an internal graticule. This type of graticule consists of lines placed in the same plane as the phosphor. The internal graticule avoids errors caused by parallax which exists when the graticule is ex. ternal to the rube, separated from the phosphor by the thickness of the glass face plate.

Vertical deflectlon system

The vertical defection system is made up of an input attenvator and an ampli. fier chain. Since the CRT is limited as to the range of voltage that can be ap. plied to deflection plates, considerations must be made to handie signals ourside
this ramge. For signal amplitudes below this range the amplifier chain is used to increase the amplitude. If the signal is too large the atternator reduces the signal so that it can be displayed. By calibrating the attenuator and amplifiers the deflec. tion factur is known for each setting of the attenuator. That is, the graticule is calibiared in so many vales/an depend. ing on the attenuator setting.
The amplifiers in Hewletr-Pdikard uscilluscopes are stable enough to permit voltage measurements with confidence to ar least $\pm 3 \%$ accuracy. To verify ampli. fier dcuracy, all HP scopes have built-in calibratoss which supply precisely concrolled signals for use as calibrating test signals.

High amplifier gain, with minimum drift and noise, is obtained in HP scopes by careful circuit design. This allows scopes to be built with high sensitivity. Large amounts of negative feedback dided by the use of regulated power sup. plies, achereve gain stability for measure. ment accuracy.

DC cuapling preserves the waveform of slowly varying signals and also per. nits a de efeference line to be established on the display, facilitating presise amplitude measurements. $D C$ coupling is not desirable though when a small ac compuncrit on a relatively large de voltage is examined. All HP scopes have provision for stwitching decoupling capacitors into the signal line when do coupling is not desired.

Horizontal deflection system

The horizontal deffecrion system sup. plites drive voltages for muving the elec. tron bedra horizontally. Since so many medsuremints are concerned with plotting voltages versus cime, the horizoneal deffection system also includes sawrooth wavetorm generators for sweeping the beam horizontally at a uniform rate. Since the rate of sweep is unitorm the scope tan be calibrated for so many s / cm of hurizontal display. To accept signals that vary ovicr a wide range of frequencics, a swith is used to vary the sweep rate. Each position of the switeh is cali brated so that the time scale can be raticd from $5 / \mathrm{cm}$ to mas $/ \mathrm{cm}$ to $\mu \mathrm{s} / \mathrm{cm}$.
Also ncuessary are synchoonizing cirLuits for stating the horizontal sweep at a specific instant with respect to the medsuled waveform starung the swect? (crgering) is quick and exsy wirh HP scopes through the use of atutomatic ming. gening Pecset adjustments product sya. chuonized sweeps aith litele or no ad-
justnent of the front-panel controls. An automatic baseline, present on many HP scopes, facilitates setting up the display in the absense of an input signai. The sweep magnifier feature is valuable for cluse examination of trace segments which occur too late in time after the start of the trace to be examined with faster sweeps.

The horizontal amplifiers of most Hewletr. Packard scopes may be used separately from the sweep generating circuits for deflecting the borizontal beant in response to external waveforms, a useful eechnique for making X-Y plots Phase shift measurements can also be made in this mode of operation by select. ing a scope that has horizontal and vertical amplifiers with identical character. istics.

Power supplies

The low voltage power supply provides regulated voltages to the various circuits of the scope. The high voltage supply provides the voltage necessary to operate the CRT cathode.

Probes

A probe is used to transfer the signal from the circuit under test to the vertical anplifier of the oscilloscope. The characreristics of a probe should be such that

figure 3. One tyoe of probe used to transfer the signal from the test circuit to the scope.
it does not disturb in any way the circuit that is being tested or the performance of the oscilloscope. To accomplish this the probe has a very high impedance, say 10 M 5 , and a variable capacitor to adjust for high frequency components of the signal. Most probes are of the vol-
tage divider type which reduce the signal amplitude. The rypical division ratio is 10:1. There are types of probes other than voltage divider, such as active probes, current probes and sampling probes. Each of these types of probes performs the same basic function, that is, to get the signal from the circuit under test, to the input of the oscilloscope with little or no distortion.

State of the art

There is quite a bit more to an oscilloscope than was covered in the previous general discussion. Also the tect. nology in this area is advancing at a rapid rate. Some of the areas where HP is advancing the technology are: sampling oscilloscopes, storage and variable persistence, large screen displays, all solid-state units using FET's, and strip delay lines to name a few.

Storage and variable persistence

The Hewlett-Packard Models 141A/ 181A oscilloscopes are effectively three scopes in one. They are first of all, a normal oscilloscope; secondly a storage scope capable of storing traces for periads of up to an hour; and thirdly a variable persistence oscilloscope. By persistence re mean the time it takes for the trace to fade to 10% of its original brightness. The persistence of these scopes is continuously variable from . 2 seconds to more than a minute. These versatile oscilloscopes were made possible by uniquely designed CRT's and persistence control circuitry.

Sampling oscilloscopes

Conventional or "real time" ascilioscopes are limited in bandwidth to frequencies in the megahertz region. Sampling scopes, however, have bandwadihs to $12.4 \mathrm{GHz},\left(12.4 \times 10^{\circ}\right.$ herrz). This type of oscilloscope uses a scroboscopic approach to reconstruct the input wave. form from samples raken during many recurrences of the waveform. This tech. nique is illustrated by the waveforms of Figure 4. In reconstructing a waveform,

Figure 4. The sampling oscilloseope reconstructs the test signal by taking up to 1000 samples.
the sampling pulse "turns on" the samp. ling circuit for an extremely short interval and the waveform voltage at that instant is measured. The CRT spot is positioned vertically to correspond to this voltage amplírude.

The next sample is taken during a subsequent cycle at a slightly later point on the input waveform. The CRT spot moves horizontally a short distance and is repositioned vertically to the new vol. tage. In this way, the scope plots the waveform point by point, as many as 1000 samples being used to reconstruct the waveform.
A bright trace is obtained regardless of sampling rate, sweep speed, or waveform duty cycle, since each CRT spot remains "ON" during the full interval between samples.
The unique sampling circuit developed by HP, minimizes circuit loading with its high input impedance. During a samp. ling interval, sampling pulses momentarily bias the diodes of the balanced sampling gate in the formard direction, briefly connecting input capacitance to the test point. The balanced bridge minimizes coupling of the sampling pulses back into the test circuit. The capacirance is charged slightly toward the new volrage level. This charge is then amplified to the original value present in the test circuit and fed back to the input. In effect, the circuit detects the "error" signal between the previous and new samples and nulls out the difference. High sensitivity and gain stability are thus achieved. All HP wrideband sampling scopes fea. ture feedthrough inputs for monitoring signals without terminating, or otherwise disturbing then.

Large screen displays

Another area in which HP is advanc. ing the technology is that of cathoderay tube design. The ideal oscilloscope would bave a very large viewing area in a very shont tube. However, since the electron heam is initially deflected at the gun structure and continues at a given deflection angle, the displacement depends on the distance from the gun to the screen. To get a larger display in 3 shorter tube, the electron beani nust be re-deflected between the gun and screen. The Model 140A CRT was che birst in which a wire expansion mesh was used. placing a voltage on the mesh to create an electrostatic fieid to further bend the beam. The next step in the expansionmesh technology was to change the radius of the mesh, thereby obtaining greater magnification. This resulted in the 180A CRT which has 30% more viering area in a tube that is four inches shorter than
previous high frequency tubes. One of the most recent developments is the 8 inch by 10 inch CRT display in the 1300A. This is the first time that a tube with this size display area has been designed into an $18^{\prime \prime}$ long tube with a deflection factor of only 14 volts for 1 inch of display.

Selecting an oscilloscope

Choice of an oscilloscope is based largely on considerations of both performance capabilities and versatility. However the complexity of the plug in scope necessitates higher costs. Non-plug. in scopes that are designed to meet specific needs can be produced at lower costs.

Bandwidth and deflection factor of the vertical amplifiers are the primary characteristics which describe an oscilloscope's performance capabilities. Wide bandwidth is obtained at the expense of more complicated circuitry and more expensive cathoderay tubes. A low defecrion factor requires more amplifier stages and added refinements for minimizing dc drift and noise. In addition to these two primary considerations and the question of plug-ins or not, there are special tequirements and features that can dictate which scope is selected. Refer to page 554 for a glossary of ascilloscope termi. nology and information on CRT phos. phors.

Non-plug-ln oscilloscopes

Hewlett-Packard's non-plug-in oscillostopes make accurate voltage and time measurements on a wide varicty of paveforms in the subsonic, audio, ultrasonic

Figure 5. Model $1200 \mathrm{~A} / \mathrm{B} 500 \mathrm{kHz}$ band. width oscilloscope is all solid-state non-plug. in instrument. This is one in 1200 series scopes olforing wide selection of specifice. thons and conflgurations.
and low radio frequency ranges. These scopes are intended for analysis of wave. forms in which litcle importance is artached to frequency components beyond 500 kHz . The de amplifiers and long sreep rates are suitable for medical and mechanical observations, as well as for low-frequency electrical work. At the same time, faster sweep speeds are pro. vided in these instruments for detailed
studies of transient plienomena, vibra. tion effects, audio analysis and other medium frequency events.
Since these instruments have relatively simple circuitry and construction they are the most economical type of osilloscope. In applications such as systems, where the scope performs a limited number of functions and the added expense of plug. in flexibility is not needed, the nonplug.in oscilloscope provides maximum economy.

Plug-in oscillascopes
Hewlett-Packard plug-in oscilloscopes enable the user to make a very wide va-

Figure 6. The Model 180A plug-in oselilo. scope features alreraft type frame construc. tion for maximum ruggedness with minimum weight.
riety of measurements with just one os. cilloscope. The instrument characteris. tics can be altered by simply changing the vertical and horizontal plug-ins. Bandridth, deffection factor, number of channels, and time base can all be tailored to exact needs. Other features such as sampling or TDR can be added at will. Plug-in capability also enables a scope's performance to be updated as new plug. ins become available.

In determining which scope to buy, the considerations are: Will the needs change in the future? -if so. a plug.in scope would be the best buy; is cost a major consideration'-if so, then a nun. plug-in scope might fill the bill; or is there a special function that is desired? -this then dictates the type of scope. A general rule for selection would be to determine the basic requirements of the oscilloscop: based on the intended ap. plication and then use the Selection Charts to determine the one best suited for the task.

If there is any question as to which oscilloscope to choose, it is recommended that the customer consult with the local HP field engineer. HP feld engineers are trained in the use and applications of all HP instruments and can assist in solving the particular applications problem in the most economical way.

SELECTION CHART
Choose the oscilloscope for the application

Type	Non plug-in								X.Y displays		Plue-in	
Model no,												
Bandwidth												
Minimum deflection factor	$\mathrm{mV} / \mathrm{cm}$	$\mathrm{mV} / \mathrm{cm}$	$\mu \mathrm{V} / \mathrm{cm}$	$\mu \mathrm{V} / \mathrm{cm}$	$\mu \mathrm{V} / \mathrm{div}$	$\mu \mathrm{V} / \mathrm{div}$	$m \mathrm{~V} / \mathrm{div}$	mV/div	mV/div	V / in .	$\mu \mathrm{V} / \mathrm{div}$	mV/div
Sampling											-	-
Storage											-	-
Variable persistence											-	-
Differential input	-	-	-	*	-	-	-	-	-		-	-
$8 \mathrm{in} \times 10 \mathrm{in}$. CRT										*	-	
Two channel		-		-	-		-				-	-
Four channel												
TDR											-	-
DC offset											-	-
Swept frequency												
Defayed sweeg											-	-
Price	\$530	\$775	\$750	\$1395	\$990	\$790	\$875	\$715	\$540	\$1900	$\begin{aligned} & \$ 1070 \\ & \text { and up } \end{aligned}$	$\begin{aligned} & \$ 1950 \\ & \text { and up } \end{aligned}$
Page	495	496	497	498	500	500	500	500	500	506	508	533

450 kHz OSCILLOSCOPE Easy-to-use, general-purpose $10 \mathrm{mV} / \mathrm{cm}$ scope
 Model 120B

The HP Model 120B Oscilloscope is an easy-to-use, general-purpose oscilloscope for both laboratory and industrial applications. It combines accurately calibrated horizontal sweep times and vertical deflection sensitivities with an internal graticule CRT that eliminates parallax error. In addition, the front panel controls are logically grouped by function to simplify operation. The automatic triggering feature synchronizes the sweep circuitry with the displayed

Waveform, eliminating time-consuming trigger adjustments. The Hewlett-Packard modular enclosure is equally well suited for bench use or for rack mounting with the hardware provided with each instrument. Moreover, the removable top and bottom covers of the modular enclosure permit access to all components and adjustments within the instrument for easy routine maintenance. Several instrument options are available as indicated in the Specifications.

Specifications

Time base

Range: $5 \mu 5 / \mathrm{cm}$ to $200 \mathrm{~ms} / \mathrm{cm}, 15$ ranges in 1 1. 2, S. sequence: accuracy $\pm 5 \%$ vernier provides continuous adjustment between steps and extends the $200 \mathrm{~ms} / \mathrm{cm}$ step to ar least $0.55 / \mathrm{cm}$.
Magnifler: X; soecp expansion may be used on all ranges and expends the testest srieep to $!\mu \mathrm{s} / \mathrm{cm}$; expanded sareep accuracy is $\pm 10 \%$.
Automatie irlggering (baseline displayed in the absence of an input signal):
Internal: 50 Hz co 450 kHz for mose signals causing 1.0 cm or more vartical deflection; also from line voltage.
External: 50 to 430 kHz for most signals at least 1.3 volts peak-to-pcak. Trigger slape: positue or negative slope of vertical deflection signal; or negative slope of exrernal sync signal.
Amplitude selectlon triggering:
Internal: 10 Hz co 450 kHz for signals causing 0.5 cm of more vertical deflection.
External: 10 Hz to 450 kHz for signals at least 1,5 volts. peak-to-peak.
Trigger polnt and slope: from sny point on the vertical wiveform presented on CRT; of continuously variable from $-?$ to +7 volts on the negative slope of external sync signal.
Vertical amplifier
Bandwldth: dc coupled, dc to 430 kHz ; 25 coupled, 2 Hz to 450 kHz .
Deflection factor (sensitlvity): $10 \mathrm{mV} / \mathrm{cm}$ to 10 volts $/ \mathrm{cm}$ in a calibrated steps: accuracy $\pm 3 \%$: veraier provides continuous adjustranat between seeps and extends io $\dot{\mathrm{V}} / \mathrm{cm}$ secep to al leass $100 \mathrm{~V} / \mathrm{cm}$.
Maximum Input: 500 V peak ($\mathrm{dc}+\mathrm{I}$ ac).
Internal callbrator: calibrating signal automatically connected to vertical amplifice for setting amplifier gain, accurscy $\pm 2 \%$.
Input RC: 1 negohm shunted by approximately 90 pF
Balanced inpert on $10 \mathrm{mV} /$ con range: input RC, 2 megohms shunted by approximately 25 pF ; common mode efiection at last 40 dB ; common mode signal must not exceed ± 3 volts peak.
Phase shift; vertical and horizontal amplifiers have same phase character. istics within $\pm 2^{\circ}$ io 100 kHz ($\mathrm{a}^{\circ} \mathrm{ith}$ verniers in C_{2} !).

Horlzontal amplifier

Eanswidth: de coupled, de to 300 kHz ; ac coupled, 2 Hz 10300 kHz .
Dellectlon factor (sensitivity): 0.1 roit/am to 10 roles/om in 3 salibratad
steps; zecuracs $\pm 3 \%_{e}$ vernier provides continuous adjusiment betreen steps; accuracs ± 9 ei rerner provides continuous
steps and extends $10 \mathrm{~V} / \mathrm{cm}$ step to at least 100 Vicm .
Input RC: a megohm, nominal, shunced by approximately 100 pF .

Ceneral

Cathoderay tube: mono-sccelerator, 2s00.pole accelerating potental: alumioized P31 phosphor (other phosphors available, sec modifications): etched safery glass face plare reduces glare.
Graticule: $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ parsllax.free interosil graticule marked in cm squares; major horizontal and rerrical axes have 2 mm sub-dirísions.
geam finuera pressing besm finder control brings trace on CRT screen. re. gardless of sertings of horizontal, vertical, or intensity controls.
Intensity madulation: +20 volt pulse will blank trace of normal intensity: jopur terminals on front panel.
Dimensions: $16 \% \%^{\prime \prime}$ wide, $71 / 2^{\prime \prime}$ high, $18 \frac{1}{4}{ }^{\prime \prime}$ decp overall ($426 \times 181 \times 466$ ma) ; hasdware furnished for quick conversion to $\boldsymbol{m}^{N} \times 19^{\prime \prime}$ (i98 x 433 mm) rack mount.

Welght: net 29 lbs (13 kg) : shipping $3 ; \mathrm{lbs}(15.8 \mathrm{~kg}$).
Power: 115 or 250 voles $\pm 10 \%$; 90 m 1000 Hz ; approxigately 95 W .
Prlce: HP Model 120B. $\$ 530$.
Modifications: CRT phosphors (specity by phosphor number); P31 standard: P2, PJ with amber filter. Pll atallable, no charge.
Special order: chassis sijdes and adapter kic; fixed slides, order Hp part Nóo. $1.190-0714.532 .50:$ pivot slides, order HP Part No. 1490.0718. \$40; slide adapter kir for mounting slides on 560pe. order HP Part No. 149c.0721. 540 .
Options: (specify by oplion number)
0S: external graticule CRT with P31 phosphor (P2, PT, PII zivilable. please specity) in lies of seandsrd internal graticule, add $\$ 2 \mathrm{~s}$: in. cludes edge-lighting of external giticule.
06: reat terminals in parallel with front panel terminals; two 3 -pin AN connectors for horizontal, vertical, and trigger inputs, add $\$ 30$; rating AN connectors supplied.
10: provision for singlespeesp operation, as nell as concentional frigered soreep, 2dd $\$ 35$.
13: plain $3 / 16^{\circ} x \bar{y}^{\prime \prime} x$ I $9^{\prime \prime}$ front panel ior rack mounting only: suitable for installing special handles zo math existing equipment in system or console, add $\$ 20$.

DUAL-TRACE OSCILLOSCOPE
 Economical versatility— $\mathbf{2 0 0} \mathbf{~ k H z ~} 10 \mathrm{mV} / \mathrm{cm}$ Models 122A, 122AR

The Model $122 \mathrm{~A} / \mathrm{AR}$ is a dual trace, 200 kHz bandwidth oscilloscope which simplifes observation and measurement of electrical and mechanical equipment performance. It can be used as an ordinary scope with a single trace, or, when a comparison of two quantities is required it can provide two separate traces which in many ways is like having two scopes.

Personnel quickly learn the operation of this instrument and can use it with confidence since it has guatanteed calibration on both its sweep (time base) and voltage ampli. tude measurements.

Signals may be compared simultaneously and directly due to the twin vertical amplifiers which may be used separately or automatically switched. Input and output signals of amplifiers, filters, and other networks may be viewed simultaneously and transmission or rejection characteristics seen immediately. Since dc coupling is available, very low frequency square-waves may be used for testing, or the scope may be ac coupled to eliminate an unwanted do signal.

Specificatlons

Time base

Range: $5 \mu \mathrm{~s} / \mathrm{cm}$ to $200 \mathrm{~ms} / \mathrm{cm}, 15$ ranges in a $1,2,5$ sequence; accuracy $\pm 5 \%$; vernier provides continuous adjustmene beracer steps. and extends the $200 \mathrm{~ms} / \mathrm{cm}$ setep to at least $0.5 \mathrm{~s} / \mathrm{cm}$.
Mognifler: XS sweep expansion may be used on all ranges and expands the fastest sareep to $1 \mathrm{\mu s} / \mathrm{cm}$; expanded sareep accuracy is $\pm 10 \%$
Automatic triggering (baselline displayed In the absence of an input slgnal):

Internal: 50 Hz to 250 kHz for signals causing 0.5 cm or more vertical deflection; also from line voltage.
External: 30 Hz to 250 kHz for signals at least 2.5 volis peak-to-peak.
Trigger slope: positive or negative slope of vertical deflection signals; or negative slope of external sync signals.
Amplitude selsction triggerlng!
Internal: 10 Hz to 250 kHz for signals causing 0.5 an or more vertical deflection.
External: 10 Hz to 250 kHz for signals at least 2.5 volts peak-to-peak.
Trigeter polnt and slope: from any point on the ventica! wiveform presented on CH ; or continuously variable from -10 to +10 volts on nega. tive slope of external sync signal.

Vertical ampliflers

Bandwidth: dc coupled, dc to 200 kHz ; ac coupled, 2 Hz to 200 kHz .
Doflection lactor (senstitivity): $10 \mathrm{mv} / \mathrm{cm}$ to 10 volts, cm in 4 calibrated steps: accuracy $\pm 3 \%$; vernies propides continuous adjustment berween step; and extends $10 \mathrm{~V} / \mathrm{cm}$ step to at least $100 \mathrm{~V} / \mathrm{cm}$.
Maximum input: 900 V peak ($\mathrm{de}+2 c$).
Internal callbrator: calibrating sigoal automatically connected to vertical amplifier for serting amplifier gain, accuracy $\pm 2 \%$.
Inpur RC: 1 megohm shunted by approximately 30 pF .
Balanced input: on $10 \mathrm{mV} / \mathrm{cm}$ range; input RC. 2 megohms sburted by approximately 25 pF ; common mode rejection at least 40 dB ; commoa mode signal must not exceed ± 3 volts peak.
Phase shift: verticsi and horizontal amplifiers have same phase characteristics within $\pm 2^{\circ}$ to 100 kHz (with pesniers in Ca1).
Isolation: greater than 80 dB between Chaonels A and B from de to 200 kHz .
Dlfference inperti both input signals may be switched to one channel to give differential ioput on all sensitivity ranges: the sensitivity controls may be ser sepsrately to allow mixing signals of different levels; comonon mode rejection is at least 40 dB with both controls in most sensitive cange. 30 dB on other ranges.
Verilcal presentation: control selects; A only, B only, B.A. Alernate, or Chopped.
Horizontal amplifier
Eandwidth: dc coupled, dc to 200 kHz ; ac coupled, 2 Hz to 200 kHz .
Deflectlon factor (sensltlyity): 0.1 volt $/ \mathrm{cm}$ to 10 volts $/ \mathrm{cm}$ in 3 calibraced steps; accuracy $\pm 5 \%$ vernier provides contiouous adjustment berreen steps and extends $10 \mathrm{~V} / \mathrm{cm}$ step to at least $100 \mathrm{~V} / \mathrm{cm}$.
Input RC: I megohm, nomioal, shunted by approximicely 100 pF .

General

Cethoderay tube: mono-accelesator, 3000 -volt accelerating potential: aluminized P31 phosphor (other phosphors available, see modifications); enched salery glass face plate reduces glare.
Oraticuls: $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ parallax-free internal graticule marked in $6 m$ squares: major horizontal and vertical axes bave 2 mm sub-divisions.
CRT plates: direct connoction to 6 re deflection plates via terminals on reaf panel; deflection factor approximately $20 \mathrm{~V} / \mathrm{cm}$.

Intenslty modulatlon: +20 volr pulse will blank trace of normal intensity; ioput tetminals on resi pancl.
Dimenslons: cabinet: $93 / 4^{\prime \prime}$ wide, $19^{\prime \prime}$ high, $213 / 4$ " deep overall ($248 \times 310 \times$ $940 \mathrm{~mm})$; rack mount: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high. $191 / 2^{\prime \prime}$ deep behind panel $(483 \times 178 \times 495 \mathrm{~mm})$.
Welght: cabines: net, $35 \mathrm{Jbs}(15.8 \mathrm{~kg})$; shipping, 49 lbs (20.3 kg) : cack mount: net, $34 \mathrm{lbs}(15,4 \mathrm{~kg}$); shipping, $49 \mathrm{lbs}(22 \mathrm{~kg}$).
Power: 115 or 230 volrs $\pm 10 \%$; 50 to 1000 Hz ; approximately 130 W .
Prica: HP Model 122A (cabinet), \$775: HP Model 122AR (rack mount), \$775; for single surecp operation specify H13.122A or H15.122AR, \$943.

Modifications

CRT phosphors (specify by phosphor numbur): P31 standard; P2. PI with amber filter, PII 10ailable, no charge.
Optlons: (specify by option number)
05 Extenal graticule CRT with P31 phosphor (P2, P7, P1 quailable, please specify) in lieu of scandard invernal graticule, add $\$ 25$ in. cludes edge-Iighting of external graticule.
06 Rear terminals in parallel ohith lronr panel rerminals; thee $3 \cdot p i n$ AN connectors for horizontal, vertical, and trigger ioputs, add \$40; maring AN connecrers supplied.

$200 \mu \mathrm{~V} / \mathrm{CM}$ OSCILLOSCOPE
 Features identical amplifiers for $x-y$ plots
 Model 130C

OSCILLOSCOPES

The HP Model 130 C Oscilloscope is a versatile all-purpose instrment for laboratory, production line, industrial process measurements and medical applications. The outputs of rf detectors, strain gauges, transducers and other low-level devices may be viewed directly without preamplification. Calibrated sweeps allow accurate time measurements, and the identical horizontal and vertical amplifiers permit simple and precise measurement of phase shifts within $\pm 1^{\circ}$ up to 100 kHz .

The Model 130 C is easy to operate even by inexperienced personnel. Controls are color coded to front-panel markings and are logically arranged by function. An intemal-graticule crt provides a bright, clear, non-glare display without parallax. Automatic triggering minimizes adjustments. Positive pushbutton beam finder immediately locates an off-screen trace.

Specifications

Time base

Range: $1 \mu \mathrm{~s} / \mathrm{cm}$ to $5 \mathrm{~s} / \mathrm{cm}, 21$ ranges in a $1,2,5$ sequence; accuracy $\pm 3 \%$; vemier provides continuous adjustment between steps and extends the $5 \mathrm{~s} / \mathrm{cm}$ siep to at least $12.5 \mathrm{~s} / \mathrm{cm}$.
Magnifler: X2, X3, X10, X20, X50; overall sweep accuracy within $\pm 5 \%$ for sweep rates which do not exceed a maximurn rate of $0.2 \mu \mathrm{~s} / \mathrm{cm}$.
Automatle triggerling (baseline displayed in the absence of an Input signal):

Internal: 50 Hz to 500 kHz for signals causing 0.5 cm or more vertical defection; also from line voltage.
External: 50 Hz to 500 kHz for signals at least 0.5 volt peak-to-peak.
Trigger slope: positive or negative slope of excernal sync signal or internal vertical defection signal.
Amplitude selection triggering:
Internal: 10 Hz to 500 kHz for signals causing 0.5 cm or more vertical deflection.
External: for signals at least 0.5 voli peak-to-peak; dc coupled, de to 500 kHz ; ac coupled, 20 Hz to 500 kHz .
Trigger point and slope: from any point on the verical waveform presented on CRT; or continuously variable from -10 to +10 volts on either positive or negative slope of extemal sync signal.
Single sweep: front panel switch permits single sweep operation.

Vertical and horizontal amplifiers

Bandwidth: de coupled, dc to 500 kHz ; ac coupled (input), 2 Hz to 500 kHz : ac coupled (amplifier), 25 Hz to 500 kHz at 0.2 $\mathrm{mV} / \mathrm{cm}$ deflecion factor: lower cut-off frequency (fco) is reduced as deflection factor is iacreased; at $20 \mathrm{mV} / \mathrm{cm}, f_{s o}$ is 0.25 Hz ; on less sensitive ranges, response exrends to dc.

Deflection factor (5 ensitivity); $0.2 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{volts} / \mathrm{cm}, 16$ ranges in a $1,2,3$ sequence; accuracy $\pm 3 \%$; vernier provides continuous adjustment between steps and extends $20 \mathrm{~V} / \mathrm{cm}$ step to at least so V / cm.
Maximum Input: 500 V peak ($\mathrm{dc}+\mathrm{ac}$).
Intepnal callbratori calibrating signal (line frequency square wave, $5 \mathrm{~cm} \pm 3 \%$) for setring amplifier gain, is automatically connected to amplifier when sensitivity vernier is ser to Cal.
Input RC: 1 megohm shunted by approximately 45 pF ; constant on all ranges.
Balanced inputs: on all sensitiviry ranges.
Common mode rejection (dc to 50 kHz): at least 40 dB from $0.2 \mathrm{mV} / \mathrm{cm}$ to $0.1 \mathrm{~V} / \mathrm{cm}$ sensitivities, common mode signal maximum 4 volts $\mathrm{pk}-\mathrm{pk}$; at least 30 dB from $0.2 \mathrm{~V} / \mathrm{cm}$ to
$20 \mathrm{~V} / \mathrm{cm}$ sensitivities, common mode signal maximum 4 volts pk-pk on the $0.2 \mathrm{~V} / \mathrm{cm}$ range, 40 volts pk-pk on the $0.5 \mathrm{~V} / \mathrm{cm}$ to $2 \mathrm{~V} / \mathrm{cm}$ ranges, or 400 volts pkepk on the $5 \mathrm{~V} / \mathrm{cm}$ to 20 V / cm ranges.
Phase shift: arnplifiers have same phase characteristics within $\pm 1^{\circ}$ to 100 kHz (with verniers in Cal , and equal inpet sensitivities).

General

Calibrator: line frequency square wave, $500 \mathrm{mV} \pm 2 \%$ provided through jack on front panel.
Cathode-ray tube' mono-accelerator, 3000 -volt acceleracing potential; aluminized P31 phosphor (other phosphors available, see modificarions) ; etched safery glass face plate reduces glare.
Graticule: $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ parallax-free internal graticule marked in cm squares; major horizontal and vertical axes have 2 mm sub-divisions.
Beam Iinder: pressing beam finder contral brings trace on CRT screen, regardless of setting of horizontal, verrical, or intensity controls.
Intenslty modulation: + 20 volk pulse will blank trace of normal intensity; input terminals on rear pancl.
Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 2^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep overall ($426 \times$ $191 \times 466 \mathrm{~mm}$) ; hardware furnished for quick conversion to $7^{\prime \prime} \times 19^{\prime \prime}(178 \times 483 \mathrm{~mm})$ rack mount.
Welght: net, $31 \mathrm{lbs}(14 \mathrm{~kg})$; shipping, $38 \mathrm{lbs}(17,1 \mathrm{~kg})$.
Power; 115 or 230 volts $\pm 10 \%$; 50 to 1000 Hz ; approximately 90 W.
Price: HP Model 130C, $\$ 750$.
Modifications: CRT phosphors (specify by phosphor number); P31 standard; P2, P7 with amber filter, P11 available, no charge.
Spectal order: chassis slides and adapter kit; fixed slides, order HP Part No. 1490-0714, $\$ 32.50$; pivot slides, order HP Part No. 1490.0718 , $\$ 40$; slide adapter kir for mounting slides on scope, order HP Part No. $1490.0721, \$ 40$.
Options (specify by Opion number)
os External graticule CRT with P31 phosphor (P2, PI, P11 available, please specify) in lieu of standard internal grati. oule, add $\$ 25$; includes edge-lighting of external graticule.
06 Rear terminals in parallel with front panel terminals; two 3 -pin AN connectors for horizontal and vertical signal inpuis, BNC for trigger input, add $\$ 45$; mating AN connectors supplied.
13 Plain $3 / 16^{\prime \prime} \times 7^{\prime \prime} \times 19^{\prime \prime}$ panel for rack mounting only; suitable for installing special handles to match existing equip. ment in system or console, add $\$ 20$.

OSCILLOSCOPES

DUAL-BEAM OSCILLOSCOPE
 Two completely independent beams
 Model 132A

The HP Model 132A Dual Beam Oscilloscope is designed to perform many electronic, scientific, bio-medical and mechanical measurements. Its $100 \mu \mathrm{~V} / \mathrm{cm}$ sensitivity, 500 kHz bandwidth, two completely independent beams, and low microphonics and drift assure ease and accuracy in a wide variety of applications.

Figure 1. Simultaneous x-y sind time plors are possible plors are possitite
with model 132 A . with model 132 A .
since it has two com. pletely indepandent CRT beams.

Unusual versatility is available with the Model 132A through its many different display capabilities. Functions such as pressure vs. volume, the outputs of vector cardiographs, or phase shift may be shown in $x-y$ form on one channel, while reiated rate functions are displayed ws. time on the other. Also, slow and fast signals may be viewed simultaneously on different sweep speeds, of the same signal may be studied at two different sweep rates.

The Model 132A is ideal for use in areas of vibration or noise, since the amplifiers have very low microphonics and dc drift. Each input stage has nuvistor tubes contained in a shock-mounted block of aluminum. Besides isolating the nuvistors from vibration, the block also serves to keep the temperature of the tubes identical, thus providing excellent de stability.

Differential operation is provided on all ranges for the elimination of common mode pickup such as $60-\mathrm{Hz}$ hum. Rejection ratios as high as 20,000 to 1 (86 dB) assure completely clean waveforms even in the presence of high common mode interference.

Waveforms look the same from range to range with the

Figure 2. The same signal may be shown at two different sweap speads with the slow. or sweep intenslfied to show lacation of last sweep.

Model 132 A , since the full 500 kHz bandwidth is retained at sensitivities from $1 \mathrm{mV} / \mathrm{cm}$ through $20 \mathrm{~V} / \mathrm{cm}$. At the most sensitive range, $100 \mu \mathrm{~V} / \mathrm{cm}$, bandwidth becomes 150 kHz .

Each vertical amplifier has an output at the rear panel of the Model 132A, allowing the user to monitor displays with an ms voltmeter, or drive a tape recorder.

The 3.5 kV aluminized CRT provides displays that are brighter than those previously available, making the Model 132A an excellent instrument for observing singleshot phenomena. A beam finder facilitates locating an offscreen trace by simply depressing a fcont-panel control. The internal graticule of the CRT eliminates parallax error, thus increasing measurement accuracy.

Speciflcations

Time base
Range: may be selected for both beams, or one beam only with the other driven externally; $1 \mu \mathrm{~s} / \mathrm{cm}$ to $\mathrm{s} / \mathrm{s} / \mathrm{cm}$, 21 ranges in a 1, 2. 5 sequence: vernier provides continuous adjustment be. tween steps, and extends $5 \mathrm{~s} / \mathrm{cm}$ step to at least $12.5 \mathrm{~s} / \mathrm{cm}$.
Magnifler: X2, X $5, \mathrm{X} 10, \mathrm{X} 20, \mathrm{X} 50$; may be selected for both channels together, or Channel 8 only; vernier provides continuous adjustment between steps; with same vertical input applied 10 both channels, any portion of the display may be magnified on Channel B and the magnified portion will be intensified on Channel A display.
Automatic triggering (basellne displayad In the absence of an Input slgnal):
Internal: 50 Hz to 500 kHz for signals causing 0.5 cm or more vertical deflection; selected from either channel input, or from line voltage.
External: 50 Hz to 500 kHz , for signals at least 0.5 volt peak-ro-peak.
Trigger slope: positive or negative slope of external sync signal or internal vertical deffection signals.

Amplitude selaction triggering

Internal: for signals causing 0.5 volt or more vertical deßection; de coupled, dc to 500 kHz ; ac coupled, 20 Hz to 500 kHz ; selected from either channel signal, or from line voltage.
External: for signals ar least 0.5 volt peak-to-peak; de coupled, ds to 500 kHz ; ac coupled, 20 Hz to 500 kHz .
Trigger polnt and slope: from any point on vertical waveform presented on CRT or continuously variable from -10 to +10 volts on either positive or negative slope of external signal.
External trigger input RC: ac coupled, $0.01 \mu \mathrm{~F}$ in series with I megohm; de coupled, 1 megohm.
Sweep delay time: a pretrigger of approximately $1 \mu \mathrm{~s}$ will allow the leading edge of non-tecurient waveform to be visible.
Single sweep; front panel switch and pushbutton permir single sweep operation.

Identical vertical amplifiers

Deflection factor (sensitivity): $100 \mu \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm} ; 17$ ranges in a $1,2,5$ sequence; accuracy $\pm 3 \%$; verniers provide continuous adjustment between steps, and extend $20 \mathrm{~V} / \mathrm{cm}$ steps to at least $50 \mathrm{~V} / \mathrm{cm}$.
Bandwldth: de to greater than 500 kHz (10% to 90% sise time less than $0.7 \mu \mathrm{~s}$) on ranges $20 \mathrm{~V} / \mathrm{cm}$ through $1 \mathrm{mV} / \mathrm{cm}$, de. creasing to greater than 150 kHz at $100 \mu \mathrm{~V} / \mathrm{cm}$; inpur may be ac coupied with 2 Hz lower cutoff: amplifier may be accoupled (to eliminate drift) with 2.5 Hz lower cutoff at $100 \mu \mathrm{~V} / \mathrm{cm}$. decreasing to 0.1 Hz at $20 \mathrm{mV} / \mathrm{cm}$.
Differential Input: differential input may be selected on all attenuator ranges; the follorving common mode signals will not overdrive the amplifer:

Defleotion faotar	Input; DC
$0.1 \mathrm{mV} / \mathrm{cm}$ to $0.2 \mathrm{~V} / \mathrm{cm}$	$\pm 2 \mathrm{~V}$ peak
$0.5 \mathrm{~V} / \mathrm{cm} 102.0 \mathrm{~V} / \mathrm{cm}$	$\pm 20 \mathrm{~V}$ peak
$5.0 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$	$\pm 200 \mathrm{~V}$ peak

When a sine wave not excecding the above limits is simula. neously applied from a low-impedance source to the de coupled amplifer inputs, the vertical amplifiers have the following rejection ratios:

Daflealion factor	60 Hz	1 kHz	50 kHz
$0.1 \mathrm{mV} / \mathrm{cm}$	86 dB	80 dB	74 dB
$1 \mathrm{mV} / \mathrm{cm}$	65 dB	66 dB	66 dB
$0.2 \mathrm{~V} / \mathrm{cm}$	40 dB	40 dB	40 dB
$0.5 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$	30 dB	30 dB	30 dB

With input ac coupled, maximum CMRR at 60 Hz is 60 dB .

Inputs: two BNC connectors for + and - polarities; AC, DC, or Of may be selected for each inpur; inpur RC is i megohm shunted by 50 pF , constant on all ranges: max. input voltage is $\pm 500 \mathrm{~V}$ peak ($\mathrm{dc}+\mathrm{ac}$).
Amplifier outputs: a single-ended, de-coupled output for each amplifier is provided on the reas panel: voltage ourput is approx. $2 \mathrm{~V} / \mathrm{m}$ from a 2 k ohm source impedance: bandwidth is approx. 500 kHz with a non-capacitive load.

External horizontal amplifier

Functions: may be used on both beams simultaneously, of on one beam only while the other is sweeping unmagnified.
Defiection factor (sensitivity): $5 \mathrm{mV} / \mathrm{cm}$ to $2 \mathrm{~V} / \mathrm{cm} ; 9$ ranges in a $1,2,5$ sequence; accuracy $\pm 3 \%$; vernier provides continuous adjustment between steps and extends $2 \mathrm{~V} / \mathrm{cm}$ step to at least $5 \mathrm{~V} / \mathrm{cm}$.
Bendwidth: de to greater than 300 kHz (with vernier in Cal); as coupled. lower limit is 2 Hz .
Input: BNC connector; input RC, I megohm shumted by 50 pF , constant on all ranges: max. input voltage, $\pm \$ 00$ volts peak ($d c+a c$).

X.Y operation

SIngle beam: x.y curve tracing; one of the vertical amplifers can be switched to the horizonial deflection plares of the other beam, allowing x-y operation of the two identical amplifers; the unused beam is positioned off screen; relative phase shifc between + inputs is within $\pm 2^{\circ}$ for frequencies up to 50 kHz with verniers in Cal and equal input sensitivities.
Dual-beam: $x \cdot y$ plots can be made between the external horizontal amplifier and the 8 vertical amplifier white the other beam is operating normally with the sweep and A vertical amplifier, or, dual plots can be made using the external horizonal amplifier driving both beams; relative phase shift is normally within $\pm 2^{\circ}$ for frequencies up to 10 kHz with vernier in Cal and equal ispuc sensitivities.

Generas

Calibrator: approximately 350 Hz square wave, 0.5 V and 0.5 mV , provided through jacks on front panel: accuracy $\pm 2 \%$.
Cathode-ray tube: mono-accelerator, 3500 -volt accelerating potential; aluminized P2 phosphor (other phosphors available, see modifications) ; dual gun and two independent sets of verical and horizonmal defection plates; etched safety glass face plate reduces glare.
Gratlcule: $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ parallax.frec internal graticule marked in cm squares; display area for each beam is $8 \mathrm{~cm} \times 10 \mathrm{~cm}$, with 6 cm vertical overlap in center; vertical and horizontal axes for each beara have 2 mm subdivisions.
Beam finder: pressing beam finder control brings both traces on CRT screen, regardless of vertical, horizontal, or incensity control settings.
intensity modulation: +20 volt pulse will blank traces of normal intensity: input terminals on rear panel: inpur time constant is approximately $125 \mu \mathrm{sec}$ (9400 pF and 13.5 k ohms).
Dímenslons: $163 / 4^{\prime \prime}$ wide, $9^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep overall ($426 \times$ $229 \times 466 \mathrm{~mm}$); hardware furnished for quick conversion to $19^{\prime \prime} \times 83 / 4^{\prime \prime} \times 163 / 8^{\prime \prime}$ behind panel ($483 \times 222 \times 416 \mathrm{~mm}$) rack mount.
Welght: ner 43 lbs ($19,4 \mathrm{~kg}$): shipping 95 lbs ($24,8 \mathrm{~kg}$).
Power: ils or 230 voles $\pm 10 \%$; 50 to 1000 Hz ; approximately 130 W.
Price: HP Model 132A, \$139s.
Modifications: CRT phosphors (specify by phosphor number): P7, P11, P31 available; no charge.
Special order: chassis slides and adapter kit; fixed slides, order HP Part No. 1490-0714, \$32.50; pivor slides, order HP Part No. 14 $\$ 0.0718, \$ 40$; slide adapter kir for mounting slides on scope, order HP Part No. 1490-0721, \$40.
Optlons: (specify by option number)
05 External graticule CRT with P2 phosphor (P7, P11, P31 available, please specify) in lieu of standard internal graticule, includes edge-lighting of external graticule, add $\$ 25$.
06 Rear terminal in parallel with front panel terminals; 3 -pin AN connectors for veruical signal inputs; BNC for horizontal and trigget signal inputs, mating AN connectors sup. plied, add \$45.

OSCILLOSCOPES

5

500 kHz OSCILLOSCOPES

Sotid-state, low drift, $100 \mu \mathrm{~V} /$ div
Model 1200-series

Single or dual channel

Cabinet or 51/4" rack

$100 \mu \mathrm{~V} / \mathrm{div}$ or $5 \mathrm{mV} / \mathrm{div}$

The totally new, all solid-state, low frequency 1200 -series oscilloscopes offer advanced performance with operating features previously a vailable only on much wider bandwidth, more expensive instruments. A wide selection allows you to choose the right instrument for your exact need. Bandwidth on the basic instruments is $500 \mathrm{kHz} ; 600 \mathrm{kHz}$ on X . Y version, (Refer to selection chart below.)
Solid-state circuit design throughout the 1200 -sesies oscilloscopes provides portable, reliable, stable, and versatile operation in 2 variety of measurements. Typical applications include:

- R \& D laboratory design
- Production line testing
- Scientific research
- Systems instrumentation
- Information display
- Educational laboratories

Tesmobiles, probes, cameras, and other accessories for use with the 1200 -series ate shown on pages 548 through 553.

Instrument selection chart

FEATURE	1200A/B*	1202A/B*	1205A/B*	1286A/B"	1208A/B*
Deflection Factor	$0.1 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$	$0.1 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$	$\begin{gathered} 5 \mathrm{mV} / \mathrm{div} \\ \text { to } 20 \mathrm{~V} / \mathrm{div} \end{gathered}$	$\begin{gathered} 5 \mathrm{mV} / \mathrm{div} \\ \text { to } 20 \mathrm{~V} / \mathrm{div} \end{gathered}$	$100 \mathrm{mV} / \mathrm{div}$ $101 \mathrm{~V} / \mathrm{div}$
Bandwath	500 kHz	500 kHz	500 kHz	500 kHz	600 kHz
Number of Traces	2	1	2	1	1
Oifferential Input	all ranges	all ranges	all ranges	all renges	all ranges
Common-mode Rejection	$10088(100,000: 1)$	$100 \mathrm{~dB}(100,000: 1)$	50 dB	50 dB	40 dB
Common-mode Signal Maximum	$=10 \mathrm{~V}$	$=10 \mathrm{~V}$	$=3 \mathrm{~V}$	$\pm 3 \mathrm{~V}$	$=4 \mathrm{~V}$
Phase Shift	1° to 100 kHz	-	1° to 100 kHz	-	$1^{\circ} 10500 \mathrm{kHz}$
Sweep Speeds	$1 \mu \mathrm{sec} / \mathrm{div}$ $105 \mathrm{sec} / \mathrm{div}$	$\begin{aligned} & 1 \mu \mathrm{sec} / \mathrm{div} \\ & \text { to } 5 \mathrm{sec} / \mathrm{div} \end{aligned}$	$1 \mu \mathrm{sec} / \mathrm{div}$ $105 \mathrm{sec} / \mathrm{div}$	$\begin{aligned} & 1 \mu \mathrm{sec} / \mathrm{div} \\ & \text { to } 5 \mathrm{sec} / \mathrm{div} \end{aligned}$	$X-Y$ only
Ext, Horiz. inpu!	yes	yes	yes	yes	X-axis
DC-coupled Z-axis	yes	yes	yes	yes	yes
Page	502 and 503	504 and 505	502 and 503	504 and 505	501
Price	\$990	$\$ 790$	\$875	\$715	\$540

" "A" denotes standard bench modol, e.g. 12C0A. "B" denotes standard rack model, e.g. 1200B.

System display, solld state X.Y display Model 1208A/B

Low frequency X.Y displays are obtained easily and accurately with the Model 1208A (cabinet) or Model 1208B (rack) Display. Horizontal and vertical amplifiers are identical, each with a bandwidth of dc to 600 kHz .

All solid-state circuitry has been used by Hewlett-Packard in the Model $1208 \mathrm{~A} / \mathrm{B}$, bringing low power portability and reliability to $\mathrm{X} \cdot \mathrm{Y}$ display instrumentation.
Selection of defection factor for each amplifier is continuously variable from less than 100 mV /div 10 greater than $1 \mathrm{~V} /$ div. Provision has been made to easily modify internal circuitry to permit use of any larger defection factor.

Model 1208A/B exhibits less than 1° phase shift up to 500 kHz for equal X and Y deflection factors below $0.2 \mathrm{~V} /$ div, and up to 100 kHz for equal X and Y deffection factors above $0.2 \mathrm{~V} /$ div. For any combination of X and Y deffecrion factors, phase shift is less than 3°, up to 100 kHz .
The de-coupled Z-axis amplifer, well-suired for compucer information displays, allows CRT intensity modulation, with signals of +2 volts blanking a display of nocoral intensity. A +8 V signal will blank a display of any intensity. Amplifer risetime is approximately 200 nanoseconds.

Applications for X-Y displays

Model 1208A/B can be used to display an X-Y plot of one input versus the other for a wide variety of signals. It is a useful measurement tool in such applications as the following:

- Pressure vs. volume diagrams.
- Component testing to determine characteristics such as voleage or temperature coefficients.
- Semiconductor diode characteristic V vs. 1 curves.
- Derermine chazacteristics of ferromagnetic mazerials.
- Measure performance of limitiag. or expanding-amplifiers.
- Measurement of distortion in linear amplifiers.
- Function generator, obtaining $y=f(x)$.
- Performance evaluation of various modulator and demodulator systems such as AM, PM, PTM, PAM, and suppressed carrier.

X.Y displays in systems

Solid-state circuitry in the Model 1208B results in direct benefits of special importance for systems applications:

- Lower maintenance costs, due to better component reliabilify and longer time between calibrations.
- No waiting for warm-up before measurements can be made and recorded.
- Low porres (31 watts) eliminates need for fan, cuts system cooling requirements, and minimizes heat-related component failures.

Specifications, 1208A/B

Vertical and horizontal amplifiers

Bandwidth: de to 600 kHz when dc-coupled; 20 Hz to 600 kHz when ac.coupled. (3 dB down from 8 .div reference signal.)
Deflection factor: continuously variable from less than $0.1 \mathrm{~V} /$ div to greater than I V/div.
Input: differential or single-ended.
Input coupling: front panel selection of ac or de.
Input RC: 100 k ohms shuoted by approx. 70 pF .
Maximum input: $\pm 200 \mathrm{~V}$ ($\mathrm{dc}+$ peak ac).
Common-mode
Rejection ratio: 40 dB (100:1).
Signal maximum: up to $\pm 4 \mathrm{~V}$ ($\mathrm{dc}+$ peakac).
Frequency: ds to 10 kHz .

Phase shift

Same X and Y deflection factor: less rhan $1^{\text {c }}$, to 500 kHz for deflection factors below $0.2 \mathrm{~V} / \mathrm{div}$. Less than 1°, to 100 kHz for deflection factors above $0.2 \mathrm{~V} /$ div.
Different X and Y deflection factors: less than 3°, 10100 kHz .

Cathode-ray tube and controls

Type: monoaccelerator, 3 kV accelerating porential; P31 phosphor scandard (see modifications (or other phosphors); etched safetr. glass faceplate reduces glare.
Graticule: 8×10 divisions, parallax-free internal graticule. 0.2 -div subdivision markings on major axes. 1 div $=1 \mathrm{~cm}$. Front panel screwdriver adjust aligns trace with graticule.
Beam finder: pressing Find Beam control brings trace on CRT screen regardless of setting of horizontal, vertical, or intensity controls.
Intensity modulation: +2 volt signal blanks trace of normal intensity; +8 -volt signal blanks any intensity, $D C$-coupled input on rear panel; amplifier cisetime approx. 200 ns; inpus R is $s k$ ohos.

Callbrator

Type: line frequency square wave.
Output: 1 volt $\pm 1.5 \%$, front panel connector (banana plug).

General

Weight
Cablnet: (Model 1208A) set, $211 / 2 \mathrm{lbs}(9,8 \mathrm{~kg}$); shipping, $31 \mathrm{Jbs}(14,7 \mathrm{~kg})$.
Rack: (Model 1208 B) net, $201 / 2 \mathrm{lbs}(0,3 \mathrm{~kg}$) ; shipping, 33 lbs ($15,0 \mathrm{~kg}$).
Power: 115 or 230 volts $\pm 10 \%$, 50 to 400 Hz , approx. 31 tvates.
Dimensions
Cabinet: $8-5 / 16^{\prime \prime}$ wide $\times 113 / 4^{\prime \prime}$ high $\times 181 / 9^{\prime \prime}$ deep ($211,1 \times$ $298.5 \times 474,4 \mathrm{~mm})$.
Rack: $19^{\prime \prime}$ wide $\times 51 / 4^{\prime \prime}$ high $\times 153 / 8^{\prime \prime}$ deep behind panel ($483 \times$ $132,5 \times 390,5 \mathrm{~mm}$).

Modifications

CRT phosphors: (specify by phosphor number) P31 standard; P1, P2, P4, P7 (with amber fiter), and P11 arailable at no extra cost.
Options and specials: special versions arailable with deffection factor ranges down to cither s mV/div or $100 \mu \mathrm{~V} / \mathrm{div}$. Consult your Hewlert-Packard Field Engineer for lacest information.
Accessories avallable: for zesmobiles, probes, cameras, and ocher accessories for use with Model 1208A/B, refer to pages 548 through 553.
Price: HP Model 1208A or HP Model 1208B, $\$ \$ 10$.

Models 1200A/B and 1205A/B Duai Trace Oscilloscopes have the same basic display capabilities, but differ in deflection factor and common-mode and noise characteristics.

Borh the Model 1200A/B and the Model 1205A/B include many improved operation features which ate standard on the 1200 -series oscilloscopes. These include: 500 kHz bandwidth, all-range differential inputs, dc-coupled Z-axis, single sweep, auto and amplitude selection triggering, externa! horizontal input, and all solid-stare circuitry.

Two signals can be compared simultaneousily and directly by automatic switching betreeen traces in either Chop or Alternate modes. In Chop operation, switching occurs at approximately 100 kHz between traces during the swreep; either internal time base or an external horizontal input signal can be used. In Alternate operation, switching occurs alternately between channels at the end of each sweep.

[^46]In Chop or Alternate operation, internal triggering of the start of the sweep is alvays derived from the signal on Channel A. This technique maintains the time relationship between the two vertical input signals.

Dual trace displays are useful for viewing both the inpur and output signals of amplifier, filters, and other networks to determine transmission or rejection characteristics. In vibration studies a rapid analysis is possible since the vibration pattern and the driving source waveform can be displayed at the same time

The Channel A vs. B mode, selected by a front panel control, provides convenient X.Y displays of two variables. The two vertical amplifiers are identical, with less than 1° phase shift up to 100 kHz .

Model 1200A/B

Model 1200A/B provides the capability to accurately measure and analyze low level signals. In addition to $100 \mu \mathrm{~V} / \mathrm{div}$ deflection factor, both vertical amplifiers have very low drift of typically less than $50 \mu \mathrm{~V}$ per hour and low noise of less than $50 \mu \mathrm{~V}$ pk-pk.

The low drift, very stable characteristics of the Model $1200 \mathrm{~A} / \mathrm{B}$ result in simpler operation and in less frequent circuit calibration. Operation is so stable that the balance control requires only infrequent adjustment. AC-coupling in the amplifier is no longer necessary as a means of eliminating drift, again simplifying operating controls.

Model $1200 \mathrm{~A} / \mathrm{B}$ has a common-mode rejection ratio of 100,000 to $1(100 \mathrm{~dB})$ on the lowest deflection factor of . 1 $\mathrm{mV} /$ div, over a de to 10 kHz frequency range. This high CMRR is made even more useful by the ± 10 volts commonmode signal maximum on the lower deffection factors, a combination not previously available in low frequency oscilloscopes.

There are many measurement areas for which the Model $1200 \mathrm{~A} / \mathrm{B}$ is well-suited. These include: audio systems, biological research, circuit design, drift measurement, filter design, phase measurement, servo design, strain gage and transducer monitoring, educational instruction, and X.Y displays.

Model 1205A/B

Model $1205 \mathrm{~A} / \mathrm{B}$ is a highly portable, reliable dual trace oscilloscope for low frequency applications which do not require the lower deflection factor and common-mode characreristics of the Model 1200A/B.
Many systems applications are met satisfactorily by the size, economy and versatility offered in the Model 1205A/B.

Deflection factors are provided from $5 \mathrm{mV} /$ div to $20 \mathrm{~V} /$ div with a vernier extending maximum defection factor to so V/div. At least 50 dB common-mode rejection ratio with a ± 3 volt common-mode signal maximum is specified for the six lowest defection factors.

Measurement applications for the Model 1205A/B include: circuit design, component testing, computer information display, filter design. phase measurement, research and educational laboratories, swept frequency indicaror. timing measurement, ultra. sonic systems, and $\mathrm{X} \cdot \mathrm{Y}$ displays.

Specifications, 1200A/B

Vertical amplifiers

Reflectlon factor

Ranges: from $0.1 \mathrm{mV} /$ div $1020 \mathrm{~V} /$ div (17 positions) in 1 , 2 , s sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Vernler: continuously variable between all ranges; extends maximum deflection factor to at least $50 \mathrm{~V} /$ div.
Bandwidth: dc to 500 kHz with a maximum risetime of 0.7 $\mu \mathrm{sec}, 2 \mathrm{~Hz}$ to 500 kHz when ac-coupled. Front panel control provided to reduce upper frequency limir to approx. 50 kHz .
Noise: less than $50 \mu \mathrm{~V}$ peak-to-peak at full bandwidth.
Input: differential or single-ended on all ranges, selectable by front panel control.
Common-mode:
Frequency: dc to 10 kHz on all ranges.
Rejectlon ratio: at least $100 \mathrm{~dB}(100,000$ to 1) on $0.1 \mathrm{mV} /$ div range, decreasing by less than 20 dB per derade of deHection factor to ar least 40 dB on the $0.2 \mathrm{~V} /$ div range; CMRR at least 30 dB on $0.5 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ ranges.
Signal meximum: $\pm 10 \mathrm{~V}(\mathrm{dc}+$ peak 2c) on $0.1 \mathrm{mV} / \mathrm{div} 10$ $0.2 \mathrm{~V} /$ div ranges; $\pm 400 \mathrm{~V}$ (dc + peak ac) other ranges.

Specifications, 1205A/B

Vertical amplifiers

Deflection factor

Ranges: from $5 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ (12 positions) in 1,2 , 5 sequence. $\pm 3 \%$ accuracy with vemier in calibrated position.
Vernler: continuously variable between all ranges; extends maximum deflection factor to ac least $50 \mathrm{~V} / \mathrm{div}$.
Bandwidth: dc to 500 kHz with a maximum riserime of 0.7 $\mu \mathrm{sec} .2 \mathrm{~Hz}$ to 500 kHz when ac-coupled.
Input: differential or single-ended on all ranges, selectable by front panel control.

Comon mode:

Frequency: de to 10 kHz on all ranges.
Rejection ratio: at least 50 dB on $\mathrm{s} \mathrm{mV/div} \mathrm{to} 0.2 \mathrm{~V} / \mathrm{div}$ canges; CMRR is at least 30 dB on $0.5 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ ranges.
Sigral maximumi $\pm 3 \mathrm{~V}(\mathrm{dc}+$ peak ac) on $5 \mathrm{mV} / \mathrm{div}$ to $0.2 \mathrm{~V} /$ div ranges; $\pm 300 \mathrm{~V}$ ($\mathrm{dc}+$ peak ac) on all other ranges.

Following specifications apply to both Model 1200A/B and Model 1205A/B

Vertical amplifiers (continued)

Ingut coupling: front pane! selection of $d c, a c$, or oft for both + and - inputs.
Input RC: 1 megohm shunted by 45 pF ; constant on all ranges.
Maximum lnput: ± 400 volts ($\mathrm{d} c+$ peak ac).
Display:

1. Channel A.
2. Channel B.
3. Channels A and B (either Chop or Alternate).
4. Channels A and B 's. horizontal input (Chop only).
5. Channel A vs. B (A-vertical, B-horizontal). Chop display frequency is approx. 100 kHz .
Internal trigger: by Channel A signal for A, Chop, and Alternate displays. By Channel B signal for B display.
Isolation: greater than 80 dB berween channels at 500 kHz , with inpur connecsors shielded.
Phase shift: (for Channel A vs. B) less than $1^{\circ}, 10100 \mathrm{kHz}$ (Verniers in calibrated position).
Time base
Sweep
Ranges: $1 \mu \mathrm{sec} / \mathrm{div}$ to $\mathrm{S} \mathrm{sec} / \mathrm{div}$ (21 positions) in 1, 2, 5 sequence. $\pm 3 \%$ accuracy with vernier in calbrated position. Vernler: continuously variable betwreen ranges; extends slowest 5weep co ar least $12.5 \mathrm{sec} / \mathrm{div}$.
X10 magnifier: indicates magnified sweep directly with $\pm 5 \%$ accuracy.
Automatic triggering: baseline is displayed in absence of an input signal.
Internal: 50 Hz to above 500 kHz on mosr signals causing 0.5 division or more vertical deffection. Triggering on line frequency also seiectable.
External: so Hz to above 1 M Hz on most signals at least 0.2 volt peak-ro-peak.
Trigger slope: positive or negative slope on internal, external or line rrigger signals.
Amplitude selection triggering
Internal: de to above 500 kHz on signals causing 0.5 division or more vertical deflection.
External: de to 1 MHz on signals at least 0.2 volt peak-to. peak. Input impedance is 1 megohm shunted by approx. 20 pF .
Trigger level and slope: internal, at any point on vertical waveform displayed; or continuously variable from +100 V to -100 V on either slope of the external trigger signal.
Trigger coupling: de or ac for external, line, or internal triggering. Lower ac cut-oft is 1.6 Hz for external: 5 Hz for intemal.
Single sweep: selectable by front panel switch. Reser push button with armed indicator lighr.

Free run: selecrable by front panel switch.
Maximum input: ± 350 volts (de + peak ac).

Horizontal amplifier

Bandwidth: de to 300 kHz . With input ac-coupled, low fre. quency cut-of is 1.6 Hz .
Defleckion factor
Ranges: $0.1 \mathrm{~V} / \mathrm{div}, 0.2 \mathrm{~V} / \mathrm{div}, 0.5 \mathrm{~V} / \mathrm{div}$, and $1 \mathrm{~V} / \mathrm{div}$.
Vernler: continuously variable between ranges: extends maximum deflection factor to at least $2.5 \mathrm{~V} / \mathrm{div}$.
Input: single-ended.
Input RC: 1 megohm shunted by approx. 20 pF .
Maximum input: ± 350 voles (dc + peak $a c$).

Generat

Cathoderay tube
Type: mono-accelerator, 3,000-rolt accelerating potential; P31 phosphor standard (see Mrodifications for other phosphors): erched safery glass faceplate reduces glare.
Graticule: 8×10 divisions; parallax-free internal graticulc; 0.2 div subdivision markings on horizontal and vertical major axes. 1 div $=1 \mathrm{~cm}$. Front panel screwdriver adjust aligns trace with graticule.
Intensity modulation: +2 -vols signal blanks trace of normal intensity; +8 volt signal blanks any intensity. DC-coupled input on rear panel; amplifier risetime approx. 200 ns : input resistance is s k ohms.

Calibrator

Type: line frequency square wave.
Output: 1 volt $\pm 1.5 \%$, front panel connector.
Beam finder: push button to locate beam on CRT screen regard. less of setting of vertical, horizontal, intensity controls.

Dimensions

Cablnet: $8.5 / 16^{\prime \prime}$ wide $\times 11^{3 / 4}$ " high $\times 18.11 / 16^{\prime \prime}$ deep ($211,1 \times 298,5 \times 474,4 \mathrm{~mm}$).
Rack: $19^{\prime \prime}$ wide $\times 51 / 4^{\prime \prime}$ high $\times 153 / 8^{\prime \prime}$ deep behind panel ($483 \times$ $132,5 \times 390,5 \mathrm{~mm}$).

Weight

Cabinet: net. 25 lbs ($11,3 \mathrm{~kg}$) ; shipping, $341 / 2 \mathrm{lbs}(15,6 \mathrm{~kg}$)
Rack: ner, $221 / 2 \mathrm{lbs}(10,2 \mathrm{~kg})$; shipping. $35 \mathrm{lbs}(15.8 \mathrm{~kg}$)
Modifications
CRT phosphors (specity by phosphor number): P31 standard, P2, P7 (with amber filter), and P11 available at no extra cost.
Optlons and specials: check with Hewlett-Parkard Sales Of. fices for latest information.
Accessories available: for tesmobiles, probes, cameras, and other accessories for use with Models 1200A/B and 1205A/B. refer to pages 548 through 553.
Price: HP Model 1200A/B, $\$ 990$: HP Model 1205A/B, $\$ 875$.

OSCHLLOSCOPES 1200 SEAIES continued

Single channol, solid-state, low power
Models 1202A/B, 1206A/B

Single trace Models 1202A/B and 1206A/B include all the 1200 -series improved performance features, but differ in basic deflection factor and related common-mode and noise char. acteristics.

Models 1202A/B and $1206 \mathrm{~A} / \mathrm{B}$ have 500 kHz bandwidth, all-range differential input, dc-coupled 2 -axis, single sweep, auto and amplitude selection triggering, external horizontal inpur, and all solid-state circuitry.
X.Y displays of two variables can be obtained by use of the external horizontal input. Bandwidth for the horizontal am. plifier is 300 kHz . There are four horizontal defiection factors: $.1 \mathrm{~V} / \mathrm{div}, .2 \mathrm{~V} /$ div, $.5 \mathrm{~V} /$ div, and $1 \mathrm{~V} /$ div. A vernier extends the maximum defection factor to $2.5 \mathrm{~V} /$ div.

Rack version Medels 1202θ and 120σ 日 are only $51 / 4 "$ high,
saving valuable space and allowing addition of other instru. ments to provide a more complete, more versatile system.

The horizontal deffection system time base provides a wide range of sweep speeds from $1 \mu \mathrm{sec} /$ div to $s \mathrm{sec} / \mathrm{div}$. The vernier provides continuous coverage between ranges and extends the slowest sweep speed to $12.9 \mathrm{sec} / \mathrm{div}$.
With solid-state portability, reliability, and stability, Models $1202 \mathrm{~A} / \mathrm{B}$ and $1206 \mathrm{~A} / \mathrm{B}$ can fulfil any low frequency measurement application requiring only single trace capability.

Model 1202A/B

Model 1202A/8 provides the capability to accurately measure and analyze low level signals. Its $100 \mu \mathrm{~V} /$ div vertical amplifier has very low drift of typically less than $50 \mu \mathrm{~V}$ per hour and low noise of less than $50 \mu \mathrm{Y} \mathrm{pk}-\mathrm{pk}$.

The low drift, very stable characteristics of the Model 1202A/B result in simpler operation and in less frequent circuit calibration. Operation is so stable that the balance control requires only infrequent adjustment and hence is now a front panel screwdriver control. With this high degree of stability, ac-coupling in the amplifier is no longer necessary as a means of eliminating drift, again simplifying operating controls.

Model 1202A/B has a common-mode rejection ratio of 100,000 to : (100 dB) on the lowest deflection factor of .1 $\mathrm{mV} / \mathrm{div}$, over a de to 10 kHz frequency sange. This high CMRR is made even more useful by the ± 10 volis commonmode signal maximum on the lower deflection factors, a com. bination not previously available in low frequency oscilloscopes. High CMRR eliminates concern about inaccuracies caused by voltages induced in differential signal leads.

Measurement areas for which the Model 1202A/B is wellsuited include: audio systems, biological research, circuit design, drift measurement, cemote indicator, servo design, strain gage and transduces monitoring, tuner alignment, and ulterasonic systems.

Model 1206A/B

Model $1206 \mathrm{~A} / \mathrm{B}$ is a highly portable, reliable general purpose oscilloscope. It is a versatile instrument for single channel ap. plications not requiring the lower defection factor and commonmode characteristics of the Model 1202A/B.

Many systems applications are met satisfactorily by the size, economy and versatility offered in the Model 1206A/B.

Deffection factors are provided from $5 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$ with a vernier extending maximum defection factor to 50 $\mathrm{V} / \mathrm{div}$. At least 50 dB common-mode rejection ratio with a ± 3 volt common-mode signal maximum is specified for the six lowest deflection factors.

Measucement applications for the Model 1206A/B include: audio systems, circuit design, component testing, computer information display, system monitoring, research and educational laboratories, timing measurements, and ultrasonic systems.

Specifications, 1202A/B

Vertical amplifier

Deflection factor

Ranges: from $0.1 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ (17 positions) in $1,2,5$ sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Vernier: continuously variable between all ranges; extends maximum defection factor to at least 50 V /div.
Bandwidth: do to 500 kHz with a maximum risetime of 0.7 $\mu \mathrm{sec} .2 \mathrm{~Hz}$ to 500 kHz when ac-coupled. Front panel control provided to reduce upper frequency limit to approx. 50 kHz .
Noise: less than $50 \mu \mathrm{~V}$ peak-to-peak at ful! bandwidth.
Input: differential or single-ended on all ranges, selectable by front panel control.
Common-mode:
Frequency: dc to 10 kHz on all ranges.
Rejectiona ratio at least $100 \mathrm{~dB}(100,000$ to 1) on $0.1 \mathrm{mV} /$ div range, decreasing by less than 20 dB per decade of deflection factor to at least 40 dB on the $0.2 \mathrm{~V} /$ div range; CMRR at least 30 dB on $0.5 \mathrm{~V} /$ div to $20 \mathrm{~V} /$ div ranges.
Signal maxlmum: $\pm 10 \mathrm{~V}(\mathrm{dc}+\mathrm{peak} \mathrm{ac})$ on $0.1 \mathrm{mV} / \mathrm{div}$ to $0.2 \mathrm{~V} /$ div ranges; $\pm 400 \mathrm{~V}(\mathrm{dc}+$ peak ac$)$ other ranges.

Specifications, 1206A/B

Vertical amplifler

Deflection tactor

Ranges: from $5 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} /$ div (12 positions) in 1,2 , 5 sequence, $\pm 3 \%$ accuracy with vernier in calibrated position.
Vernier: continuously variable between all ranges; extends maximum defiection factor to at least $50 \mathrm{~V} / \mathrm{div}$.
Bandwldth: de to 500 kHz with a maximum risetime of 0.7 $\mu \mathrm{sec} .2 \mathrm{~Hz}$ to 500 kHz when ac-coupled.
Input: differential or single-ended on all ranges, selectable by front panel control.

Common-mode

Frequency: dc to 10 kHz on all ranges.
Rejectlon ratio: at least 50 dB on $5 \mathrm{mV} / \mathrm{div}$ to $0.2 \mathrm{~V} / \mathrm{div}$ ranges; CMRR is at least 30 dB on $0.5 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ ranges.
Signal maximum! $\pm 3 \mathrm{~V}$ (dc + peak ac) on $5 \mathrm{mV} /$ div to $0.2 \mathrm{~V} /$ div ranges; $\dot{ \pm} 300 \mathrm{~V}$ (dc + peak ac) on all other ranges.

Following specifications apply to both Model 1202A/B and Model 1206A/B

Vertical amplifler (continued)
Input coupling: front panel selection of $\mathrm{d} c$, a , or off for both + and - inputs.
Input RC: 1 megohm shonted by 45 pF ; constant on all ranges.
Maximum inputi ± 400 voles ($\mathrm{dc}+$ peak ac).

Time base

Swap
Ranges: from $1 \mu \mathrm{sec} / \mathrm{div}$ to $\mathrm{s} \mathrm{sec} / \mathrm{div}$ (21 positions) in 1,2 , s sequence. $\pm 3 \%$ accuracy with Veraier in calibrated position.
Vernler; continuously variable between ranges; extends slowest sweep to ar least $12.5 \mathrm{sec} / \mathrm{div}$.
X10 magniffer: indicates magnified sweep directly with $\pm 5 \%$ accuracy.
Automatic triggerlng: baseline is displayed in absence of an input signal.
Internal: 50 Hz to above 500 kHz on most signals causing 0.5 division or more vertical defection. Triggering on line frequency also selectable.
External: 50 Hz to above 1 MHz on most signals at least 0.2 volt peakra-peak.

Trigger slope: positive or negative slope on internal, external or line trigger signals.
Amplitude selection triggering
Internal: dc to above 500 kHz on sigoals causing 0.5 division or more vertical deflection,
External: dc to 1 MHz on signals at least 0.2 volt peak.to. peak. Input impedance is 1 megohm shunted by approx. 20 pF .
Trigger level and slope: internal, at any point on vertical waveform displayed; or continuously variable from +100 V to -100 V on either slope of the external trigger signal.
Trigger coupling: do or ac for external, line, or internal triggering. Lower ac cut-off is 1.6 Hz for external; 5 Hz for internal.
Single sweep: selectable by front parel switch. Reset push button with armed indicator light.
Free run: selectable by fronc panel switch.
Maximum input: $=350$ volts ($\mathrm{dc}+$ peak ac).

Horizontal amplifier

Bandwidth: dc to 300 kHz . With input ac coupled, low frequency cut.off is 1.6 Hz .

Deflection factor
Ranges: $0.1 \mathrm{~V} / \mathrm{div}, 0.2 \mathrm{~V} / \mathrm{div}, 0.5 \mathrm{~V} / \mathrm{div}$, and $1 \mathrm{~V} / \mathrm{div}$.
Vernier: continuously variable between ranges; extends maximuro defection factor to at least $2.5 \mathrm{~V} / \mathrm{div}$.
Input: single-ended.
Input RC: 1 megohm shunted by approx. 20 pF .
Maximum Input: ± 350 voles (dc + peak ac).
General
Cathoderay tube
Type: mono-accelerator, 3,000-volt accelerating porential; P31 phosphor standard (see Modifications for other phosphors) etched safety glass faceplate reduces glart.
Graticule; 8×10 divisions; parallax-free internai graticule; 0.2 div subdivision markings on horizontal and vertical major axes. $1 \mathrm{div}=1 \mathrm{~cm}$. Front panel screwdriver adjust aligns trace with gratcule.
Intensity modulation: +2 -volt signal blanks trace of normal intensity; +8 .volt signal blanks any intensity. DC.coupled input on rear panel; amplifer risetime approx. 200 ns ; input resiscance is $\$ \mathrm{k}$ ohms.
Callbrator
Type: line frequency square wave.
Output: I volt $\pm 1.5 \%$, front panel connector.
Beam finder: push button to locate beam on CRT sereen regard. less of setring of vertical, horizontal, and intensiry concrols.
Dimensions
Cablnet: $8.5 / 16^{\prime \prime}$ wide x 113/4" high $x 18.11 / 16^{\prime \prime}$ deep ($211,1 \times 298,5 \times 474,4 \mathrm{~mm}$).
Rack: $19^{\prime \prime}$ wide $\mathrm{x} 51 / \mathrm{K}^{\prime \prime}$ high $\times 153 / 8^{\prime \prime}$ decp behind panel ($483 \times$ $132,5 \times 390,5 \mathrm{ma})$.
Weight
Cablret: net, $231 / 2 \mathrm{lbs}$ ($10,6 \mathrm{~kg}$); shipping, 33 lbs ($15,0 \mathrm{~kg}$).
Rack: net, $21 \mathrm{lbs}(9,5 \mathrm{~kg})$; shipping $331 / 2 \mathrm{lbs}(15,2 \mathrm{~kg})$.
Power: 115 or 230 volts $=10 \%$; 50 to 400 Hz ; approx. 33 watts. Modifications

CRT phosphors (specity by phosphor number): P31 stan. dard. P2, P7 (with amber filter), and P11 a'eilable at no extra cost.
Options and specials: check with Hewlett-Packard Sales Office for latest information.
Accessories avallable: for testmobiles, probes, cameras, and other accessories for use with Models 1202A/B and 1206A/B, refer to pages 348 through 353.
Prlce: HP Model 1202A/B, \$790; HP Model 1206A/B, \$71s.

The extremely wide dc-20 MHz bandwidth of the Model 1300A X.Y Display provides capabilities not found in any other large screen display. The fast 20 nanoseconds sise time and 200 nanoseconds settling time allow rapid switching between several inpur waveforms without flicker. The 1300 A CRT writes at better than 20 inches/ $\mu \mathrm{s}$ for bright displays of Jow rep rate signals. The 8 inch $\times 10$ inch viewing area provides the high resolution readout needed for many measurements. Some of these include swept frequency, spectrum analysis and time domain reflectometry. The 1300 A 's 20 kV display is easy to see even from long distances making it especially suited for system applications as well as produrtion tescing or classroom demonstrations. Added versatility in a large screen display is also available in the HP Model 143A which is a plug-in type oscilloscope. Model 143A accepts all standard HP Model 1400 -series plug-ins. Control and amplifier options are available for increased rersatility. Contact your local HP feld engineer for your special requirements.

Applications

Swept frequency measurements are especially suited for a large screen readout. The $\mathrm{H} 09-1300 \mathrm{~A}$ is a special model of the 1300A X.Y Display that has been modified to be directly compatible with the Model 674A Sweeping Signal Generator. These two instruments when used together, provide an easy to read, easy to use, high resolution display of
swept frequency measurements. Extended vertical dynamic range in the H09-1300A allows high sensitivity measurements at any point on the 1.5 voit output of the Model 675 A Sweeping Signal Generator. The H09.1300A vertical position control provides the dc offset required to look at any point on the incoming signal while at deflection factors as low as $10 \mathrm{mV} / \mathrm{in}$.

Another important application for the 1300A is analog computer readout. The 1300A provides a significant increase in useful resolution orer the conventional 5 inch oscilloscope. without sacrificing useful bandwidth for displays such as analog computers, bar graphs, and the like. Increased resolution coupled with 1% linearity provides an accurate display of even high frequency phenomena and stable do amplifiers provide excellent repeatability. The all solid state circuits of the Model 1300A provide a very reliable instrument that will be free from maintenance and service requirements.

Specifications

$X-Y$ amplifiers

Deflection factor: at least 0.1 V /inch; vernier provides 2.5:1 reduction.

Dritt: <0.1 inch/hr after $1 / 2$ he warmup; <0.2 inch/ 8 hr.

Model 1300A displaying a computer readout. X.Y-Z information providos an easy to read three dimensional display.

Bandwidth: dc coupled, dc to 20 MHz : ac coupled 2 Hz to 20 MHz (8 -inch reference at 50 kHz).
Rise time: $<20 \mathrm{~ns}$ (10% to 90% points).
Settling time: <200 ns to within a trace width of final value.
Repeatablity: less than 0.15% erfor for re-addressing a point from any direction; source impedance $<4 \mathrm{k} \Omega$.
input RC: 1 megohm shunted by approximately 20 pF .
Input: single ended; BNC connector, maximum input $\pm 500 \mathrm{~V}$ (dc + peak ac).
Linearity: over 8×10-inch screen $\pm 1 \%$ of fuil screen; any inch with respect to any other inch, within 10%.
Phase shift: 0.1° to 50 kHz , up to 100 -inch signal; 1° to 1 MHz , up to 10 -inch signal.

2 amplifier

Analog Input: dc to 20 MHz bandwidth over the 0 to +1 V range; +1 V gives full blanking, -I V gives full intensity; vernier gives 2.5:1 reduction, balance allows intensity adjustment of $\pm 1 \mathrm{~V}$, maximum input ± 500 $V(d c+$ peak ac).
Rise time: <20 ns (10% to 90% points).
Sweep blank input: digital dc blanking with $<1 \mathrm{~K} \Omega$ and -0.7 V to +5 V ; unblanking with $>20 \mathrm{~K} \Omega$ and 0 V to - 5 V. Repetition rates to 1 MHz .
Chop blank input: ac coupled blanking, +50 V blanks CRT. Inpur grounded when not in use.

Calibrator

$0.5 \mathrm{~V} \pm 2 \%$, line frequency square wave.

CRT

Accelerating potential: 20 kV .
Writing rate: >20 inches $/ \mu \mathrm{s}$.
Spot size: less than 30 mils throughout 8×10-inch screen at 100 ft , lamberts light output; nominally 20 mils at center screen (shrinking raster).
Phosphor and gratlcule; aluminized P31 phosphor with l-inch grid and 0.2 -inch subdivisions on major axis. P2, P4, P7, Pi 1 and other phosphors available; other graticules available on special order. Amber face plate

Model 1300A displaying filtor response in conjunction with Model 575 A Sweeping Signal Generator.
filter supplied with P7 phosphor instead of standard blue-green.
Controls: X-Y-Z inputs, ac-de input switches, calibrator, $X-Y$ gain verniers and position, Z axis vernier and balance on rear panel. Intensity, astigmatism, trace align, and focus on front panel.

General

Slze: $121 / 4^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $197 / 8^{\prime \prime}$ deep, $181 / 2^{\prime \prime}$ behind front panel ($310 \times 425 \times 470 \mathrm{~mm}$). Rack mount hardware supplied.
Weight: net $47 \mathrm{lbs}(21,4 \mathrm{~kg})$; shipping $64 \mathrm{lbs}(29,1 \mathrm{~kg})$.
Power: 115 or 230 volts $\pm 10 \%$; 50 to 400 Hz ; approximately 175 W.
Price: Model 1300A, \$1900.
Special order: a number of special modifcations are avail. able. They include: front panel X and Y inputs and controls, X 10 pre-amplifier for 10 mV /in X and Y deflection facror, Z axis to provide eight gray scales, attenuatoss for X and Y amplifiers. Contact your local HP Field Engineer for details on these and other special requirements.
Model H09-1300A: specially modified 1300A to be directly compatible with Model 675A Sweeping Signal Generator. Includes $10 \mathrm{mV} /$ inch vertical deflection factor and attenuator. All X and Y inputs and controls on front panel. Price, $\$ 2100$.
Option 14: no graticule in lieu of standard internal graticule. No additional charge.

Accessories available

Anti-reflection filter: nylon mesh attached to contrast filter to reduce reflections; Model 10181A amber filter for P7 phosphor. Model 10182A green filter for standard phosphors. Price, Model 10181A, $\$ 25$; Model 10182A, \$25.
Chassis slides and adapters: fixed slides, order HP Part No. 1490-0714, \$32.50; pivot slides, order HP Part No. $1490-0718, \$ 40$; slide adapter kit for mounting slides, order HP Pact No. 1490-0721, \$40. Note: One adapter kir required for mounting one pair of chassis slides.

PLUG-IN OCILLOSCOPE
One scope to do nearly any measurement task Model 140 System

The Hewlett-Packard 140 Oscilloscope System, which consists of either the $140 \mathrm{~A}, 141 \mathrm{~A}$, or 143 A mainframe and the 1400 -series or 8550 -series plug-ins, provides the versatility you need to get step-ahead measurements over the entire oscilloscope spectrum. With is high performance vertical and horizontal plug-ins to choose from, you can head in any measurement direction: wide-band sampling, high-sensitivity, delayed sweep, or measurements such as time domain reflectomerry, swept frequency, or spectrum analysis . . . all with variable persistence and storage or large screen dispiay if you like.

Hewlett-Packard's 140 system offers these capabilities: an oscilloscope system that gives you sampling bandwidth to 12.4 GHz ... sampling delayed sweep time base... $50 \mu \mathrm{~V} / \mathrm{cm}$ sensitivity with no de drift . . . versatile single or double-size plug-in capability . . . plug-ins for direct readout TDR . . swept frequency and spectrum analyzer plug-ins to convent the 140 system to a truly general purpose frequency-domain oscilioscope. In addition, it is the only oscilloscope system to offer standard CRT persistence in either the 140A mainf came or the 8 in $\times 10$ in 143A mainframe; or variable persistence and storage in the 141A mainframe. Select from these unique measurement capabilities, or choose from the general purpose plug. ins a vailable.

See signal trends while making circult adjust. ments by simply mak. ing persistence long onough so that severai traces appoar on screen simultanoously.

12.4 GHz Sampling with Delayed Sweep

Exceedingly fast $H P$ switching diodes have opened a true breakthrough in sampling scope capabilities.

For the first time, you can see through X band, observe CW signals to 12.4 GHz and beyond, and see fast pulses with a 28 ps rise time capability. You can also use TDR measurernents to resolve discontinuities down to less than I cm in the design of cables, coaxial components, connectors and strip lines. In addition, you can utilize delayed sweep through the full bandwidth to get displays of pulse segments that leave conventional sampling soopes blurred. You also get less than 20 ps jitter to ensure steady, clear displays.

Two vertical amplifiers are available. Model 1411 A pro. vides do to 12.4 GHz at $1 \mathrm{mV} / \mathrm{cm}$, dual-chanael performance with remote samplers featuring feed through inputs for minimum signal disturbance. The other sampling vertical amplifier, Model 1410A, gives performance to 1 GHz , with both high-Z probes and 50 ohm inputs-and internal triggering. Model 1425A Sampling Time Base plug-in provides delayed sweep, automatic triggering and a movable intensified dot that makes it easy to set up the point of magnification.

$50 \mu \mathrm{~V} / \mathrm{CM}$ Zero Drift

The versatile HP 140 Scope System gives you five highsensitivity plug-ins specifically designed for measurement of low-level signals. For example, the 1406 A vertical plug-in offers high $50 \mu \mathrm{~V} / \mathrm{cm}$ sensitivity with no dc drift-plus precision calibrated dc offset for extreme magnification.

With the HP calibrated offset feature, the 1406A gives you the advantages of a dc and ac voltmteer-four-digit read. out, auto decimal placement, better than 0.5% measurement accuracy. As a $d c$ voltmeter, the 1406 A offers you the additional advantages of no drift in the measurement instrument, and the ability to observe and measure any ac riding
on the dc voltage. With these capabilities you can make measurements never before possible. For example, you can simul. taneously display a 10 V de signa) at $50 \mu \mathrm{~V} / \mathrm{cm}$ (giving a magnification of 200,000), measure dc level accurately to four digits, see short term dc drift with microvolt resolution, and view and measure all ac ripple-an impossible measure. ment with a meter. The HP 1406A plug-in also operates as a dc coupled, no drift differential amplifier with 80 dB common mode rejection.

Get 20 MHz Bandwidth and Delayed Sweep Readability

If you need wideband performance, for example, you can use the dual-trace 1402 A vertical amplifier and get do to 20 MHz (15 MHz with Model 143 A) at $5 \mathrm{mV} / \mathrm{cm}$, algebraic addition, built-in delay line for viewing the leading edge of fast-cise pulses, full 6 cm defection and a wide dynamic range. An internal sync amplifer triggers on Channel A in dual trace mode of operation-gives stable traces and accurate time measurements without external triggering.

For easy readability of complex waveforms and accurate time interval measurements, Model 1421A Time Base \& Delay Generator provides extreme magnification-calibrated time Jelays from 10 seconds to $0.5 \mu \mathrm{~s}$, calibrated sweep speeds from $1 \mathrm{~s} / \mathrm{cm}$ to $20 \mathrm{~ns} / \mathrm{cm}$. The 1421A also offers the additional adventage of exclusive HP mixed sweep. This feature combines display of the first portion of a trace at normal sweep speeds, and simultaneously expands the trailing portion of the trace at faster delayed sweep speeds to allow step-by-step magnified examination.

Spectrum analyzer plug-ins for measurement in the frequency domain

The usefulness of the 140 system in the time domain can also be extended into the frequency domain. By a simple addition of Spectrum Analyzer plug.ins, you can convert your time-domain oscilloscope into a truly general purpose Erequency-domain instrument. This spectrum analyzer has a frequency range of $1 \mathrm{kHz}-110 \mathrm{MHz}$, absolute amplitude calibration, high sensitivity, low distortion, wide dynamic range, and flat frequency response.

Choose from three HP high-performance mainframes

The advanced HP 140A, 141A, and 143 A mainframes give you a choice between conventional (fixed) CRT per. sistence, variable persistence and storage, and $8^{\prime \prime} \times 10^{\prime \prime} C R T$ display. As a result, the 140 system gives you not only an extensive plug-in capability, but also, the CRT versatility you need to meet the requirements of any measurement problem today-six months from now-or at any futuce time.

These HP 140 system mainframes are specifically designed to give you both high-Frequency and high-sensitivity per. formance. They consist of the essential functional blocks for low and high frequency applications-plus sampling. Includ. ed are a post-accelerator $C R T$, associated control circuitry, power supplies, and the $\mathrm{d} c$ supplies required to power the HP 1400 Series plug-ins which contain CRT drive circuitry.

This true building-block arrangement assures that you can use existing and future plug-ins without modification to the mainframe. You pay only for the circuitry you actually need to make your particular measurements.

Because all deflection circuitry is contained in the plug-ins, you get exclusive capabilities in mixing plug-ins. You can not only select the amplifier you need for the vertical axis, but also, you can seled the particular time base generator needed for the horizontal axis.

Further, since the 140 system CRT's have identical horizontal and vertical deffection sensitivities, you can use two vertical amplifiers for an X.Y display .. . or one singlechannel amplifier and one dual-channel amplifier to plot two variables against a thicd. . . or two identical dual-channel amplifiers for a pair of simultaneous X-Y displays.

All 140 series mainframes are equipped with a convenient beam finder which quickly locates a trace and puts it on screen for fast trouble-free set-up.

Variable persistence and storage

The 141A mainframe gives you all the advantages of the 140A mainframe-plus the exclusive benefits of HP variable persistence and storage.

The HP 141 A has a 7.3 kV , post accelerator CRT-with unique mesh storage. At the twist of a knob, you can adjust the 141 A 's memory span (trace persistence) from 0.2 sec onds to a minute . . . to hours . . to days. This exclusive HP variable persistence allows you to adjust the CRT persistence to match the changing characteristics of a signal-any necessary number of traces can be held for trend comparisons, or

Exclugive $H P$ variable persistence enables you to mateh the perslstence of your CRT screen ro any signalm eliminatine annoying flicker on slow signals such as swept fre. queney and sampling weveforms, transducer slenals and low.fre. gunncy displays
for ficker free displays. With a bi-stable storage tube, all information is stored, often creating jumbled displays-or you have fickering "full" erase and no retained information.

The HP mesh storage tube offers many advantages. With the 141A CRT, the stored trace has the same high contrast as a conventional CRT. Intermediate trace values stand out clearly, you can easily distinguish between four or Gve separate trace intensities-as opposed to the limiting black-and-white-only displays of ordinary bi-stable storage. Intensity of the 141A CRT can be varied by a front panel control, or modulated externally for X-Y.Z presentations. Maximum viewing intensity in store/view mode is 200 foot lamberts25 times brighter than bi-stable tubes. With the HP storage mesh CRT, trace brightness and writing speed are maintained over the entire life of the tube-specifed performance is warranted for one year.

Utilize the HP 141 A scope for variable persistence, conventional persistence, and storage-it's like having three scopes in one! Also, you have the advantage of choosing from any of the HP high-performance 1400 Series plag-ins.

Capabilitios	Vertical plug-Ins											
	1400A	1401A	1402A	1403A	1405A	1403A	1407A	1410A	1411A	1430A	1431A	1482A
1. Wide band			-		-							
2. Sampling								-	\bullet	-	-	\bullet
3. Migh grain differential	-			-		-	\bullet					
4. Dual trace		\bullet	-		-			\bullet	\bullet			
5. $X \cdot Y$	\bullet	-	-	-	-	-	-	-	-			
6. Delayed sweed			421A for	real tim			425A 10	samplin				
7. No drift						\bullet	-					
8. High common made rejection				-		\bullet	-					
9. Algebrarc addition		-	-		\bullet			\bullet	-			
10. Time domain rellectomeiry												
11. Wiós band TDR									-	-		
12. Swepl frequency									-	\bullet		
13. Spectrum analyzer												

Accepts all 1400-Seribs Plug-Ins

Mainframe Model 140A

The Model 140A is a mainframe which contains the basic functional circuitry for both low and high frequency applica. tions, as well as those for sampling. It contains a post-accelerator CRT with its associated power supplies and control
circuitry, and the dc supplies required to power the Model 1400 -series plug.ins. The plug-ins contain all of the circuitry necessary to produce beam deffection, and work directly into the CRT of the Model 140A mainframe.

Specifications

Plug-ins: accepts Model 1400-series plug-ins; upper compartment for horizontal axis and lower compartment for vertical axis; center shield may be removed to accommodate a single dual-axis Model 1400 -series unit.

Cathoderay tube:

Type: post-accelerator, 7300 -volt accelerating potential; aluminized P31 phosphor (other phosphors available, see modifications) ; etched safety glass face plate reduces glare.
Gratícula: $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ parallax-free internal graticule marked in cm squares; major horizontal and vertical axes, and second and tenth horizontal graticule lines have 2 mm subdivisions.

In the HP 140A CRT, you got high 7.3 kV electron beam accoleration for bright, easy-to.see traces., internal graticulo ellminates paraliax ... carefully shaped post accelerator fiald gives full $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ display area without distortion.

Intensity modulation: ac coupled, +20 volt pulse will blank trace of normal intensity; input terminals on rear panel.
Warranty: CRT warcanted for one year.
Writing rate: (using HP Model 197A Camera with t/1.9 Iens and Polaroid 3000 speed film).

P31 Phosphor: $300 \mathrm{~cm} / \mu \mathrm{sec}$.
P11 Phosphor: $430 \mathrm{~cm} / \mu \mathrm{sec}$.
Callbrator:
Type: line-frequency rectangular signal, approximately 0.5 $\mu \mathrm{sec}$ risetime.
Voltage: two outputs: 1 volt and 10 volts peak-to-peak, $\pm 1 \%$ from $19^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}, \pm 3 \%$ from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Beam finder: pressing beam finder control brings race on
CRT screen regardless of settings of horizontal, vertical or intensity controls.
Power requirements: 115 or 230 volts $\pm 10 \%, 50$ to 60 Hz , normally less than 285 watts (varies with plug-in units used).
Dimansions: $163 / 4^{\prime \prime}$ wide, $9^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep overall (426 $\times 229 \times 466 \mathrm{~mm}$); hardware furnished for quick conver. sion to $19^{\prime \prime} \times 83 / 4^{\prime \prime} \times 163 / 8^{\prime \prime}(483 \times 222 \times 416 \mathrm{~mm})$ behind panel rack mount.
Waight: net, 37 lbs . ($16,7 \mathrm{~kg}$) ; shipping, 45 lbs (20 kg).
Price: HP Model 140A (without plug-ins), $\$ 595.00$.
Modificatlons: CRT phosphors (specify by phosphor number) ; P31 standard; P2, P7 (with amber filter), P11 available at no charge.
Special order: chassis slides and adapter kits. Fixed slides, order HP Part No. 1490.0714, $\$ 32.50$. Pivot slides, order HP Part No. 1490-0718, $\$ 40.00$. Slide adapter kit for mounting slides on scope, order HP Part No. 1490-0721, $\$ 40.00$.

[^47]
OSCILLOSCOPES 140 SYSTEM cantinued

Varlable Persistence and Storage Mainframe Model 141A

The Model 141A mainframe contains the same basic circuitry for low-frequency, high frequency and sampling applications as the 140 A mainframe. It also accepts all of the 1400 -series plag-ins. In addition the 141 A mainframe contains the cathode-ray-tube and associated circuitry for the unique variable persistence and storage capabilities.

The 141A gives you storage for side-by-side comparison of waveforms. In this mode, traces can be held intact for more than an hour (days, in fact, with the scope turned off). Fast $1 \mathrm{~cm} / \mu \mathrm{sec}$ storage writing rate enables you to capture single-shot transients. Variable persistence allows adjustments to match changing signal characteristics.

Specífications

Plug-Ins: same as Model 140A.
Cathode-ray tube:
Type: post-accelerator storage tube, 7300 -volt accelerating potential; aluminized P31 phosphor; etched safety glass face plate reduces glare.
Gratlcule: 10×10 divisions (approximately $9.4 \times 9.4 \mathrm{~cm}$) parallax-free internal graticule; 5 subdivisions per major division on major horizontal and vertical axes, and on second and tenth horizontal graticule lines.
Intensity modulation: ac coupled, +20 volt pulse will blank trace of normal intensity; input terminals on rear panel.
Warranty: CRT specifications (persistence, writing rate, brightness, storage time) warranted for one year.

Persistence:

Normat: natural persistence of P31 phosphor (approximately 40 microseconds).

Variable:

Normal writing rate mode: continuously variable from less than 0.2 second to more than one minute (typically to two or three minutes).
Max writing rate moda: typically variable from 0.2 second to 15 seconds.
Erase: manual; erasure takes approximately 200 msec ; scope ready to record immediately after erasure (see options for remote erase).
Writing rate (convantlonal operation): (using HP Model 197A Camera with $\mathrm{f} / 2.9$ lens and Polaroidi 3000 speed film): $100 \mathrm{~cm} / \mu \mathrm{sec}$.

[^48]Writing rate (storage):
Normal mode: greater than $20 \mathrm{~cm} / \mathrm{msec}$.
Max. mode: greater than $1 \mathrm{~cm} / \mu \mathrm{sec}$.
Storage time: from Normal Writing Rate mode to Store, traces may be stored for 1 hour. To View mode, traces may be viewed at normal intensity for up to 1 minute. From Max. Writing Rate mode to Store, traces may be stored at reduced intensity for more than is minutes. To View mode, traces may be stored at normal intensity for more than 15 seconds.
Brightness: greater than 100 foot-lamberts in Normal or view modes; typically 5 foot-lamberts in Store mode.

Calibrator:

Beam finder:
Power requirements:
Dimensions:
Welght: net, $40 \mathrm{lbs}(18 \mathrm{~kg})$; shipping, $51 \mathrm{lbs}(23 \mathrm{~kg})$.
Price: HP Model 141A (without plug-ins), $\$ 1395.00$.
Options: (specify by option number).
09: Remote erase. BNC imput on rear panel; shorting to ground for at least 50 ms erases screen, with scope ready for use 200 msec after ground is removed; input draws 20 mA from ground through a 600 ohm im. pedance to a -12 volt supply. Add $\$ 25$.
Special order: chassis slides and adapter kit; fixed slides, order HP Part No. 1490-0714, \$32.50; pivot slides, order HP Part No. $1490-0718, \$ 40$; slide adapter kit for mounting slides on scope, order HP Part No. 1490.0721, $\$ 40$ Newfast writing rate CRT option for HP $141 \mathrm{~A}, 5 \mathrm{~cm} / \mu \mathrm{sec}$. Order Model C05-141A, \$1495.

- $8^{\prime \prime} \times 10^{\prime \prime}$ CRT display
- Accepts HP 1400 Series plug.ins
- Parallax.free internal graticule

The HP Model 143A Oscilloscope mainframe provides the extreme versarility of a dual-axis plug-in oscilloscope, and in addition has a very large 8 -inch by 10 -inch viewing area. The large display is useful wherever the readout is to be view'ed from a distance or by several people at one time.

The Model 143A provides higher resolution displays throughout the oscilloscope measuring spectrum with the same accuracy and linearity normally associated with a conventional 5 " display.

This large-screen oscilloscope is specifically designed to give you boch high-frequency and high-sensitivity performance. It consists of the essencial functional blocks for low and high frequency applications-plus sampling. Included are an advanced. design post accelerator CRT, associated control circuitry, and the power supplies required for the HP 1400 -series plug-ins.

Specifications, 143A

Plug-Ins: accepts sandard Model 1400 -series plug-ins: upper comparment for horizontal axis and lower comparment for vertical axis (all plug-in specifications are same except bandwidth is 15 MHz with Model 1402A) : center shield may be removed to accommodate a single dual axis Model 1400 -series unit. Plug-in panel nemenclature of centimeter divisions translates directly to inch divisions on the Model 143A display. For example, $5 \mathrm{~V} / \mathrm{cm}$ deflection factor is displayed as 5 V /inch on the Model 143 A .

Cathode-ray tube

Type: post-accelerator, 20 kV accelerating potencial; aluminized P31 phosphor (other phosphors available on order).
Graticule: 8 -inch by 10 -inch parallax-free internal graticule marked in one inch squares; major vertical and horizontal axes have 0.2 -inch subdivisions (other graticules avalable on order).

Intensity modulation: ac-coupled (down 3 dB at 4 kHz), +20 volt puise will blank trace of normal intensity; input on rear panel.
Warranty: CRT warranced for one pear.

Callbrator

Type: line.frequency rectangular signal, approximately 0.5 usec risetime.
Voltage: two outputs; 1 volt and 10 volts peak-to-peak $\pm 1 \%$ from $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}, \pm 3 \%$ from 0° to $+55^{\circ} \mathrm{C}$.
Beam finder: pressing beam finder concrol brings trace on CRT screen regardless of veatical, horizontal or intensity control settings.
Power requirements: 11s or 230 volts $\pm 10 \%$, 50 to 60 Hz , nor. mally less than 235 warts (varies with plug-in units used).
Weight: withour plug-ins, net $63 \mathrm{lbs}(28,6 \mathrm{~kg})$; shipping 80 lbs ($36,3 \mathrm{~kg}$).
Dimensions: $163 / 4^{\prime \prime}$ wide, $21^{\prime \prime}$ high, $183 / 3^{\prime \prime}$ deep over-all (426 x $533 \times 466 \mathrm{~mm}$); hardware furnished for quick conversion to 19 " $\times 203 / 4^{\prime \prime} \times 163 / 8^{\prime \prime}(483 \times 527 \times 416 \mathrm{~mm})$ behind panel rack mount.
Accessorles furnished: rack mounting hardware for conversion to a smandard EIA rack configuration.
Price: HP Model 143A, $\$ 1400$.

Accessorles available

Anti-reflection filter: nylon mesh attached to contrast filer to reduce reflections. Model 10181 A , amber for P7 phosphor: Model 10182A, green for standard phosphors. Price: Model 10181A, \$30: ModeJ 10182A, \$30.
Chassis slides and adapters: fixed slides, order HP Part No. 1490-0714, $\$ 32.50$; pivor slides, order HP Part No. 1490-0718, \$40; slide adapter kit for mounting slides, order HP Part No. 1490-0721, $\$ 40$. Note: one adapter kit required for mounting one pair of chassis slides.

OSCILLOSCOPES 140 SYSTEM canimued
20 MHz WIth SIgnal Delay
Dual Trace Amplifier Model 1402A

The 1402A Dual Trace Amplifier provides greater than 20 MHz bandwidth plus $5 \mathrm{mV} / \mathrm{cm}$ sensitivity on each channel for accurate analysis of high frequency low level signals. Rise times of signals can be easily measured because the 1402A has a built-in delay line in the vertical amplifier following the trigger take-off.

Truo signals can be displayed with the 1402 A in each of two modes. Slow signals can be viewed in the chopped mode, since the input to the CRT is switched between Channel A and Channel B at a high rate during each sweep. Fast signals can be viewed in the alternate mode since the input to the CRT is switched at the end of each sweep, with Channel A displayed during one sweep and Channel B on the following sweep.

Accurate time difference measurements are possible because the sync amplifier in the 1402 A can be switched to Channel A alone. This feature is useful when dual traces are displayed on alternate sweeps; switching the sync to Channel A preserves the time relationship between the two signals, because the sweep always triggers on the same point on Channel A. Also, syncing to Channel A when in the chopped dual trace mode assures triggering on the displayed waveform rather than the chopper. Two uncelated sigaais can be displayed by triggering on the composite waveform. This feature
avoids resorting to external triggering for either of these dual trace presentations.

Single-channel displays are also possible for either input A or B . The two channels may also be displayed algebraically added, and a polarity reversal switch on Channel A allows the differential signal, $B-A$, to be displayed.

Although maximum bandwidth is obtained from the 1402 A with 6 cm or less deflection, larger amplitude signals can be displayed without distortion and with only a small sacrifice in bandwidth. For example, the bandwidth when using a full $10-\mathrm{cm}$ deflection is greater than 15 MHz .

Above photo demonetrates bandwleth and excallent translent rasponse of 1402 A Dual Trace Amplier. Sweep time is $20 \mathrm{~ns} / \mathrm{em}$: sensitivity is $5 \mathrm{mV} / \mathrm{cm}$.

Specifications

Mode of operation: (1) Channel A alone, (2) Channel B alone, (3) Channel A and Channel B displayed on alternate sweeps, (4) Channel A and Channel 8 displayed by switching at approx. 100 kHz , with trace blanking during switching, (5) Channel A and Channel B added algebraically, polarity of Channel A may be inverted to obtain differential operation.
Bandwldth: (6 cm reference signal) dc coupled, de to 20 MHz ; ac coupled, 2 Hz to 20 MHz .
Risetime: less than 20 ns with 6 cm step input.
Deflection factor (sensitivity): each channel; $5 \mathrm{mV} / \mathrm{cm}$ to 10 $\mathrm{V} / \mathrm{cm}, 11$ ranges in a $1,2,5$ sequence; accuracy $\pm 3 \%$;
vernier provides continuous adjustment between steps and extends $10 \mathrm{~V} / \mathrm{cm}$ step to at least $25 \mathrm{~V} / \mathrm{cm}$.
Signal delay: signal is delayed so that leading edge of fast. rise signals is visible at stact of sweep.
Common mode rejectlon: (in B-A mode) at least 40 dB on 5,10 and $20 \mathrm{mV} / \mathrm{cm}$ ranges, at least 30 dB on $50 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$ canges; common mode signal not to exceed 150 cm (e.g., 150 volts on $1 \mathrm{~V} / \mathrm{cm}$ range) or a frequency of 500 kHz .
Input RC: 1 megohm shunted by 43 pF.
Maximum input: 600 volis peak ($d c+a c$).
Welght: net, $6 \mathrm{lbs}(2,7 \mathrm{~kg})$; shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Price: HP Model 1402A, \$575.

1405A

The wide dynamic range of the 1405 A permits a 50 cm width at $5 \mathrm{mV} / \mathrm{cm}$ sensitivity. Dual trace presentations can be displayed on alternate sweeps or by chopping between the tro input signals on the same sweep at a 100 kHz rate. In addition to single-trace presentations of Channel A or B , the two channels may be algebraically added or, by a ceversal of the Channei A polarity switch, the differential signal may be viewed. The full 5 MHz frequency response is achieved in every operating mode, and when operating in any sensitivity position.
In all operating modes each channel has independent positioning and sensitivity controls, permitting the comparison of signals with widely differing amplitudes. When used as a differential amplifier, a common-mode rejection of better than 40 dB in the higher sensitivity positions permits the display of low-level signals while attenuating undesirable components such as hum.
The 1405A Dual Trace Amplifier provides 5 MHz band. peak-to-peak signal to be displayed without signiticant distortion. Using $A+\mathbf{B}$ mode and a variable de voltage source such as the 723 A power supply applied to the second chan. nel, any $10-\mathrm{cm}$ segment of the $50-\mathrm{cm}$ trace can be positioned
on screen and analyzed. The 1405A is an ideal tool for video waveforms when used with the 1421A Time Base and Delay Generator, since any single line of a telerision frame may be isolated and displayed. The $5 \mathrm{mV} / \mathrm{cm}$ sensitivity permits the display of signals in low-level stages, or permits the use of attenuator probes to prevent circuit loading. For X.Y measurements, such as phase shift or Lissajous patterns, the 1405 A may be used with any other 1400 series plug-in (in. cluding another 1405 A) for either vertical or horizontal deflection.

Double exposure showing 5 . em pulse on uppar wave. form, and the same pulse expanded $10 \times$ to view small. perturbation on the top.

Specifications

Mode of operation: (1) Channel A alone, (2) Channel B alone, (3) Channel A and Channel B displayed in alternate sweeps (4) Chaonel A and Channel B displayed by switching at approx. 100 kHz , with trace blanking during switching, (5) Channel A and Channel B added algebra. ically, polarity of Channel A may be inverted to obtain difierential operation.
Bandwldth: dc coupled, dc to 5 MHz (70 nsec rise time; ac coupled, 2 Hz to 5 MHz (the lower linit is extended to approx. 0.2 Hz with a Xlo probe).
Deflection factor (sensitivity): each channel; $5 \mathrm{mV} / \mathrm{cm}$ to 10 V / cm, , 1 eanges in a $1,2,5$ sequence; accuracy $\pm 3^{\circ} \%$;
rernier provides continuous adjustment between steps and extends $10 \mathrm{~V} / \mathrm{cm}$ step to at least $25 \mathrm{~V} / \mathrm{cm}$.
Common mode relection: at least $40 ~ \$ B$ on 5,10 , and 20 $\mathrm{mV} / \mathrm{cm}$ canges, at least 30 dB on $50 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$ ranges; common mode signal not to exceed 50 cm (e.g.. 0.5 volt on $10 \mathrm{mV} / \mathrm{cm}$ range) or a frequency of 30 kHz .

Input RC: 1 megohm shunted by 43 pF .
Maximum input: 600 rolts peak $(\mathrm{dc}+\mathrm{ac})$.
Weight: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: HP Model 1405A, 8325 .
Special order: double-size, single-channel, X-Y only version of Model 1405A; order H20.1405A; price, S450.

In addition to $50 \mu \mathrm{~V} / o \mathrm{n}$ defection factor, no drift de stabilization, and wide dynamic range, the 1406 A offers a calibrated de offset for better than 0.5% accurate ac and dc voltage measurements.

Accurate measurements are accomplished by inserting the test signal into one side of a high common mode rejection differential amplifier and a very accurate (0.15%) dc level into the other side. The top of the waveform is then posi-
tioned to center screen with the offset controls and the offset reading noted. This is then repeated for the bottom of the waveform. The difference between the two offset readings is the as amplitude.

The same technique is used when measuring a $d c$ level except only one reading is r equired; zero volts is already established because the stabilizer eliminates drift.

The range switching is interlocked with the defection factor switching so that the direct reading offset does not change when changing the debection factor. There are ten offset ranges providing $\pm 0.1 \mathrm{~V}$ to $\pm 1000 \mathrm{~V}$ in decade steps.
The 1406 A can also be used as a differential amplifier. The high common mode rejection and no drift features provide for accurare differential measurements. An external ground is also provided to eliminate ground loops.

The adjustable bandwidth control of the 1406 A allows the user to reduce bandwidth from the maximum of 400 kHz down to $100,25,5 \mathrm{kHz}$, eliminating noise present in the unused part of the bandwidth. The front panel amplifier output permiss driving external equipment such as $\mathrm{X} \cdot \mathrm{Y}$ Recorders or tape recorders.

Speclfications

Deflection factor: $50 \mu \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ in a $1,2,5$ sequence; vernier provides continuous adjustment between ranges and extends highest defiection factor to at least $50 \mathrm{~V} / \mathrm{cm}$; attenuator accuracy is $\pm 3 \%$.
Amplifier output: approx $1 \mathrm{~V} / \mathrm{cm}$, ds coupled, single ended, dc level approx 0 volts, output impedance less than 100 ohms, dynamic range $\pm S \mathrm{~V}$.
Bandwidth
Upper limit:
$20 \mathrm{~V} / \mathrm{cm}$ to $100 \mu \mathrm{~V} / \mathrm{cm} \cdot 400 \mathrm{kHz}$ (0.9μ s rise time) ; or $50 \mu \mathrm{~V} / \mathrm{cm} \cdot 300 \mathrm{kHz}$.
Upper limirs of max, 100,25 , and 5 kHz selectable with front panel switch on all defiection factors.
Lower IImk: dc with input dc coupled, 2 Hz with inpur ac coupled.

Dilft

Long-term drift: less than ± 0.2 on or less than $\pm 20 \mu \mathrm{~V}$ per 200 hrs , whichever is greater.
Tomperature drift: less than $\pm 0.2 \mathrm{~cm}$ or less than ± 50 $\mu \mathrm{V}$, whichever is greater over a temperature range of $0^{\circ} \mathrm{C}$ to $99^{\circ} \mathrm{C}$.
Drift correction occurs at 3 Hz for $50 \mathrm{~ms} / \mathrm{cm}$ sweeps and faster, and 1.5 Hz on $0.1 \mathrm{~s} / \mathrm{cm}$ sweeps and slower.
Range to range shift: de stabilization maintains a fixed base-
line reference within $\pm 1 \mathrm{~cm}$ on crt over entire range of deflection lactors after a 3 -minute warmup.
Positloning: baseline can be positioned $\pm 10 \mathrm{~cm}$ by conrinuous position.
DC offset: offset is applied to the $\mathrm{B}(-)$ input.
Readout: 4-digit resolution, with lighted decimal indicators.
Ranges: $\pm 0.1 \mathrm{~V}, \pm 1 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 100 \mathrm{~V}, \pm 1000 \mathrm{~V}$ Up to $\pm 10 \mathrm{~V}$ offset can be used on all deflection fastor ranges; an equivalent $\pm 100 \mathrm{~V}$ range can be used from $0.5 \mathrm{mV} / \mathrm{cm}$ through $20 \mathrm{~V} / \mathrm{cm}$, and an equivalent $\pm 1000 \mathrm{~V}$ range from $5 \mathrm{mV} / \mathrm{cm}$ through $20 \mathrm{~V} / \mathrm{cm}$.
Accuracy: $\pm 0.15 \%$ of indicated value plus 0.05% of full
scale offset range, on $\pm 0.1 \mathrm{~V}, \pm 1 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$ ranges. $\pm 0.4 \%$ of indicated value plus 0.05% of full scale offser range, on $\pm 100 \mathrm{~V}$ and $\pm 1000 \mathrm{~V}$ ranges.
Differentlal input: may be selected on all deflection factor ranges. Single-ended opecation is used when employing offset.
Common mode rejection: $\pm 5 \mathrm{~V}(\mathrm{dc}+\mathrm{pk}$ ac) or $\pm 10 \mathrm{~V}$ dc , dc coupled, $50 \mu \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{mV} / \mathrm{cm}$; ds to 60 Hz . $80 \mathrm{~dB} ; 60 \mathrm{~Hz}$ to $10 \mathrm{kHz}, 60 \mathrm{~dB}$.
Maximum Input without overload
$50 \mu \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{mV} / \mathrm{cm}- \pm 10 \mathrm{~V} \mathrm{pk} \cdot \mathrm{pk}$.
$50 \mathrm{mV} / \mathrm{cm}$ to $2 \mathrm{~V} / \mathrm{cm}- \pm 100 \mathrm{~V}$ pk.pk.
$5 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{om}- \pm 600 \mathrm{~V}$ pk-pk.
Dynamic range: dynamic signals of at least $\pm 50 \mathrm{~cm}$ of deflection can be displayed without distortion.
Input impedence: I megohm shunred by 100 pF , constant on all attenuator ranges.

Max input

Vo range: 0.1 to 10.
$15 \mathrm{~V}(\mathrm{dc}+$ peak ac$), 0.05 \mathrm{mV} / \mathrm{om}$ to $20 \mathrm{mV} / \mathrm{cm}$; $150,50 \mathrm{mV} / \mathrm{cm}$ to $0.2 \mathrm{~V} / \mathrm{cm} ; 600 \mathrm{~V}, 0.5 \mathrm{~V} / \mathrm{con}$ to $20 \mathrm{~V} / \mathrm{mm}$.
Vo range: 100 .
iso V (dc + peak ac).
Vo range: 1000.
600 V (dc + peak ac).
X-Y operation: two 1406A's or 1406A and a 1407A can be used to give stabilized X.Y presentation. Models L406A and 1407 A are not compatible with other 1400 -series vertical plug ins for X - Y displays.
Tlme base compatibility; the 1406A and 1407A can be used directly with the 1422A and 1423A; 1420A's below secial 441.01326 and $1421 A$'s below serial 545.00651 must be modified. (Order kits 01420-69502 for the 1420A, 01421. 69501 for the 1421A.)
Weight: net $5 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: HP Modei 1406A, $\$ 850$.

DSCILLOSCOPES 140 SKSTEM sombinuen

Moasure microvolt 5/gnals

High sensitivity amplifiers Madels 1400A, 1401A

Get $100 \mu \mathrm{~W} / \mathrm{cm}$ sensitivity and selecteble tandwidth from de to 400 kHz with low drift differential amplifiers in the 1400 A

Specifications, 1400A

Bandwidth

Upper limit: 400 (0.9μ rise time), 40 or 4 kHz .
Lower limit: input and amplifier coupling set to de: dc; inpur set to dc and amplifier set to ac: dc from $20 \mathrm{~V} / \mathrm{cm}$ to $50 \mathrm{mV} / \mathrm{cm}$, approx 0.1 Hz on $20 \mathrm{mV} / \mathrm{cm}$ increasing with deflection factor to approx 20 Hz at $0.1 \mathrm{mV} / \mathrm{cm}$; inpul set to ac and amplifier set to de: $2 \mathbf{H z}$.

Deflection factor (sensitivity): $100 \mu \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}, 17$ ranges in a $1,2,5$ sequence; accuracy $\pm 3 \%$; vernier provides continuous adjustment between steps and extends $20 \mathrm{~V} / \mathrm{cm}$ step to at least $50 \mathrm{~V} / \mathrm{cm}$.

Phase shift: when used with another Model 1400 A , less than 2° relative phase shift up to 50 kHz with X and Y deflection factors the same, and verniers in Ca .

Common mode relection: differential input may be selected on all ranges; cmr at least 40 dB on $0.1 \mathrm{mV} / \mathrm{cm}$ to 0.2 V / m ranges, signal not to exceed 4 V pk - pk ; at least 30 dB on $0.5 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ ranges, signal not to exceed 40 V pk-pk on $0.5,1$, and $2 \mathrm{~V} / \mathrm{cm}$ ranges or 400 V pk-pk on 5,10 , and $20 \mathrm{~V} / \mathrm{cm}$ ranges, measured with 1 kHz sine wave.

Input RC: 1 megohm shunted by 45 pF .
Maximum input: 600 volts peak ($d c+a c$).
Internal callbrator: line frequency square wave, $6 \mathrm{~cm} \mathrm{pk} \cdot \mathrm{pk}$; displayed when vernier is set to Cal; accuracy $\pm 3 \%$.

Weight: net $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: HP Model 1400A, \$250.

The 1401 A is a dual trace amplifler whith $1 \mathrm{mV} / \mathrm{cm}$ sonsitlvity and a 450 kHz bandwidth.

Specifications, 1401A

Bandwidth: input and amplifier coupling set to dc , dc to 450 kHz ($0.8 \mu \mathrm{~s}$ rise time) ; input set to dc and amplifier set to ac, dc to 450 kHz for deflection factors from $50 \mathrm{mV} /$ cm to $10 \mathrm{~V} / \mathrm{cm}$; from $1 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$, lower cutoff depends on the deflection factor: approx 0.5 Hz (to 450 kHz) at $20 \mathrm{mV} / \mathrm{cm}$ and 10 Hz (to 450 kHz) at $1 \mathrm{mV} /$ cm ; input set to ac and amplifier set to $\mathrm{dc}, 2 \mathrm{~Hz}$ to 450 kHz .
Deflection factor (sensitivity): each channel; $1 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}, 14$ ranges in a $1,2,5$ sequence; accuracy $\pm 3 \%$: vernier provides continuous adjustment between steps and extends $10 \mathrm{~V} / \mathrm{cm}$ step to at least $25 \mathrm{~V} / \mathrm{cm}$.
Phase shit: when used with another Model 1401 A , less than 2° relative phase shift up to 50 kHz with X and Y deflection factors the same, and verniers in Cal .
Common mode rejection: both inputs may be switched to one channei to give differential input; cmr at least 40 dB on 1 $\mathrm{mV} / \mathrm{cm}$ to $0.1 \mathrm{~V} / \mathrm{cm}$ ranges, signal not to exceed 4 V pk-pk; at least 30 dB on $0.2 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$ ranges, signal not to exceed 40 V pk-pk on $0.2,0.5$, and $1 \mathrm{~V} / \mathrm{cm}$ ranges or 400 V pk-pk on 2,5 and $10 \mathrm{~V} / \mathrm{cm}$ ranges; measured with 1 kHz sine wave.
Input RC: 1 megohm shunted by 45 pF .
Maximum input: 60 volts peak ($\mathrm{dc}+\mathrm{ac}$).
Internal calibrator: line frequency square wave, 6 cm pk -pk; displayed when veraier is set to Cal; accuracy $\pm 3 \%$.
Mode of operation: (1) channel A alone, (2) channel B alone, (3) channel A and channel B displayed on alternate sweeps, (4) channel A and channel B displayed by switching at approx 100 kHz , with trace blanking during switching, (5) channel A minus channel B.
Display polarity: + up or - up, selectable, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Welght: net $5 \mathrm{lbs}(2,3 \mathrm{~kg}$) ; shipping 7 lbs ($3,2 \mathrm{~kg}$).
Price: HP Model 1401A, \$425.

The Model 1403A Amplifler features 106 dB of common mode rejection with guarded input and $10 \mu \mathrm{~V} / \mathrm{cm}$ sonsilivity.

Specifications, 1403A

Input modes: (1) input A single-ended, (2) input B single-ended and inverted, (3) A.B differential, (4) off disconnects inpurs and grounds input amplifier, (5) cmr, and (6) Cal for calibrating the instrument; A and B inputs, guard, and chassis ground are brought out through a special guarded connector: guard is normally driven by internal common mode signal amplifier: with unbalanced source impedances, the guard may be driven externally, preserving high cmr.
Bandwldth: 0.1 Hz to $400 \mathrm{kHz}(0.9 \mu \mathrm{~s}$ rise time) (to 200 kHz at $10 \mu \mathrm{~V} / \mathrm{cm}$ and to 300 kHz at $20 \mu \mathrm{~V} / \mathrm{cm}$) ; upper and lower limits may be independently selected; loner: $0.1,1,10$, and 100 Hz ; upper: max (greater than 400 kHz) $100,10.1$, and 0.1 kHz .
Deflection factor (sensitivity): $0.01 \mathrm{mV} / \mathrm{cm}$ to $100 \mathrm{mV} / \mathrm{cm}, 13$ ranges in a $1,2,5$ sequence; accuracy $\pm 3 \%$; vernier provides continuous adjustment between steps and extends $100 \mathrm{mV} / \mathrm{cm}$ step to at least $125 \mathrm{mV} / \mathrm{cm}$.
Phase shift: when used with anorher Model 1403 A , less than 2° relative phase shift up to 50 kHz with X and Y deflection factors the same, and verniers in Cal.
Common mode rejection: differential input may be selected on all ranges; with a balanced input impedance and the guard drive in external, cmr may be adjusted to the values below for up 105 V pk.pk, 45 Hz to 3 kHz (for internal, cmr is 6 dB less than shown below).

Deflectlan lactor $(\mathbf{m V} / \mathrm{om})$	Gommon mode rajoction (dB)
$0.01 \mathrm{to} \mathrm{0.2}$	106
$0.5,1.2$	86
$5,10,20$	66
50.100	46

Typical CMR with an unbalanced source impedance when using Guard Drive Ext on most sensitive ranges:

Unbalanoe	80 Hz	120 Hz	1 kHz	10 kHz
100 ohms	100 dB	100 dB	100 dB	90 dB
1 k ohms	100 dB	100 dB	90 dB	70 dB
10 k ohms	80 dB	80 dB	70 dB	50 dB

Input RC: 10 megohms shunted by approx. 60 pF .
Maxlmum input: 600 volts peak ($d c+26$) on A and B inputs, 10 volis on Guard input.
Noise: $20 \mu \mathrm{~V}$ pk-pk at 100 kHz , noise is reduced as bandwidth is reduced.
Internal calibrator: line Irequency square wave, 100 mV pk-pk; displayed when input se!ector is set to Cal; accuracy $\pm 3 \%$.
Weight: net $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping $7 \mathrm{fbs}(3,2 \mathrm{~kg})$.
Accessories furnished: 6-ft double-shielded extension cable, and a 4 -terminal binding post adapter.
Price: HP Model 1403A, $\$ 475$.

The Model 1407A has $50 \mu \mathrm{~V} / \mathrm{cm}$ sensitivity. 80 dB of common mode rejection, and no de drlft.
Specifications, 1407A

Bandwidth

Upper limit: selectable; $5,25,100 \mathrm{kHz}$, and max $\{400 \mathrm{kHz}$ for $20 \mathrm{~V} / \mathrm{cm}$ to $100 \mu \mathrm{~V} / \mathrm{cm}$ ranges, $0.9 \mu \mathrm{~s}$ rise time; or 300 kHz for $50 \mu \mathrm{~V} / \mathrm{cra}$ range).
Lower limit: dc coupled input, dc; ac coupled input, 2 Hz .
Defiection factor (sensitivity): $50 \mu \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}, 17$ ranges in a $1,2,5$ sequence; accuracy $\pm 3 \%$; vernier provides continuous adjustment between steps and extends $20 \mathrm{~V} / \mathrm{cm}$ step to at least $50 \mathrm{~V} / \mathrm{cm}$.
Amplitier output: approx $1 \mathrm{~V} / \mathrm{cm}$, dc coupled, single-ended, de level appiox 0 V , output impedance ≤ 100 ohms, dyamic range $\pm 5 \mathrm{~V}$.
Drift: drift correction occurs at 3 Hz for $50 \mathrm{~ms} / \mathrm{cm}$ speeds and faster, 1.5 Hz on $0.1 \mathrm{~s} / \mathrm{cm}$ speeds and sloxer.
Long term drift: less than $\pm 0.2 \mathrm{~cm}$ or $\leq \pm 20 \mu \mathrm{~V} / 200$ hours, whicherer is greater.
Temperature drift: less than $\pm 0.2 \mathrm{~cm}$ or $\leq \pm 50 \mu \mathrm{~V}$, which. ever is greater, over a remperature range of $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Range to range shift: de stabilization maintains a fixed baseline reference within $\pm 1 \mathrm{~cm}$ on crt over entire deflection factor range, after a 3 -minute warmup.
Positioning: baseline can be posicioned continuously or in calibrated steps of $0, \pm 5 \mathrm{~cm}$, and $\pm 10 \mathrm{~cm}$; accuracy $\dot{+1} 3 \%$.
DC offset: uncalibrated do offset is provided in both single-ended and differential operation; the max amount of offset obtainable, referenced to the inpur, varies with deflection factor approx as follows: 0.2 V at $50 \mu \mathrm{~V} / \mathrm{cm}$, increasing to 0.5 V at $10 \mathrm{mV} / \mathrm{cm}$, 5 V at $100 \mathrm{mV} / \mathrm{cm}, 50 \mathrm{~V}$ at $1 \mathrm{~V} / \mathrm{cm}$, and 600 V at $20 \mathrm{~V} / \mathrm{cm}$; offser de drift is $\leq 20 \mu \mathrm{~V} / \mathrm{hr}$ at constant ambient temperature. or $\leq \pm 100 \mu \mathrm{~V}$ for ambient temperature change of $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Differential input: may be selected on all ranges; offset capability is maintained in differential operation.
Common mode rejection: $\pm s \mathrm{~V}(\mathrm{dc}+\mathrm{pk} \mathrm{ac})$ or $\pm 10 \mathrm{~V} \mathrm{dc}, \mathrm{dc}$ coupled, $50 \mu \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{mV} / \mathrm{cm}$; de to $60 \mathrm{~Hz}, 80 \mathrm{~dB} ; 60 \mathrm{~Hz}$ to $10 \mathrm{kHz}, 60 \mathrm{~dB}$; max input without overload: $50 \mu \mathrm{~V} / \mathrm{cm} 10$ $20 \mathrm{mV} / \mathrm{cm}, \pm 10 \mathrm{~V}$ pkepk; $90 \mathrm{mV} / \mathrm{cm}$ to $2 \mathrm{~V} / \mathrm{cm}, \pm 100 \mathrm{~V}$ pk-pk; $s \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}, \pm 600 \mathrm{~V}$ pk-pk.
Dynamic range: dynamic signals of less than $\pm 50 \mathrm{~cm}$ of defection can be displayed without distortion.
lnput RC: 1 megohm shunted by 90 pF .
Msximum input: 100 voles peak ($\mathrm{dc}+\mathrm{ac}$) for $0.05 \mathrm{mV} / \mathrm{cm}$ so $20 \mathrm{mV} / \mathrm{cm}$ ranges, 600 rolts peak ($\mathrm{dc}-\mathrm{ac}$) for $50 \mathrm{mV} / \mathrm{cm} 10$ $20 \mathrm{~V} / \mathrm{cm}$ ranges.
X.Y operatlon: two 1407A's or 1407 A and a 1406 A can be used to provide stabilized X.Y presentations. Models 1406 A and 1407A are not compatible with other 1400 -series vertical plug-ins for X-Y displays.
Time base compatibigity: the Model 1407A may be used direcrly with Models 1422A and 1423A; Model 1420A's below serial 441.01326, and Model 1421A's below serial $545-00651$ musi be modified for use with the Model 1407A (order kits 01420-60502 for the Model 1420A, S12.50: or 01421-69501 for the Model 1421A, 520).
Weight: net 5 lbs (1.8 kg); shipping $7 \mathrm{lbs}(3.2 \mathrm{~kg})$.
Price: HP Model $1407 \mathrm{~A}, \$ 625$.

5 MHz triggering with sweeps to $50 \mathrm{~ns} / \mathrm{cm}$ and automatic triggering. Specifications, 1420A
Range: $0.5 \mu \mathrm{~s} / \mathrm{cm}$ to $\mathrm{S} \mathrm{s} / \mathrm{cra}$, 22 ranges in a $1,2,5$ sequence; ac. curacy $\pm 3 \%$; vemier provides continuous adjustment between steps and extends the $5 \mathrm{~s} / \mathrm{cm}$ step to at least $12.5 \mathrm{~s} / \mathrm{cm}$.
Magnifier: X10, overall accurag' $\pm 9 \%$: expands $0.5 \mu_{\mathrm{s}} / \mathrm{cn}$ speed $1050 \mathrm{~ns} / \mathrm{cm}$.
Automatic triggering: (baseline displayed in the absence of an inpur signal).
Internal: 40 Hz to 500 kHz for signals causing 0.5 cm or more verrical deflecrion; also from line signal.
External: 40 Hz to 500 kHz for signals al least 0.5 V pk-pk.
Trigger slope: positive or negadive slope of external sync signal or internal vertical defection signal.
Amplitude selection triggering
Internal: 10 Hz 105 MHz for signals causing 0.5 cm or more verical deffecrion.
External: for signals at least 0.5 V pk.pk; de coupled, de to 5 MHz ; ac coupled, 10 Hz to 5 MHz ; max input, 600 V pk ($\mathrm{dc}+\mathrm{ac}$).
Trlgger point and slope: from any point on the vertical wave. form presented on crt; or continuously variable from -7 to +7 volts on external sync signal; positive or negative slope.
Single sweep: front panel swith permits single sweep nperation.
Horizontal Input
Bandwidth: de to better than 1.5 MHz (ypically).
Deflection factor: vernier permits continuous adjusunenc from epprox $50 \mathrm{mV} / \mathrm{om}$ to $\mathrm{S} \mathrm{V} / \mathrm{cm}$.
Input RC: 1 megohm shunted by approximately 50 pF .
Weight: net y lbs ($2,3 \mathrm{~kg}$); shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: HP Model 1420A, $\$ 32$ s.

500 KHz triggering with swoops to $200 \mathrm{~ns} / \mathrm{cm}$ and automatic triggering
Specifications, 1422A
Range: $1 \mu \mathrm{~s} / \mathrm{cm}$ to $\mathrm{s} / \mathrm{cra}, 21$ ranges in a $1,2,3$ sequence; accuracy $\pm 3 \%$: vemier provides continuous adjustment between steps and extends the $3 \mathrm{~s} / \mathrm{cm}$ step to ar least $12.5 \mathrm{~s} / \mathrm{cm}$
Magnifier: Xs, orerall accuracy $\pm 5 \%$: expands $1 \mu \mathrm{~s} / \mathrm{cm}$ speed io $200 \mathrm{~ns} / \mathrm{cm}$.
Automatle triggering: (baseline displayed in the absence of an inplu signal)
Internal: 50 Hz to 900 kHz for signals causing 0.5 cm or more verrical deflection: also from line signal.
External: 50 Hz to 500 kHz for signals at leasi 0.5 V pk-pk.
Trigger slope: positive or negative slope of external sync signal or internal vertical defection signal.

Amplitude selectlon triggering

Internal: de or 10 Hz to 500 kHz (depending on vertical system) for signals causing 0.5 an or more verrical defiection.
Extemal: for signals at least 0.5 V pk-pk; de coupled. de co 900 kHz ; ac coupled, 10 Hz to 500 kHz ; max input, 600 V pk (dc +ac).
Trigger polnt and slope: from any point on the verical waveform presented on crt; or concinuously variable from - 10 to +10 roles on extemal sync signal; positive or negative slope.
Single sweep: front panel saitch permits single sweep operation.
Horizontal input
Bandwidth: dc coupled, dc to 400 kHz ; ac coupled, 20 Hz to 400 kHz .
Deflection factor: vemier permits continuous adjustment from approx $0.8 \mathrm{~V} / \mathrm{cm}$ to $2.5 \mathrm{~V} / \mathrm{cm}$.
Input RC: 1 megohm shunted by approx 150 pF .
Welght: net 3 lbs (2.3 kg): shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg}$)
Price: HP Model $1422 \Lambda, \$ 250$.

Specifications, 1423A

Range: $0.2 \mu 5 / c m$ to $5 \mathrm{~s} / \mathrm{cm}, 23$ ranges in a $1,2,3$ sequence; accuracy $\pm 3 \%$: vernier provides continuous adiusument berween steps and extends the $5 \mathrm{~s} / \mathrm{om}$ step to at least $12.5 \mathrm{~s} / \mathrm{cm}$.
Magnifler: X10, overall accuracy $\pm 5 \%$; expands $0.2 \mu \mathrm{~s} / \mathrm{cro}$ speed to $20 \mathrm{~ns} / \mathrm{cm}$.
Automatic triggerlng: (baseline displayed in the absence of an input signal) same as normal, except lower limit is 40 Hz for both ac and de coupling.
Normal triggering
Internal: de coupled: ds (with Models 1406A/1407A) 1015 MHz for signals causing 0.3 cm or ronre vertical deffection, 10 20 MHz for 1 cm signals: ac coupled: 10 Hz 1015 MHz for 0.3 cm signals, to 20 MHz for 1 cm signals: $A C F$: approx 2 kHz to 19 MHz for 0.9 cm signals, to 20 MHz for 1 cm signals.
External: for signals at least 0.5 V pk-pk; de coupled, de to 20 MHz; ac coupled, 10 Hz to $20 \mathrm{MHz} ; \mathrm{ACF}$, approx 2 kHz to 20 MHz : max input, $600 \mathrm{~V} \mathrm{pk}(\mathrm{dc}+\mathrm{ac})$
LIne: triggering frow line frequency also selectable.
Trigger point and slope: selectable in both normal and automatic: from any point on the vertical waveform presented on crr, or continuously variable from $-s$ to $+s$, oles on extemal sync signal; positive or negatice slope.
Trigger holf-otf: time concinuously variable, exceeding one full sweep at $50 \mathrm{~ms} / \mathrm{cm}$ and faster, prevents multiple riggering on signals that have desired triggering level and slope appearing more than once per cycle.
Trigger input RC: dc and ac , approx 1 megohm shunted by 50 pF : acf. approx 120 k ohms shunced by 50 pF .
Single sweep: front panel switch permits single sweep opecation
Horizontal input
Bandwidth: dc to 500 kHz .
Deflection factor: vernier and $X 10$ magnifiser permit continuous adjustment from approx $300 \mathrm{mV} / \mathrm{cm}$ to $30 \mathrm{~V} / \mathrm{cm}$.
Input RC: 1 megohm shunced by approx 50 pF .
Weight: net 5 lbs $(2,3 \mathrm{~kg})$: shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: HP Model 1423A, \$450.

OSCILLOSCOPES 140 SYSTEM conmanad
Delayed sweep to 20 MHz
Time base Model 1421A

1421A

The 1421 A Time Base and Delay Generator provides sweep speeds to $20 \mathrm{~ns} / \mathrm{cm}$ with stable triggering to 20 MHz and beyond.

The delayed sweep feature of the 1421 A permits detailed examination of any portion of a complex signal or pulse train by generating an accurately conerolled delay time, at the end of which, a second sweep in the 1421 A provides the deflection signal to the crt. The 1421A has provision to trigger the deffection sweep at the end of the delay interval either automatically, on the vertical defection signal (internal), or on an external signal. In the automatic mode, the delayed sweep is immediately triggered at the end of the delay interval, thereby permitting accurate measurements of the time jitter in the input waveform. In the internal and external modes, the delayed sweep is armed at the end of the delay interval and the signal triggers the delayed sweep. Thus the rise time and amplitude can be accurately measured without jitter.

Specifications

Main sweep: for displaying signals is time where sweep delay is not required; employs the main time base only. Range: $0.2 \mu \mathrm{~s} / \mathrm{om}$ to $\mathrm{I} \mathrm{s} / \mathrm{cm}, 21$ ranges in a $1,2,5 \mathrm{se}$ quence; accuracy $\pm 3 \%$; vernier provides continuous adjusment between steps and extends $1 \mathrm{~s} / \mathrm{cm}$ step to at least $2.5 \mathrm{~s} / \mathrm{cm}$.
Triggering: (when used with Model 1402A).
Amplitude selection:
Internal: approx 10 Hz to 15 MHz for signals causing 0.5 cm or more vertical deflection, to 20 MHz for 1 cm signals; also from line signal.
External: for signals at least 0.5 V pk-pk: dc coupled, de to 20 MHz ; ac coupled, approx 5 Hz to 20 MHz .
Trigger point and slope: controls allow selection of level and positive or negative slope; uigger level of external sync signal is concinuously variable from -5 to +5 volts.
Automatle: baseline displayed in the absence of an input signal; internally down to 40 Hz on signals causing 1 cm or more vertical deflection, also on line signal; externally down to 40 Hz on signals at least 1 V pk-pk; trigger slope, positive or negative.
Trace Intensification: used for setting up delayed or mixed sweep modes by increasing brightness of portion of main sweep which will be expanded to full screen in delayed sweep, or magnified portion of display in mixed sweep; rotating delayed sweep time switch out of off pasition activates intensified mode.
Dolayed sweep: delayed time base sweeps after a time delay set by main sweep and delay controls.
Range: $0.2 \mu \mathrm{~s} / \mathrm{on}$ to $50 \mathrm{~ms} / \mathrm{cm}, 17$:anges in a $1,2,5$ sequence; accuracy $\pm 3 \%$; vernier provides continuous adjustment between steps and extends $50 \mathrm{~ms} / \mathrm{cm}$ step to at least $125 \mathrm{~ms} / \mathrm{cm}$.
Delay (before start of delayed sweep):
Time: continuously variable from $0.5 \mu \mathrm{~s}$ to 10 s .

Accuracy: $\pm 1 \%$; linearity, $\pm 0.2 \%$; time jitter less than 0.005% of max delay of each range (l pact in 20,000).
Trigger output: (at end of delay time) approx +4 V with less than 150 ns risetime, from 1 k ohms out. put impedance.
Triggering: (applies to intensified main, delayed, and mixed sweep modes).
Automatic. delayed sweep starts precisely at end of delay period.
Internal: delayed sweep triggered by vertical waveform presented on crt after end of delay period; approx 10 Hz to 15 MHz for signals causing 0.5 cm or more vertical deflection, or to 20 MHz for 1 cm signals.
External: delayed sweep triggered by' external signal after end of delay period; for signals at least 0.5 V pk-pk; de coupled, de to 20 MHz ; ac coupled, approx 5 Hz to 20 MHz .
Trigger polnt and slope: (internal and external) same as man sweep.
Mixed sweep: dual sweep-speed display in which main sweep drives first portion of display, and delayed sweep completes the display at sweep speeds up to 100 times faster; changeover point determined approx by delay setting. Triggering: same as for delayed sweep.
Magnifler: X10, any display; overalk accuracy $\pm 5 \%$; expands $0.2 \mu \mathrm{~s} / \mathrm{cm}$ speed to $20 \mathrm{~ns} / \mathrm{cm}$.
Single sweep: any display can be operated in single sweep.

Horizontal input

Bandwioth: de to typically better than 500 kHz .
Deflection factor: vernier and X10 magnifier permit continuous adjustment from approx $0.3 \mathrm{~V} / \mathrm{cm}$ to $30 \mathrm{~V} / \mathrm{cm}$.
Input RC: 1 megohm shunted by less than 20 pF .
Welght: net 5 lbs ($2,3 \mathrm{~kg}$); shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: HP Model 1421 A, S625.

OSCILLOSCOPES 140 SYSTEM caminurad

1 GHz sanspling
Sampling vertical amplifier Model 1410A

The versatile 1410A Sampling Vertical Amplifier provides $1 \mathrm{mV} / \mathrm{cm}$ deflection factor at 1 GHz . Optimum compromise among risetime, overshoot, and noise can be easily and quickly made with the front-panel risetime and smoothing controls.

Front-panel recorder outputs with both ds level and amplitude adjustments simplify your X-Y or strip chart recorder setup and enable permanent recording of crt traces.

The A vs B mode of the 1410A permits $X \cdot Y$ measurements to 1 GHz and above.

Specifications

Mode of operation

1. channel A only.
2. channel B only.
3. channel A and channel B.
4. channel A and channel B added algebraically.
5. channel A vs channel B.

Polarity: either channel may be displayed either positive or negative up in any mode.
Risetime: less than 350 ps.
Bandwidth: dc to 1 GHz .
Overshoot: less than 5%.
Deflection factor: calibrated ranges from $1 \mathrm{mV} / \mathrm{cm}$ to 200 $\mathrm{mV} / \mathrm{cm}$ in a $1,2,5$ sequence; vernier control provides con. tinuous adjustment between ranges and extends deflection factor to less than $0.4 \mathrm{mV} / \mathrm{cm}$.

Attenuator accuracy: $\pm 3 \%$.
Isolation between channels: greater than 40 dB to 1 GHz .
input impedance
Probes: 100 K ohms shunted by 2 pF nominal.
GR type 874 inputs: 50 ohms $\pm 2 \%$ with 57 ns internal delay lines for viewing leading edge of fast rise signals. Refection from input connector is approx 10%, using a 150 ps TDR system.
Noise: approximately 1 mV observed noise on crt excluding 10% of random dots; noise decreases on automatically smoothed ranges and 2 and $1 \mathrm{mV} / \mathrm{cm}$; smoothed position of smoothing switch reduces noise and jitter approximately 4:1; vernier control provides continuous adjustment between the normal and smoothed modes.

Dynamic range: ± 2 volts.
Drift: less than $3 \mathrm{mV} / \mathrm{hr}$ after warmup.
Maximum safe input
Probes: ± 50 volts.
509 inpuls: ± 5 volts.
Triggering: internal or external when using 50Ω inputs; internal triggering selectable from channels A or B; external triggering necessary when using probes.
Time difference between channels (for probes or 50Ω inputs): less than 100 ps .
Recorder outputs: front panel outputs provide $0.1 \mathrm{~V} / \mathrm{cm}$ from a 500Ω source; gain adjustable from approximately $0.05 \mathrm{~V} / \mathrm{cm}$ to $0.2 \mathrm{~V} / \mathrm{cm} ;$ de level adjustable from approx -1.5 V to +0.5 V .

Accessaries provided

HP Model	Quantley	Dascuription
10214 A	2	10:1 divider
10216 A	2	1solalor
10217 A	2	$0.001 \mu 5$ blocking capacitor
10218 A	2	BNC adapter
10219 A	1	GR adapter
1022 A	2	Microdot adapter
10221 A	1	50 -ohm T-connector
$10213 \cdot 62102$	6	Ground clip
$5020 \cdot 0457$	6	Proba tip
-	1	Accessoly box

Weight: net $10 \mathrm{lbs}(4,5 \mathrm{~kg})$; shipping $15 \mathrm{lbs}(6,8 \mathrm{~kg})$.
Price: HP Model 1410A, $\$ 1600$.

OSCILLOSCOPES 140 SYSTEM eantinnad
 Accessorles for 1 GHz Sampiling Sampling Accessories for 1410A

Specifications

1410A ACCESSORIES (Separately Avaliable)
10214A 10:I divider: permits accurate measurement of signals as large as 20 volts peak-to-peak and increases the impedance of the probe to 1 megohm shunted by 2.5 pF . Price, $\$ 30$.
10216A isolator: increases convenience and accuracy when probing by reducing base line shift and transient response changes caused by changes in the circuit source impedance. 1410A rise time is increased to approximately 0.6 nsec and probe input capacitance is increased by less than 3 pF. Price, $\$ 23$.
10217A blocking capacitor: this blocking capacitor ($0.001 \mu \mathrm{~F}$) permits measurements of signals that are ± 50 volts from ground ($10 \pm 200 \mathrm{~V}$ when used with 10214A 10:1 Divider). The blocking capacitor contributes only 1% sag when used with the $10: 1$ divider. No more than 2.5 pF shunt capacitance is added to the input by the blocking capacitor. Price, \$20.

10218A BNC adapter: converts probe tip into a male BNC connector. Price, $\$ 6$.

10219A GR adapter: converts probe tip into a GR type 874 con. nector. Price, \$15.
10220A microdot screw-on adapter and 10223A microdot slide-on adapter: allows easy connection to coaxial connectors and also provides a solid ground reference. 10220A adapts ro connectors similar to Microdot series 31 -50. 10223A adapts to connectors similar to Microdot series SOS-50. Price: 10222A, \$4; 10223A, \$5.
10221A 50 -ahm T connector: permits monitoring of signals in 50 ohos transmission lines with the 1410A without rerminating the line or disturbing the signal. Mismatch is low; the reflection from a step input is no greater than 20% of the input step height. Price, $\$ 40$.

ADDITIONAL ACCESSORIES

(Nor supplied with 1410A)
10203A 100:1 divider: this 100:1 divider may be used to reduce levels as high as 200 V to the $\pm 2 \mathrm{~V}$ dynamic range of the 1410 A . The 10203 A offers less than 1 pF shunt capacity and 10 megohms shunt resistance to the circuit under test. (The K01-10203A Divider Adapter must be used to adapt the 10203A to the 1410 A probe). Price, $\$ 60$.

K01-10230A divider adapter: adapts the 10203A 100:1 divider to the 1410 A probe. Price, $\$ 30$,

1102日 ACCESSORY KIT

The Model 1102B Accessory Kit permits convenient circuit probing and reduced circuit loading with oscilloscopes that have 50 -othr ioput impedances. Thus it allows probing with the 1410 A where the so ohm inputs are used in order to get internal triggering. The kit is also ideal for the 1432A where a high inpuk impedance is needed to prevent loading of the test circuir. Kit includes following:

10201A to D resistive diulder probes and 10122A cable: the dividers should always be terminated with 50 ohros to provide the correcr voltage division. They should not be attached directly to the 1410 A probe.

Model	Inpul Respatance (0hmes)	Divialon Ratlo			
10201A	250	5:1	10:1	10	0.25
102018	500	10:1	20:1	15	0.5
10201 C	2500	50:1	100:!	35	2.5
102010	5000	100:1	200:1	50	5.0

Input capacitance: $0: 4 \mathrm{pF}$.
Price, as soid separately, $\$ 40.00$ each.
10208A blocking capacitor: this blocking capacitor ($0.001 \mu \mathrm{f}$) permits creasurements of signals that are ± 600 voles from ground. No more than 0.5 pF shunt capacitance is added to the input by the blocking capacitor, Price, as sold separately, $\$ \$$.
10209A blocking capacitor: this blocking capacitor ($0.1 \mu \mathrm{~F}$) may be used to observe relatively long pulses or signals ± 200 volts from ground. Signals which have rise times slower than 1 nsec may be displayed withour distortion. No more than 3.5 pF shunt capacitance is added to the input. Price, as sold separately; $\$ 3$.
The kit also Includes: 1 ea HP Model 10122A, Cable. Coaxial, Tppe N to BNC Female; 1 ea GR Type 874, Type N Female to GR Adapter; 2 ea HP Part Number S060-0415, Ground Clip; and 1 ea Accessory Box.
Weight: net, 3 lbs ($1,4 \mathrm{~kg}$) ; shipping: 4 lbs ($1,8 \mathrm{~kg}$).
Prlce: Model 1102B Accessory Kit, \$160.

[^49]Bandwidth to $12,4 \mathrm{GHz}$ at $1 \mathrm{mV} / \mathrm{cm}$
Amplifier and sampler Models 1411A, 1432A

1411A Sampling Amplifier, 12.4 GHz

The 1411A Sampling Vertical Amplifier is a basic vertical plug. in that accepts a series of wide band samplers. All three samplers have $1 \mathrm{mV} / \mathrm{cm}$ deflection factor. Feedthrough inputs are also featured, for monitoring signals without terminating them and for precise Time Domain Reflectometry measurements.

The remote samplers, connected to the oscilloscope by a five-foot cable, can be placed right at the signal source, eliminating lossy lines.

Risetime is set with a front panel knob, allowing convenient adjustment of risetime and bandwidth to the ultimare when needed, at the sacrifice of increased noise. Front panel recorder outputs and an X.Y mode for wideband phase measurements add to the 1411A's measurement capability.

Specifications, 1411A

(When used with 1430A, 1431A, or 1432A)

Mode of operation

1. channel A only.
2. channel B only.
3. channel A and channel B.
4. channel A and channel B added algebraically.
5. channel A vs channel B.

Polarity: either channel may be displayed either positive or negative up in any mode.
Deflection factor: calibrated ranges from $1 \mathrm{mV} / \mathrm{cm}$ to 200 $\mathrm{mV} / \mathrm{cm}$ in a $1,2,5$ sequence; vernier control provides con-
tinuous adjustment between ranges and extends deflection factor to less than $0.4 \mathrm{mV} / \mathrm{cm}$.
Attenuator accuracy: $\pm 3 \%$.
Isolation between channels: greater than 40 dB over bandwidth of sampler.
Recorder outputs: front panel outputs provide $0.1 \mathrm{~V} / \mathrm{cm}$ from a 500 ohm source; gain adjustable from approximately $0.05 \mathrm{~V} / \mathrm{cm}$ to $0.2 \mathrm{~V} / \mathrm{cm}$; dc level adjustable from approximately -1.5 V to +0.5 V .
Welght: net 10 lbs ($4,5 \mathrm{~kg}$); shipping $15 \mathrm{lbs}(6,8 \mathrm{~kg})$
Price: HP Model 141 IA, $\$ 700$.

1432A Sampler, 90 ps

The 1432 A is a lower-priced version of the 1430 A and 1431 A . Its 90 ps risetime (dc to 4 GHz bandwidth), 1 $\mathrm{mV} / \mathrm{cm}$ deflection factor and feedthrough inputs permit many accurate measurements involving $C W$, fast pulses, and TDR.

Specifications, 1432A
(When used with 1411A)

Risetime: less than 90 ps.
Bandwidth: de to 4 GHz .
Overshoot: less than $\pm 5 \%$.
Noise: same as 1340 A , except approx 3 mV observed noise. Dyпamic range: ± 1 volt.
Low frequency distortion: less than $\pm 3 \%$.
Maximum safe input: ± 5 volts.
Input characteristics
Mechanical: GR type 874 connectors used on input and output.
Electrical: 50 ohm feedthrough, dc coupled; reflection from sampler is approximately 15% using a 90 ps TDR
system; pulses emitted from sampler input are approx 50 mV in amplitude and 10 ns wide.
Time difference between channels: less than 25 ps .
Connecting cable length: 5 ft (for longer cable, see special order below).
Weight: net 4 lbs ($1,8 \mathrm{~kg}$) ; shipping $9 \mathrm{lbs}(4,1 \mathrm{~kg}$).
Accessories provlded: two GR Model 874-W50 50 ohm loads.
Price: HP Model 1432A, $\$ 1000$.
Special order: $10-\mathrm{ft}$ connecting cable (5 - ft is standard), order COl-1432A. Price, $\$ 1035$.

Model 1430A provides 28 ps risetime with minimal overshoot for accurate measurements on fast-rise pulses. Used with the 1105A/1106A 20 ps pulse generator, its response and feedthrough inputs make it ideal for TDR measurements.

Specifications, 1430A
 (Wher used with 1411A)

Risetime: approx. 28 ps (less than 35 ps observed with $1105 \mathrm{~A} /$ 1106A pulser and 909A $50-0 \mathrm{hm}$ load).
Bandwidth: de to approx 12.4 GHz .
Overshoot: less than $\pm 5 \%$.
Nolse: approximately 8 mV observed noise on crt excluding 10% of random dors. Noise decreases on automatically smoothed ranges 5 , 2, and $1 \mathrm{mV} / \mathrm{cm}$. Smoothed position of smoothing switch reduces noise and jiter approximarely 4:1. Vernier control provides continuous adjustment between the nornal and smoothed modes.
Dynamic range: ± 1 volt.
Low frequency distortions less than $\pm 3 \%$.
Maxlmum safe input: ± 3 volis.

Input characteristics

Mechanical: Amphenol APC. 7 precision 7 mm connectors on input and output.
Electrical: 50 ohm feedthrough, do coupled. Refection from sampler is approx 10%, using a 40 ps TDR system. Pulses emitted from sampler input are approximately 10 mV in amplirude and 5 ns in duration. Vswr less than $3: 1$ at 12.4 GHz .
Time difference between channels: less than 5 ps.
Connecting cable length: 5 fr .
Weight: net 4 lbs ($1,8 \mathrm{~kg}$); shipping $9 \mathrm{lbs}(4,1 \mathrm{~kg})$.
Accessorles provided: two Amphenol APC-7 to female Type N adapters (HP 11524A) ; two 50 ohm loads (HP 909A)
Price: HP Model 1430A. $\$ 3000$.
Special order: 10 -ft connecting cable ($5 \cdot \mathrm{ft}$ is standard), order C01. 1430A. Price, $\$ 3035$.

The 1431A allows viewing of CW signals from dc to beyond 12.4 GHz at $1 \mathrm{mV} / \mathrm{cm}$ deffection factor. It differs slightly from the 1430 A, having a very flat bandwidth and low vswr at the sacrifice of increased overshoot.

Specifications, 1431A
(When used with 1411A)
Bandwidth: dc 0 greater than 12.4 GHz (less than 3 dB down from a 10 cm dc reference).
Risetime: approx 28 ps.
Vswr: $d c$ to $8 \mathrm{GHz}, 1.4: 1$

$$
8 \text { to } 10 \mathrm{GHz}, 1.6: 1
$$

$$
101012.4 \mathrm{GHz}, 2.0: 1
$$

Noise: same as 1430 A .
Dynamic range: ± 1 volt.
Low frequency distortion: less than $\pm 3 \%$.
Maximum safe input: ± 3 rolts.
Input characteristics
Mechanical: Amphenol APC $\cdot 7$ precision 7 mm connector used on input and ourput.
Electrical: $50-0 h m$ feedthrough, de coupled. Reflection from sampler is approx 5%, using a 40 ps TDR system. Pulses enoitted from sampler input are approx 10 mV in amplitude and 9 ns in duration.
Phase shitt between channels: less than 10° at 5 GHz , typically less than 2° at 1 GHz .
Connecting cable length: 5 ft .
Welght: net $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping $9 \mathrm{lbs}(4,1 \mathrm{~kg})$.
Accessories provided: two Amphenol APC-7 to female Type N adapters (HP 11524A); two 50 ohm loads (HP 909A).
Price: HP Model 1431A. $\$ 3000$.
Special order: $10 . \mathrm{ft}$ connecting cable ($5 . \mathrm{ft}$ is standard), order CO1-1431A. Price, $\$ 3035$.

OSCILLOSCOPES 140 STSTEM contimusf
Solid triggering to 5 GHz
Sampling time base Model 1424A

Specifications, 1424A

Sweep range: 24 ranges, $10 \mathrm{ps} / \mathrm{cm}$ to $500 \mu \mathrm{~s} / \mathrm{cm}$ in a $1,2,5$ sequence. Sweeps from I $\mathrm{ns} / \mathrm{cm} 10500 \mu \mathrm{~s} / \mathrm{cm}$ may be expanded up to 100 times and read out directly. Sweeps from $10 \mathrm{ps} / \mathrm{cm}$ to 500 ps/cm are obtained by expansion and also read out directly. Ac. curacy $\pm 3 \%$ except for time represented by approx first $1 / 4 \mathrm{~cm}$ of unexpanded sweep. Vernier provides continuous adjusement be. tween ranges and increases max sweep speed to faster than $4 \mathrm{ps} / \mathrm{cm}$.
Marker positlon: intensified mariker indicates paint about which sweep is expanded; 10 -turn calibrated control. Accuracy, $\pm 1.5 \mathrm{~mm}$.

Minimum delay: less than 55 ns .
Triggering (lass than 1 GHz)
Internal (with Model 1410A)
Automatic: baseline displayed in the absence of an input signal.
Pulses: at least 50 mV amplitude required of pulses 2 ns or nider for jither less than 30 ps .
SIne waves: signals from 200 Hz to 150 MHz require 25 mV amplitude for jitter less than 10% of input signal period (usable to 1 GHz with increased jitter).
Level select
Putses: at least 50 mV amplitude required for pulses 2 ns or wider for jitter less than 20 ps .
Sine waves: signals require from 200 Hz to 150 MHz 25 mV amplitude (increasing to 400 mV at $: \mathrm{GHz}$) for jiter less than 1.5% of input signal period +10 ps.

External

Automatic: baseline displayed in the absence of an input signal.
Pulses: at least 100 mV amplitude required of fast rise pulses 2 ns or urider for jitter less than 20 ps.
Sine waves: signals from 200 Hz to 500 MHz require 50 mV for jitter less than 10% of input signal period (usable to 1 GHz with increased jitter).
Level select
Pulses: at least 50 mV amplitude required of fast rise pulses 2 ns or wider for jitter less than 20 ps.

SIne waves: signals from 200 Hz to 1 GHz require 50 mV for jitter less than 1.5% of inpur signal period +10 ps : jitter is less than 50 ps for signals of 10 mV at 1 GHz .
Dynamle range: 100 mV in sensitive; 1.0 V in normal.
Trigger Input: 50 -ohm, 36 , or ac fast; signal output, $<10 \mathrm{mV}$ in sensitive and $<s \mathrm{mV}$ in nomal.
Maxlmum safe Input: sensitive, $S V$ rms or peak transient; normal, 5 V rms (50 V peak transient); internal, 5 V ims or peak transient.
Jitter (with 500 mV pulses having 1 ns or faster risetimes):
less than 10 ps plus 0.2% of unexpanded sweep time per cm .
Slope: positive or negative.
Sensitivlty: jitter specifications above are for sensitive mode: normal mode reduces sensitivity by approx. 10:1.
Triggering (greater than $\mathbf{1} \mathbf{G H z}$): jiter is less than 30 ps for 25 mV input from 1 GHz :0 4 GHz , and for 50 mV inpur from 4 co s GHz.

Scanning

Internal: X axis driven from internal source: scan density continuously variable.
Manual: X axis driven by manual scan control knob.
Record: X axis driven by internal slow tamp; approx 60 seconds for one scan.
Extermal: 0 to +15 V required for scan; input impedance, 10 k ohms.
SIngle sean: one scan per acruation; scan density continuously variable.
Sync pulse output
Amplitude: greater than 1.5 V into 50 ohm
Rlsetime: approx 1 ns.
Overshoot: less than 5%.
Width: approx $1 \mu \mathrm{~s}$.
Relative jltter; less than 10 ps
Repotition rate: one puise per sample.
Weight: net S ibs ($2,3 \mathrm{~kg}$); shipping 9 lbs (4.1 kg)
Price: HP Mrodel 1424A, $\$ 1325$.

OSCILLOSCOPES 140 SYSTEM coarimuzd
Triggering to 1 GHz with delayed sweep
Sampling time base Model 1425A

Model 1425A's delayed sweep feature allows detailed examination (magnification as great as $10,000: 1$) of any portion of complex signals and pulse trains for the first time in the GHz region. And accurate time jitter measurements in the input waveform can be measured when in the automatic triggering mode. This same automatic triggering mode provides a baseline in the absence of an input signal aiding in getting a crace displayed sooner.

When you want to set up a magnified trace, an intensified marker dot locates the expansion point for you. You also get pushbutton return to X1 magnification for fast reference or relocation of the expansion point.

Jitter on delayed puise in left photo eliminated at right by retriggering the delayed sweep. Sweep spaed, $1 \mathrm{~ns} / \mathrm{cm}$; delay, $5 \mu \mathrm{~s}$.

Specifications, 1425A

Main Sweep

Range: $1 \mathrm{~ns}, \mathrm{~cm}$ to $10 \mu \mathrm{~s} / \mathrm{cm} .13$ ranges in a $1,2,5$ sequence: 26 curacy $+3 \%$, except for eime represented by approx first $1 / 4 \mathrm{~cm}$ of unexpanded sweep. Vernier provides continuous adjustment between steps and extends max magnified speed to at least 4 ps/cm.
Magnifier: X1 to X100 in 7 calibrated sreps; increases i ns/cm sweep to $10 \mathrm{ps} / \mathrm{cm}$; pushbutton returns magnifier to X 1 .
Marker position: intensified marker indicates point about which sweep is expanded; 10 -turn cosntrol.
Minimum delay; main sweep. less than 55 ns ; main delayed sweep, less than 105 ns .

Triggering (for both main and delaying sweeps)
Internal (rith Mrodel 1410A)
Automatic: baseline displayed in the absence of an input signal. Pulses: at least 75 mV amplitude required of pulses 2 ns nr wider for jitrer less than 30 ps.
Sine waves: signals from 200 Hz to 150 MHz cequire 50 mV amplitude for jitter less than 10% of input signal period (usable to 1 GHz with increased jiuer).
Level select
Pulses: at least 100 mV amplitude required for fast rise pulses 2 ns or wider for jitter less than 20 ps.
Sine waves: signals from 200 Hz to 150 MHz require 50 mV amplitude (increasing to 400 mV at 1 GHz) for jitter less than than 1.5% of input signal period +10 ps .
External
Automatic: baseline displayed in the absence of an input signal. Pulses: at least 100 mV amplitude required of fast-rise pulses 2 ns or wider for jitter less than 20 ps.
Sine waves: signals from 200 Hz to 500 MHz require 50 mV amplitude for jitter less than 10% of input signal period (usable to 1 GHz with increased jitcer).

Level select
Pulses: at least 50 mV amplitude required for fast-rise pulses 2 ns or wider for jitter less than 20 ps.
Sine waves: signals from 200 Hz to 1 GH z require 50 mV for jitter less than 1.5% of input signal period +10 ps: jitter is less than 50 ps for signals of 10 mV amplirude at 1 GHz .
Dynamic range: 100 mV in sensitive, 1.0 V in normal.
Trigger input: 50 ohms, ac-coupled ($2.2 \mu \mathrm{~F}$): signal nutput. $<10 \mathrm{mV}$ in sensitive and $<5 \mathrm{mV}$ in normal.
Maximum safe Input: sensitise, $s V$ ms or peak transient; normal, 5 V ms (50 V peak transient) ; internal. $\mathrm{S} V \mathrm{rms}$ or peak transient.
$J l t e r$ (with 500 mV pulses having 1 ns or faster risetimes): less than 10 ps on $1 \mathrm{~ns} / \mathrm{cm}$ range and less than 20 ps (or 0.2% of unexpanded sweep time per cm. whichever is larger) at 2 ns/cm and slower.
Slope: positive or negatice.
Sensitivity: jitter specifications above are for sensulive mode: normal mode reduces sensitivity by approx. 10:1.

Delaylng sweep

Range: $10 \mathrm{~ns} / \mathrm{cm}$ to $500 \mu \mathrm{~s} / \mathrm{cm}$, 15 ranges in a $1,2,5$ sequence: accuracy $\pm 3 \%$, except for slight nonlinearity at start of sweep,亡 5%, on $200 \mu \mathrm{~s} / \mathrm{cm}$ and $500 \mu \mathrm{~s} / \mathrm{cm}$ ranges; vernier provides conrinuous adjustment between steps and increases $10 \mathrm{~ns} / \mathrm{cm}$ step co at least $4 \mathrm{~ns} / \mathrm{cm}$.
Delay time: conrinuously varable from 50 ns to 5 ms .
Accuracy: $\pm 3 \%$; linearity 0.5% : jitrer time is less than 1 part in 20,000 or 20 Ps , whichever is greacer.
Sweep functions: main, delaying, and main delayed.
Scanning: same as 1424 A except no external scan input.
Sync pulse output: same as $14 \geq 4 A$. Pulse always synchronized to main sweep trigger circuit; pulse delay and rate are variable.
Weight: net $;$ lbs ($3,2 \mathrm{~kg}$); shipping $11 \mathrm{lbs}(5 \mathrm{~kg})$
Price: HP Model 1425A, $\$ 1800$.

Specifications, 1105A/1106A
Output
Rise time: approximately 20 ps . Less than 35 ps observed with HP Model 1411A/1430A 28 ps Sampler and HP Model 909A so ohm cermination.
Overshoot: less than $\pm 5 \%$ as observed on 141LA/1430A with 909A.
Droop: less than 3% in first 100 ns .
Width: approximately $3 \mu \mathrm{~s}$.
Amplitude: greater than +200 mV into 50 ohms.
Output characteristics (1106A):
Mechanleal: Amphenol APC-7 connector.
Electrical: de resistance -50 ohm $\pm 2 \%$. Source refectionless than 10%, using a 40 PS TDR system. DC offset voltage -approximately' 0.1 V .
Triggering
Amplitude: ar least ± 0.5 V peak required.
Rise time: less than 20 ns required. Jitter less than 15 ps when triggered by 1 ns rise time sync pulse from 1424A or 1425A Sampling Time Base.
Width: greater than 2 ns.
Maximum safe Input: 10 volts.
Input impedance: 200 ohms, ac coupled through 20 pF .
Repetition rate: 0 to 100 kHz ; free runs at 100 kHz .
Accessories provided (wlth Model 1105A): one 6 .ft 50 ohm cable with Type N connectors, HP Model No. 10132A.

Welght

1105A: net $3 \mathrm{lbs}(1,4 \mathrm{~kg})$; shipping $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
1106A: net I lb ($0,5 \mathrm{~kg}$); shipping $3 \mathrm{lbs}(1,4 \mathrm{~kg})$.
Price: HP Model 1105A, \$200. HP Madel 1106A, \$550.
1105A/1108A 60 ps pulse generator

Specifications, 1105A/1108A
Same as 110 A/ 1106 A except as follows:
Output
Risetime: less than 60 ps .
Overshoot: less chan $\pm 5 \%$.
Output characteristics (1108A)
Mechanlcal: GR. 874 connector.

Weight

Model 1108A: net, 1 lb ($0,5 \mathrm{~kg}$); shipping, 3 lbs (1.4 kg)
Price: HP Model 1108A, \$175

1104A/1106A 18 GHz trigger countdown

Specifications, 1104A/1106A
Input
Frequency range: 1 GHz to 18 GHz .
Sensitivity: signals 100 mY or larger, and up to 12.4 GHz , produce less than 20 ps of jitter (200 mV required to 18 GHz).
Maximum safe input: $\pm 1 \mathrm{~V}$.
Input impedance (1106A): 50 -ohm Amphenol APC-7 input connector. Refection from input connector is less than 10%, using a 40 ps TDR system.
Signal appearing at Input connector: approximately 250 mV .
Output
Center frequency: approximateiy 100 MHz .
Amplitude: typitally 150 mV .

Weight

1104A: nec $2 \mathrm{lbs}(0,9 \mathrm{~kg})$; shipping $4 \mathrm{lbs}(1,8 \mathrm{~kg})$.
1106A: net $1 \mathrm{lb}(0,5 \mathrm{~kg})$; shipping $3 \mathrm{lbs}(1,4 \mathrm{~kg})$.
Price: HP Model 1104A, $\$ 200$. HP Model 1106A, $\$ 550$.
1104A/1108A
10 GHz trigger countdown

Specifications, 1104A/1108A
Same as 1104A/1106A except as follows:
Input
Frequency range: 1 GHz to 10 GHz .
Sensitivity: signals up to 50 mV or larger, and up to 10 GHz , produce less than 20 ps of jitter.
input impedance: 50 -ahm GR-874 input connector.
Weight
Model 1108A: net, $1 \mathrm{lb}(0,5 \mathrm{~kg}$) ; shipping, 3 libs ($1,4 \mathrm{~kg}$).
Price: HP Model 1108A, \$175.

Other sampling accessories

50 -ohm loads: Models 908 A and 909 A . See index.
Sync probe: Nodel 10200B; for trigger input. Price, $\$ \$ 1$.
$50-$ hm adapter: Model 11524A; has type N female and APC-7 connestors. Price, $\$ 55$.
Air line extenslons: Model $11566 \mathrm{~A} ; 10 \mathrm{~cm}$, APC. 7 connector. Model $11567 \mathrm{~A} ; 20 \mathrm{~cm}$, APC. 7 connector. Price, $\$ 100$ each.
High pass filters: Models 1109A and 1129A reduce trigger "kick cut." Model 1109A has APC. 7 connector; MLodel 1129A has GR-874 connector. Price, HP Model 1109A, \$250; HP Model 1129A, $\$ 150$.

Model 1416A Swept Frequency Indicator transforms Model 140 -series into an X-Y oscilloscope which speeds and simplifes microwave swept frequency measurements. Insertion loss vs frequency measurements on attenuators, filters, ferrite isolators, and return loss measurements on all types of loads can be made with ease and accuracy.

Model 1416A incorporates a number of features which
provide convenience and accuracy not available with the usually used conventional X.Y scope. Readouts directly in $d B$ are provided by Model 1416A's logarithmic amplifier. The attenuation-dB control allows a calibrated dB ofset to be applied to an offscreen trace, providing high resolution readings when trace returns to reference. A linear mode of operation is also provided. A chopper stabilized input amplifier minimizes drift, and a front-panel adjustable bandwidth switch allows the operator to select a bandwidth just wide enough to present the signal with a minimum amount of noise. An intemal dB calibrator, accurate to 3%, allows a quick check of amplifier accuracy. Also provided on the front panel are outputs for driving an X-Y recorder. Thus, you can now achieve speed, convenience, and accuracy with all types of swept frequency measurements by using the Model 140 series/1416A combination and appropriate auxiliary equip. ment. Sweep oscillators and associated instruments are available for testing both coaxial and waveguide microwave components from 1 to 40 GHz . Such items as adapters, impedance transformers, tuners, loads, filters, detectors, couplers, and attenuators can be measured or adjusted. Swept frequency techniques are also useful for overall system analysis.

Swept frequency techniques are not only helpful design aids, but can be used as maintenance tools as well. They provide fast routine maintenance checks on laboratory instruments. Hours and sometimes days of tedious precise measurements can often be completed within minutes.

Specifications, 1416A

Mode of operation: linear or logarithmic.

Bandwidth

Linear: variable from approx. 1 kHz to 30 kHz in four steps.
Logarithmic: varies with inpur level.
Deflectlon factor (sensitivity):
Linear: $50 \mu \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}, 8$ ranges in a $1,2,5$ sequence; accuracy $\pm 3 \%$.
Logarithmic: $0.5 \mathrm{~dB} / \mathrm{cm}$ to $10 \mathrm{~dB} / \mathrm{cm}$ (referred to RF input into crystal detector) in 5 ranges; accuracy (after 30 -min warmup), $\pm 0.02 \mathrm{~dB} / \mathrm{dB}$ (0 to -25 dB) and $\pm 0.03 \mathrm{~dB} / \mathrm{dB}(-25$ to $-30 \mathrm{~dB})$.
Noise: typical observed values on crt:

Mode	Nolse at low bandwldth	Molse at hlah bandwidth
Linear	$40 \mu \vee \mathrm{pk}-\mathrm{pk}$	$200 \mu \vee \mathrm{pk} \cdot \mathrm{pk}$
Logarithmic:		
innut signal level		
0 dB	0.05 dB	0.1 dB
-10 dB	0.05 dB	0.2 dB
-20 dB	0.3 dB	0.4 dB
-25 dB	1 dB	1 dB
-30 dB	4 dB	4 dB

Linear: less than 120 mV ; Model 1416 A deflection factor set to $0.05 \mathrm{mV} / \mathrm{cm}$ and input shorted.
Logarithmic: less than $50 \mathrm{mV} / \mathrm{cm}$; Model 1416A deflection factor set to $5 \mathrm{~dB} / \mathrm{cm}$ and input signal of $-30 \mu \mathrm{~V}$ $(-30 \mathrm{~dB})$.
Internal calibrator: four positions: $0,10,20$, and 30 dB below approx. 50 mV ; accuracy $\pm 0.01 \mathrm{~dB} / \mathrm{dB}$.
Sweep and blanking: supplied by Model 690 Series Sweep Oscillator.
Recorder outputs:
Vertical: gain adjustable from 0 to approx. $200 \mathrm{mV} / \mathrm{cm}$; de level adjustable over approx. ± 1.5 volts.
Horizontal: gain adjustable from 0 to approx. $100 \mathrm{mV} / \mathrm{cm}$; do level adjustable over approx. ± 1 volt.
Inputs
Vertleal: input impedance, 75 k ohms; dynamic range: logarithmic, $-50 \mu \mathrm{~V}$ to -100 mV ; linear 0 to -100 mV : BNC connector receives output from Models 423A or 424A Crystal Detectors, or Models 786D or 787D Directionai Detectors (all Option 02).
Horizontal: ramp required: amplitude between 7.5 and 20 volts; some part of ramp must be at 0 volts.
Blanklng: 0 ro-s V gate (supplied by Model 690 Series Sweep Oscillator; early models require slight modification).
Power: supplied by oscilloscope.
Weight: net $7 \mathrm{lbs}(3,2 \mathrm{~kg})$; shipping $14 \mathrm{lbs}(6,3 \mathrm{~kg})$.
Price: HP Model 1416A, $\$ 675$.

OSCILLOSCOPES 140 SHSTEM cuntinued

Complete cable testing system

Time domain reflectometer Model 1415A

Magnified display of a BNC connector joining two 50.0 hm cables. The horizontal axis is set at $2 \mathrm{~cm} / \mathrm{cm}$. Multiplying the 3.5 cm deflectlon by the reflection coefficient sansitivity of $0.01 / \mathrm{cm}$, one can dotermine the connector has a p of 0.035 .

TDR display of a section of unknown cable spliced Into a length of 50.0 hm cable. Noting the distance setting of $40 \mathrm{~cm} /$ cm. and reflaction coefficient sensitivity of 0.2) cm, one can determine the unknown cable is 120 cm long and has a Z_{0} of 44 ohms.

The Model 1415A Time Domain Refiectometer in a 140 sys. tem Oseilloscope represents a completely integrated broadband system for testing cables, transmission lines, strip lines, connectors, and other types of high frequency devices.

You can quickly determine the magnitude and nature of each resistive or reactive discontinuity in coaxial components such as attenuators, cables, connectors and delay lines used in microwave and pulse circuit design. Or you can locate and identify cable faults such as shorts, opens, loose connecrors, defective tap offs, splices, and mismatches in signal transmission cables. Whatever your application the 1415 A can save you time and money by minimizing guesswork and indecision.

Model H08-1415A is a 3000 -foot version of Model 1415A, with the horizontal scale calibrated in $\mathrm{ft} / \mathrm{div}$ and vertical scale calibrated in \% reflection. H08-1415A specifications follow 1415A specifications below.

Also available is a complete 75 . $\mathrm{h} m$, factory-calibrated TDR system, E75-140A. This system includes: H08-1415A Time Domain Reflectometer plug-in; a standard Model 140A Oscilloscope with P7 phosphor CRI; a Model 10458A 50 -ohm to 75 . ohm adapter (includes operating instructions and 75 -ohm impedance overlays for CRT) : Application Note 67 on cable testing (contains TDR slide asle for quick conversion to different dielectrics). Price of E75-140A is $\$ 1900$.
sweep mainained at all magnifier setrings with exception of
time represented by first 0.1 cm of unmagnifed step.
Delay control: 0 to 10 cm of unmagnified sweef, calibrated.
Jitter: less than 20 ps.
Powar: supplied by oscilloscope.
Welght: net 7 lbs (3.2 kg); shipping 11 lbs (5 kg)
Acessorles furnished: 2 GR eibows (HP Part No. 1250.0239). 1 GR to Type N adapter ($1250-0240$), and 1 Type N to BNC adapter (1250.0067).
Price: HP Model 1415A, $\$ 1050$.
Option 14: long line TDR for cables up to 1500 meters (0.62 mile): P7 phosphor recomroended for CRT, no extra charge: specifica. tions same as for 1415A except as follows:

System risetime: less than 200 ps .
Rep rate: 30 kHz , nominal.
Noise and internal pickup: 0.25% of step.
Droop: 2%.
Time scale: $20 \mathrm{~ns} / \mathrm{cm}$ to $1 \mu \mathrm{~s} / \mathrm{cm}$.
Air lina: $300 \mathrm{~cm} / \mathrm{cm}$ to $150 \mathrm{~m} / \mathrm{cm}$.
Polyethylene: $200 \mathrm{~cm} / \mathrm{cm}$ to $100 \mathrm{~m} / \mathrm{cm}$.
Price: HP Mode! 1415A Option 14, \$1150.
H08-1415A: calibrated to read distance in feet of polyethylene or polyfoam dielectric cables; vertical scale calibrated in \% reflection. H08.1415A same as Oprion 14 except as follows:

Reflection coefflclent: $50,20,10,5,2,1$, and $0.5 \% / \mathrm{div}$.
Distance scale: maximum range 3000 fr in $300,100,50,20$, and $10 \mathrm{ft} / \mathrm{div}$ for polyfoam and polyechylene dielectric cables.
Time scale: $900,300,150,60$, and $30 \mathrm{~ns} / \mathrm{div}$.
Price: HP Model H08.1415A, \$1280.

Models 10452A-10456A

Model 10452A through 10456A Rise Time Converters slow down the step from the 1415A in order to eliminate reflections caused by frequencies beyond the banciwidth of interest.

Specifications

Rise times: (10.90% points as measured in 150 ps rise time system.)
10452A: 0.5 ns. $10453 \mathrm{~A}: 1 \mathrm{~ns}, 10454 \mathrm{~A}: 2 \mathrm{~ns}, 10455 \mathrm{~A}$: $5 \mathrm{~ns} .10456 \mathrm{~A}: 10 \mathrm{~ns}$.
Rise time accuracy: betrec than $\pm 5 \%$.
Overshoot: less than $\pm 3 \%$.
Outpst impedance (dc): 50 ohms (accuracy determined by output impedance of generator).
Output mismatch: less than $\pm 5 \%$ reflection to output rise time.
Allowable input voltage: up to 50 volts, open circuit (from a 50-ohm source).
Connectors: GR Type 874.
Price: $\$ 75$ each.

Models 10457A-1045BA

Adapters convert 1415A 50 ohm outpur to 75 ohm systems.
Model 10457A: converts 50 ohm GR to 75 ohm Type N.
Price: $\$ 35$
Model 10458A: converts 50 ohm GR to 75 ohm Type F (CATV).
Price: $\$ 25$.

Model 874A

The 874A is a calibrated TDR comparison device for simple, rapid, direct-reading evaluation of reactive discontinuities.

Specifications

Characteristic impedance: $50 \mathrm{ohms} \pm 0.1 \mathrm{ohm}$.
Capacitance range: 0 to 1 pF .
Inductance range: 0 to 2 nH .
Accuracy: capacitance: $\pm 0.005 \mathrm{pF}$ of $\pm 5 \%$, whicheves is greater, from 0 to 0.5 pF . Inductance: $\pm 0.013 \mathrm{nH}$ or $\pm 5 \%$, whichever is greater, from 0 to 1.3 nH .
Line length: 17.4 cm .
Connectors: 874A, GR type 874.
Price: 874A, $\$ 250$.

Model K60-1415A

Power line interference can be reduced with the K 60. 1415A Hum Filter when used with Time Domain Reflectometers such as the HP Model 1415A. A front panel switch ailows you to select either 60 Hz or 400 Hz fitering.

Specifications

Hum rejection
In a 50 ohm hum source
$50.120 \mathrm{~Hz}, 40 \mathrm{~dB} ; 400 \mathrm{~Hz}, 35 \mathrm{~dB}$.
Introduced reflection: Jess than 5%.
Step distortion (droop): less than 3%.
Power
115.230 volts ac; $50.400 \mathrm{~Hz} ; 1$ watt.

Price: $\$ 325$.

SPECTRUM ANALYZERS
 An oscilloscope in the frequency domain Models 8553L/8552A and 8551B/851B

Oscilloscopes display the amplitude of electrical signals as a function of time, combining all frequency components into the composite time-domain waveform. Spectrum analyzers separate the frequency components, displaying the amplitude of each as a function of its frequency. Both timeand frequency-domain analysis are indispensable for the rapid analysis of signals in circuit characterization.

Common frequency domain applications

Many measurements commonly made on circuits such as oscillators, amplifiers, mixers, and filters must be made in the frequency domain. Such measurements include frequency response, harmonic and intermodulation distortion, spurious oscillations, frequency stability, spectral purity, modulation index, and attenuation. Each is a measurement of a phenomenon that has unmistakable and dramatic effects in the frequency domain-measurements ideally suited to this versatile new spectrum analyzer. For more complete information on spectrum analysis, see pages 450 through 460 .

8553L/8552A spectrum analyzer

The 8553L/8552A Spectrum Analyzer brings the power of complete frequency domain analytical capabilities to the design engineer, the systems engineer, the maintenance engineer, and the EMC engineer. For the first time absolute amplitude calibration is combined with broad sweep capabilities, high sensitivity, low distortion, wide dynamic range, and flat frequency response (all calibrated), to produce a truly general-purpose frequency domain instrument.

The 8553L/8552A is invaluable, not only in basic circuit design, but also in system evaluation. The broad frequency range of 1 kHz to 110 MHz extends from audio through the FM broadcast band; this span includes audio, video, IF amplifiers, navigation aids, telemetry, most multiplex communications systems basebands, commercial AM, FM, TV, and land mobile communications. The combination of absolute amplitude calibration and full $100-\mathrm{MHz}$ scan capability has already made and will continue to make a tremendous impact on measurement techniques in this frequency range.

The $8553 \mathrm{~L} / 8552 \mathrm{~A}$ is designed for use with a 140 S or a 1415 Display Section. The 1405 CRT is of the fixedpersistence/nonstorage type; the 1415 offers the additional benefits of variable persistence and storage. The spectrum analyzer plug-ins work equally well in a 140 A or a 141 A uscilloscope mainframe.

70-dB Display Dynamic Range: free of analyzer distortion products.

High Sensitivity: to $-130 \mathrm{dBm}(0.07 \mu \mathrm{~V})$.
50. Hz Resolution: to separate closely spaced signals.

High Stability: residual FM less than 20 Hz p-p when stàbilized.

Automatic Stablization for narrow scan widths: no complicated phase-locking procedure.

Fiatness: $\pm 0.5 \mathrm{~dB}$.
Variable Persistence Display: a necessity for low-frequency, high-resolution, ficker-free displays. This is the break. through that makes low-frequency spectrum analysis practical; the spectrum, instead of a slowly moving CRT spot, can be seen.

For complete specifications and accessory information, refer to pages 450 through 454.

8551B/851B and 8551 B/852A spectrum analyzer

The 8551B RF Section with either the 851 B or 852 A Display Section makes a spectrum analyzer that is a versatile, fully calibrated instrument over the $10.1-\mathrm{MHz}$ to $40 \cdot \mathrm{GHz}$ frequency range. Accuracy and flexibility of the 8551 B make it suirable for many applications, such as rapid, wideband EMC measurements, spectrum surveillance, spectrum signa. ture recording, and microwave semiconductor evaluations all in the frequency domain.

Complete specifications and accessory information for this instrument are given on pages 455 through 458.

OSCILLOSCOPES

NEW STANDARD FOR OSCILLOSCOPE MEASUREMENTS

The growing 180 Oscilloscope system establishes a nex' standard for high-performance, general-purpose oscilloscope design. This modern plug.in system, consisting of six maioframes and twelve plug-ins, allows you to match your oscilloscope capability to your particular application. Small and lightweight, these all solid-state scopes are ideal for all types of high frequency measurements. This reliable, accurate performance has been proven in applications varying from shipboard testing, to flight-line checkout, to exacting measurements of computer memories. This system is designed to meet today's requirements and still provide capabilities for future growth.

COMPLETE SELECTION FOR ANY

 MEASUREMENT NEED
General-purpose engineering and development

For versatility combined with accuracy, choose the 50 MHz dual channel plug-in with either standard or delayed sweep time base. Plug these into the variable persistence and storage mainframe for a truly general-purpose scope. This mainframe feacures conventional oscilloscope operation with variable persistence and storage available at the push of a button. The cabinet version requires little of that valuable workbench space or, if you prefer, the rack rersion is a real space-saver ($51 / 4^{\prime \prime}$ bigh) in a portable rest console.

Precision measurements to 100 MHz

Witt the introduction of a new 100 MHz plug-in, high frequency measurements have reached a new Jevel of quality. Utilizing trans.
mission line rechniques, this plug-in allows you to probe a wide variety of source resistances without introducing errors into the measurement and disturbing the circuit. The 50.0 hm inpue also provides the ideal termination for measurements in a 50 -ohm system, as well as providing the basis for impedance multiplication necessary for probing applications.
The differential/dc offser plag-in, coupled with system features such as low do drift and large $8 \times 10 \mathrm{~cm}$ CRT display area, allows easy and precise measurements. For example, offet voltages may be measured with a comparison accuracy of better than 0.5%.

Field and service

The over-all design concept of the 180 system results in features especially suited for field and service applications. All solid-state circuitry, small 30 -pound package, with accessories such as front panel covers and portable testmobiles, make this system ideal for field location work. The plug-in design lets you ake only those plug-ins necessary for the iob. You take along another plugein, not a second oscillascope.

Systems and manufacturing

The design of the 180 syssem also makes it ideal for instrument systems and manufacturing applications. The tack-mount versions of the mainframes are only $51 / 4^{\prime \prime}$ high, saving raluable space. The wide selection of plug-ins allows you to easily tailor the system to fit the application. The human-engineered, logical arrangement of controls makes these instruments easy to operate even for those not familiar with an oscilloscope. The 180 Oscilloscope system tequires only in watts of power with no fan, making operation more reliable and more economical. Displays on the big $8 \times 10 \mathrm{~cm}$ graticule are easy to read and the internal graticule eliminates possible parallax errors.

Operation in extreme environments
A version of the 180 system has been developed to meet the extreme environmental reguirements of the military. This system (includes plug.ins) is available in the cabinet version as an AN/ USM-281 or in the rack-mount confguration as an AN/USM-296. The same system can be obtained as an HP Model 1s0E or Model 180ER, with appropriate ruggedized plug ins (Models $1801 \mathrm{E}, 1820 \mathrm{E}$, efc.). Rigid military specifications met by this system are listed on page 547

ACCURACY, VERSATILITY, AND EASE OF OPERATION

PLUG-IN DESIGN lets you economically change the perfor. mance of your system to meer the changing measurement requirements. It aiso protects you from expensive obsolescence, since the system can be updated as new plug-ins are developed to meet your increased measurement needs.

ALL SOLID-STATE circuitr' allows you to make accurate med. surements after only 15 seconds warm-up. The lon power consumption eliminates the need for a fan: heat-related component failures are minimized.

VARIABLE PERSISTENCE lets you control the CRT parsistence is climina:e Eicker or to incegrate dim signals to a display at full brightness.
STORAGE is also available at the push of a button for side-by. side trace comparison or measurement of single-shor occurrences.

SMALL 30-LB PACKAGE is easily garried around the lab or to remote field sights. Also, the small cabinet size gives you more usuable bench space.
8×10 CM CRT DISPLAY AREA features an internal graticule ro increase accuracy by eliminating parallax errors. The large viewing area also makes measurements easier to read and easier to see from a discance.

AIRCRAFT TYPE MAINFRAMIE designed for maximum rugged. ness and a minimum weighe, makes this system ideal for field and service. It also allows easy access to all components to facilitate calibration and maineenance.

BROAD ENVIRONMENTAL SPECIFICATIONS give you lab. oratory performance in field applications. Specification over a wide range assures accurate measurements under different or changing conditions.

Malnieames													
Masel	Dosorigilon of mainiramot (actipte 1 virical and fitme baas)											Prlas	Pag*
180A	Cabinel contiguration											5825	533. 535
180AR	51/4 in. Mgh rack/bench configuration											900	533. 535
181A	Cabinet configuration whth variable persistence and storage											1.850	533.536
181AR	5/4 in. high rackibench configuralion with variable persisteace and slorage											1,925	533. 536
1805	Millitarized cabinet configuration											1,2!5	546
180ER	Milicarized rack/eench configuration											1,205	546
Vorrieal glug.lns						Tlma bese plugulat							Doutla
Modos No.	18014	1802A	1808A	18044	\$801E	Model No.	11204	1t208	18214	1822 A	18tos	1821E	18154
gandwldih	50 MHz	$\begin{gathered} 100 \mathrm{MHz} \\ 75 \mathrm{MHz} \\ \text { coscaded } \end{gathered}$	$40 \mathrm{HMz}_{2}$ $(30 \mathrm{HiHz})$	50 MHz	$\begin{gathered} 50 \mathrm{MHz} \\ (20 \mathrm{MHz}) \end{gathered}$	Ext. trig.	100 MHz	150 MHz	100 MHz	150 MHz	100 MHz	100 NHz	35 os
Min deilertian laclor:	$5 \mathrm{mv} / \mathrm{div}$	$\begin{array}{\|c\|} \hline 10 \mathrm{mV} / \mathrm{div} \\ \hline 1 \mathrm{mV} / \mathrm{div}) \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 5 \mathrm{niv}, \mathrm{div} \\ & (1 \mathrm{mv} / \mathrm{div}) \end{aligned}$	$20 \mathrm{mv} \text { oiv }$	$\begin{gathered} 5 \mathrm{mv} \text { div } \\ (1 \mathrm{mvidiv}) \end{gathered}$	Int. Irig.	75 MHz	120 MHz	35 MHz	120 MHz	75 MHz	75 MHz	caliorated TDR and
Chanrels	2	$\stackrel{2}{2}_{1}$	I	4	2	Sweep soeeds	$\begin{gathered} 5 \mathrm{~ns} / \mathrm{div}- \\ 2 \mathrm{~s} / \mathrm{dlv} \end{gathered}$	$\begin{aligned} & \text { Sns/div- } \\ & \text { 2 s/div } \end{aligned}$	$\begin{gathered} 10 \mathrm{~ns} / \mathrm{div} . \\ 1 \text { s.div. } \end{gathered}$	$\begin{gathered} \text { s fisidiv- } \\ \text { I sidiv } \\ \hline \end{gathered}$	$\begin{gathered} 5 n s / d \mathrm{dv} . \\ 2 \mathrm{~s} / \mathrm{dlv} \end{gathered}$	10 ns div. 2 s/dy	$\begin{aligned} & 12.4 \mathrm{GHz} \\ & \text { Sumpling } \end{aligned}$
Ditierental Inpul	-	-	(w\|th ac oflset)		-	$\begin{gathered} \hline \text { Oelayed and } \\ \text { mlxed } \\ \text { swesp } \\ \hline \end{gathered}$			0	-		θ	
Price	\$650	\$1,200	\$950	\$975	5805	Price	\$475	\$525	\$800	\$900	\$570	5920	51900-3150
Page	537	580	53)	538	546	Page	539	541	539	541	545	546	542

The 180AR is housed in the HP modular cabinet, suitable for either bench or rack mount. As a rackmounted unit, the $180 A R$ requires only $51 / 4$ inches of vertical rack space, with no clearance requirements at top or bottom of the unit. Fixed pivoted slides are described on page 545.

Specitications, 180A/180AR

Cathode-ray tube and controls

Type: post accelerator, 12 kV accelerating potential; aluminized P31 phosphor (other phosphors available, see Modifications): safetry glass faceplate.
Graticule: 8×10 div parallax.free internal graticule. 0.2 -div subdivisions on major axes. 1 div $=1 \mathrm{~cm}$. Front panel recessed screwdriver adjust TRACE ALIGN aligns crace with graticule. Internal Y-align aligns Y-rrace with X-trace. Scale control illuminates CRT phosphor for viewing with hood or taking photographs.
Beam finder: pressing Find Bearm contral brings trace on CRT screen regardless of setting of horizontal, vertical, or intensity controls.
Intensity modulation: approximately $+2 \mathrm{~V}_{\mathrm{s}}$ dc to $15 \mathrm{~N} \mathrm{H}_{z}$, will blank trace of normal intensiry. Input R, 5100 ohms.
Calibrator
Type: approximately 1 kHz square wave, 3μ s risetime.
Voltage: two outputs, 250 mV pk -pk and 10 V pk -pk; accaracy, $\pm 1 \%$.
Horizontal ampllfier
Bandwidth: de to $5 \mathrm{MHz}_{\mathrm{z}}$ when dc-coupled; SHz to $5 \mathrm{MHz}_{2}$ when ac-coupled.
Deflection factor: $1 \mathrm{~V} /$ div, $\mathrm{X} 1 ; 0.2 \mathrm{~V} / \mathrm{div}, \mathrm{X}$; $0.1 \mathrm{~V} / \mathrm{div}$, X10. Vernier provides continuous adjustment betreen ranges. Dynamic range, $\pm 5 \mathrm{~V}$.
Maximum input: 600 V dc (ac.coupled input).
Input RC: 1 megohm shunted by approximately 30 pF .
Sweep magnifler: X1, X5, X10; magnified sweep accuracy, $\pm 3 \%$ (for $\pm 3 \%$ accuracy time base plug-ins).

Outputs: four emitter follower outputs on rear for main and delaj'ed gates, main and delayed sweeps; maximum current avail. able, $\pm 3 \mathrm{~mA}$; outputs will drive impedances down to 1000 ohms withour distortion.

General

Weight: (without plug.ins) Model 180A, net, 22 ib ($9,9 \mathrm{~kg}$); shipping, $30 \mathrm{lb}(13,5 \mathrm{~kg}$). Model 180 AR (rack), net, 25 lb ($11,3 \mathrm{~kg}$); shipping, 33 lb ($14,9 \mathrm{~kg}$).
Environment: 180A/AR scope operates within specifications over the following ranges:
Temperature: $-28^{\circ} \mathrm{C} 10+65^{\circ} \mathrm{C}$.
Humldty: 1095% relative humidity to $40^{\circ} \mathrm{C}$.
Altitude: to $15,000 \mathrm{ft}$.
Vibration: vibrated in three planes for 15 min . each with 0.010 inch excursion, 10 to 55 Hz .
Active components: all solid-state (excepr CRT).
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz , less than 110 watts with plug-ins at normal line, convection cooled.

Dimensions

Cabinet: 77/8" wide, $113 / 8^{\prime \prime}$ high, 211/4" deep behind panel ($200 \times 289 \times 540 \mathrm{~mm}$).
Rack: $19^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $191 / 2^{\prime \prime}$ deep behind panel ($482 \times$ $133 \times 495 \mathrm{~mm}) ; 213 / \mathrm{m}^{\prime \prime}$ deep over-all.
Accessories furnished: mesh contrast filter; rack mounting hardware (180AR only).
Modifications: CRT phosphor (specify by phosphor number): P31 standard; P2, P7, PI 1 available, no extra charge.
Price: HP Model 180A (abinet), $\$ 825$; HP Model 180AR (modular rack), $\$ 900$.

Features:

Vary persistence to view slow signals
"Develop" fast, low repetítion rate pulses
Bright, high-contrast storage up to 1 hour
Rugged construction for feld use
Scope with plugins weighs only 32 pounds
Push-button erase and mode controls

The 18JAR is housed In the HP modular cabinet, suitsble for elther bench or rack mount. As a rackmounted unlt, the $181 A R$ requires only $51 / 4$ inches of vertical rack spacs. with no clearance requirements at top or bottom of the unlt. Fixed plvoted slldes are described on oage 545.

Specifications, 181A/AR

Cathode-ray tube and controls

Type: post accelerator storage tube; 8.5 kV accelerating potential: aluminized P31 phosphar.
Graticule: 8×10 div parallax-free internal graticule. 0.2-div subdivisions on major axes. 1 div $=0.95 \mathrm{~cm}$. Front panel recessed screwdriver adjust TRACE ALIGN aligos tace with graticule. Internal Y-align aligns Y-trace with X-race.
Beam tínder: pressing Find Beam control brings race on CRT screen regardless of setting of horizontal or vertical controls.
Intensity modulation: approximately +2 V , de 1015 MHz , will blank crace of normal intensiry. Input R, 5100 ohms.
Persistence: normal, natural persistence of P31 phosphor (ap. prox. $40 \mu \mathrm{~s}$). Variable, continuously variable from less than 0.2 second to more than 1 minuie.

Storage writing rate

Write mode: greater than $20 \mathrm{~cm} / \mathrm{ms}$.
Max. write mode: greater than $1 \mathrm{~cm} / \mu \mathrm{s}$.
Brightness: measured with entire screen faded positive, greater than 200 footlamberts.
Storage tlme: from Write mode to Store, traces may be stored at reduced intensity for more than one hour. To View mode, traces may be viewed at normal intensity for more than one minute. From Max. Write mode to Store, traces may be stored at reduced intensity for more than S minutes. To View mode, traces may be stored at normal intensity for more than 15 seconds.
Erase: manual, push-button erasure takes approximately 300 ms .

Callbrator

Type: approximately 1 kHz square wave, $3 \mu s$ risetime.
Voltage: 10 V pk-pk; accuracy, $\pm 1 \%$.
Horizontal amplifler
Bandwidth: dc to 5 MHz when ac-coupled.

Deflection factor: $1 \mathrm{~V} / \mathrm{div}, \mathrm{X} 1 ; 0.2 \mathrm{~V} / \mathrm{div}, \mathrm{X} 5 ; 0.1 \mathrm{~V} / \mathrm{div}, \mathrm{XiO}$. Vernier provides continuous adjustment between ranges. Dynamic range, $\pm s \mathrm{~V}$.
Maximum Input: 600 V de (ac-coupled input).
Input RC: 1 megohm shunted by approximately 30 pF .
Sweop magnifier: X1, X $5, \mathrm{X} 10$; magnified sreep accuracy, $\pm 5 \%$ (for $\pm \hat{j} \%$ accuracy time base plug-ins).
Outputs: four emitrer follower outputs on rear for main and delayed gates, main and delayed sweeps; maximum current arail. able, $\pm 3 \mathrm{~mA}$; outputs will drive impedances down to 1000 ohms withour distortion.

General

Welght: (without plug-ins) Model 181 A , net, $24 \mathrm{lbs}(10.9 \mathrm{~kg}$) ; shipping, 32 lbs ($14,5 \mathrm{~kg}$). Model 18 iAR (rack), net, 26 lbs ($11,8 \mathrm{~kg}$) ; shipping, $35 \mathrm{lbs}(15,9 \mathrm{~kg}$)
Environment: same as Model $180 \mathrm{~A} / \mathrm{AR}$ except for temperature which is $0^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Actlve components: all solid-state (except CRT).
Power: 115 or 230 volts $\pm 10 \%$, 50 to 400 Hz , less than 115 watts with plug-ins at normal line, convection cooled.

Dimensions

Cabinet: same as Model 180A.
Rack: same as Model 180 AR.
Accessorles furnished: mesh concrast filter; rack mounting hardware (181AR only).
Speclal orderi modifed Model I81A/AR with remore program. ming capability for Write, Max Write, Normal, Store, View, and Erase functions. Programming accomplished through concact closures, DTL or TTL logic sources. Order as H49-181A (cabiner) or H49-181AR (modular rack).
Price: HP Model 181A (cabiner), s1,850; HP Model 181AR (modular rack), \$1,925; H49.181A (cabinet), $\$ 2,350 ; \mathrm{H} 49$. 181AR (modular rack), $\$ 2425$.

This dual channel amplifer is ideal for general-purpose use in the 180 A or 181 A . Its high sensitivity of $5 \mathrm{mV} /$ div provides the extra gain needed when divider probes are used. (Also note $1 \mathrm{mV} / \mathrm{djv}$ special order available; see Specificacions.) The 1801A has FET inputs for low drifc and instant warmup, plus a vircual absence of microphonics. All attenuation, which sets deffection faccor, occurs prior to any active component-eliminating trace shift with range changes and also assuring constant bandwidth in excess of 50 MHz on all ranges. Internal triggering on the B channel signal assures time correlation betweentraces in either chopped or alternate opera. tion.

Specifications, 1801A

Modes of operation: channel A alone; channel Balone; channels A and B displayed altemately on successive swecps (ALT) ; channels A and B displayed by switching between channels at approx. 400 kHz rate (CHOP), with blanking during switching; channel A plus channel B (algebraic addition).

Each channel

Bandwldth: de to 50 MHz when dc-coupled; 2 Hz to 50 MHz when ac-coupled. (Direct or with probe; 3 dB down from 8 -dis reference signal, $25 \cdot 0$ hm source.)
Risetime: less than 7 ns . (Direct or with probe; 10% to 90% with 8 -div input step, 25 -ohm source.)
Deflection factor
Ranges: from 0.00 S /div to $20 \mathrm{~V} / \mathrm{div}$ (12 positions) in 1 , 2,5 sequence. $\pm 3 \%$ accuracy with Vemier in calibrated position; calibration adjustment provided on front panel.
Vernier: continuously variable between all ranges; extends maximum deflection factor to at jeast $50 \mathrm{~V} / \mathrm{dic}$.
Polarlty: +UP or -UP, sclectable.
Signal delay: input signals are delayed sufficiently to view lead. ing edge of input pulse without advance external irigger.
Inpert coupllag: fron: panel selection of ac. dc..or Ground; Ground position disconnects signal inpur and grounds amplifier input for reference.
Input RC: 1 megohm shunted by approx. 25 pF.
Maximum input
AC-coupled: $\pm 600 \mathrm{~V}(d c+$ peak ac $)$.
DC-coupled: $\pm 350 \mathrm{~V}$ (dc + peak ac) on $20 \mathrm{~V} /$ div deflection factor, decreasing to 150 V (dc + peak ac) on $5 \mathrm{mV} / \mathrm{div}$.

$A+B$ operation

Amplitier: bandwidth and deflection factor are unchanged; either channel may be inveried to give $\pm A \pm B$ operation.
Differentlal input ($A \cdot B$) common mode: for frequencies from de to 5 MHz , common mode rejecrion ratio is at least 40 dB on $5 \mathrm{mV} /$ div defection factor, at least 20 dB on other ranges; common mode signal. up to amplirude equivalent of 30 -div deflection.

50 MHz amplifier, differential/dc affset amplifler Models 1802A, 1803A

Triggering

Mode
$A, B, A+B$; on the signal displayed.
Chop: on channel B signal.
Alternate: on either channel B or on the signal displayed by each channel.
Frequency: dc to 50 MHz on signals causing 0.5 division or more vertical defection in all dísplay modes except Chop; de to 100 kHz for Chop mode.
Geners
Weight: net, 4 pounds ($1,8 \mathrm{~kg}$); shipping, $61 / 2$ pounds ($3,0 \mathrm{~kg}$).
Envlronment: same as Model 180A/AR.
Active components: all solid.state.
Accessories furnished: two Madel 10004A 10:1 Voltage Divider probes.
Spectal order: modified Model 1801A with swichable X 5 magnifier, providing $1 \mathrm{mV} /$ div defection factor on both channels. Bandwidth is reduced to 20 MHz when using XS magnifier, no change in standard specifications in X1. Order as H051801A.
Options
Opkion 90: two 10006A probes (6-ft cable) instead of 10004A probes. Add \$10.
Option 91: two 1000sA probes ($10 . \mathrm{ft}$ cable) instead of 10004A probes. Add $\$ 20$.
Price: HP Model 1801 A, $\$ 650$; HO5.1801A, $\$ 745$.
Differential/DC Offset Amplifier

The Model 1803A Differential/DC Offset Amplifier uses the slideback rechnique to achieve greater measurement accuracy. The plug-in generates a very stable, precise de voltage which may be read to four-digit resolution. This voltage is then compared to the input signal. If the input signal is expanded to many screen diameters the dc oftset permits any pari of the input signal to be displayed on screen and measured accurately. Fool-proof, interlocked controls prewent unvanted offiset changes as sensitivity is changed.

Used as a differential amplifer, the 1803A has high common•mode rejection and will withstand a 10 V common-mode signal on the most sensitive range of $1 \mathrm{mV} /$ div. Even higher common-mode signals may be applied on the less sensitive ranges. Rugged construction and conservative design insures that full accuracy is maintained over the specified environmental extremes.
(Model 1903A specifications on following page.)

OSCILLOSCOPES 180 SYSTEM consinued

50 MHz 4-channel ampifler Model 1804A
(Model 1803A photograph and description on preceding page).

Specifications, 1803A

Bandwidth: de to 40 MHz on $0.005 \mathrm{~V} /$ div to $20 \mathrm{~V} / \mathrm{div}$ deflecsion factors; de to 30 MHz on $0.001 \mathrm{~V} / \mathrm{div}$ and $0.002 \mathrm{~V} / \mathrm{div}$. Lower limit is 2 Hz with input ac-coupled. (Direct or with probe; 3 dB down from 8 -div reference signal, 25 -ohm source.)
Risetime: less than 10 ns on $0.005 \mathrm{~V} /$ div to $20 \mathrm{~V} /$ div deflection factors; less than 12 ns on $0.001 \mathrm{~V} /$ div and $0.002 \mathrm{~V} / \mathrm{div}$. (Direct or with probes; 10% to 90% with 8 -div input step: 25 -ohm source.)

Deflection factor

Ranges: from $0.00 \mathrm{~L} \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ (14 positions) in 1,2 , 5 sequence. $\pm 3 \%$ accuracy with vernier in calibrated position; calibration adjustment provided on front panel.
Vernler: with UNCAL (uncalibraced) light; continuously variable between all ranges; extends maximum deflection factor to at least $50 \mathrm{~V} / \mathrm{div}$.
Slgnal delay: input signals are delayed sufficiently to view leading edge of input pulse without advance external exigger.
Input RC: 1 megohm shunted by approx. 27 pF .
Input coupling: froor panel selection of ac, de, ground, or V_{0} for both + and - inputs. Ground push button disconnects signa! input and substitutes internal calibrated do offset voltage.

Maximum input

AC-coupled: $\pm 600 \mathrm{~V}$ (dc + peak ac).
DC-coupled: $\pm 600 \mathrm{~V}$ (dc + peak ac) on $0.1 \mathrm{~V} /$ div to $20 \mathrm{~V} /$ div defection factors, decreasing to $\dot{ \pm} 15 \mathrm{~V}$ ($\mathrm{dc}+$ peak ac) on $0.001 \mathrm{~V} / \mathrm{div}$.
Common-mode rajection ratio: greater than $86 \mathrm{~dB}(20,000: 1)$ from de to 100 kHz on $0.001 \mathrm{~V} /$ div delection factor for common mode signals up to 10 V pk-pk. CMRR decreases with increasing frequency or defection factor.

Overload recovery

6 V overfoad: within $\pm 10 \mathrm{mV}$ of final signal value in $0.3 \mu \mathrm{~s}$ or less; within $\pm 5 \mathrm{mV}$ in $1 \mu \mathrm{~s}$ or less; and within $\pm 1 \mathrm{mV}$ in 1 sas or less,
60 V overioad: within $\pm 100 \mathrm{mV}$ of final signal value in $0.3 \mu \mathrm{~s}$ or less: within $\pm 50 \mathrm{mV}$ in 1μ s or less; and within $\pm 10 \mathrm{mV}$ in 1 ms or less.
600 V overload: within $\doteq 1 \mathrm{~V}$ of final signal value in $0.3 \mathrm{\mu s}$ or less; within $\pm 0.5 \mathrm{~V}$ in 1μ s or less; and wirhin $\pm 100 \mathrm{mV}$ in 1 ms or less.
DC offset:

Ohset range	Defleatlan factor	Comparison aceurasy
0 to $\pm 6 \mathrm{~V}$	$0.001 \mathrm{~V} / \mathrm{dlv}$ to $0.02 \mathrm{~V} / \mathrm{div}$ $0.005 \mathrm{~V} /$ div $100.2 \mathrm{~V} / \mathrm{div}$ $0.5 \mathrm{~V} /$ div $102 \mathrm{~V} / \mathrm{dlv}$ $5 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$	$\begin{aligned} & \pm(0.15 \%+8 \mathrm{mV}) \\ & =(0.75 \%+8 \mathrm{mV}) \\ & =1 \% \\ & \pm 3 \% \end{aligned}$
0 to $=60 \mathrm{~V}$	$0.01 \mathrm{~V} /$ div to $0.2 \mathrm{~V} / \mathrm{div}$ $0.5 \mathrm{~V} / \mathrm{div}$ to $2 \mathrm{~V} / \mathrm{div}$ $5 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$	$\begin{aligned} & =(0.4 \%+80 \mathrm{mV}) \\ & =0.75 \%+80 \mathrm{mV}) \\ & =3 \% \end{aligned}$
$010 \pm 600 \mathrm{~V}$	$0.1 \mathrm{~V} /$ div to $2 \mathrm{~V} / \mathrm{div}$ $5 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} /$ div	$\begin{aligned} & \pm(0.65 \%+0.8 \mathrm{~V}) \\ & =3 \% \end{aligned}$

Triggerling: de to 40 MHz on signals causing 0.5 division or more vertical deflection.
Vo outputid de offset voltage available at front panel connector, continuously variable from 0 to $\pm 0.006 \mathrm{~V}, 0$ to $\pm 0.06 \mathrm{~V}, 0$ to $\pm 0.6 \mathrm{~V}$ or 0 to $\pm 6 \mathrm{~V}$. Accuracy of the $\pm 6 \mathrm{~V}$ range is $\pm 0.19 \%$ of reading $\pm 8 \mathrm{mV}$, when loaded with 10 megohms or more.
Weight: net, 4 lbs ($1,8 \mathrm{~kg}$); shipping, $61 / 2 \mathrm{lbs}(3,0 \mathrm{~kg}$).
Environment: same as Model 180A/AR except temperature which is $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Actlve components: ali solid-scare.
Price: HP Model 1803A, $\$ 950$.

1804A

The 1804A Four Channel Amplifier permits the direce comparison of four signals simultancously. Each of the four channels features so MHz bandwidth, $20 \mathrm{mV} /$ div sensitivily. Ideal for logic circuit testing, the 1804A may be operated to trigger on each channel individually for asynchronous signals or for direct comparison of input/ oulput pulses in spite of time delays. Or, the triggering may be set for one channel only for time correlation measurements.

Specifications, 1804A

Modes of operation: channels A, B, C, and D or any combination displayed alternately on successive sweeps (ALT); channels A, B, C, and D or any combination displayed by switching berween channels at approx. 1 MHz rate (CHOP), with blanking during switching.
Each channel (4)
Bandwidth: ds to 30 MHz when dc-coupled; 10 Hz to 50 MHz when acecoupled. (Direct or with probe; 3 dB down from 8 -div reference signal, 25 -ohm source.)
Risetime: less than 7 ns. (Direct of with probe; 10% to 90% with 8 -div input step, 25 -ohm source.)
Deflection factor:
Ranges: from $0.02 \mathrm{~V} /$ div to $10 \mathrm{~V} /$ div (9 positions) in 1,2 , 5 sequence. $\dot{ \pm} 3 \%$ accuracy with vernier in calibrated position; calibration adjustment provided on front panel.
Vernier: with UNCAL (uncalibrated) light; continuously variable berween all ranges; extends maximum deflection factor to at least $25 \mathrm{~V} / \mathrm{div}$.
Signal delay: input signals are delayed sufficiently to view lead. ing edge of input pulse without advance external trigger.
Input coupling: front panel selection of ac, ds, or ground; ground position disconnects signal input and grounds amplifier for refierence.
Input RC: 1 megohm shunted by approximately 25 pF .
Maximum input
AC-coupled: $\pm 400 \mathrm{~V}$ (dc + peak ac).
DC-coupled: $\pm 350 \mathrm{~V}$ ($\mathrm{dc}+$ peak ac) on $50 \mathrm{mV} / \mathrm{div}$ deflection factors: $=150 \mathrm{~V}(\mathrm{dc}+$ peak ac$)$ on $20 \mathrm{mV} / \mathrm{div}$.
Trace Identification: push button displaces respective trace approx. 0.5 div.

Triggering

Mode Chop: selectable on signal from any channel. Alternate: on any channel selected, or by the signal displayed by each channel (any channel turned off will be skipped)
Frequency: de to 50 MHz on signals causing 0.5 div or more vertical defection in all display modes except Chop: de to 200 kHz for Chop mode.

Genera!

Weight: ner, $43 / 4$ lbs (2.1 kg); shipping, $71 / 4$ pounds ($3,2 \mathrm{~kg}$).
Environment: same as Model 180A/AR except temperature which is $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Active components: all solid-state.
Price: HP Mode! 1804A, \$97s.

Time base plug-ins

The Model 1820A Time Base provides sweep speeds from $2 \mathrm{~s} / \mathrm{cm}$ to $50 \mathrm{~ns} / \mathrm{cm}, 5 \mathrm{~ns} / \mathrm{cm}$ when using Model 180A/181A Xio horizontal amplifier magnifier. Positive rriggering is assured to 100 MHz and a front panel trigger holdoff control locks in complex waveforms. Automaric triggering provides a bright baseline in the absence of an input signal, and syncs on the input waveform when a vertical input signal is applied.

Model 1821A Time Base and Delay Generator provides from $1 \mathrm{~s} / \mathrm{cm}$ to $100 \mathrm{~ns} / \mathrm{cm}, 10 \mathrm{~ns} / \mathrm{cm}$ when using Model 180A/ 181A magnifies, It also features easy-to-usc delayed sweeps. Exclusive Hewlett-Packard mixed sweep combines display of first portion of trace at normal sweep speeds, and simultaneously expands trailing portion of trace at faster delayed sweep speeds to allow magnified examination. Functional groupings of all controls simplifies operation. The internally generated delay trigger is available for external syncing.

Specifications, 1820A

Same as Model 1820B (see page S41) except for following:
Internal triggering: see Model 1802A Verical Amplifier plug-in specitations for specific difference.
External triggering: dc to 50 MHz on signals 0.5 V pk .pk or more. increasing to 100 MHz on $1 \mathrm{~V} \mathrm{pk} \cdot \mathrm{pk}$ or more.
Prlce: HP Model 1820A, 5475.

Specifications, 1821A

Main time base

Sweep
Ranges: from $0.1 \mu \mathrm{~s} / \mathrm{div}$ to $\mathrm{L} \mathrm{s} / \mathrm{div}$ (22 positions) in $1,2,5$ sequence, $\dot{ \pm} 3 \%$ accuraty with Vernier in calibrated position.
Vernler: continuously variable between all ranges; extends slowest sweep to at least $2.5 \mathrm{~s} /$ div.
Magnifier: mainframe magnifier expands fastest sweep to 10 ns/div.
Sweeg mode
Normal: sweep is riggered by an internal, external, or power line signal.
Automatic: bright baseline displayed in absence of input signal. Triggering same as Normal except low frequency limit is 40 Hz for internal and external.
SIngle: sweep occurs once with same triggering as Normal; reset push button with indicator light.
Triggering
Internal: see veritcal amplifier plug-in specifcations.
External: from ds to 50 MHz on signals 0.5 V pk-pk or more, increasing to 100 MHz on 1 V pk-pk or nore.
Line: selecrable on power line frequency signal.
Level and slope: internal, at any point on the vertical waveform displayed, External, continuously variable from +3 V to -3 V on either slope of the syne signal; from +30 V to -30 V in $\div 10$ setting.
Coupling: frone panel selection of ac, $\mathrm{d} c$, ac fast (ACF), or ac slow (ACS). AC attenuates signals below approx. 20 Hz ; ACF attenuates signals below approx. 15 kHz ; ACS attenuates signals above approx. 30 kHz .
Trace Intensification: used for setting up Delayed or Mixed time base. Intensifies that part of Main time base to be ex. panded to ful! screen on Delayed time base. Rotating Delayed time base sweep switch from Off position activates intensified mode. Front panel screwdriver adjust sets relative intensity of of brightened segment.
Delayed time base: delayed time base sweeps after a time delay set by Main time base and Delay controls.

Sweep

Ranges: from $0.1 \mu \mathrm{~s} / \mathrm{div}$ to $50 \mathrm{~ms} /$ div (18 positions) in 1,2 , 5 sequence, $\pm 3 \%$ accuracy with Vernier in calibrated position.
Vernier: continuously variable between all ranges; extends slow. est sweep to at least $125 \mathrm{~ms} /$ div.
Triggerlnge applies to intensified Main, Delayed, and Mixed time base triggering.
Internal: same as Main time base rriggering.
Automatic: delayed sweep is automatically triggered at end of set delay time.
External: same as Main rime base triggering.
Level and slope: same as Main time base triggering.
Coupllag: same as Main time base criggering.
Delay (before start of Delayed time base)
Tme: continuously variable from $0.1 \mu \mathrm{~s}$ to 10 s .
Accuracy: $\pm 1 \%$. Linearity, $\pm 0.2 \%$. Time jitter is less than 0.005% (1 part in 20,000) of maximum delay of each step.
Trigger output: (at end of Delay time) approximately 1.5 V with less than 50 ns risetime from 1000 -ohm source resistance.
Mixed time base: dual time base in which Main time base drives first portion of display and delayed time base completes sweep at up to 1000 times faster. May be operated in single sweep mode.
General
Weight: net, $33 / 4 \mathrm{lbs}(1,7 \mathrm{~kg}$); shipping, $61 / 2 \mathrm{fbs}(2,8 \mathrm{~kg}$).
Environment: same as Model 180A/AR.
Active components: all solid-state.
Price: HP Model 1821A, $\$ 800$.

Model 1802A Dual Channel Vertical Amplifer extends precision high frequency measurements to greater than 100 MHz , demonstrating the versacility and improved performance of the plug-in 180 system.

Standard defection factor for each channel is $10 \mathrm{mV} /$ div. Channels may be cascaded to provide 1 mV /div deficcion factor, single channel operation.

High frequency work with 50 -ohm systems is simplifed and ar. curate with the 1802A. The plug-in input has been designed so terminate a $50-0 / \mathrm{m}$ system. It is also ideal for probing applications since it minimizes capacitance, an obsiacle to accuracy in most high frequency measurements. Capacitance reduces signal amplitude, in. troduces phase shift, limits riserime in circuit and in measurement, and causes a time delay.

Resistive divider probes(refer to page 544 for specifications) for Model 1802A add less than 0.7 pF . The basic 50 -ohm input can be multiplied to $250,500,1 \mathrm{k}, 2.5 \mathrm{k}$, or 5 k ohms. to reduce the dc loading.

When a measurement requires a higher input resistance the Model 1123 A Accive Probe (powered by Model 1802A) can be used. It offers 100 k ohors with only 3.5 pF capacitance. (Refer to page 544 for specifications.)

Specifications, 1802A

Modes of operation: channel A alone; channel B alone; channels A and B displayed alternately on successive sweeps (ALT); channels A and B displased by switching berween channels at approx. 400 kHz rate (CHOP), with blanking during switching; channel A plus chamel B (aigebraic addition), Vertical output allows cascading of channels.

Each channel

Bandwidth
Direct: de to greater than 100 MHz (3 dB down from 8 div reference signal); with channels cascaded, $d \subset$ to greater than 75 MHz .
With Model 1123A actlve probe: same as Direct for source resistances from 0 to 150 ohms.
With Model 10020A reslstlve divider probes: same as Direct for source resistances from 0 to 750 ohms.
With Model 10201A.D resistive divider probes: same as Ditect for source resistances from 0 to 1000 ohms.

Rlsetime
Dlrect: less than 3.5 ns (10% to 90% with 6 -div inpur step): with channels cascaded, less than 4.5 ns.
With Model 1123A active probe: same as Direct for source resistances from 0 to 150 ohms.
With Model 10020A resistive divider probes: same as Direst for source resistances from 0 to 750 ohms.
With Models $10201 \mathrm{~A} \cdot \mathrm{D}$ resistive divider probes: same as Direct for source resistances from 0 to 1000 ohms.
Pulse response: (6 div reference at $25^{\circ} \mathrm{C}$) mershoot, $<3 \%$: perturbations, $<3 \%$; tilt, $<2 \%$. With channels cascaded: over. shoot, $<5 \%$; perturbations, $<s \%$: till, $<3 \%$.

Deflection factor

Ranges: from $0.01 \mathrm{~V} /$ div to $\mathrm{I} \mathrm{V} / \mathrm{div}$ (7 positions) in $1,2,5$ sequence. $\pm 3 \%$ accuracy with Vernier in salibrated position. calibration adjustment provided on front panel. Channels mas be cascaded using vectical outpur to obtain 1,2, or $5 \mathrm{mV} / \mathrm{div}$.
Vernier: with UNCAL (uncalibrated) light: concinuously variable between all minges: extends maximum defection factor to at least $2.5 \mathrm{~V} / \mathrm{div}$.
Polarity: - UP or -UP, selectable; OFF posuion disconnects signal input from amplifier, terminates input signal in 50 ohms and grounds amplificr input for reference.
Slgnal delay: input signals are delayed sufficiently wo 'iew leading edge of input pulse without advance external trigger.
Dynamic range: 6 ditisions for signals to 100 MHz increasing to 8 div at 50 MHz .
Positloning range: allow's positioning top of a 6 .dir pulse to cen. ter graticule line.
Drift: less than ± 1 div oser environmental temperature range (except for cascaded operation).
Input impedance: $50 \mathrm{ohms}=2$ ohms.
Maximum Input: 6 V rms.
VSWR: less shan 1.35 .1 at 100 MHz on $0.01 \mathrm{~V} /$ dis. less than $1.1: 1$ at 100 MHz on all other deffection factors.
Reflection coetficient: less than 15% at 100 MHz on 0.01 $\mathrm{V} /$ div; less than 5% ac 100 NHz on all other defection factors.
Probe power: provides power to operate Nodel 1123 A Actice Probe (one each channel).

$A+B$ operation

Amplifier: bandruidih and defection factor are unchanged, either charnel may be inverted to give $\pm A \pm B$ operation.
Differential input (A - B) common mode: common mode rejection ratio greater than 40 dB for frequencies to $1 \mathrm{M} / \mathrm{Hz}$, greater than 20 dB to 100 MHz : common mode signal, up (1) amplitude equivalent of 6 div deflection.

Triggering

Mode: normal, on the signal displayed as selected by DISPLAY switch; A, on channel A signal; B , on channel B signal.
Frequency: de to areater than 120 MHz on 1 dir pk-pk signal for Models 1820 B or 1822A time base plageins: of from de on greater than 75 MHz on 1 div pk-pk signal for $\begin{aligned} & \text { fodels } 1820 \mathrm{~A}\end{aligned}$ or 182 IA time base plug-ins.
Vertical signal output
Amplitude: $100 \mathrm{mV} /$ die of displayed signal into $50 . \mathrm{hm}$ load. adjustable with front panel control: usuable amplitude. 600 mV pk-pk.
Bandwidth: dc to greater than 100 MHz .
RisetIme: iess than 3.5 ns.

General

Weight: nec, $41 / 2 \mathrm{lbs}(2,0 \mathrm{~kg})$: shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Environment: same as Midel $180 \mathrm{~A} / \mathrm{AR}$ except temperature which is $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Active components: all solid-state.
Accessories furnished: calibrator adapter (HP Part No. 01802. 63201).

Price: HP Model 1802A, \$1,200.

Model 1820B Time Base has sweep speeds to 5 ns/div (using mainframe magnifer) and triggering capability to 150 MHz . A trigger hold-off control allows easy triggering on complex waveforms.

Model 1822A has the same basic features as the 1820 B , i.e., S ns sweep, 150 MHz triggering, and wigger hold off. In addition, it provides a delayed sweep to allow viewing of a waveform at a faster sweep speed.

Specifications, 1820B

Sweep

Ranges: $0.05 \mu \mathrm{~s} / \mathrm{div}$ to $2 \mathrm{~s} / \mathrm{div}$ (24 positions) in $1,2,5$ sequence. $\ddagger 3 \%$ accuracy with Vernier in calibrated position.
Vernier: with uncalibrated light; concinuously variable between ranges; extends slowest sweep to at least 5 s/dic.
Magnifler: (on mainfame) expands fastesr sweep to $5 \mathrm{~ns} / \mathrm{div}$.

Triggering

Normal
Internal: see vertical amplifer plug-in specifications.
External: de to 100 MHz on signals 0.25 V pk-pk or more. increasing to 150 MHz on 1 V pk-pk or more.
LIne: selectable, from line frequency.
Automatic: bright baseline displayed in absence of input signal. Same as Normal except love frequency limit is 40 Hz .
Single sweep; selectable by front panel switch; reset push but. ton with armed indicater light.
Trigger level and slope
Internal! at any point on the vertical waveform displayed. External: continuously variable from $+3 \mathrm{~V} 10-3 \mathrm{~V}$ on erther slope of the sync signal; from +30 V to -30 V in $\div 10$ setring.
Coupling: front panel selection of $a c$, dc, ac fast ($A C F$), or ac slow (ACS). AC attenuates signals below approx. $20 \mathrm{~Hz}: ~ A C F$ attenuates signals below approx. 15 kHz ; ACS attenuates signals above approx. 30 kHz .
Variable hold off: time between sweeps continuously variable, exceeding one full sweep at $50 \mathrm{~ms} / \mathrm{div}$ and faster. Prevents

OSCILLOSCOPES 180 SYSTEM cunimasd

Time base triggerlng to 150 MHz
Models 1820B, 1822A
multiple triggering on signals that have desired triggering level and slope occurring more than once per cycle
Welght: net, $23 / 4 \mathrm{lbs}(1,3 \mathrm{~kg})$; shipping, $51 / 2 \mathrm{lbs}(2,4 \mathrm{~kg}$).
Prlce: HP Model 1820B, $\$ 525$.

Specifications, 1822A

Main time base

Sweep
Ranges: $0.05 \mu \mathrm{~s} /$ div $201 \mathrm{~s} /$ div (23 positions) in $1,2,5$ sequence, $\pm 3 \%$ accuracy with Vernier in calibraced position.
Vernier: with uncalibrated light; continuously variable berneen ranges; exrends slowest sweep to at least $2.5 \mathrm{~s} /$ div.
Magnifier: (on mainframe) expands fasrest sweep to $5 \mathrm{~ns} / \mathrm{div}$. Sweep mode

Normal: sweep is triggered by an internal, external, or power line signal.
Automatic: bright baseline displayed in absence of input sig. nal. Same as Normal except low frequency limit is 40 Hz .
Single: sweep occurs once with same triggering as Normal: reset spring-return switch with indicator light.
Triggering
Internal: see vertical amplifer plugin specifications.
External: from dc to 100 MHz on signals 250 mV pk-pk or more, increasing to 150 MHz on 1 V pk-ph or more.
Lline: selectable on power line frequency signal.
Level and siope: internal, at any point on the vertical wave. form displayed. External, continuously variable from +3 V to -3 V on either slope of the sync signal: from +30 V to -30 V in $\div 10$ setting.
Coupling: front panel selection of ac, $d c$, ac fast (ACF), or ac slow ($A C S$), AC attenuates signals below approx. 20 Hz ; ACF attenuates signals below approx. is kHz ; ACS attenuates signals above approx. 30 kHz .
Variable hold off: time between sweeps continuously variable, exceeding one full swcep at $50 \mathrm{~ms} /$ div and faster. Prevents multiple triggering on signals that have desired triggering level and slope occurring more than once per cycle.
Trace intensification: used to set up Delayed or Mixed time base. Intensifies that part of Main time base to be expanded to full screen on Delayed time base. Moving Delayed sweep switch from Off position activates intensified mode. Front panel adiust sets relative intensity of brightened segment.
Delayed time base: delayed time base sweeps after a time delay set by Main íme base and Delay controls.
Sweep
Ranges: $0.05 \mu 5 /$ div to $50 \mathrm{~ms} /$ div (19 positions) in $1,2,5$ sequence. $\pm 3 \%$ accuracy with Vernier in calibrated position.
Vernier: with uncalibrated light; continuously variable berween ranges; extends slowest soeep to at least $125 \mathrm{~ms} / \mathrm{dix}$
Triggering: applies to intensifed Mfain, Delayed, and Mixed time base triggering.
Internal: same as Main time base triggering.
Automatle: delayed sweep is automatically triggered at end of set delay zime.
External: same as Main time base triggering.
Level and slope: same as Main time base triggering.
Coupling: same as Main time base triggering.
Delay (before stars of Delayed time base)
Time: continuously variable from $0.05 \mu \mathrm{~s}$ to 10 s .
Accuracy: $\pm 1 \%$. Linearity, $\pm 0.2 \%$. Time jitter is less than 0.003% (1 part in 20,000) of maximum delay of each step.
Trigger output: (at end of Delay time) spproximately I V with less than 50 ns risetime from 1000 -ohm source resistance.
MIxed time base: dual time base in which Main time base drives first portion of display and delayed time base completes sweep at
up to 1000 times faster. May be operated in single sweep mode.
Welght: net, $33 / 4 \mathrm{lbs}(1,7 \mathrm{~kg})$; shipping, $61 / 2 \mathrm{lbs}(2,8 \mathrm{~kg})$.
Price: HP Model 1822A, $\$ 900$.

Calibrated 35 ps risetime time domain reflectometery and 12.4 GHz (28 ps risetime) sampling capabilities are now available as part of the versatile 150 system oscilloscope.

The Model 1815A TDR/Sampler plug.in, a double.sized plug-in for the 180 system, can be combined with appropriate remote sampler head and unnel diode mount to obtain a calibrated TDR system which is three times faster than was previously available, providing considerably greater resolution. A direct readout in feet along the line (or in meters as Option 001) is obtained from the Model 181sA. Either Model 1106 A (20 ps) or Model 1108A (60 ps) tunnel diode mount is compatible for TDR with the plug. in and samplers.

These same plug-in and sampler heads used for TDR mea. surements also serve as either a 4 GHz or 12.4 GHz sampling system with a direct readout in time. For sampling use, there is direct triggering to 500 MHz and to 18 GHz with Model $110-\mathrm{A} / 1106 \mathrm{~A}$ trigger countdown.

Sampling heads, Model 1816A (90 ps risetime) and Model 1817 A (28 ps risetime), are detachable, remote, single channel. feed-through samplers for convenient use in 50.0 hm trans. mission systems. The plug-in and sampler heads provide the circuitry for operating the tunnel diode pulse generators.

Several new circuit techniques contribute to this new standard of versatility and accuracy. These include:

1. A new circuit for generating the sampling pulses, which is inherently far more stable with temperature variations.
2. A signal-averaging circuit (superseding the previous smoothing technique) which reduces noise and jitter by a ratio of $2: 1$ or more. This technique does not degade risetime performance, with only a slighr decrease in display rate. Performance can be fully optimized even with slow display rates by use of the Model $181 \mathrm{~A} / \mathrm{AR}$ variable persistence and storage mainftame.
3. Unique marker zero which shifrs reference of calibrated marker position to any point on the display. This permits direce read-out of differential time or distance measurements.
4. Electronic delay circuit which keeps the leading edge of a step function on-screen over all sweep speeds and for a ride a mbient temperature range.

This calibrated TDR system allows analysis of coaxiol micro. wave components, identifying discontinuities on the order of 0.25 inch apart. Typical components that can be analyzed are connectors, adapters, coaxial-to-circuit board transitions, loads, etc. Direct read-out in reflection coefficient, feet, or meters (optional) makes measurements faster and easier to interpret. Front panel calibration for air and polyethylene dielectrics is standard. In addition, the control allows variable calibration for different dielectrics from $\epsilon=1$ to $\epsilon=$ approx. 4 .

CRT display using Model 1815A/1917A/II06A TOR system slows the reflaction from HP Model 874 E Susceptance Standard set at 1 pF equivalent capacitive discontinulty. Scale: 20 ps/dlv horizontal. 0.1 oldiv vertical.

Specifications, 1815A TDR/sampler plug-in

Unless indicated otherwise, TDR and sampling performance specifications are same. Where applicable, IDR specification is given first, followed by Sampler specification in parentheses.

Vertlcal

Scale: reflection coefficient ρ (volts) from $0.005 /$ div to $0.5 /$ div in 7 calibrated ranges; $1,2,5$ sequence.
Accuracy: $\pm 3 \%$; TDR only, $\pm 5 \%$ on $0.01 /$ div and $0.005 / \mathrm{div}$ in sigoal average mode.
Vernler: provides continuous adjustment berween ranges; extends scale to greater than 0.002 /div.
Signal average: reduces noise and jitter approx. 2:1.

Horizontal

Scale: round.trip time or distance (time) in four calibrated decade ranges of $1 / \mathrm{div}, 10 / \mathrm{div}, 100 / \mathrm{div}$, and $1000 / \mathrm{div}$. Concentric expand control provides direct read-out in 28 calibrated steps in 1,2 , 5 sequence from $0.01 \mathrm{~ns} /$ div to $1000 \mathrm{~ns} /$ div or from 0.01 feet $/$ div to $1000 \mathrm{feer} / \mathrm{div}(0.01 \mathrm{~ns} / \mathrm{div}$ to $1000 \mathrm{~ns} / \mathrm{div}$).

Accuracy: time, $\pm 3 \%$; distance, TDR only, $\pm 3 \% \pm$ variations in propagation velocity.
Marker positlon: ten-turn dial, calibrared in divisions; provides direct read-out of round-trip time or distance (ime), number of divisions X decade zange in units/div.
Marker zero: ten-turn control provides variable reference for marker position dial; allows direct read-out of round-rrip time or distance (time) between two or more displayed events.
Zero finder: permits instant location of marker reference.
Dielectrle, TDR only: calibrated for air, $E=1$, and for poly. ethylene, $\epsilon=$ 2.25. Also provides variable settings for di electric conslants from $\varepsilon=1$ to $\varepsilon=$ approx 4.
Triggering, sampling only:
Pulses: less than 50 mV for pulses 5 os or wrider for jitter <20 ps.
CW: signals from 500 kHz to 500 MHz require at least 80 mV for jitter less than 2% of signal period plus 10 ps ; usable to 1 GHz . CW triggering may be extended to 18 GHz with HP Models 1104A/1106A trigger countdown.
Recorder outputs: approx. $100 \mathrm{mV} /$ div; vertical and horizoneal outputs at BNC connectors on rear panel of mainframe.
Display modes; repetitive scan, normal or detail; single scan; manual scan; record.
Welght: net, $5 \mathrm{lbs}(2,3 \mathrm{~kg}$) ; shipping, $10 \mathrm{lbs}(4,5 \mathrm{~kg})$.
Optlon OO1: distance calibrated in meters. Price: Model 1815A Option 001, on request.
Price: HP Model $1815 \mathrm{~A}, \$ 1100$.

Samplers and tunnel diodes

Specifications, 1817A and 1816A

28 ps and 90 ps samplers

Unless indicated otherwise, Model 1817A and Model 1816A specifications are same. Where applicable, Nodel 1817A specification used with Model 1106A tunnel diode mount is given first, followed by Model 1816A specification (in parentheses) used with Model 1108A tunnel diode mount.

TDR system

System risetlme; less than 35 ps (110 ps) incident as measured with Model 1106A (Model 1108A).
Overshoot: less than $\pm 5 \%$.
Internal reflections: less than 10% with 45 ps (145 ps) TDR; use reflected pulse from shorted output.
Jitter: less than 15 ps ; with sígnal averaging, typically S ps.
Internal plckup; $p \leq 0.01$.
Noise: measured tangentially as a percentage of the incident pulse when terminated in 50Ω and operated in signal averaging made. Less than $1 \%(0.5 \%)$ on $0.005 /$ div to $0.02 /$ div; less than $3 \%(1 \%)$ on $0.05 /$ div to $0.5 /$ div.
Low frequency distortion: $\leq \pm 3 \%$.
Maximum safe Input: 1 volt.

Sampler system

Rlsetime: less than 28 ps (90 ps)
Input: 50Ω feed-through.
Dynamic range: 1 volt.

Maximum safe input; 3 volts (5 volts).
Low frequency distortion: $\leq \pm 3 \%$.
Nolse:
Normala less than $8 \mathrm{mV}(3 \mathrm{mV}$) tangential noise on $0.01 \mathrm{~V} /$ div to $0.5 \mathrm{~V} /$ div. Noise decreases automatically on 0.005 $\mathrm{V} / \mathrm{div}$,
Signal average: reduces noise and jitter approx. 2:1,
Tunnel dlode mount: direct connection for either Model 1106A or Model 1108A tunnel diode mount for TDR system.
Weight: ner, 3 Ibs ($1,4 \mathrm{~kg}$) ; shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: HP Model 1817A, \$1500; HP Model 1816A, \$800.

Tunnel diode mount connects directly to sampler head for TDR system,
Amplitude (both): greater than 200 mV into 50Ω.
Rlsetime: Model 1106A, approx. 20 ps; Mode! 1108A, less than 60 ps .
Output impedance: $50 \Omega \pm 2 \%$.
Squrce reflection: Model $1106 A$, less than 10% with 45 ps TDR; Model 1108 , less than 10% with 14 ps TDR.
Welght (both): net, $1 \mathrm{lb}(0,5 \mathrm{~kg}$); shipping, $3 \mathrm{lbs}(1,4 \mathrm{~kg})$.
Price: HP Model 1106A, $\$ 550$; HP Model 1108A, $\$ 175$

OSCILLOSCOPES 180 SYSTEM cantinued

Accessorias

Probes and probe accessories

Model 1123 A Active Probe
For probing high source impedances at high frequencies, the Model 1123 A should be used to apply input signals to the Model 1802A 100 MHz plug.in. This X 1 active probe has very low drift and noise, and provides an input RC of 100 k ohms and only 3.5 pF . Divider tips, blocking capacitors, and other convenient accessories are supplied.

Specifications, 1123A

Bendwidth: de to greater than 220 MHz (3 dB down).
Pulse response
Risetime: < 1.6 as (10% to 90%), over full dynamic range.
Overshoot, ringling, perturbations: 4% pk-pk with Model 1802A (dc to 100 MHz); 6% pk•pk with 1 GHz system. (Probe must be properly terminated in 50 ohms.)
Galn: adjustable to X 1 into 50 -ohm load.
Dynamic range
At output: $\pm 0.5 \mathrm{~V}$ peak.
At Input: $\pm 0.5 \mathrm{~V}$ peak around a reference voltage which can be offset with variable control from 0 to $\pm 0.5 \mathrm{~V}$ dc.
Noise: increases noise level by less than $300 \mu \mathrm{~V}$ pk-pk when used with Model 1802A (de to 100 MHz).
Drift
Probe tip assembly: less thas $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
Amp||fler assembly: less than $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
Input impedance: 100 k ohms shunted by less than 3.5 pF .
Output impedance: 50 ohms.
Maximum Input: $\pm 50 \mathrm{~V}$ (dc + peak ac).
Weight: net, $21 / 4 \mathrm{lbs}$ ($1,0 \mathrm{~kg}$); shipping $41 / 4 \mathrm{lbs}(1,9 \mathrm{~kg}$).
Power: supplied by Model 1802A plug-in. HP Model 1122A Power Supply ray be used to power up to four Model i123A Active Probes.
Length: overall length is approx. $41 / 2$ feet.
Accessorles turnished
Model 10214A 10:1 divider: increases input impedance to 1 megohon shunted by approx. 3 pF. Increases input dynamic range to $\pm 5 \mathrm{~V}$ and maximum input voltage to $\pm 350 \mathrm{~V}$ (dc + peak ac). Divider accuracy, $=S \not \approx$.
Model 10215A 100:1 divider: increases input impedance to 1 megohm shunted by appros. 3 pF . Increases input dynamic range to $\pm 50 \mathrm{~V}$ and maximum input voltage to $\pm 500 \mathrm{~V}$ (de + peak ac). Divider accuracy, $\pm 5 \%$.
Model 10̂217A blocklng capacltor: provides $0.001 \mu \mathrm{~F}$, accoupling with lower cutoff of 1.6 kHz , or 160 Hz when using divider. Add less than 3 pF shunt capacitance; maximum input voltage $\pm 50 \mathrm{~V}$ (dc + peak ac), or $\pm 200 \mathrm{~V}$ (dc + peak ac) when using divider.
Model 10228A blocking capacitor: provides $0.18 \mu \mathrm{~F}$, ac. coupling with lower cutof of 12 Hz , of 1.2 Hz when using divider, Adds less than 25 pF shunt capacitance; maximum input voltage $\pm 50 \mathrm{~V}$ (dc + peak ac), or $=200 \mathrm{~V}$ (dc \dagger peak ac) when using divider.
Model 10229A hook tip: may be used for circuit probing directly or with dividers and blocking capacitors.

Also included: Model 1123A also includes ground leads, spare tips, and solder sockets; a storage case is provided for the probe and its accessories.
Price: HP Model 1123A (including accessories), \$32s.

Resistive dividers

Mode! 10020A miniature resistive dividers facilitate signal measurement with Model 1802 A 100 MHz plug-in for low source impedances. Dividers allow marching various source impedances, all with just 0.7 pF of shunc capacitance.

Division Ratio	Inpuc R* (ohms)	Division Accuracy	Max. V \dagger (rms)	Input C (pF)
$1: 1$	50		6	
$5: 1$	250	$\pm 3 \%$	9	0.7
$10: 1$	500	$\pm 3 \%$	12	0.7
$20: 1$	1000	$\pm 3 \%$	15	0.7
$50: 1$	2500	$\pm 3 \%$	25	0.7
$100: 1$	5000	$\pm 3 \%$	35	0.7

*When terminated in 50 ohms.
tlimited by power dissipation of resistlue element.
Accessorles furnished: Model 10218A BNC adapter tip, 4-ft. cable, a 6.32 adapter tip, ground leads, and Model 10240B blocking capacitor.
Weight: net $1 \mathrm{lb}(0,5 \mathrm{~kg})$; shipping. $3 \mathrm{lbs}(1,4 \mathrm{~kg})$.
Price: HP Model 10020A, $\$ 100.00$.
For Model 10201 A .D resistive dividers (0.4 pF), see page 523.

Divider Probes

These miniature, lighrweight, 10:1 probes reduce loading on the circuit under test while maintaining full bandwidth capability of the oscilloscope. They may be used with any oscilloscope having an input RC of i megohm shunted by between 15 to 30 pF . A thumbwheel adjustment on the probe boot permits compensation for optimum step response, Each probe includes slip-on pincer tip, spanner tip, and ground lead.

Model 10004 A
Length: $31 / 2$ feet
Capacitance: 10 pF
Price: $\$ 35.00$

BNC TIp

Model 10011A BNC Tip for Models 10004A, 10005A, 10006 A probes. Price: $\$ 8.00$.

Probe Tip Kits

Probe Tip Kits, Models 10036A and 10037A, extend usefulness of $10004 \mathrm{~A}, 10005 \mathrm{~A}$, and 10006 A probes. Mrodel 10036 A consists of an assorment including tips for the following: 0.08 inch jack; 0.025 and 0.045 -inch square pin; 0.040 and 0.062 -inch dia. pin; and a long pin tip. Model 10037A contains six 0.025 -inch square-pin tips. Price: Model 10036A, $\$ 20.00$; Model 10037A, $\$ 15.00$.

OSCILIOSCOPES 180 SYSTEM кunumnat

Accassories

Testmobiles

Three different testmobiles are available for use with the 180 system. For description and specifications see page 550.

Oscilloscope camera

Oscilloscope cameras and accessories are available for permanent records of oscilloscope waveforms. For description and specifications see pages 551.553.

The Model 10166A panel cover, made of fiberglass material, provides protection to the front panel controls of the Model 180A or 181A. Panel cover also provides space for probe and accessory storage. Price: $\$ 25.00$.

Model 10167A Carrying Case

The Model 10167A Carrying Cover, made of flexible vinyl material, fits over the cabinet Model 180A or 181A. The top of the cover is slotted for access to the carrying handle. Price: $\$ 20$.

Panel cover
Cover for 180AR or 181AR protects panel from dust and accidental danage. May be used on the instrument whether rack mounted or when carried as a portable instrument. Price: HP Part No. 5060.0437, \$25.00

Viewing hood

10176A Viewing Hood

The Model 10276A viewing hood is a face-fitting, vinyl mask to aid in viewing fast transients. Price: $\mathbf{\$ 7 . 0 0}$.

Plug-in extender
The plug-in extender, HP Model 10407A, is available to alhow calibration and maintenance of the plug-ins, while the unit is operating. Price: $\$ 65,00$.

Both fixed and pivoted 22 -incl2 slides are available for slide mounting the $180 \mathrm{AR} / 181$ AR. Price: HP Patt No. 00180-93006 slide adapter (required for either slide), \$22.50; HP Part No. 1490.0714 fixed slides, 332.50 ; HP Part No. $1490-1719$ pivoted slides, \$37.50.

Blank plug-ins

Blank piug-ins are available for either vertical or horizontal compartments in the mainframe. Also avaidable is a doublesize blank plug-in. Price: K01-1801A (vertical), $\$ 65.00$; K01. 1821A (hocizontal), $\$ 65.00$; K 33.180 A (double), $\$ 65.00$.

- Operáting altitude ro 25,000 feet.
- Vibration 0.010 to 0.060 D.A. 5.33 Hz .
- Shock to Mil-S-901C Class I (400 -pound hammer drop).
- Operating humidity to 95% at $65^{\circ} \mathrm{C}$.
- RFI protection to Mil-I-6181D and Mil-I-16910C Class I.

Now the HP Model 180E offers you the solution to an ageold problem: to provide a highly accurate, versatile, lightweight, general-purpose oscilloscope which will meet the rigid requirements of military operations. The 180 E is fully specified for electrical performance as well as environmental performance.

In the past, the military user has had to sacrifice electrical performance in order to have an instrument rugged enough to withstand extreme environments. The 180E meets all electrical performance specifications of the 180A, but offers unexcelled environmental performance.

The complete system, including 180E mainframe, 1801 E vertical amplifier plog.in, 1821E time base plug-in, and the 10164A front panel cover, may be ordered through a government contract only as the AN/USM-281. The system is also available under Federal Stock Number 6625-053-3112. A rack version is also available using the 180 ER mainframe. Military designation for the rack system is AN/USM-296. Alternatively, the individual items may be ordered by HP Model Number (see cross-reference table).

Descriptian	MIL deslonation	$\underset{\text { Model }}{\text { Ho }}$	Prite
Portably cabinet system with PL-1186, PL-I187, CW-946	AN/USM-281	E02-180E	\$3,100
Rack-mount system with PL-1186, PL. 1187	AN/USM-296	E02.180ER	2,925
Portable oscilloscope	OS-189 (P)/USM-281	180E	1,215
Rack-mount oscilloscope	OS-194 (P)/USM-296	180ER	1,205
Dual citannel vertical amplifier	PL-1186	1801E	800
Time base and delay generator	PL-1187	1821E	920
Time base	PL-1213	1820 E	570
Panel covers with probes and accessories	CW-945/USM-281	10164A	165*

*If other probes than those normally supplied are desired, order 10164A Option 01 and subtract $\$ 55$. Then select appropriate probes as separate ltems.

Environmental specifications

(Refer to 180A for electrical specifications.)

Temperature operating $-28^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$

The instrument shall be operated at the maximum temperatute for at least 16 hours. A complete performance rest shall be made at the end of this heat run.
The instrument shall be allowed to stabilize at least 1 hour at the minimum temperature with the power off. It shall then be turned on and a complete performance test performed after a 30 -minute warm-up.

Temperature nonoperating $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

The instrument, nonoperating, is placed in the test chamber. The chamber is reduced to the minimum temperature and held for at least 72 hours. It is then raised to room ambient and a complete performance test performed after a 30 -minute $\begin{gathered}\text { arm- }\end{gathered}$ up. The procedure is repeated with the rest chamber held at the maximum temperature for at least 48 hours.

Humidity/temperature $-28^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ at humldities to 95%

In order to comply with a greater number of military specifications, two different temperature/humidity tests were conducted. In test No. 1, instrument was operating throughout test, and performance tests made at various temperatures from $-28^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ with the humidity constant at 95% (except uncontrolled at temperatures below $+5^{\circ} \mathrm{C}$) for cycle 1 and repeared for 4 additional 35 hour cycles at humidities of 90%. $75 \%, 50 \%$ and 25%. In test No. 2 instrument nonoperating except during test period at end of each of ten 24 hour cycles (no dry out period) consisting of subjecting the instrument to temperatures from $+20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ at a constant bumidity of 95%.

Altitude operating $\mathbf{2 5 , 0 0 0}$ feet

The instrument operating shall be subjected to a pressuce of 11.1 inches of mercury (temperature and humidity uncon. trolled) for at Jeast 1 hour. A performance test shall be conducted at this pressure. The pressure, with the instrument still operating. shall be increased to normal ground. At the completion of this test the instrument shall pass a complete performance test.

Aftizyde nonoperating 50,000 feet

The instrument, nonoperating, shall be subjecred to a pressure of 3.4 inches of mercury (temperature and humidity uncontrolled) for at least i hour.
The pressure shall then be increased to normal ground and the instrument shall pass a complete performance test.

Vibration 5 to 33 Hz

Instrument shall be subjected to vibration as follows for at least 5 minures at each frequency. If a resonant frequency is found, the instrument shall be vibrated at that frequency for at least 2 hours.

Frequenney	Amplitude
5.14 Hz	0.060 D.A.
15.25 Hz	$0.040 \mathrm{D.A}$
26.33 Hz	$0.020 \mathrm{D.A}$.

Repeat in all three planes, and at the conclusion of the test conduct a complete performance test.

Shock

AN/USM-281 (EO2-180E)
Passed MIL-5-901C Grade A: No. 400 hammer at 1-, 3 5 -foor drops in 3 planes.

AN/USM-296 (EO2-180ER)

10 G's for 11 ± 1 miliseconds to each of the 6 sides method as per MlL-E.4970A Procedure II (sandbox).

Both modeis

Each edge raised 15° or $4^{\prime \prime}$, whichever is greater, from solid table cop and dropped. Four drops per edge.

At the conclusion of the shock test the instrument shall pass a complete performance test.

EMC MIL-F-16910C and MIL-J-6181D

Tests were conducted according to two military specifications MIL-1-16910C class 1 and MIL-1-6181D. Both specifications were mer completely. In keeping with the requirements of these specifications the following conditions apply: no input signal applied, oscilloscope in CHOP mode, incensicy bright, and RFI filter on face of CRT.

Reliability (MTBF) 5000 hrs (MIL HDBK 217)

s oscilloscopes were randomly selected from finished stock and given a complete evaluation. All instruments were then cycled 6 brs. on, 2 hrs. off. Every 24 hrs., four of the oscilloscopes were given a petformance check and the fifth one a complate evaluation (instrument receiving complete evaluation was rotated each day). When each instrument had accumulated 1000 hrs. of operating time the test was terminared, with each instrument receiving a complete evaluation. One random failure was noted during the ress. The 100 -volt regulator in one oscilloscope failed to fire when turned on at low line. Normal line operation was satisfactory. No recalibration was allowed during any part of the test. Using this information (5000 total hrs. and 1 failure) and referring to MIL HDBK 217, the MTBF is 5000 his.

Line voltage and frequency variation

$115 \mathrm{~V} / 230 \mathrm{~V} \pm 10 \%$ ar 50.400 Hz .
Power consumption-less than 110 wates with plug-ins.

Package drop

20 Gs (22 milliseconds duration) on each of eight corners. 38 Gs (22 ms duration) on bottom.

PROBES

Versatile line of probes for all applications

When used with any of the following instruments, these Hewlett-Packard probes do not degrade the specified performance of the oscilloscope or piug-in. These probes may be quickly and accurately compensated ior optimum step response.

	120日	12RA/A崖	1300	1824	$\begin{gathered} 1200 \\ \text { seriat } \end{gathered}$	140 syatem	$\begin{gathered} 160 \\ \text { syrism } \\ \text { (excopl } \\ \text { 1802A) } \end{gathered}$
10001A, B	-	-	-	\bigcirc	0	\bigcirc	
10002A	-	-	-	-	-	-	
10003A	\bigcirc	-	-	\bigcirc	-	-	-
10904A							-
10005A							-
10006A							-
10012A	\bigcirc	-	-	-	-	-	
10025A	-	-	-	-	-	$\begin{aligned} & <500 \\ & \mathrm{kHz} \end{aligned}$	

Voltage divider probe specifications

Model No.	Dvas-gil Langth	Divides Atter.	Rethsilance M_{2}	$\begin{gathered} \text { Capacit- } \\ \text { anod } \end{gathered}$	сеmpro. sallar Range(pr)	Pakk Vots	Divialon aceuracy	Price
10001A	$5 \prime$	10:1	10	10 pF	15-55	600	2%	530
100018	10^{\prime}	10:1	10	20 DF	13.45	600	2\%	$\$ 35$
10002A	5	50:1	9	2.5 pF	15.55	1000	3\%	\$40
10003A	4 '	10:1	10	10 pf	15.55	600	2%	\$30
10004A	$3.5{ }^{\prime}$	10:1	10	10 pF	15.30	500	3\%	535
10005A	10^{\prime}	10:1	10	17 pF	15.30	500	3%	\$45
10008A	6^{\prime}	10:1	10	14 pf	15-30	500	3%	40
10012A	$6{ }^{\prime}$	10:1	10	16 pF	30.55	500	3\%	\$35
10025A	$6{ }^{\prime}$	$1: 1$	-	150 pF	-	600	-	$\$ 15$

Probe accessories
Probe tips
For probes 10001A-10003A: Model 10035A kit contains pincer jaw, banana tip, pin tip, hook tip, and spring tip. Price: Model 10035A, 55. Model 10010C BNC adapter rip. Price: Model 10010C. $\$ 10$.
For probes 10004A-10006A and 10012A: furnished with each probe are: slip-on pincer tip, spanner tip, and ground lead.
Model 10036A kit contains spring tips for 0.08 inch jack; 0.025 and 0.045 inch square pin; 0.040 and 0.062 inch dia. pin, and a long pin tip. Price: Model 10036A, $\$ 20$. Model 10037 A kit contains six spring tips for 0.025 inch square pins. Price: Model 10037 A, $\$ 15$.
Model 10011A BNC adapter tip. Price: Model 10011A. $\$ 8$.

Terminations

Model 10100A 50 ohm feed.ehrough, $\$ 15$.
Model 10100 B 100 ohm ($\pm 2 \mathrm{ohm}$) keed-through for 1110A current probe. Price: Model 10100B, $\$ 18$.
Adapters
Model 10110A male BNC to dual female banana post. Price: Model 10110A, $\$ 5$.
Model 10111A female BNC to shielded banama post. Price: HP Model 10111A, 57
Model 10112 A miniarture female BNC to shielded banana post. For use with 1200 series oscilloscopes. Price: HP Model 10112A, $\$ 7$.

Current probe

With the HP Model 1110 A Current Probe you can observe fast-rise, ac current waveforms on any wideband oscilloscope.

Specifications, 1110A

Sensitivity: $1 \mathrm{mV} / \mathrm{mA}$.
Accuracy: $\pm 3 \%$.
Bandwidth: lower limit: 1700 Hz (850 Hz with Model 101008100 ohm termination). Upper limit: inversely proportional to capacitance of load: $\{\mathrm{pP}$ load, 45 MHz , 7 ns risetime; 30 pF load: $35 \mathrm{MHz}, 9$ ns risetime.
Maximum de current: 0 s amperc.
Maximum ac current: is amperes pk.pk above 4 kHz ; decreasing below 4 kHz at the rate of $3.8 \mathrm{~A} / \mathrm{kHz}$ (30 A pk-pk max. with Model 10100B 100 ohm termination).
Insertion impedance: approximately 0.01 ohm, shunted by $1 \mu \mathrm{H}$: capacitance to ground is less than 3 pF .
Dimensions: aperanure $\mathrm{s} / 32^{\prime \prime}$ (4 mm) dia; s ft cable.
Prlce: HP Model 1110A, $\$ 100$.
Accessory available: Model 10100B 100 -ohm feed-through termination; decreases sensitivity to $0.5 \mathrm{mV} / \mathrm{mA}$, lower cut-off to 850 Hz , increases maximum ac current to 30 A pk-pk above 4 kHz ; price, $\$ 18$.

Current probe amplifier

The Model 1111A Amplifer increases the 1110A Probe sensitivity and exrends low frequency response. When used with' a $50 \mathrm{mV} / \mathrm{cm}$ sensitivity oscilloscope, the Model 1111 A atten. uator indicates directly in $\mathrm{mA} / \mathrm{cm}$ on the CRT thus climinating cumbersome conversion factors.

Speciflcations, 1110A with 1111A

Sensitivity: $1 \mathrm{~mA} / \mathrm{cm}$ to $50 \mathrm{~mA} / \mathrm{cm}$ in X 1 , and $100 \mathrm{~mA} /$ cm to $5 \mathrm{~A} / \mathrm{cm}$ in X 100 ($1,2,5$ sequence when used with an oscilloscope at $50 \mathrm{mV} / \mathrm{cm}$ sensitivity).
Accuracy: $\pm 3 \%$ on $90 \mathrm{~mA} / \mathrm{cm}$ sensitivity and belon'; $\pm 4 \%$ on $100 \mathrm{~mA} / \mathrm{cm}$ sensitivity and above (when Models 1110 A and 1111 A are calibrated together).
Bandwidth: 50 Hz to 20 MHz (18 ns risetime).
Noise: less than $100 \mu \mathrm{~A} \mathrm{pk}-\mathrm{pk}$, referred to input.
Maximum ac current: 50 A pk - pk above 700 Hz decreasing below 700 Hz at the rate of $1.4 \mathrm{~A} / 20 \mathrm{~Hz}$.
Output impedance: 50 ohms.
Dlmenslons: amplifier: $11 / 2^{\prime \prime}$ high, $51 / 8^{\prime \prime}$ wide, $6^{\prime \prime}$ deep ($38 \times 130 \times 150 \mathrm{~mm}$).
Welght: Model 1111 A : net, $2 \mathrm{lbs}(0,9 \mathrm{~kg})$; shipping, 3 lbs ($2,4 \mathrm{~kg}$).
Power: L15 or $230 \mathrm{~V} \doteq 10 \%$, 50 to 1000 Hz , approx 1.5 W . Price: Model $1111 A, \$ 160$

TTL logic probe*

Here's a timesaver (picture on preceding page) for design and trouble-shooting of TTL and DTL logic and systems. The tip of the 10525 A fashes brightly for 0.1 s to clearly indicate \rightarrow Does not connect to osciltoscope.
presence of single pulses as short as 30 ns (negative pulses produce momentary extinction). It lights to partial brilliance connected to a pulse train, is fully lighted connected to a "high" logic state $(>+1.4 \mathrm{~V})$, and extinguishes connected to a "low" logic state. Triggering is automatic; there are no slope or level controls to adjust. The probe is powered from the tested circuit's s V supply, or from an HP 6214A or similar porer supply.

Specifications, 10525A

Input impedance: $10 \mathrm{k} \Omega$. Trigger threshhold: +1.4 V.
Pulse width sensitivity: 30 ns for $\pm 2 \mathrm{~V}$ or greater pulses refecenced symmerrically about +1.4 V . Overload protec. tion: -50 to +200 V continuous; -200 to +200 V transient; 120 V ac for 10 s . Powes required: (through BNC shown in photo) s $\mathrm{V} \pm 10 \%, 75 \mathrm{~mA}$. Temperature: 0 to $53^{\circ} \mathrm{C}$. Power connection adapters supplied. Price: on req; quantity discounts available.

Active probe

Model 1123A Active Probe:1:1 probe with 220 MHz band. width, 1.6 ns risetime, 100 k ohms and 3.5 pF input impedance. Powered by cither Model 1802A plug-in or Model 1122A poner supply. Complete 1123A specifications on page 544.

Probe power supply

Model 1122A power supply powers up to four Model 1123A Active Probes.

Specifications, 1122A
Probe-driving capablity: up to four Model 1123A Active Probes.
Dimenslons: $31 / s^{\prime \prime}$ wide, $3.7 / 16^{\prime \prime}$ high, $115 / 8^{\prime \prime}$ deep (130 x $87 \times 295 \mathrm{~mm})$.
Weight: net, $51 / 3 \mathrm{lbs}(2,4 \mathrm{~kg})$; shipping. $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: HP Model 1122A, $\$ 225$.

High quality cables

Hewlett-Packard $50.0 h m$ coaxial cables insure faithful transmission of fast-rise, high frequency signals. Mismatch loss is reduced to a minimum by using close tolerance (1%) 30.0 hm cable and high quality connectors.

Cable specifications

HP Madel	Lonpih	Datcrípion	Prica
101204	3' (9) cm$)$	male 8NC-to-mala BNC	\$10
101218	$8^{\prime \prime}(20.3 \mathrm{~cm})$	mafe ENC- lo-mala BNC	\$10
10122A	3 (91 cm)	male BNC.lo.male npe N	\$10
10123 A	6' $1 \overline{8} \overline{3} \mathrm{~cm}$)	male 9NC-10.male BNC	511
10124A	$9^{\prime}(214 \mathrm{~cm})$	mala 日NC-lo male 8NC	512
10127 ${ }^{\text {m }}$	1'(30.5 cm)	GR-to-mále BNC	\$10
10128A	$1 '(30.5 \mathrm{~cm})$	GR-to-femalo gite	$\$ 18$

Viewing hoods

The Model 10175A polacized hood increases contrast and reduces glate for viewing dim traces under all ambient light conditions; price, $\$ 15$.
The Model 10174 B hood with cemovable vinyl face mask is ideal for viewing fast transients; designed for use on HewlettPackard round bezels. Price, \$1s.

Model 10176A flexible viewing hood is for use on rectangular bezels of 1200 series and 180 systems. Price, 57 .

Hewlett-Packard Testmobiles provide easy, convenient portability of test equipment to multiple test locations. These testmobiles can also be equipped to provide extra storage space for equipment and accessories which will increase test bench working area.

Model 1116A Testmobile

The Model 1116A can be tilted from horizontal to 30° above horizontal, and can also be folded for easy transportation to the test site or for more convenient storage.
Dimensions: $40^{\prime \prime}$ high, $20^{\prime \prime}$ wide, $24^{\prime \prime}$ deep ($1016 \times 508 \times 610$ mm).
Welght: net, $34 \mathrm{lbs}(15,3 \mathrm{~kg})$; shipping, $42 \mathrm{lbs}(18,9 \mathrm{~kg})$.
Price: HP Model 1116A, \$95.

Model 1117B Testmobile

The Model 1117B can be equipped as a complete, portable resr center. The top instrument tray can be tilted. The front or rear frame can accommodate standard 19 inch RETMA rack panels, with central power distribution to the instruments provided by four standard NEMA plugs on the back panel.
Dimensions: $39^{\prime \prime}$ high, $20^{\prime \prime}$ wide. $24^{\prime \prime}$ deep (991 $\times 508 \times 610$ $\mathrm{mm})$.
Weight: net, $85 \mathrm{lbs}(38,3 \mathrm{~kg}$); shipping, $117 \mathrm{lbs}(52,7 \mathrm{~kg})$.
Price: HP Model 1117 B (without dravers), $\$ 185$.
Model 10475A 3 -inch drawer for 1117 B
Weight: net, 9 lbs ($4,1 \mathrm{~kg}$); shipping, 13 lbs ($5,9 \mathrm{~kg}$).
Price: HP Model 10475A, $\$ 30$.
Model 10476A 8 -inch draver for 1117B
Weight: net, 11 lbs (5 kg); shipping, $25 \mathrm{lbs}(11,3 \mathrm{~kg}$).
Price: HP Model 10476A, $\$ 35$.

Model 1118A Testmobile

The Model 1118 A is designed to accept cabiner models of the 180 system or the 1200 series oscilloscopes only. Instrument height may be adjusted from 32 to 42 inches. The legs may be folded for easy carrying or storage.
Dimensions: $32^{\prime \prime}$ to $42^{\prime \prime}$ high (813 mm to 1067 mm).
Welght: net, $11 \mathrm{lbs}(5 \mathrm{~kg})$; shipping, $16 \mathrm{lbs}(7,2 \mathrm{~kg})$.
Price: HP Model 1118A, \$95.

Model I119A Testmobile

The Model 1119A, for standard Hewrett-Packard modular instruments, has a unique trunnion mounting that allows the instrument to be rotated a full 360°.
Dimenslons: $38^{\prime \prime}$ high, $191 / 4^{\prime \prime}$ wide, $231 / 2^{\prime \prime}$ deep ($965 \times 489 \times 597$ mm).
Weight: net, $42 \mathrm{lbs}(19,1 \mathrm{~kg})$; shípping, 50 libs $(22,5 \mathrm{~kg}$).
Prlce: HP Model 1119A, \$110.
Model 10479A tilt tray for 1119A or 1110B

For use with instruments other than standard HewlettPackard modular size.
Dimenslons: $171 / 4^{\prime \prime}$ wide, $23^{\prime \prime}$ deep ($438 \times 584 \mathrm{~mm}$).
Welght: oft, 12 lbs ($5,5 \mathrm{~kg}$); shipping, $15 \mathrm{lbs}(6,8 \mathrm{~kg}$).
Price: HP Model 10478A, $\$ 35$.
Model 10980 A storage cabinet for 1119A
Contains $15 / 8^{\prime \prime}$ draver for cables and accessories; mounts in place of lateral brace.
Dimensions: $111 / 4^{\prime \prime}$ high, $181 / 4^{\prime \prime}$ wide, $15^{\prime \prime}$ deep ($286 \times 464 \times 381$ mm).
Weight: ner, $191 / 2 \mathrm{lbs}(8,9 \mathrm{~kg}$); shipping, $221 / 2 \mathrm{lbs}$ (10 kg).
Price: HP Model 10480A, \$35.

Model 1119B Testmobile

Model 1119B is the same as Model 1119A except that the Model 10480A Storage Cabinet is factory-installed in place of the lateral brace.
Dimenslons: same as 1119A Testmobile.
Weight: net, $58 \mathrm{lbs}(26,3 \mathrm{~kg})$; shipping, $69 \mathrm{lbs}(31,3 \mathrm{~kg})$.
Price: HP Model $1119 \mathrm{~B}, \$ 145$.

Model 1119C Testmobile

Model 1119C is designed for use with cabiner models of the 180 system and 1200 series, which attach to a pivotable support bracket. The lateral brace contains storage space fír small accessories.
Dimensions: $38^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ wide, $231 / 2^{\prime \prime}$ deep ($965 \times 474 \times 597$ mm).
Weight: net, $30 \mathrm{lbs}(14,6 \mathrm{~kg}$) ; shipping, $38 \mathrm{lbs}(17,2 \mathrm{~kg}$).
Price: HP Model 1119C, $\$ 110$.
Model 10479 B tilt tray for 1119 C and 1119 D
For use with equipment other than Hewlett-Packard 180 system or 1200 series oscilloscopes.
Dlmensions: $111 / 4^{\prime \prime}$ wide, $23^{\prime \prime}$ deep ($401 \mathrm{~mm} \times 507 \mathrm{~mm}$).
Welght: net, 8 lbs ($3,6 \mathrm{~kg}$); shipping, il lbs (5 kg).
Price: HP Model 10479B, $\$ 35$.
Model 10480 B storage cabinet for 1119 C
Contains $15 / s^{\prime \prime}$ drawer for cables and accessories; mounts in place of lateral brace.
Dimensions: $111 / 4^{\prime \prime}$ high, $121 / 4^{\prime \prime}$ wide, $15^{\prime \prime} \operatorname{deep}(286 \times 449 \times 381$ mm).
Welght: net, 11 lbs (5 kg); shipping, $14 \mathrm{lbs}(6,4 \mathrm{~kg}$).
Prices HP Model 10480B, $\$ 35$.
Model 1 [19D Testmobile
Model 1119D is same as Model 1119C except that the Model 104808 Storage Cabinet is factory installed in place of the lateral brace.
Dimensions: same as 1119 C Testmobile.
Weight: net, $43 \mathrm{lbs}(19,8 \mathrm{~kg}$) ; shipping, $51 \mathrm{lbs}(23 \mathrm{~kg}$).
Price: HP Model 11190, \$135.

OSCILLOSCOPE CAMERA Convenient pictures of oscilloscope traces
 Model 196A/B

OSCILLOSCOPES

Description

The 196A/B provides a quick, convenient nay for recording oscilloscope displays. The only difference between the 196A and 196B is that the 196B has an uleraviolet light source for illuminating internal graticules and the 196A doesn't. The 196A, therefore, doesn't require line power for operation.

A forward access port allows adjustment of shutter speed and diaphragm with the camera mounted on the oscilloscope. The lens may be adjusted vertically chrough 11 detented positions using an external knob, allowing multiple photos to be easily made. A quick-connect clamp offers speedy, reliable mounting to the oscilloscope.
Object-to-image ratio is preadjusted at the factory to $1: 0.9$ for optimum photos for most applications. The f/1.9 lens which is specifically designed for oscilloscope photography has extremely low distortion, which means acciurate measurements can be made from the photographs.

Specifications, Model 196A/8

Object-to-Imageratio: 1 to $0.9 ; 1$ to 1 optional.
Lens: $75 \mathrm{~mm}, / / 1.9$ high resolution lens.
Facus: adjustable; factory-set for optimum resolution of both trace and graticule.
Lens opening: $f / 1.2$ to $/ / 16$.
Shutter: speed and $\{$-scop setrings are completely visible and adjustable from access port; shutcer speeds are: $1 / 50$, 1/25, 1/10, 1/5, 1/2, 1 sec., Time. Bulb (solenoid operation on special order).
Print size: $31 / 4^{\prime \prime} \times 41 / 4^{\prime \prime}(83 \times 108 \mathrm{~mm})$.
Image size: $27 / \mathrm{s}^{\prime \prime} \times 3.13 / 16^{\prime \prime}(73 \times 96 \mathrm{~mm})$.
Film: Polaroid ${ }^{(1)}$ Land Film Packs, Type 107, 3000 speed.
Dimensions: $10^{\prime \prime}$ wide, $131 / 2^{\prime \prime}$ Jong, $101 / 4^{\prime \prime}$ high, (254 x 343 $\times 262 \mathrm{~mm}$).
Welght: net, 9 lbs ($4,1 \mathrm{~kg}$); shipping. $18 \mathrm{lbs}(8,1 \mathrm{~kg}$); 32 lbs ($14,9 \mathrm{~kg}$) with carrying case.
Power: Model L26B, $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 10 \mathrm{~W}$.
Accessories avallable: Model 10351A Carrying Case, $\$ 40$: Model 10355A Tekrronix Adapter, $\$ 15$.
Price: HP Model 196B, $\$ 475$; HP Model 196A (identical with Model 196B, but withour black light source), \$.25.
Special order: i:1 object-1o-image ratio, add 525 ; and order Col-196A for Model 196A, C06-196B for Model 196B;
Conversion kits: 196A-95C, converts " A " to " B "; price, $\$ 50$; 196A.95D, same as above but with Option 12; price, $\$ 65$.
Option 12: Model 196B for 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 60 Hz operation, add $\$ 15$.

OSCILLOSCOPE CAMERA
Permanent records of oscilloscope traces Model 197A

The Model 197A Oscilloscope Camera provides an accurate, convenient way of recording oscilloscope displays. It is a precision instrument, meant for long, hard use.

The Model 197A employs a new electronic shutter which provides accurate exposure times from $1 / 30$ to 4 s . The shutter may be tripped electrically from a remote source, and a sync output provides a contact closure when the shutter is opened, allowing synchronizing of other equip. ment with the camera. Circuitry is all solid-state.

The new $f / 1.9$ lens, designed for Hewlett-Packard by Wollensak, is mounted in a direct line with the film and transmits a maximum amount of light for photography of dim traces.

An ultra-violet light is included in the Model 197A for illuminating the internal graticule used on HP oscilloscopes. The "black" light, adjustable in intensity to suit condi. tions, excites the phosphor on the tube face and causes it to photograph an intermediate gray. The gray background clearly distinguishes the thin black graticule lines by contrast. Trace intensity is not degraded by this induced fluorescence, and the resulting photographs are actually easier to read since the black graticule lines also contrast clearly with the trace, and their exact crossings can be accurately located. This black light has the additional advantage of presensitizing the film at the same time that the photograph is taken. The uniform glow of the CRT face lowers the apparent threshold sensicivity of the film, enabling it to record dimmer traces and making possible clear, sharp photographs of both repetitive and single sweep phenomena (see Figure 1). In addition to continuously adjustable ultraviolet intensity, the Model 197A also provides a "flash" feature which automatically turns the UV on and off. The "flash" permits recording of slow single-shot events and complete graticule information in a single exposure. In other cameras a double exposure is usually required.

All Model 197A controls are located outside the camera. Shutter speed, f-stop, and UV light brightness are color coded to provide an optimum starting point for the inexperienced photographer. The lightweight Model 197A is

> Flgure 1. "Half-andhalf" photo made with special cathode ray tube compares photographic quall. ties of conventional external graticule (left) and UV.llghted lnternal gratlcule.

quickly and easily mounted on any oscilloscope, and swings away from the CRT face when not needed. The face-fitting, fiexible hood has a low viewing angle for accurate alignment of the trace with an external graticule. The hood may be removed and replaced with a flat panel, allowing a series of cameras to be mounted on stacked oscilloscopes with heights as low as 7 inches.
The Model 197A back may be rocated from the normal horizontal position to a vertical position, allowing two smaller pictures to be taken on one photograph. The back also can be moved through 11 detented positions for multiple exposures (see Figure 2) or it can be removed and replaced with a 4×5 inch Graflok back. The entire filln area of the back may be utilized through the use of the Model 197A's easily adjustable continuous reduction ratio feature. The camera may then be quickly refocused with a simple knob adjustment, using the furnished split image focusing plate stored in the camera.

Figure 2. Multiple exposure photo. graphs are oasily made with the Model 197A Camera.

Specifications
Reduction ratlo: continuously adjustable from 1:1 to 1:0.7; reference scale provided on focus plate.
Lens: $75 \mathrm{~mm}, \dagger / 1.9$ high transmission lens, manufactured exclusively for HP by Wollensak; aperture ranges $\int / 1.9$ to f/16; optional $88 \mathrm{~mm} / / 1.4$ OscilloRaptar lens available.
Shutter electronically operated and timed shutter, with all solid-state circuitry; shutter speeds are $1 / 30,1 / 15,1 / 8,1 / 4$, $1 / 2,1,2,4 \mathrm{~s}$, Time, and Bulb; shutter has a sync contact closure output for triggering external equipment and input jack for remote operation.
Camera back: Polaroid Land Camera using pack film Type 107 supplied; Grafoke back available (see Options): backs
may be interchanged without refocusing and may be rotated in 90 -degree increments.
Mounting: quick lift on-off mounting with positive lock; swing away to left.
Vlewing: low-angle, direct viewing flexible face mask; hood may be zemoved and replaced with panel to allow stacking on 7 -inch high oscilloscopes (see Accessories Available).
Multiple exposure: back moves vertically through 11 detented positions at $1 / 2 \mathrm{~cm}$ per detent at $1: 0.9$ object-co-image ratio.
Focus: adjustable focusing with lock; split image focusing plate provided.
Dimensions: $14^{\prime \prime}$ long, $105 / 2^{\prime \prime}$ high, $75 / 8^{\prime \prime}$ wide ($356 \times 267 \times$ 194 mm) with hood; $12^{\prime \prime}$ long, $61 / 2^{\prime \prime}$ high, $7 / 8^{\prime \prime}$ wide (305 x $169 \times 194 \mathrm{~mm}$) without hood.
Welght: net $10 \mathrm{lbs}(4,5 \mathrm{~kg})$: shipping $19 \mathrm{lbs}(8,6 \mathrm{~kg})$.
Power: $115 \mathrm{~V} \pm 10 \%$, 50 to $1000 \mathrm{~Hz}, 6 \mathrm{~W}$.
Accessorles furnished: combination split image focusing plate and reduction ratio scale.
Price: HP Model 197A, \$540.
Option 01: without ulteaviolet light, deduct $\$ 50$.
Option 02: $f / 1.4$ lens, add $\$ 270$.
Optlon 03: Grafok back in place of Polaroid back: no charge.
Optlon 12: modified for 230 V operation; no charge.
"Polarold"'(1) by Polarold Corp.
"Graflok"(B) by Graflex, linc.

Accessories available

Camera Backs

The Model 197A is supplied with a Polaroide Pack Film back as standard or a 4×5 Graflok ${ }^{(8)}$ back as Option 03. These backs can also be ordered separately. Polaroid back Model 10353A, \$85; Grafiok back Model 10352A, \$85.

The Model 197A fits all HP oscilloscopes and can easily be fitted to other types by means of bezel adapters. Model 10355A adapts to Tektronix and Fairchild 5-inch round bezels, \$15. Model 10356A adapts to Tektronix 560 Series rectanguiar bezels, $\$ 15$. Model 10357A adapts to Tektronix 640 Series rectangular bezels, $\$ 15$. The Model 10360A adapts the Model 196A/B camera to the HP rectangular bezel, \$15. The Model 1036IA adapts the Tektronix C12 camera to the HP rectangular bezel, \$15. The Model 10362A adapts the Tektronix C27 camera to the HP rectangular bezel, s15. Model 10363A adapts Tektronix C30 or C40 cameras ro HP rectangular bezel, \$15.

Carrying Case

The Model 10358 A carrying ease is a sturdy fiber-glass and aluminum construction with foam padding to provide maximum protection for the Model 197A in transit or storage, $\$ 65$.

Other accessories

Model 10354A Viewing Hood Replacement Plate is used in place of the Model 197A viewing hood and permits camera mounting on stacked oscilloscopes with heights as low as 7 inches, $\$ 7$.

The Model 10359A Viewing Iens is a ground plastic lens which fics inside the viewing hood for easy trace view. ing by those with farsighted vision, $\$ 25$.

Accelerating Voltage-The cathode-to-viewing.sercen voltage applied to a cathode ray tube for the purpose of accelcrating the electron beam.
Alternase Mode-A means of displaying output signals of two or more channels by switching the channels, in sequence, after each sweep.
Automatic Triggeying-A mode of triggering in which one or more of the triggering circuit controls are preset to conditions suit. able for automatically displaying repetitive waveforms. The automatic mode may also provide a recurrent trigger or recurtent sweep in the absence of triggering signals.
Banduridin-A statement of the frequencies defining the upper and lower limits of a frequency spectrum where the amplitude response of an amplifier to a sinusoidal waveform becomes $.707(-3 \mathrm{db})$ of the amplitude of a reference frequency. When only one number appears. it is taken as the upper limit.
Chopped Mode一A time sharing method of displaping ourput signals of two or more channels with a single cathode ray ube gun, in sequence, at a rate not referenced to the sweep.
Common Mode Rejection Ratio (CMRR) Ratio of the deflection factor for a com-mon-mode signal to the deffection factor for a differential signal.
Common-Mode signal-The instantaneous algebraic average of wo signals applied to a balanced circuit, all signals referred to a common reference.
Common-Mode Signal Maximum-The larg. est common-mode signal at which the specified common-mode rejection ratio is ralid.
DC Balance-An adjustment of circuiry to avoid a change in do level when changing gain.
DC Drift (Stability)-Property of retaining defined electrica! characteristics for a prescribed period.

Glossary of oscilloscope terminology

DC Sbitt-An ecror in transient respoase with a time constant approaching several seconds.
Deflestion Axis-The major coordinates passing through the center of the viewing area.
Defection Factor-The ratio of the input signal amplitude to the resultent displacement of che indicating spot (e.g., rolts/ division).
Delayed Sweep-A sweep that has been de. layed either by a predetermined period or by a period determined by an additional independent variable.
Differential Amplifey-An amplifier whose output signal is proporional to the alge. braic difference berween two inpur signals.
Dual-Beam Oscilloscope-An ascilloscope in which the cathode ray tube produces iwo separate electron beams that may be indi. vidually or jointly controlled.
Dual Trate-A mode of operation in which a single beam in a cachode ray cube is shared by two signal channels. See Alternate Mode and Chopped Mode.
Free-Running Sucep-A sweep that runs without being triggered and is not synchro. nized by any applied signal.
Guarded Inyu-Mcans of connecting an input signal so as to prevent any common mode signal from causing current to for in the input, thus differences of source impedance do nor cuuse conversion of the common mode signal into a differential signal.
Input RC Characteristics-The de resistance and capacitance to ground present at the inpur of an oscilloscope.
Internal Graticule-A scale for measurement of quantities displayed on the crt whose rulings are a permanent part of the inner surface of the cathode ray cube faceplate.
Jilles-An aberration of a repetitive display indicating instability of the signal or of the oscilloscope. May be random or periodic, and is usually 2550 ciated with the time axis.

Magnifed Sweep-A sweep whose time per division has been decreased by amplifica. tion of the sweep waveform rather than by changing the time constants used to generate it.
Mixed Sweep-In a system having both a de. laying sweep and a delayed sweep, a means of displaying the delaying sweep to the delaying pickoff and the delayed sweep beyond that point.
Risetime-The interral between the instants at which the pulse amplitude first reaches specified lower and upper limits. Unless otherwise stated, these limits stall be 10% and 90% of the pulse's amplitude.
Single Sweep-Operating mode for a trig. gered-swcep oscilloscope in which the sweep must be reset for each operation. thus preventing unwanted multiple dis. plays.
Sweep-An independent variable of a display; unless otherwise specified, this rariable is a linear function of time, but may be any quantity that varies in a de. Gnable manner.
Sueep Holdoft-The incerval becween sweeps during which the sweep and/or trigger circuits are inhibited.
Time Base-The sweep generator in an oscilloscope that generates the cime function. which is usually linear and expressed in $\mathrm{sec} / \mathrm{cm}$.
Time Base Accurasj-Accuracy of the time base usually expressed in terms of average rate error as a percent of full scale.
Trigger-A pulse used to initiace some function.
Tyiggeying Letel-The instantaneous level of a criggering signal at which a crigger is to be generated.
T,izgering Slope-The positive going (+ slope) or negative slope (- slope) portion of a trigering signal from which a trig. get is to be derived.

Cathode-ray tube phosphor characteristics

Phosphor	Under Exolitalion Treoe Color After-Glow		Persistenoe	Ralatlya Burn Rotictance	Relative Visual Brifhtness
P2	yellowish-green	yellowish-green	medium short	6	6.5
P4	white	while	medium	8	5
P7	while	yellowish-green	long	3	4.5
Pll	blue	bue	medium short	3	2.5
P31	green	green	meálum short	10	10
Desorrpition of Persbetanoe			Time to Desay to 10% al Intitial Brightness		
medium short			10 microsec to 1 millisec		
medium			1 millisec to 100 millisec		
Iong			100 millisec to 1 sec		
Phosphor	Applloation				
92	Persistence useful for observing low rep rate phenomena.				
P4	White trace; high contrast display.				
P7	Longer persistence for low spesd occurrences. Used primarily in medical application.				
Pl1	Highest writing rate; used in photographic applications.				
P31	Standard KP phosphor because of its high visual brightness and high burn resistance.				

SELECTION GUIDE

The following is a step-by-step procedure which, when used with the Condensed Listing on the following pages and the Definitions on pages 562,563 will be helpful in thoosing the right power supply.

(1) Determine dc output voltage rating

A de voltage requirement is often expressed as a nominal rating, but power supplics are rated in terms of maximum oueput under worst operating conditions. For example, if the de voltage required is nominally 32 volts, adjustable $\pm 10 \%$, a 36 vole supply (not 32 volts) should be obtained, provided operation is actually desired at 110% of nominal (35.2 volts). This can be important if "marginal checking" of a sys. tem or a load circuit is to be accomplished by varying the do power supply fecding it.

(2) Determine dc output current rating

The output current rating of a power supply musr be selected on the basis of the peak current requirement, not the average current requirement; this results from the fact that the current limiting protection circuitry internal to the supply is extremely fast in order to protect the series power transistors. The current limit circuit is normally adjusiable to between 105 and 110% of the nominal current rating of the power supply. If inverse current loading is involved, the pow. er supply must have a current rating equal to or greater than the sum of peak current delivered and peak current absorbed.

(3) Consuit condensed listing

Enter the Condensed Listing at the voluge rating found from (1). Supplies above this point are eliminated from consideration becnuse of insufficient output voliage. Many supplies below this point are also eliminared because of a current rating too smalt compared with (2). If the desired output volt-age-current combination does not appear in the Condensed Listing, considet series and parallel combinations of power supplics: Hewlett-Packard's Auto-Scries and Auto. Parallel feature permits one knob control and equal voltage and current sharing.

(4) Constant voltage and/or constant current output

Mos: applications require constant voltage power supplies. However, some load devices require a constant current source of de power. Still other applications (e.g. bartery charging and electrolytic capacitor forming) call for supplies which have automatic crossover between constant voltage and constant current operation.
If the requirement invoives constant current performance, then the Condensed Listing should be used to determine which supplies remaining from (3) are capable of
constant carrent operation. Remember that all Remote Programming constant voltage supplies can also be converted to constant current use with one external resistor.

(5) Speciflcations for load regulation, line regulation, ripple and transient response

Generally spcaking, a Hewletr-Packard power supply employs one of two basic circuit sechnique - (1) a transistor regulator, or (2) an SCR regulator. (In the case of high porier output rating, the transistor reg. ulator is preceded by an SCR preregulator.) All low output power supplies use circuit technique (1), since this results in both lower cose and better performance. Either circuit technique (1) or (2) may be utilized in a supply of moderate output porver capability. Power supplies of very high output power employ circuit technique (2).

These tro circuit techniques result in dis. tinctly different performance characteristics - particularly with regard to regulation, ripple and transient response.

Specificaton	Translsior fegulated
Losd Regulation	0.001\% to 0.05\%
Line Ragulation	0.001% 10 0.05\%
Rippla and Nolse	50 hv lo 1 mv
Translent Response	Less than $50 \mu s e c$.
Spechication	SCA Regulated
Load Regulasion	0.1% to 1%
Line Regulatlon	0.1\% to 1%
Ripple and Nolse	0.1\% to 1\%
Translent Response	Less than 50.200 msec .

(6) Is remote programming required?

If it is desited to control the outpur of the power supply remotely using switched or variable values of resistance, or if the supply is to be controlled by means of a voltage input, then look on the Condensed Listing for those pawer supplies with a check under "Remote Programming."

(7) Physical configuration

Porer supplies are avaitable in three basic packages - rack mounting (seandard 19" RE' $(M A)$, bench, and modular. For high ourput ratings, rack mounting is the only practical configuration. All supplies which are not normally rack mounting are easily adapted to rack applications using standard hardware available from Hewlett-Packard. Reference to the appropriate catalog pages will indicate the nacure and cost of this rack mounting adapting hardwace.

(8) Miscellaneous requirements

Depending on the particular application, check also for remote error sensing, permissible values of input line voltage and frequency, front and/or rear output terminals, meters, erc. Many of these miscellaneous requirements can be checked directly on the Condensed Listing. In other cases it will be necessary to refer to the more de.
tailed information on the catalog pages ref. erenced by the Condensed Listing.
A spec sheet can be obtained from any Hewletr-Packard sales office.

Power supply series designations

Series designations identify groupings of Hewletr-Packard power supplies that have similar circuit techniques and operating chatacreristics.
The model numbers assigned to each Series can be determined frem the Product Category index on next page.
Note that each multiple letter Series des. ignation (1) suggests the general rype of power supply in a given category and (2) indicates (in the third letter) the nature of the power supply case and its "normal" mode of installation. A final " B " indicates Bench supplies and a final " R " applies to units which are Rack mounted. Absence of a " B " or an " R " as the final leter means that the supplies have not been designed primarily for either Bench: or Rack use, or that the series includes both full rack width and balf rack width instruments.
Notice that these designations are not part of the model number. They do not appear on the instrument and should not be used when ordering

Series	Desorliption
BENCH	Small Laboratory Bench
CCB	Constant-Current, Bench
DPR	Dual Power Rack
HVE	High Voltage 8ench
HVR	High Voltage Rack
ICS	Low Voltage for Integrated Circuits
LAB	Laboratory Bench
LVR	Low Voltage Rack
MOD	Plug-In Modular
MPE. 3	3/2" ${ }^{\prime \prime}$-High Medium Power Bench
MPE-5	51/4"-High Medium Power Bench
MPM	Medium Power Modular
MVR	Medium Voltage Rack
PS/A	Power Supply/Amplifier
SCR.1P	Primary SCR Regulated, Output Ratings - 300 and 900 Watts
SCR.3	SCR Regulated, Outpul Ralings up to 3 KW
SCR-10	SCR Regulated, Oulput Ratings up to 10 KW
SLOT	Fixed Output Modules
STB	High Stability Supply/Callbraior

Further information on power supplies can be found in the 1969 DC Power Supply Caralog \& Handbook. Available from your Hewift-Packard Sales Office.

BENCH SUPPLIES

RACK SUPPLIES

DPR	output	$\begin{aligned} & 0-20 \mathrm{~V} \\ & 0-3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0-40 \mathrm{~V}, \\ & 0-1.5 \mathrm{~A} \end{aligned}$										$\begin{aligned} & 574_{1} \\ & 575 \end{aligned}$
	model	6253A	6255A										
LVR	Outpul	$\begin{array}{r} 0-10 \mathrm{~V} \\ 0.50 \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & 0-10 \mathrm{~V} \\ & 0-100 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0-40 \mathrm{~V} \\ & 0-10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 6-20 \mathrm{~V} \\ & 0-20 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \begin{array}{l} 0-40 \mathrm{~V} \\ 0-3 \mathrm{~A} \end{array} \end{aligned}$	$\begin{gathered} 0-40 \mathrm{~V} \\ 0.5 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 0-40 \mathrm{~V} \\ & 0-10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0-40 \mathrm{~V} \\ & 0-30 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0-40 V_{1} \\ & 0-50 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0-60 \mathrm{~V} . \\ & 0-3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0-60 \mathrm{~V}, \\ & 0-15 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 575 \\ & 577 \end{aligned}$
	model	62598	62604	6263B	62648	62658	62868	6267B	6268A	6269A	82718	6274A	
HYA	output	$\begin{gathered} 0-320 \mathrm{~V} \\ 0-600 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 0-320 \mathrm{~V} \\ & 0-1.5 \mathrm{R} \end{aligned}$										599
	model	890A	B95A										
NVR	output	$\begin{aligned} & 0-2000 \mathrm{~V} \\ & 0-200 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0-2000 \mathrm{~V} \\ & 0-100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0-6000 \mathrm{~V} \\ & 0-50 \mathrm{~mA} \end{aligned}$									580
	modet	6521A	6522 A	6525 A									
SER.1P	outpul	$\begin{aligned} & 0-20 V \\ & 0-15 A \end{aligned}$	$\begin{aligned} & 0-20 V_{1} \\ & 0-45 A^{\prime} \end{aligned}$	$\begin{aligned} & 0-36 \mathrm{~V} \\ & 0-10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0-40 V . \\ & 0-25 A \end{aligned}$	$\begin{aligned} & 0-60 V_{1} \\ & 0-5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0-50 V \\ & 0-15 A \end{aligned}$	$\begin{aligned} & 0-120 \mathrm{~V}, \\ & 0-2.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0-600 \mathrm{~V} \\ & 0-1.5 \mathrm{~A} \end{aligned}$				581
	model	6427 B	6428B	6433 B	64348	64388	64398	64438	6448B				
SCR-3	output	$\begin{aligned} & 0-15 V_{1} \\ & 0-200 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-36 \mathrm{~V} \\ & 0-100 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0-64 \mathrm{~V} \\ & 0-50 \mathrm{~A} \end{aligned}$									582
	model	64534	6456B	6459A									
80R.10	output	${ }^{0-6}-600^{\circ}$	$0_{0-8 V_{1}}^{0-1000^{\circ} A}$	$\begin{aligned} & 0-16 V \\ & 0-600 A \\ & 0-18 V^{A} \\ & 0-500 A \end{aligned}$	$\begin{aligned} & 0-36 \mathrm{~V} \\ & 0-300 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0-64 V_{i} \\ & 0-150 A \end{aligned}$	$\begin{aligned} & 0-110 \mathrm{~V}, \\ & 0-100 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0-220 \mathrm{~V}, \\ & 0-50 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0-300 \mathrm{~V} . \\ & 0-35 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0-40 \\ & 0-500 \\ & 0-600 \end{aligned}$	$\begin{aligned} & j-25 A \\ & 0-20 A \\ & j-15 A \end{aligned}$		583
	modei	6463A	6464A	6466 A	64694	6472A	6475A	6477A	6479A				

SPECIAL PRODUCTS

[^50]| | | | 蚛 | | | | | | | | | 量 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.4 | 0.2000 | 6463A | SCR-10 | 583 | 50 mV combined | | 280 | $\begin{gathered} 3 \phi 208 / 460 \\ =10 \% \end{gathered}$ | 57.63 | \checkmark | R | $\$ 3500$ |
| 4.5 .5 | 0.8 | 6384A | ICS | 578 | 1 mV | 1 mV | 1 mV | $115 \pm 10 \%$ | 48-63 | | B | 220 |
| 5.8 $=20 \%$ | 0.15 | 60063A | SLOT | 584 | 0.05\% | 0.05\% | 1 mV | $115 \pm 10 \%$ | 48.440 | | R | See p. 584 |
| $5.8 \pm 20 \%$ | 0.3 | 60065A | SLOT | 584 | 0.05\% | 0.05\% | 1 mV | $115 \pm 10 \%$ | 48.440 | | R | See p. 584 |
| $5.8 \pm 20 \%$ | 0.8 | 60066A | SLOT | 584 | 0.05\% | 0.05\% | 1 mV | $115 \pm 10 \%$ | 48-440 | | R | See P. 584 |
| 0.7 .5 | 0.3 | 62038 | LAB | 572 | 5 mV | 3 mV | 0.2 | $115 \pm 10 \%$ | 50-400 | \checkmark | 8 | 169 |
| 0.7.5 | 0.5 | 6281A | MPB-3 | 574 | 5 mV | $2 \mathrm{mV}+0.01 \%$ | 0.2 | $115 \pm 10 \%$ | 50.400 | \checkmark | 8 | 210 |
| 0.8 | 0.1000 | 6464A | SCR-10 | 583 | 25 mV combined | | 80 | $3 ¢ 208 / 460 \pm 10 \%$ | 57.63 | \checkmark | I | 3300 |
| 0.10 | 0.1 | 6213A | BENCH | 570 | . $01 \%+4 \mathrm{mV}$ | . $01 \%+4 \mathrm{mV}$ | 0.2 | $115=10 \%$ | 50-400 | | B | 90 |
| 0.10 | 0.1 | 6214A | BENCH | 570 | . $01 \%+4 \mathrm{mV}$ | . $01 \%+4 \mathrm{mV}$ | 0,2 | $115 \pm 10 \%$ | 50-400 | | B | 115 |
| 0.10 | 0.2 | 6113A | STB | 566 | $0.001 \%+1.1 \mathrm{mV}$ | 0.001\% | 0.04 | $115=10 \%$ | 48.63 | \checkmark | B | 375 |
| 0.10 | 0.10 | 6282A | MP8.5 | 574 | $1 \mathrm{mV}+0.01 \%$ | $1 \mathrm{mV}+0.01 \%$ | 0.5 | $115 \pm 10 \%$ | 50.60 | \checkmark | B | 350 |
| 0.10 | 0.20 | 6256B | LV8 | 576 | $200 \mu \mathrm{~V}+0.01 \%$ | $200 \mu \mathrm{~V}+0.01 \%$ | 0.2 | $115 \pm 10 \%$ | 57.63 | \checkmark | R | 450 |
| 0.10 | 0.50 | 6259B | LVR | 576 | $200 \mu V+0.01 \%$ | $200 \mu \mathrm{~V}+0.01 \%$ | 0.5 | $115 \pm 10 \%$ | 57-63 | \checkmark | R | 650 |
| 0.10 | 0.100 | 6260A | LVR | 576 | $200 \mu v+0.01 \%$ | $200 \mu \mathrm{~V}+0.01 \%$ | 1.0 | $230 \pm 10 \%$ | 57-63 | \checkmark | R | 775 |
| $13=20 \%$ | 0.0 .5 | 601228 | SLOT | 584 | 0.05\% | 0.05\% | 1 mV | $115 \pm 10 \%$ | 48.440 | | R | See p. 584 |
| $13=20 \%$ | 0.1 | 60123 B | SLOT | 584 | 0.05\% | 0.05\% | 1 mV | $115=10 \%$ | 48.440 | | R | See p. 584 |
| $13 \pm 20 \%$ | 0.2 .2 | 60125 B | SLOT | 584 | 0.05\% | 0.05\% | 1 mV | $115 \pm 10 \%$ | 48.440 | | R | See P. 584 |
| $13 \pm 20 \%$ | 0.6 | 60126B | SLOT | 584 | 0.05\% | 0.05\% | 1 mV | $115 \pm 10 \%$ | 48.440 | | R | See p. 584 |
| $\pm 15 \pm 20 \%$ | 0.0 .2 A | 6053D | SLOT | 584 | 0.03\% | 0.03\% | 0.3 | $115 \pm 10 \%$ | 48.440 | | R | See p. 584 |
| $\pm 15=20 \%$ | 0.0.75 | 60155C | SLOT | 584 | 0,03\% | 0.01\% | 0.3 | $115=10 \%$ | 48.440 | | i | See p. 584 |
| 0.15 | 0.200 | 6053A | SCR-3 | 582 | $\begin{gathered} 10 \mathrm{mV}+0.2 \% \\ \text { combined } \end{gathered}$ | | 150 | $\begin{gathered} 3 \phi 208 / 230 / \\ 460 \pm 10 \% \end{gathered}$ | 57.83 | \checkmark | R | 1375 |
| $\begin{gathered} 0.16 \text { or } \\ 0.18 \end{gathered}$ | $\begin{gathered} 0.600 \text { or } \\ 0.500 \end{gathered}$ | 6465A | SCF-10 | 583 | $\begin{gathered} 10 \mathrm{mV}+0.2 \% \\ \text { combined } \end{gathered}$ | | $\begin{gathered} 160 \\ \text { or } 180 \end{gathered}$ | $\begin{gathered} 3 \phi 208-460 \\ \pm 10 \% \\ \hline \end{gathered}$ | 57.63 | \checkmark | R | 2600 |
| 0.18 | 0.0 .3 | 6343A | MOD | 586 | 3 mV or 0.03% | 3 mV or 0.03% | 1.0 | $115 \pm 10 \%$ | 48.440 | \checkmark | R | 120 |
| 0.18 | 0.1 | 6344A | MOD | 586 | 3 mv or 0.03\% | 3 mV or 0.03% | 1.0 | $115 \pm 10 \%$ | 48-63 | \checkmark | R | 165 |
| -20 to +20 | 0.0.5 | 6823A | PS/A | 587 | $5 \mathrm{mv}+-0.02 \%$ | $5 \mathrm{mV}+0.02 \%$ | 2 | $115 \pm 10 \%$ | 50.440 | \checkmark | B | 194 |
| 0.20 | 0-0.6 | 6204B | LAB | 572 | $4 \mathrm{mV}+0.01 \%$ | $4 \mathrm{mv}+0.01 \%$ | 0.2 | $115 \pm 10 \%$ | 50.400 | vi | B | 144 |
| $\begin{gathered} 0.20 \text { and } \\ 0.40 \end{gathered}$ | $\left.\right\|_{\substack{0-0,6 \\ 0.0 .3 \\ \hline}}$ | 62058 | LAB | 572 | $4 \mathrm{mV}+0.01 \%$ | $4 \mathrm{mV}+0.01 \%$ | 0.2 | $115 \pm 10 \%$ | 50.440 | \checkmark | B | 235 |
| 0.20 | 0.1 | 6101 A | STB | 566 | $600 \mu \mathrm{~V}+0.001 \%$ | 0.001\% | 0.04 | $115 \times 10 \%$ | 48.63 | \checkmark | B | 265 |
| 0.20 | $0-1$ | 6111 A | STB | 566 | $600 \mu \mathrm{~V}+0.001 \%$ | 0.001\% | 0.04 | $115=10 \%$ | 48.63 | \checkmark | 8 | 375 |
| 0.20 | 0.1.5 | 62008 | LAB | 572 | $4 \mathrm{mV}+0.01 \%$ | $4 \mathrm{mV}+0.01 \%$ | 0.2 | $115 \pm 10 \%$ | 50.400 | \checkmark | B | 189 |
| 0.20 | 0.1.5 | 62018 | LAB | 572 | $4 \mathrm{mV}+0.01 \%$ | $4 \mathrm{mV}+0.01 \%$ | 0.2 | $115 \pm 10 \%$ | 50.400 | \checkmark | B | 169 |
| 0.20 Dual 0.3 | | 6253A | DPR | 574 | $4 \mathrm{mv}+0.01 \%$ | $2 \mathrm{mv}+0.01 \%$ | 0.2 | $115 \pm 10 \%$ | 50.400 | \checkmark | R | 445 |
| 0.20 | 0.3 | 6284A | MPB-3 | 574 | $4 \mathrm{mV}+0.01 \%$ | $2 \mathrm{mV}+0.01 \%$ | 0.2 | $115 \pm 10 \%$ | 50.400 | \checkmark | B | 210 |
| 0.20 | 0.5 | 6285A | MPB-5 | 574 | $1 \mathrm{mV}+0.01 \%$ | $1 \mathrm{mV}+0.01 \%$ | 0.5 | $115=10 \%$ | 50.60 | \checkmark | B | 350 |
| 0.20 | 0.10 | 6263B | LVR | 576 | $200{ }_{\mu} \mathrm{V}+0.01 \%$ | $200 \mu V+0.01 \%$ | 0.2 | $115 \mathrm{Vax}=10 \%$ | 57.63 | \checkmark | R | 435 |
| 0.20 | 0.10 | 6286A | MPB-5 | 574 | $1 \mathrm{mV}+0.01 \%$ | $1 \mathrm{mV}+0.01 \%$ | 0.5 | $115 \pm 10 \%$ | 50.60 | \checkmark | B | 395 |
| 0.20 | 0.15 | 64278 | SCR-1? | 581 | 20 mV | 10 mV | 40 | $115 \pm 10 \%$ | 57.63 | \checkmark | R | 380 |
| 0.20 | 0.20 | 62648 | LVR | 576 | $200 \mu \mathrm{~V}+0.01 \%$ | $200 \mu \mathrm{~V}+0.01 \%$ | 0.2 | $115 \mathrm{Vac} \pm 10 \%$ | 57-63 | \checkmark | R | 525 |

" "8" Indicates bench type and "R" indicates full rack width typo supplies. All bench supplies (except Models 721A, $711 \mathrm{~A}, 7128$ and 715 F) can be rack mounted using accessofy rack mounting haroware.
**Automatic crossover belween constant voltage (cv) and constant current (cc) operation.

0974				8	83	$3 \sim$					）	g	O	¢	？	合	弟	\pm	\％	㥐	只	8	等	을	2	令	\％	岃	N	尔		\cdots	\％	\％	8	$\stackrel{\text { 를 }}{ }$	W	\％
＊＊20／49	$>$	7				77									7	7	7				？	\gg	7	$>$	7	7	$>$	7	2	7	$>$	7	$>$			－		7
	\pm	\pm	\propto	∞	∞	∞	\sim	¢	\pm	\sim	∞	∞	\pm	\triangle	\simeq	cr	$\underset{\sim}{8}$	∞	\pm	∞	∞	∞	\pm	∞	\propto	∞	x	∞	∞	\bigcirc	\times	\square	∞	∞	∞	－	∞	∞
Trimumerfow pianay		\bigcirc										7		7	7	$>$	－	7	$>$	\rightarrow			7	$>$	7	$>$	7	\rightarrow	7	$>$	7	$>$	7	7			2	\bigcirc
	$\begin{array}{\|c} \substack{2 \\ \vdots \\ \dot{n} \\ \hline \\ \hline} \\ \hline \end{array}$	$\begin{aligned} & 8 \\ & \hline i 山 y \\ & \hline i \end{aligned}$		$\begin{gathered} 8 \\ 8 \end{gathered}$							$\begin{aligned} & \stackrel{\rightharpoonup}{i} \\ & \dot{n} \end{aligned}$		$\begin{array}{\|c\|} \hline 0 \\ \hline \\ \dot{6} \\ \hline \end{array}$	$\left\|\begin{array}{l} 6 \\ 0 \\ \dot{j} \\ \square \end{array}\right\|$	0	$\begin{array}{\|c} \substack{\tilde{3} \\ \stackrel{n}{n} \\ \hline \\ \hline} \\ \hline \end{array}$	$\begin{aligned} & \tilde{6} \\ & \stackrel{y}{5} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \stackrel{y}{i c} \\ \hline \end{array}$	$\begin{aligned} & \text { Pi } \\ & \stackrel{y}{n} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} \mathfrak{6} \\ \dot{8} \\ \dot{\mathbf{q}} \end{gathered}\right.$		$\stackrel{\rightharpoonup}{3}$	3	$\begin{array}{\|c\|c\|c\|c\|} \hline 0 \\ \dot{3} \\ \hline \end{array}$	$\begin{aligned} & \tilde{0} \\ & \stackrel{n}{n} \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \stackrel{8}{6} \\ & \stackrel{y}{3} \end{aligned}$		$\begin{array}{\|l} \hline \stackrel{i}{1} \\ \dot{n} \\ \hline \end{array}$		$\begin{aligned} & \stackrel{0}{9} \\ & \stackrel{n}{\infty} \\ & \hline \end{aligned}$			$$	$\begin{aligned} & \text { 导 } \\ & \stackrel{\rightharpoonup}{3} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \stackrel{C}{7} \\ \hat{0} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{9} \\ \stackrel{\rightharpoonup}{i} \\ \hline \end{array}$	$\begin{array}{\|c} \substack{\circ \\ \dot{\circ} \\ \dot{9} \\ \hline} \\ \hline \end{array}$	令
	$\left\|\begin{array}{c} 80 \\ \frac{8}{4} \\ 4 \\ n \\ n \end{array}\right\|$	2							$\begin{aligned} & 00 \\ & 0 \\ & 4 \\ & =0 \end{aligned}$	$\left\|\begin{array}{c} 0 \\ \frac{0}{4} \\ 0 \\ \end{array}\right\|$			$\begin{aligned} & 0 \\ & \frac{0}{4} \\ & 4 \\ & 0 \\ & 3 \end{aligned}$					$\left\|\begin{array}{l} 50 \\ \frac{0}{4} \\ \hdashline \\ \hdashline \end{array}\right\|$					$\left.\begin{array}{\|c} 80 \\ \frac{0}{1} \\ 0 \\ \end{array} \right\rvert\,$			気	of	$\left\|\begin{array}{c} 80 \\ -0 \\ 7 \\ 4 \\ \stackrel{y y}{c} \end{array}\right\|$	$\begin{array}{\|c\|} \hline 0_{0}^{\circ} \\ \hline 4 \\ 0 \\ 0 \\ 2 \\ \\ \hline \end{array}$					$\begin{aligned} & 0 \\ & \stackrel{0}{n} \\ & \stackrel{n}{2} \end{aligned}$		$\left\|\begin{array}{l} \stackrel{0}{0} \\ \underset{\sim}{4} \\ \stackrel{0}{2} \end{array}\right\|$	$\begin{aligned} & \mathrm{g} \\ & \stackrel{0}{\mathrm{O}} \\ & \mathrm{H} \\ & \stackrel{0}{2} \\ & \end{aligned}$	
	욱	Ö	5	$\stackrel{\sim}{\circ}$	$\stackrel{3}{8}$	E	家	录		\vec{E} 글	4		ㅇ．		－	克	웅	$\stackrel{\text { ® }}{\text { ¢ }}$	$\stackrel{\sim}{\sim}$	¢	H	N	N	\sim	O	$\stackrel{\sim}{0}$		会	O	8	－	$\xrightarrow{\text { l }}$	으	$\underset{\text { z }}{\text { z }}$	N	$\stackrel{\sim}{\sim}$	$\left\|\begin{array}{l} 5 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	0
	$\left\|\begin{array}{l} \vec{k} \\ \underset{\sim}{2} \end{array}\right\|$							0			$\begin{gathered} \vec{Z} \\ \stackrel{u}{H} \\ \vec{H} \end{gathered}$		$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ m \\ m \end{gathered}$		$\left.\begin{gathered} \vec{z} \\ \infty \\ \infty \end{gathered} \right\rvert\,$	Bo		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & 0 \end{aligned}$		$\begin{aligned} & 80 \\ & \hline 8 \\ & \hline 8 \\ & \hline 8 \end{aligned}$				50 0 \vdots + \vdots \vdots \vdots	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & + \\ & + \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & -1 \end{aligned}$				$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{E} \\ & \infty \\ & \hline \end{aligned}\right.$	$\left(\left.\begin{array}{c} 0 \\ 0 \\ 0 \\ + \\ \vdots \\ 2 \\ 0 \\ 0 \end{array} \right\rvert\,\right.$		$\left\|\begin{array}{c} 50 \\ 0 \\ 0 \\ 0 \\ 4 \\ \vec{E} \\ 2 \\ 0 \end{array}\right\|$	音			$\stackrel{5}{8}$	
（Аш）ueqterian prot	$\left.\begin{aligned} & \vec{k} \\ & \hat{\rightharpoonup} \end{aligned} \right\rvert\,$							0		－	E		0					$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ + \\ 2 \\ \vdots \\ - \end{array}\right\|$		8 0 0 0 4 2 0 0						$\begin{aligned} & 0 . \\ & \stackrel{0}{6} \\ & +1 \end{aligned}$	20	$\begin{array}{\|c} B e \\ \overrightarrow{0} \\ \vdots \\ + \\ \vec{~} \\ - \end{array}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & 0 \\ & + \\ & 3 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & \vec{E} \\ & \vec{E} \end{aligned}\right.$		$\left\|\begin{array}{c} 5 \\ \stackrel{0}{0} \\ 0 \\ + \\ \vdots \\ 1 \\ 0 \\ 0 \end{array}\right\|$		$\underset{\sim}{\underset{E}{E}}$	$\begin{gathered} \vec{E} \\ \overrightarrow{+} \\ \vec{b} \\ \vec{e} \end{gathered}$	$\left\|\begin{array}{c} \vec{\xi} \\ \hdashline \\ \hdashline \\ \stackrel{5}{0} \\ \hline \end{array}\right\|$	$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	
2 2fed borey	令	怘	莒	2	\％	？	品	砍	芯	吕	in	in	\％	${ }_{0}^{8}$	\％	\％	璁	$\stackrel{\sim}{\sim}$	\％	\％	京	\sim	5	N	\％	0	0	宕	\％		20	会	\％	芯	$\stackrel{0}{3}$	\％	\％	\％
selas	官定	$\frac{\Sigma}{2}$		$1 \left\lvert\, \begin{array}{\|c\|c\|c\|c\|c\|c\|} \substack{\sum_{0}} \end{array}\right.$			$\stackrel{y}{2}$	5	in			$1 \stackrel{\text { ¢ }}{\sim}$	을	을		$\left\lvert\, \begin{aligned} & 3 \\ & \stackrel{3}{0} \\ & \stackrel{0}{0} \end{aligned}\right.$			\pm	$\left\|\frac{\infty}{\infty}\right\|$	\％	－	등	ck	$\stackrel{\sim}{5}$	$\frac{1}{2}$		un	$\stackrel{\sim}{3}$	$\left\lvert\, \begin{aligned} & \stackrel{a}{\dot{\tilde{y}}} \\ & \dot{\sim} \end{aligned}\right.$	$\stackrel{\sim}{2}$	$\stackrel{\sim}{2}$	$\left\lvert\, \frac{a}{c}\right.$	\％	들		吻	$\frac{5}{2}$
HPPOW	$\left\|\right\|$	$\mathfrak{b l}$	$\stackrel{\rightharpoonup}{4}$	3		$\underset{\sim}{\mathbb{E}} \mid \underset{\sim}{0}$	気菏荮	sucu		荡荡荡		$\underset{y}{c}$	彩	$\left\lvert\,\right.$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 88 \end{aligned}\right.$	总	$\left\|\right\|$		$\mid \underset{\substack{\mathbf{0} \\ \mathbf{0}}}{ }$			岂	$\begin{gathered} 8 \\ \hline \\ 0 \\ 0 \end{gathered}$	$\left\|\begin{array}{c} \infty \\ \stackrel{y}{\circ} \\ 0 \end{array}\right\|$			$\mid \underset{\substack{x \\ \underset{\sim}{c} \\ \hline}}{ }$	$\left\lvert\,\right.$	$\left\lvert\, \begin{aligned} & \text { 䍜 } \end{aligned}\right.$	$\mid \underset{\substack{8 \\ \hline \\ \hline \\ \hline}}{ }$	萢	荡		$\frac{1}{2}$		$\|\stackrel{\infty}{\infty}\|$	\％
（samdure）リatio		$\stackrel{3}{8}$	$\begin{aligned} & \underset{y}{c} \\ & i \end{aligned}$	$\stackrel{y}{8}$		$\stackrel{+}{i}$	Bin	\dot{B}	$\overrightarrow{0}$		$\begin{aligned} & \because \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$	－	$\begin{aligned} & \stackrel{n}{0} \\ & \dot{0} \end{aligned}$	N10	$\stackrel{9}{\dot{0}}$	$\stackrel{⿳ 亠 口 口 木 口 木}{\circ}$	$\begin{array}{\|c} \hline \mathbf{C} \\ \underset{\circ}{\circ} \\ \hline \end{array}$	$\begin{gathered} \substack{e \\ \stackrel{y}{c} \\ \hline} \\ \hline \end{gathered}$		$\left[\begin{array}{l} 3 \\ \hat{0} \\ \vdots \end{array}\right.$		S	$\stackrel{\sim}{0}$	$\frac{3}{0}$	$\ddot{0}$	－		$\stackrel{n}{0}$	$\frac{0}{0}$	$\underset{\substack{N \\ \\ \hline}}{ }$	O	$\stackrel{\substack{0 \\ 0}}{2}$	$\stackrel{\rightharpoonup}{0}$	$\underset{0}{9}$	$\underset{\substack{9 \\ \hline \\ \hline}}{ }$	$\left\|\begin{array}{l} \tilde{O} \\ \underset{0}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{\sim}{\hat{O}} \\ \dot{O} \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \substack{\circ} \end{array}\right\|$
（5］pa）gn¢	$\left.\begin{array}{\|c} 9 \\ 0 \end{array} \right\rvert\,$		$\left\|\begin{array}{c} \tilde{\sim} \\ \underset{O}{2} \end{array}\right\|$	8	$\begin{gathered} \infty \\ 0 \\ 0 \\ 0 \end{gathered}$			$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 4 & 0 \\ 4 \\ 0 \\ 0 \\ 0 \end{array}$				－	$\stackrel{8}{\circ}$	\％	－	$\underset{\underset{\circ}{\infty}}{\underset{\delta}{2}}$	$\underset{\sim}{\ddot{O}}$	¢		$\stackrel{9}{\dot{o}}$	9	¢	䇫	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$	¢	\％		9	$\stackrel{\stackrel{y}{9}}{8}$	$\stackrel{9}{9}$	9	\dot{O}	$\left.\begin{array}{\|c\|} \hline 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} \right\rvert\,$	붕	$\stackrel{8}{8}$		¢	$\stackrel{0}{6}$

$\begin{aligned} & \text { 票 } \\ & \frac{5}{5} \\ & \text { 雷 } \end{aligned}$		$\begin{aligned} & \text { 要 } \\ & \hline \end{aligned}$										采
0－60	0.1	6294A	MPE－3	574	$2 \mathrm{mv}+0.01 \%$	$2 \mathrm{mv}+0.01 \%$	0.2	115 $=10 \%$	50.400	\checkmark	$8 \cdot$	\＄210
0.60	0.3	6236A	MPB．5	574	$1 \mathrm{mV}+0.01 \%$	$1 \mathrm{mV}+0.01 \%$	0.5	105－125	50．60	\checkmark	B	395
0.60	0.3	6271 B	LVR	576	$200 \mu V+0,01 \%$	$200 \mu v+0.01 \%$	0.2	115 V ac $\pm 10 \%$	48.83	\checkmark	R V	435
0.60	0．5	6438B	SCR－1P	581	60 mV	30 mV	120	105．125	57.63	\checkmark	R V	360
0.80	0.15	64398	SCR－1P	581	120 mV	60 mV	60	$105 \cdot 125$	57．63	\checkmark	R	550
0.60	0.15	6274A	LVR	576	$0.2 \mathrm{mV}+0.01 \%$	$0.2 \mathrm{mV}+0.01 \%$	0.5	100－130	48.63	\checkmark	R V	695
0.64	0.50	6459A	SCR－3	582	$10 \mathrm{mv}+0.2$	combined	160	$3 \times 208 / 230 / 460 \pm 10 \%$	57．63	\checkmark	R $\sqrt{ }$	1275
0.64	0.150	6472 A	SCR－10	583	$100 \mathrm{mV}+0$	combined	160	$30208 / 230 / 460 \pm 10 \%$	57.63	\checkmark	\％	2600
0－100	0.0 .2	6106A	STB	566	$200 \mu \mathrm{~V}+0.001 \%$	0，001\％	0.04	$115 \pm 10 \%$	48.63	\checkmark	B	265
0.100	0.0 .2	6116 A	ST8	566	$200 \mu V+0.001 \%$	0．001\％	0.04	$115=10 \%$	48.63	\checkmark	B	375
0.100	0－0．25	6181 B	CCB	568	0．0015\％	0．001\％	50 ppM	$115 \mathrm{Vac}=10 \%$	48.63	\checkmark	B	425
0.100	0.0 .5	8131A	OVS	564	2 mV	2 mv	5.0	$115 \mathrm{Vac} \pm 10 \%$	50－400	\checkmark	R	1500
0.100	0.0 .75	6299A	MP8－3	574	$2 \mathrm{mV}+0.01 \%$	$2 \mathrm{mv}+0.01 \%$	0.2	$115 \pm 10 \%$	50－400	\checkmark	$8 \cdot$	225
0.110	0－100	6475A	SCR－10	583	$100 \mathrm{mv}+0$	combined	220	$3 ¢$ 208／230／460 $\pm 10 \%$	57.63	\checkmark	\checkmark	2600
0.120	0－2．5	6443B	SCR－1P	581	120 mV	60 mV	240	$115 \pm 10 \%$	57.63	\checkmark	R	360
0.160	0－0．2	62078	LAB	572	$2 \mathrm{mV}+0.02 \%$	$2 \mathrm{mV}+0.02 \%$	0.5	$115 \pm 10 \%$	48.63	\checkmark	B	235
0.160	0－0．4	6354 A	MOD	586	$2 \mathrm{mv}+0.005 \%$	$1 \mathrm{mV}+0.005 \%$	1.0	$115 \pm 10 \%$	48.63	\checkmark	R \downarrow	259
0.220	0.50	6477A	SCR－10	583	$100 \mathrm{mV}+0$	combined	330	$3 \pm 208 / 230 / 460 \pm 10 \%$	57.63	\checkmark	R \downarrow	2600
0.300	0.35	6479A	SCR－10	583	$100 \mathrm{mV}+0$	combined	300	$34208 / 230 / 460=10 \%$	57.63	\checkmark	R	2600
0.320	0．0．1	62098	LAB	572	$2 \mathrm{mV}+0.02 \%$	$2 \mathrm{mV}+0.02 \%$	1.0	$115 \pm 10 \%$	48.63	\checkmark	B	235
0.320	0．0．2	6357A	MOD	586	$2 \mathrm{mV}+0.005 \%$	$1 \mathrm{mV}+0.005 \%$	1.0	$115 \times 10 \%$	48.63	\checkmark	R $\sqrt{ }$	259
0.320	0.0 .6	890A	MVR	578	10 mV or 0.007%	10 mV or 0.007%	1.0	$115=10 \%$	57．63	\checkmark	R	445
0.320	0．1．5	895A	MVR	579	10 mV or 0.007%	10 mV or 0.007%	1.0	$115=10 \%$	57.63	\checkmark	R	625
$\begin{aligned} & -250 \text { to } \\ & -400 \\ & 010-900 \end{aligned}$	$\begin{aligned} & .03 .05 \\ & 0.10 \mu \mathrm{~A} \end{aligned}$	715A！	－	295	$\begin{aligned} & 1 \% \\ & 1 \% \end{aligned}$	$\begin{aligned} & 1 \% \\ & 1 \% \end{aligned}$	$\begin{aligned} & 7 \\ & 10 \end{aligned}$	$115 / 230=10 \%$	50.60		B	365
0.500	0．0．1	7114 \ddagger	－	579	1000 or 0.5%	1030 or 0．5\％	1	115／230 $=10 \%$	50．1000		8	275
$\begin{aligned} & 0 \operatorname{ta}+500 \\ & -300 \\ & 010-150 \end{aligned}$	$\begin{aligned} & 0.0 .2 \\ & 0.0 .05 \\ & 0.0 .005 \end{aligned}$	712C \ddagger	－	579	$\begin{gathered} 0.01 \%+5 \mathrm{mV} \\ 50 \mathrm{mV} \\ 50 \mathrm{mV} \end{gathered}$	$\begin{gathered} 0.01 \%+50 \mathrm{mV} \\ 50 \mathrm{mV} \\ 50 \mathrm{mV} \end{gathered}$	$\begin{aligned} & 0.5 \\ & 30 \\ & 15 \end{aligned}$	$115 \pm 10 \%$	50.60	\checkmark	B V	490
$\begin{aligned} & 0.440 \text { or } \\ & 0.500 \text { or } \\ & 0.600 \end{aligned}$	$\begin{aligned} & 0.25 \text { or } \\ & 0.20 \text { or } \\ & 0.15 \end{aligned}$	64838	SCR－10	583	$100 \mathrm{mV}+0$	\％combined	$\begin{aligned} & 440 \\ & 500 \\ & 600 \end{aligned}$	3¢ 208／230／460 $\pm 10 \%$	57－63	\checkmark	v	2500
1.600	0．1．5	64488	SCR－19	581	600 mv	600 mV	800 mV	$115 \vee \mathrm{ac}=10 \%$	57.63	\checkmark	R	550
-250 to － 800 0 （ 0 － 800 $6.3 \vee$（ADJ）	0－2．0	7168：	－	296	0.05% -	$\begin{gathered} 0.05 \% \\ 0.05 \% \\ \hline 1 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 \\ 0.5 \\ 2 \\ \hline \end{gathered}$	$115 / 230 \pm 10 \%$	50.60		8	875
0.1000	0.0 .2	6521A	RVR	580	20 mV or 0.005%	20 mV or 0.005%	1.0	$115 \pm 10 \%$	50.500		R \checkmark	750
0.1600	0.0 .005	6515A	HVB	580	18 mV or 0.01%	16 mV or 0.01%	2.0	$115 \pm 10 \%$	60		B	235
0.2000	0.0 .1	6522A	HVR	580	20 mV or 0．002\％	20 mV or 0.005%	1.0	$115=10 \%$	50．500		R	750
0.3000	0．0．006	6110A	STB	565	$100 \mu \mathrm{~V}+0.001 \%$	0．001\％	0.4	$115 \pm 10 \%$	57.63		B	495
0.3000	0.0 .006	6516A	HVE	580	16 mV or 0.01%	16 mV or 0.01%	2.0	$115 \pm 10 \%$	57．63		B	295
0.4000	0．0．05	6525 A	HVR	580	20 mV or 0.091%	20 mV or 0.005%	1.0	$115 \pm 10 \%$	50．500		只	750

[^51]Options are mechanical and/or electrical modifications to standard instruments performed at the factory. Below is a list of all the options available on Hewlett-Packard DC Powes Supplies. To determine which options are available for a particular supply, refer to the appropriate product (pages 456. 586).

No. Description
$01208 \pm 10 \%$ V ac, 3 -phase Input, 57. 63 Hz . Input is factory wired for 208 Vac .
$02 \quad 230 \pm 10 \%$ V ac, 3 .phase Input, 37. 63 Hz . Input is factory wired for 230 V ac.
$03460 \pm 10 \%$ V ac, 3 -phase Input, 57. 63 Hz . Input is lactary wired for 460 Vac .
04 Casters. Faccory mounts a casters on base of standard instrument.
0550 Hz ac Input. Standard instrument is wired for 60 Hz ac. Option os includes alignment and in some cases internal rewiring.
06 Orervoltage "Crowbar" Protector. Protects delicate loads against power suppir failure or operator error. Compact, inexpensive, an be factory installed at fear of power supply. Virtual short circuit (SCR crowbar) is placed across load within 10 microseconds after trip voltage is exceeded. For complete speci-

Rack Kit $5 / /^{\prime \prime} \mathrm{H} \times 91 / 2^{\prime \prime}$ W for mounting nine 801 C power supplies- 14500 A ... $\$ 18$

MOD Series rack kit $31 / 2^{\prime \prime} \mathrm{H} \times 91 / 2^{\prime \prime} \mathrm{W}$ capable of accommodating up to six " A " size modules or one " B " and four " A " modules, os two " B " and two " A " modules. or three " B " modules-14503A...... $\$ 19$

MOD Series rack kit $51 / 4^{\prime \prime} H \times 91 / 2^{\prime \prime}$ W capable of accommodating up to 10 "A" size modules or any combination of " A ", " B " and " C " size modules having the same equivalent mounting area as 10^{\prime} " A ".size modules-14505A $\$ 29$
$151 / 2^{\prime \prime}$ high tilt rack mounting tray and brackers for Model 6946A-14526A...sss

151/2" high flush rack mounting brackets for Model 6946A-14528A . $\$ 10$

Options

fications, refer to appropriate data sheet.
07 Ten-Tum Output Volkage Control. Re. placed concentric coarse and fine voliage control.
08 Ten. Turn Output Current Control. Replaces concentric coarse and fone current control.
09 Ten.Turn Outpul Voltage and Current Controls. Same as Options 07 and 08 on same instrument.
10 Chassis Slides: Enables converient access to porver supply interior for mainrenance. Chassis slides are attached to supply at factor.'
11 Intemal Overvoltage Protecuion "Crowbar': Protect delicare loads by monitoring the outpus volage and firing an SCR that shorts the ourput when the preset ralue is exceeded.
13 Three Digit Graduared Decadial Volt. age Control: Includes 10 -turn control replacing coarst and fine voltage conzrol.
14 Three Digit Graduated Decadial Cursent Cantrol: Includes 10 -tura control replacing coarse and fine current conrool.
15 No SV and 0.075A Meter Ranges: Model ca0sB is available without the lower meter ranges, resulting in a $\$ 40$
price reduction from the standard 230 volt eransformer.
16115 V ac $\pm 10 \%$, Single Phase Inpur: Factory modification includes the inscalation of a 115 .Volk input power transformer to replace the standard 230 Vole eransformer.
17208 V ac $\pm 10 \%$, Single Phase Input: Factory modification includes the in. stallation of a 208 -Volt inpur power transforner to replace the standard 115 or 230 . Volt esansformer.
18230 V ac $\pm 10 \%$, Singie Phase Inpur: Factery modificacion inciudes the installation of a 230 -Volt input power uransformer to replace the standard 115 . Volt transiormer.
26 11s V ac $=10 \%$, Single Phase Input: Factory modification consists of reconnecting the multitap inpuc power transformer for 115 . Volt operation.
28230 V ac $\pm 10 \%$, Single Phase Input: Factory modification consists of reconnerting the multi-cap input power transformer for 230 -Voll operation.
$31380 \mathrm{~V} \mathrm{ac} \pm 10 \%, 57.6 \hat{\jmath} \mathrm{~Hz}, 3$-phase input.
$32400 \mathrm{Vac} \pm 10 \%, 57.63 \mathrm{~Hz}$, 3.phase input.
33 UHF Connescors: Insulled instead of standard BNC connectors.

Rack kit for mounting one $31 / 2$ "high HVB, LAE, MPB-3, or STB series supply. 14513A...... $\$ 20$
Rack kle for mounting one $51 / 4^{\prime \prime}$ high MP8-5 or STB series supply..... : 14515... . . $\$ 23$

14521A
Rack klt for mounting up to throe BENCH series suppltes........ 14521A...... 325

14523A, 14525A
Rack klt for mounting two $51 / 4$ "high MPE-5 or ST8 serles supplies. . $14525 \mathrm{~A} . .$. . $\$ 12$ Aack kit for mounting two $31 / 2$ " high HVB, LAB, MPB3 or STB serles supplies 14523A $\$ 10$

A separate 1969 DC Power Supply Catalog/Handbook is available on re. quest; it contains a wealth of detail on definitions, theary, operation and applications of DC power supplies. You can get your free copy from the local H-P sales office, or by contacting Harrison Division, 100 Locust Avenue, Berkeley Heights, New Jersey, 07922.
Amblent temperature. The room tem. perature, or effecrive temperature of the environment in which the power supply is operating.
Auto-parallel or automatic parallel operation. A master-slave parallel connection of the outputs of two or more Hexr. lett-Packard supplies used for obtaining a current output greater than that obtain. able from one supply. Auto-Parallel operation is characterized by one-knob control, equal current sharing, and no incernal ariring changes. Normally only supplies having the same model number may be connected in Auto-Parallel; in certain cases, however, supplies of the same Series are capable of mixed Auto. Parallel operation.
Auto-series or automatic serles opera. tion. A master-slave series connection of the outputs of two of more HewlettPackard power supplies used for obtaining a voltage greater than that obrainable from one supply. Auto-Series operation, which is permissible up to 300 volts off ground, is characterized by one-knob control, equal or proportional voltage shar. ing, and no internal wiring changes. Supplies of mixed model numbers may be
connected in Auto-Series without restriction, provided that each slave is listed as being capable of Auto-Series operation.

Auto-trackling or automatic tracking operation. A master-slave connection of two or more Hewlett-Packard power sup. plies each of which has one of its output terminals in common with one of the output terminals of all of the other power supplies, such a connection pattern being characterized by one-knob control, proportional output voltage from all supplies, and no internal wiring changes. Useful where simultaneous turn-up, turndown or proportional control of all power supplies in a system is required.

Constant current power supply. A regulared power supply which acts to keep its output current constant in spite of changes in load, line, or temperature. Thus, for a change in load resistance, the output current icmains constant to a first approximation, while the output voltage changes by whatever amount necessary to accomplish this.

Constant voltage power supply. A regulated power supply which acts to keep its output voltage constant in spite of changes in load, line, or temperature. Thus, for a change in load resistance, the output voltage of this type of supply re. mains consrant to a first approximation, while the output current changes by whatever amount necessary to accomplish this, the most common type of reg. ulated de power supply.

Canstant voltage/constant current (CV) CC) with automatic crossover. A power supply which acts as a constant voltage source for comparatively large values of load resistance and as a constant current source for comparatively small values of load resistance. The automatic crossover or transition between these two modes of operation occurs at a "critical" or "cross. over" value of load resistance $\mathrm{R}_{\mathrm{c}}=\mathrm{E}_{\mathrm{s}}$ / Is whete E_{8} is the front panel vollage control setting and I_{s} is the front panel current control setting.
Constant voitage/current limiting (CV/ CL) with automatic crossover. The same as CV/CC operation except for a slightly poorer regulation characteristic for low values of load resistance, i.e., in the "constant current" region of operation.
"Crowbar" voltage protector. A sepacate circuit which monitors the output of a power supply and instantaneously throws a short circuit (or "crowbar") across the output terminals of the power supply whenever a preset voltage limit is exceeded. An SCR is usually used as the "crowbar" device.

Drift. A term loosely used to describe the slow variations in the output of a regulated power supply due to STABILITY and/or TEMPERATURE COEFFJ. CIENT.

Line regulation of a constant current power supply. The change in the static value of the dc output current resulting from a change in ac input voltage from

low line (usually 105 volts) to high line (usually 125 volts) or from high line to low line.

Line regulation of a constant voltage power supply. The change in the static value of dc output voltage resulting from a change in ac input voltage from low line (usually 105 voles) to high line (usually 125 volts) or from high line to low line.

Load regulation of a constant current power supply. The change in the static value of do output current resuiting from a change in load resistance from shoct circuit to a value which gives maximum rated output voltage.

Load regulation of a constant voltage nower supply. The change in the static value of dc output voltage resulting from a change in load resistance from open circuit to a value which yields maximum rated output current.

Output Impedance of a power supply, At any given frequency of load change, $\Delta \mathrm{E}_{\text {wut }} / \Delta \mathrm{I}_{\text {out }}$. Strictly speaking the definition applies only for a sinusoidal load disrurbance, unless, of course. the measurement is made at zero frequency ($d c$). The output impedance of an ideal constant voltage power supply would be zero at all frequencies, while the outpur imped. ance for an ideal constant-current power supply would be infinite at all frequencies.

Recovery time. See Transienc Recovery Time.
Remote error sensing or Remote sensing. A leature found on most HP power supplies. which, by means of two extra wires between the supply and the load, permits the power supply to achieve its optimum regulation at the load terminals rather than at the power supply output terminals, thus compensating for the IR drop present in the current carrying leads connecting the load to its power supply. The current through the sensing leads is so small that in spite of the resistance of these leads, their voltage drop is neglig. ible.
Remote programming. A feature of most HP power supplies which makes possible control of the regulated ourput by means of a remotely varied resistance. This fea. cure also permits control of the output of a power supply by means of a voltage input rather than by means of a control resistance.
Ripple. The residual ac component which is superimposed on the de component of the output of a regulated power supply. Ripple is usually specifed in terms of its RMS value.
Stability, Obviously a misnomer, this term refers to the instability in porver supply output which occurs in the pres. ence of constant load, constant line and constant ambient temperature for a stated period of time (usually 8 hours) following warm-up. This small output variation, which is relaced in part to the internal temperature rise of the power
supply, is the zero frequency component of noise which must be present in any dc amplifier os regulator, even though all input, output, environmental, and control parameters are held constant.

Temperature coefficlent. For a power supply operated at constant load and under conditions of constant inpur ac line voltage, the change in ourput voltage (for a constane voltage supply) or ourput current (for a constant current supply) for each degree change in the ambient temperature.

Transient recovery time. Somerimes referred to as recovery time, transient response time, or response time - loosely speaking the time required for the output voltage of a power supply to come back to within a level approximating the normal dc output following a sudden change in load current. More exactly, Transient Recovery Time is the time " X " required for output voluage recovery to within " Y " millivolts of the nominal output volrage following a " Z " amp step change in load current - where:
" Y "' is specified separarely for each model but is generally of the same or. der as the load regulation specification, the nominal output voltage is defined as the dc level half way berween the static output voltage before and after the imposed load change, and
" Z " is the specified load current change, normally equal to the full load current rating of the supply.
constant voliage/cuarent limiting (ev/cl) OUTPUT CHARACTERISTIC

POWER SUPPLY AND LOAD CONNECTED FOR REMOTE SENSING

TYPICAL OUTPUT IMPEDANCE OF A CONSTANT VOLTAGE POWER SUPPIY

DIGITAL VOLTAGE SOURCES

System-compatible, fast bipolar output

Models 6130B, 6131B

Advantages:

High speed digital programming through zero
Solid-state processing on all data lines
Compatible with existing digital systems
Multiplex capability with Hewlett-Packard computers (to eight units)
Isolares and stores data inputs
Output current sinking capability of up to 500 mA
No overshoot or programmed output voltage
Current limit protection
No rurn-on, turn-off, or power removal overshoot
Outpur automatically shorts during ac input power removal or input data disconnecr

Description

Both Digital Voltage Sources, Model 6130B and Model 61318 , are digitaily programmed regulated do power supplies with bipolar outpurs. All data processing is performed by solid-state circuits (no relays), thus, the output voltage can be programmed from -50 V to +50 V in less than $100 \mu \mathrm{~s}$ (the voltage range of the 6131 B is -100 V to +100 V and requires less than 200μ for a complete swing of output).

The plug-in board design provides the fexibility needed to suit the coding and logic levels of most computers. For the Digital Voltage Sources to interface with either a BCD or binary input, only two plug-in boards are repiaced. A multiplex input/outpur card is now a vailable for multiplex operation of eight Digital Voltage Sources with the Hewlett-Packard computers. See "Jnterface Kit." Each instrument is manufactured in accordance with customer specifications on input and outpur dara.

The Digital Voltage Source consists of three main sections: (1) output voltage processing (2) current limit processing and (3) high-speed power amplifier as illustrated in the following block diagram.

The voltage magnisude input is a 4 -digit, BCD (3421) or binary code that programs the output between -9.999 and +9.999 volts with 1 mV resolution. The voltage range input multiplies the voltage magnitude XI_{1} or X 10 . In the Model

61308 X 10 range, for example, the output is programmable between -50.00 and +50.00 voles with 10 mV resolution. The voltage polarity input designates the output voltage sign, + or -

The current limit magnitude input is a three bit code. Two bits select a current limit of $20,50,70$, or 100 mA . The third bit multiplies the magnitude by 1 or 10 . In the X 10 range, the current limit is programmed to $200,500,700$, or 1000 mA .

The internal/external input selects either the internal (DVS) control or the external (computer) control.

The output voltage data processor isolates, stores, and converts the toltage polarity and magnitude inputs to the corresponding analog output voltage between -9.999 and 9.999
V. This section also receives the appropriate voltage range data From either the computer or the voltage range switch on the Digital Voltage Source, depending on the state of the internal/ external signal from the computer. The voltage range data programs the power amplifier for X1 or X 10 output (-9.999 to +9.999 or -50.00 to +50.00 V).

Current limit magnitude and range are provided by the com-
puter or the current limit switches on the Digital Voltage Source, depending on the state of the internal/external signal as in the voltage range input. They are decoded and compared to a sample of the load current. If the output current exceeds the programmed current limit, the power amplifier output is open-circuited electronically, and the computer is notified of the overload condition.

Specifications

Dual range de output

$6130 \mathrm{~B}:-10$ to +10 V de (1 mV increments) @ 0.1 A -50 to + 50 V dc (10 mV increments) @ 0-1A
$6131 \mathrm{~B}:-10$ to +10 V de (1 mV increments) @ 0.5 s -100 to +100 V dc (10 mV increments) @ 0.5 A
NOTE: Binary voltage increments are half of the above values.
Current sinking: the ability to absorb energy from the load rather than supply is defined as current sinking. This occurs when current is flowing into the positive terminal and out of the negative terminal. Model 6130 B is capable of up to 500 mA current sinking; 6131 B will handle 250 mA current sinking.
Current Hmit: $20,50,70,100,200,500,700$, or 1000 mA with an accuracy of 5%. (Common to both units; upper limics for these units are safeguarded by a separate fixed current limit circuit which limits output current to 110% of current rating.) Current limit operates in both the source and sink modes. The reaction time for the adjustable current limit circuitry to open-circuit the output may be varied from 5 $\mu \mathrm{sec}$ to 2 msec by adding an excernal capacitor at the cear terminals.
AC power input: $115 \mathrm{~V} \mathrm{ac} \pm 10 \%, 48.440 \mathrm{~Hz}$.
Load regulation: for a load current change equal to the current rating of the supply.
Low-volt (X 1) range: 0.2 mV .
High-volt (X10) range: 2 mV .
Une regulation: for a change in line voltage from 103.5 to 126.5 V ac .

Low-volt (X1) range: 0.2 mV .
High-volt (X10) range: 2 mV .
Ripple and noise: at any line voltage and load condition within rating.
Low-vait (XI) range: $1 \mathrm{mV} \mathrm{p}-\mathrm{p}$ (dc to 20 MHz).
High-volt (X 10) range: 5 mV p-p ($d c$ to 20 MHz).
Input/output data requirements: BCD or binary formar, and the input/output coding, levels, and polarity of the data for the Digital Voltage Source are selected by the customer. Two plug-in boards are modifed at the factory to fit these requirements. To identify the input/output data, the two boards are assigned Hewlett-Packard part numbers and the overall unit is given a (J) option number. For interfacing with Hewlett-Packard computers. 2114A, 2115A, 2116A/B, see J-numbers under "Options".
Programming speed: cime required to attain 99.9% of pro. grammed value, using a resistive load.
Voltage: 6130B: -50 V to +50 V in less than $100 \mu \mathrm{sec}$. 6131B: -100 V to +100 V in less than $200 \mu \mathrm{sec}$.
Voltage data transter rate: greater than 10,000 words $/ \mathrm{sec}$. Current limit: less than $50 \mu \mathrm{sec}$.
Voltage range: less than 2 msec.

Meters: the front panel includes a voltmezer and ammeter with 3% accuracy and the following ranges:
6130B
6131 B

Volts: -60 to $+60 \mathrm{~V} \quad$ Voits: -120 to +120 V
-10 to +10 V

- 1.2 to +1.2

Amps:-. 60 to +.60 A
-0.3 to +0.3 A
-0.12 to +0.12 A
-.15 to $+.15 A$
$-.06 t 0+.06 \mathrm{~A}$
Transient recovery time: less than 100μ seconds is required for output voltage recovery to within 0.1% of the range setting following a change in output current equal ro the current rating of the supply.
Output Impedance:
$0-10 \mathrm{~Hz}$: less than 001Ω (typically $.0005 \Omega$)
$10 \mathrm{~Hz}-1 \mathrm{KHz}$: less than 1Ω (typically . 05Ω).
$1 \mathrm{KHz}-100 \mathrm{KHz}$ less than 10Ω (sypically 5Ω).
$100 \mathrm{KHz}-1 \mathrm{MHz}$ less than 200 (typically 100』).
Temperature ranges:
Operating: 0 to $\$ 5^{\circ} \mathrm{C}$.
Storage: -40 to $+75^{\circ} \mathrm{C}$.
Resolution: (Binary/BCD)
Low-volt (XI) range: ($0.5 \mathrm{mV} / 1 \mathrm{mV}$).
High-volt (X10) range: ($5 \mathrm{mV} / 10 \mathrm{mV}$).
Temporature coefficient: outpur change per degree centigrade change in ambient following 30 minutes warm-up.
Low-volt (X1) range: less than $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
High volt (XIO) range: less than $500 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
Accuracy: includes deviations resulting from full line and load changes and a $\pm 5^{\circ} \mathrm{C}$ change in temperatare from $25^{\circ} \mathrm{C}$.
Low-volt (X1) range: 1 mV .
HIgh-volt (X10) range: 10 mV .
Options: at no extra cost, " J " number options indicate the following compatibilities with Hewlett-Packard computers, 2114A, 2115A, 2116A/B:
J-19: Binary-coded decimal ($B C D$) inputs from multiplex input/output card.
J-20: Binary inputs from multiplex input/ourput card.
Other optlons: 28--\$10. See page 561.
Hewiett-Packerd Interface Kit: 14535A: Kit supplies complete connecring lardware-cable, multiplex card, and programfor one Digital Voltage Source unit. Multiplex card will handle up to eight units. Cables for connecting other units are optional. Consult HP office.
Pocket Programmer: 14533A: This accessory replaces the computer by manually programming all inputs by switch closures. The Pocket Programmer is plugged into the connector on the rear of these units, which normally connect to a computer. $\$ 97$.
3-ft. Extenslon Cable for Pocket Programmer: 14931A: Includes 50 -conductor cable- $\$ 50$.
Price: $\$ 1,500$. (for either model).

Models 6101A-6105A

Models 6110A. 6116A

[^52]
Advantages

Low output drift and temperature coefficient.
Low output ripple
Low output impedance
High accuracy remote programming (except 6110A)
Remote error sensing (except 6110 A)
No overshoot on turn-on, turn-off, or power removal
Output continuously adjustable to zero volts
High output voltage resolution - ten-turn coarse and one-turn fine control (6101A, 6102A and 6106A)

In-line 5 -digit thumb-wheel voltage programmer ($6110 \mathrm{~A}, 6111 \mathrm{~A}, 6112 \mathrm{~A}, 6113 \mathrm{~A}, 6116 \mathrm{~A}$)
All silicon design
Positive or negative output
Short circuit proof
Continuously variable current limit control
Output voltage and curcent metering
Easily rack mounted for systems applications
Auto-series and auto-tracking operation
Multiple range meter
Resettability - $0.01 \%+200{ }_{\mu} \mathrm{V}$

Description

The STB Series of high stability dc bencly supplies has been designed for those applications requiring performance an order of magnitude better than well-regalated laboratory supplies. The performance advantages of the STB Series exist with regard to virtually every important aspect of power supply performance - ripple, stability, temperature coefficient, output resolution, programming accuracy, load and line regulation.

The all-silicon circuit uses as its reference element a tem-perature-compensated zener diode having a temperature coefficient of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. A high gain feedback amplifier employing a "diff-amp" (matched silicon differential amplifer package) monitors and controls the output voltage. Critical components, including the zener reference diode and low level portions of the feedback amplifier, are enclosed in an oven which is temperature-controlled entirely with solid-state components - no moving parts to wear out.

Models 6111A, 6112A, 6113A, and 6116A are similar to models 6101A, 6102A and 6106A except for the built-in 5 -digit thumb-wheel voltage programmer.

Model 6110A is a high-voltage high-stability supply that is all silicon (no tubes) and also can provide a positive or negative output. The 6110A is ideally suited for high-voltage photomultipliers requiring an exceptionally stable power source. It can also be used as a $0-3000$ volt calibrator.

Specifications

AC input: Model 6110A-115 Vac $\pm 10 \%, 57.63 \mathrm{~Hz}, 1 \mathrm{~A}$, so W. Other Models-115 Vac $\pm 10 \% .48 .63 \mathrm{~Hz}, 0.5 \mathrm{~A}$, 52 W.

Temperature ranges: operating: 0 to $50^{\circ} \mathrm{C}$. storage: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Transient recovery time: less than $50 \mu \mathrm{~s}$ is required for output voltage to recover to within 10 millivolts of the nominal output voltage following a full load change in output current.
Less than $100 \mu \mathrm{~s}$ is required for output voltage recovery to within the load regulation specification.
The nominal output voltage is defined as the means between the no load and full load voltage.

Controls: 6101A, 6102A \& 6106A-A 10 turn pot permits concinuous adjustment of the output voltage over its entire range. A single-turn pot allows fine trimming of the output voltage; resolution is $100 \mu \mathrm{~V}+0.002 \%$ of the output voltage. A single-tum front-panel pot permits the current limit setting to be varied continuously from zero to a value slightly in excess of the full current rating. $6110 \mathrm{~A}, 6111 \mathrm{~A}, 6112 \mathrm{~A}, 6113 \mathrm{~A} \& 6116 \mathrm{~A}-\mathrm{An}$ in line 5. digit (thumb-wheel) voltage programmer permits control of the output voltage with an accuracy of $0.1 \%+1 \mathrm{mV}$ $(6110 \mathrm{~A}$ is $0.1 \%+100 \mathrm{mV}$ and 6113 A is $0.1 \%+10$ $\mu \mathrm{V}$) of the output voltage. Resolution is $100 \mu \mathrm{~V}$ (except 6110 A , which is 10 mV). The $6111 \mathrm{~A}, 6112 \mathrm{~A}, 6113 \mathrm{~A}$ \& 6116 A have a single-turn front panel pot that permits the current limit setting to be varied continuously from zero to a value slightly in excess of the full current rating. The 6110 A has a fixed current limit built-in to the supply.

Overload protection: an all electronic, continuously acting curcent limit prorects the power supply for all overloads regardless of how long imposed, including a direct short circuit across the output terminals.

Output terminals: The $\mathrm{d} c$ output of the supply is floating; thus, the supply can be used as eirher a positive or negative source. Terminals for +OUT, -OUT, and GND are provided on both the front and back of the supply (except 6110 A which has front terminals only). In addition, the rear barrier strip includes terminals for remote programming, remote sensing, Auto-Series, and Auto-Tracking operation (except 6110A).

Cooling: convection cooling is employed. The supply has no moving parts.

Finish: light gray front panel with dark gray case.

Power cord; a 3-wire 5-foot power cord is provided with each unit.

Accessories: see rack kits on page 561.

Advantages

Precision constant curfent regulation
Rapid programming
Output useful to microampere region
High output impedance over wide frequency band
Remote programming using resistance or voitage control Can be modulated from external ac sousce
Continuously variable voltage limit
Auto parallel operation
Front and rear ourput terminals
Floating output can be used as positive or negative source No overshoot for turn-on, turn-off, or power removal Rear terminals for monitoring output voltage

Description

Precision performance, low price, and small size and weighr, combine to make the new $C C B$ "B" Series supplies useful as general purpose laboratory constant current sources for semiconductor circuit development and component evaluation. Their ripple, regulation, and drift characteristics are orders of magnitude better than comparably priced constant current supplies.

In standard constant current supplies, placing a voltmeter accoss the output terminals degrades the load regulation and diminishes the load current. The CCB Series eliminates this error by using an operational amplifer to feed the front panel voltmeter.

Special attention has been given to circuit derails so that well
segulated performance is maintained down to low output currents $(0.2 \mu \mathrm{~A})$.

Other design precautions contribute to the de isolation and ac shielding properties which are necessary for a high performance constant current supply.

The CCB "B" Series now has two models, 6177 B and 6181B, which can be precisely programmed with either voltage or resistance. In voltage programming, for example, the Model 6177 B (with top output of 500 mA at 50 V dc) offers three ranges: $5 \mathrm{~mA}, 50 \mathrm{~mA}$, and 500 mA , with a voltage programming ratio of $200 \mathrm{mV} / \mathrm{mA}$ on the 5 mA range. With every prograth change of 1 mV , the constant current output changes by only 5μ A.

Specifications

DC output: Model $6177 \mathrm{~B}: 0.500 \mathrm{~mA}, 0.50 \mathrm{~V}$ de compliance; Model 6181B: $0.250 \mathrm{~mA}, 0.100 \mathrm{~V}$ dc compliance.

AC input: 115 V ac $\pm 10 \%, 48.64 \mathrm{~Hz}$,
Output ranges; Model $6177 \mathrm{~B}: 0.5 \mathrm{~mA}, 0.50 \mathrm{~mA}, 0.500 \mathrm{~mA}$; Madel 6181B: $0.2 .5 \mathrm{~mA}, 0.25 \mathrm{~mA}, 0.250 \mathrm{~mA}$.

Current programming values

Voltage: Model 6177B: 0.1 V span for all output ranges; Model 61818: 0.2 .5 V span for all output ranges (i.e. a 10 mV program change results in a 1 mA change on Model 6181's 250 mA range, but only in a 1 mA change on its 25 mA range).

Resistance: Model 6177B: $0-2000 \Omega$ span for all output ranges; Model 61818: $0-5000 \Omega$ span for all output ranges (i.e. a 20Ω change on Model 6181 's 250 mA range results in 1 mA change. but only .1 mA on the 25 mA range).
Load regulation: less than 25 ppm of oupput +5 ppm of range switch setting for a load change resulting in an outpur voliage change from zero :o maximum rated output.
Line regulation: less than 25 ppm for a 10% change in the nomi:nal line voltage.
RMS ripple \& noise: less than 50 ppm of output +25 ppm of range switch seting.
Transient recovery time: less than $200 \mu \mathrm{~s}$ for output current recovery to within 1% of the nominal output current following a full load change in output voltage.

Current programming speed: less than $500 \mu \mathrm{sec}$ from zero to 0.99 of desired output currenc.

Temperature coefficient: less than 75 ppm of ourput +5 ppm of range switch setring per degree C.
Stability: less than 100 ppm of output +25 ppm of range swirch seting. Slability is measured for eight hours after 30 minutes warm-up under conditions of constant line, load, and remperature.
Resolution: 0.02% of range switch setting.
Temperature rating: operating: 0 to $55^{\circ} \mathrm{C}$. Storage: -40 to $+85^{\circ} \mathrm{C}$.
Controls: three.position output current and meter range switch. 10 -turn output current control, voltage limit control. meter switch, power switch, and pilot light.
Output terminals: a positive and negative output terminal are included on the front panel, as well as a ground terminal. The suppiy may be operated floating or either side may be grounded. A rear panel barrier strip includes output terminals and other terminals necessary for remote programming, ac modulation, and other control functions.
Mater ranges: Model $6177 \mathrm{~B}: 6,60,600 \mathrm{~mA}, 60 \mathrm{~V} \mathrm{dc}$; Model 61818: 3, 30. $300 \mathrm{~mA}, 120 \mathrm{~V} \mathrm{dc}$.
SIze: $3^{\prime \prime}(7,6 \mathrm{~cm}) \mathrm{H} \times 73 / 4^{\prime \prime}(19,6 \mathrm{~cm})$ W $\times 113 / 4^{\prime \prime}(29,8 \mathrm{~cm}) \mathrm{D}$. Package size is half rack widith and is easily rack mounted using accessories listed on page 561.
Welght: $10 \mathrm{lbs}(4,53 \mathrm{~kg})$ net, $13 \mathrm{lbs}(5,9 \mathrm{~kg})$ shipping.
Options: 14- $\$ 35 ; 28$ - $\$ 10$. See page 561 for details.
Accessoriest see rack kits, etc. on page 561 .
Price: \$12S (for either model).

POWER SUPPLIES

The MPM Series consists of compact constant voltage/ constant current de power supplies suitable for either bench or sack operation. They are packaged in one-third rack width modules for use in the modular enclosure system, described on page 225. MPM supplies are designed to satisfy the need for a general purpose and reliable source of power for engineers experimenting with transistor circuit design.

Models 6224 B and 6226 B possess all of the advanrages of the preceding " A " versions of these models plus the following improvements:
a. Increased output voltage.
b. Ten-surn voltage and current controls for better output settability.
c. Multiple range meter for increzsed bench urility.
d. Special circuirry for faster programming.
e. All silicon semiconductors for greater reliability.

In addition a dual range supply, Model 6220B has been added to the series. This supply can be used as a 0.25 volt source at 0.1 A or a 0.50 volt source at 0.0 .5 A .

Specifications

Modit	82808			8224日	B2888
Output DCvoltage	0.25 Y	Dual range	0.50 V	0.24 V	0.50 V
$\overline{\text { DC current }}$	0.1 A		0.0 .5 A	0.3 A	0.1 .5 A
Input: $115 \mathrm{Vac} 10 \%$	$\begin{aligned} & 50-300 \mathrm{~Hz} \\ & 0.5 \mathrm{~A}, 44 \mathrm{~W} \end{aligned}$			$\begin{aligned} & 50.60 \mathrm{~Hz} \\ & 1.8 \mathrm{~A}_{1} 164 \mathrm{~W} \end{aligned}$	$\begin{gathered} 50-60 H z \\ 1 . B A \cdot 164 \mathrm{~W} \end{gathered}$
Load regulation; the constant voltege lead reguistion is given for a load current change equal to the current rating of the supply, The con. stant curreat doad regulation is glven lor a loso voluspochange equal to the voltage raling of the supply.	0.01% Dlus 2 mV			0.01% plus 4 mV	0.01% olus 2 mv
	0.01\% plus $250 \mu \mathrm{~A}$			0.01 号 Dids $250 \mu \mathrm{~A}$	0.01 \% plus 250 رA
Lina regulation: for a ma 10% change in the nominal line voltage at any CV ostpul voltage and current within rating.	0.01% plas 2 mV			0.01% plus 2 mV	0.01% plus 2 mV
	0.01% olus $250 \mu \mathrm{~A}$			0.01% Dlus $250 \mu \mathrm{~A}$	0,01\% plus $250 \mu \mathrm{~A}$
Ripple and nolse: at any line voltage and under any foad condition within rating.	$200 \mu \mathrm{Vrms} / 1 \mathrm{mVo-g} \mathrm{(dc} \mathrm{to} 20 \mathrm{mHz}$)				
	$200 \mu \mathrm{Arms} / \mathrm{lmA} \mathrm{p-p(dc} \mathrm{to} 20 \mathrm{MHz}$)				
Temperature cosfficlent: oulput change fer degrea centigiada change in CV ambient following 30 minutos warm-up.	0.02\% plus 1 mV			0.02% plus $500 \mu \mathrm{~V}$	0.02% pius $500 \mu \mathrm{~V}$
	0.02% 0.02% $0 i \mathrm{Ls}$ plus 1 mA 0.5 mA			0.02% glus 1.5 mA	0.02% plus 0.8 mA
Stability: under conslant ambient conditions, total drilt for 8 hous Iol- CV lowing 30 minutes warm-up.	0.1% olus 5 mV			0.15001452 .5 mV	0.1% plus 2.5 mV
	0.1% 0.1% 0102 $p i u s$ 5 mA 2.5 mA			0.1% pius 7.5 mA	0.1% plus 6 mA
Remota programming: all programning reminals ara locsted on real $\frac{\mathrm{CV}}{\mathrm{CC}}$barrier strips.	200 ohms per volt			2000 mms per volt	200 chms per valt
	500 ahms 1000 ohms per smp per amp			500 otims Der smo	500 ohas per amp
Meter rangas	$\begin{gathered} 0.6 V, 0.60 \mathrm{~V} \\ 0.0 .12 \mathrm{~A}, 0-1.2 \mathrm{~A} \end{gathered}$			$\begin{aligned} & 0.3 \mathrm{~V}, 0.3 \mathrm{BV} \\ & 0.0 .4 \mathrm{~A}, 0.4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~V}, 0.80 \mathrm{~V} \\ & 0.0 .18 \mathrm{~A}, 0.1 .8 \mathrm{~A} \end{aligned}$
Welght: (not/shloging) $\begin{array}{r}\text { ligs. } \\ \end{array}$	$\begin{aligned} & 16 / 20 \\ & 7,25 / 9,1 \end{aligned}$			$\begin{gathered} 16 / 20 \\ 7,25 / 8.6 \end{gathered}$	$\begin{gathered} 15 / 20 \\ 7,25 / 8,6 \end{gathered}$
Price:	\$250			\$325	\$325
Oplions: refor to page 561 los description	13-\$95 14-\$35 28-\$10				

$C V=$ Constant Voltage $\quad C C=$ Constant Current

Output impedance

DC to 100 Hz -less than 0.001 ohm, 100 Hz to $1 \mathrm{kHz}-$ less than $0.01 \mathrm{ohm}, 1 \mathrm{kHz}$ to 100 kHz -less than 0.2 ohm . 100 kHz to 1 MHz - less than 2 ohms.

Transient recovery time: less than 50μ seconds is required for output voltage recovery in constant voltage operation to within 10 millivols of the nominal output voltage following a change in output cusrent equal to the current rating of the supply. The nominal output voltage is defined as the mean between the no load and full load voltages.

Temperature ratings: operating: $0.50^{\circ} \mathrm{C}$ (consult factory for derating information for operation between $50^{\circ} \mathrm{C}$ and $71^{\circ} \mathrm{C}$); storage: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Controls: ten-rurn output voltage and current controls permit continuous adjustment over entire outpur span. Switch selects front panel meter voltage or cuirent scale.
Finssh: light gray panel with dark gray case.
Size: $61 / 4^{\prime \prime} H \times 51 / s^{\prime \prime} W \times 11^{\prime \prime} D(15.9 \mathrm{~cm} \mathrm{H} \times 13 \mathrm{~cm} W \times$ $28 \mathrm{~cm} \mathrm{D})$.

SMALL LABORATORY SUPPLIES

Advantages:

High quality-low cost
Short circuit-proof-current limit circuit protects the supply against any overload, including a direct short circuit across the output terminals, for any time interval without damage

Compact-impact-resistant case

Floating output-supply can be operated as a positive or negative source

Silicon differential amplifiers compare the output voltage with a stable reference voltage; provide improved stability

No turn-on, turn-off, or power removal overshoot
Coarse and fine controls
Low output ripple and drift
Rack mounting hardware available
Fully serviceable

Description

Six extremely compact reell-regulated dc power supplies, designed especially for bench use, comprise the BENCH series. New fabrication techniques employed minimize manufacturing costs while retaining component and circuit quality. Reliable, yet low cost, these "hand-size" battery substitutes have ovecall performance features ideal for circuit development, component evaluation, and other laboratory applications.

The all-silicon circuit uses an input differential amplifier to compare the output voltage with reference voltage derived from a temperature-compensated zener diode. These stable input and reference circuits are combined with a high gain feedback amplifier to achieve low-noise drift-free performance. Output voltage is fully adjustable to zero. Special design precautions prevent output overshoot during turn-on or turn-off, or when ac power is suddenly removed.

The front panel meter can be switched to monitor output voltage or current. Constant voltage/constant current or constant voltage/current limiting insures short-circuit proof operation, and permits series and parallel connection of two or more supplies when greater voltage of current is desired.

The molded, impact-resistant case includes an interlocking featare for stacking several units vertically, thus minimizing bench space required for multiple supplies. Alternatively, up to three units can be mounted side by side in a $19^{\prime \prime}$ rack using a special Rack Mounting Kit. See page 561.

Common Specifications

Translent recovery time: less than 50μ seconds is required for output voltage recovery in constant voltage operation to within 15 millivolts of the nominal output voltage following a change in output current equal to the current rating of the supply; the nominal output voltage is defined as the mean between the no load and full logd voltages.
Output impodance:
Less than 0.03 ohm from DC to 1 kHz .
Less than 0.5 ohm from 1 kHz to 100 kHz .
Less than 3 ohms from 100 xHz to 1 MHz .

Temperature ratings:

Operating: 0 to $55^{\circ} \mathrm{C}$ (consult lactory for derating intormation for operation over $55^{\circ} \mathrm{C}$)
Slorage: $-40^{\circ} \mathrm{C} 10+75^{\circ} \mathrm{C}$
Size: - $31 / 4^{\prime \prime} \mathrm{H} \times 51 / 4^{\prime \prime} \mathrm{W} \times 7^{\prime \prime} \mathrm{D}$.
$-8,26 \mathrm{~cm} \mathrm{H} \times 13,34 \mathrm{~cm} \mathrm{~W} \times 17,78 \mathrm{~cm} \mathrm{D}$.
Output terminals: either positive or negative output terminal may be connected to ground through a separate terminal provided for that purpose, or the supply may be operated floating at up to 300 volts off ground.
Cooling: convection cooling is emplayed - no moving parts.
Option $28-230 \mathrm{yac}=10 \%$, single phase input: factory modification consists of reconnecting the multita input power transformer for 230 -volt operation: Price 510.

Specifications

	Constant voltage/ourtent Ilmising			Constant vallage/constant ourrent		
Model	8213A	6215A	6217A	6214 A	6215A	6218A
DC voltage DC current	$\begin{aligned} & 0-10 V \\ & 0-1 A \end{aligned}$	$\begin{gathered} 0-25 \mathrm{~V} \\ 0-400 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0-50 \mathrm{~V} \\ 0-200 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 0-10 \mathrm{~V} \\ & 0-1 \mathrm{~A} \end{aligned}$	$\begin{gathered} 0-25 \mathrm{~V} \\ 400 \mathrm{~mA} \end{gathered}$	$\begin{array}{r} 0-50 \mathrm{~V} \\ 0-200 \mathrm{~mA} \end{array}$
Input: 115 V ac $\times 10 \%$. 50-400 Hz	0.29 A, 28 W	0.25 A, 25 W	0.25 A. 25 W	0.29 A, 28 W	0.25 A. 26 W	0.25 A, 26 W
Load regulation: the constant voltage load regulation is given for a load current CV change equal to the current rating of the	4 mV			4 mV		
supply; the Constant Current load regula. tion is given for a load voltage change CC equal to the voltage rating of the supply.	-	-	-	$500 \mu \mathrm{~A}$		
LIne requiation: for a change in line voltage CV from 103.5 to 126.5 (or 126.5 to 103.5) at	4 mV			4 mV		
any oulput voltage and current within rating.	-	-	-	$750 \mu \mathrm{~A}$	$500 \mu \mathrm{~A}$	$500 \mu \mathrm{~A}$
Rlpple and nolse: at any line voltage and load condition within rating.	$200 \mu \mathrm{rms} / \mathrm{l} \mathrm{mV} \mathrm{p} \cdot \mathrm{p}(\mathrm{dc}$ to 20 MHz)			$200 \mu \mathrm{Vrms} / 1 \mathrm{mV} \mathrm{p}-\mathrm{p}(\mathrm{dc}$ to 20 MHz)		
	-	-	-	$150 \mu \mathrm{~A}$ /ms/ $500 \mu \mathrm{~A} \cdot \mathrm{P} \cdot \mathrm{P}$ (dc to 20 MHz)		
Temperaturs coofilolent: outout change per degree centigrade change in ambient following 30 minutes warm-up.	(0.02\% $+1 \mathrm{mV}) \mathrm{per}{ }^{\circ} \mathrm{C}$			$(0.02 \%+1 \mathrm{mV}) \mathrm{per}{ }^{\circ} \mathrm{C}$		
	-	-	-	6 mA per ${ }^{\circ} \mathrm{C}$	2 mA per ${ }^{\circ} \mathrm{C}$	$1 \mathrm{~mA} \mathrm{per}{ }^{\circ} \mathrm{C}$
Stablifty: under constant ambient conditions, total drift for 8 hours following 30 minutes warm-up.	$0.1 \%+5 \mathrm{mV}$				$0.1 \%+5 \mathrm{mV}$	
	-	-	-	15 mA	5 mA	2.5 mA
Resolulion:	$<5 \mathrm{mV}$	$<5 \mathrm{mV}$	$<10 \mathrm{mV}$	$<5 \mathrm{mV}$	$<5 \mathrm{mV}$	10 mV
	-	-	-	$<75 \mu \mathrm{~A}$	$<20 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$
Controls:	On-off switch and separate pilot light: one-furn coarse and fine voltage controls; meter switch salects volis or mA			On-off switch and separate pilot light: concentric coarse and fine voltage control; concentric coarse and fine current control; meter range switch		
Meler ranges: accuracy is 3\% of full scale.	$0-12 \mathrm{~V}, 0-1.2 \mathrm{~A}$	$\begin{gathered} 0-30 \mathrm{~V}_{1} \\ 0-500 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0-60 \mathrm{~V} \\ 0-250 \mathrm{~mA} \end{gathered}$	0-12V.0-1.2 A	$\begin{gathered} 0-30 \mathrm{~V} \\ 0-500 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0-60 \mathrm{~V} \\ 0-250 \mathrm{~mA} \end{gathered}$
Woight: (net/shipping) $\begin{array}{ll}\text { Ibs. } \\ & \text { kg. }\end{array}$	$\begin{aligned} & 4.5 / 6.5 \\ & 2,0 / 2,9 \end{aligned}$	$\begin{aligned} & 4.5 / 6.5 \\ & 2,0 / 2,9 \end{aligned}$	$\begin{aligned} & 4.5 / 6.5 \\ & 2,0 / 2,9 \end{aligned}$	$\begin{gathered} 4.75 / 6.75 \\ 2,2 / 3,1 \end{gathered}$	$\begin{gathered} 4.75 / 6.75 \\ 2,2 / 3,1 \end{gathered}$	$\begin{gathered} 4.75 / 6.75 \\ 2,2 / 3,1 \end{gathered}$
Probe	\$90	\$90	590	\$116	$\$ 115$	\$116

Model 721A
The forerunoer of the BENCH Series, the Model 721A Power Supply was designed to produce de voltages for transistor investiga. rion, and its reliability has made it a popular reorder item. Its fully regulated output voltage range of 0 to 30 volts is sufficient for most types of transistors in use today. It has a three rerminal output so that either the positive or negative terminal may be grounded. Particularly useful are 4 choices of current limit values, and multiple range metering.

Specifications

DC output: 0.30 V dc, $0-150 \mathrm{~mA}$.
AC Input: $105 \cdot 125 / 210-250$ volts, 50 to 60 Hz (cps), 16 W .
Load regulation: less than 0.3% or 30 mV (whichever is greater) output voltage change from no load to full load.
Llne regulation: less than 0.3% or $\pm 15 \mathrm{mV}$ (whichever is greater) output voltage change for a line inpur change from 105 to 125 or 125 to 105 volts.
Ripple and nolse: less than $150 \mu \mathrm{~V}$ rms at any line voltage and under any load condition within racing.
Temperature ratings; operating: 0 to $50^{\circ} \mathrm{C}$: storage: -20 to $+85^{\circ} \mathrm{C}$.
Output Impedance: less than 0.2 ohm in series with less than $30 \mu \mathrm{H}$; meter range switch in 10 or 30 V de position.
Overload protectlon: automatically limits peak outpue curcent to selected values ($25,50,100$, or 225 mA) regardless of the load resistance.
Controls: 6-position rotary switch selects current or voltage meter ranges: 4 -position rotary swich selects maximum output currenr, $25,50,100$, or 225 mA .
Output terminals: three banana jacks spaced 3/4" apart, Positive and negative terminals are isolated from chassis; supply can be operated foating up to 400 volts off ground.
Weight: net, 4 lbs ($1,81 \mathrm{~kg}$) ; shipping, $7 \mathrm{lbs}(3,17 \mathrm{~kg})$.
Size: $7^{\prime \prime}(1.8 \mathrm{~cm})$ W $\times 43 / 8^{\prime \prime}(11.1 \mathrm{~cm}) \mathrm{H} \times 51 / 4^{\prime \prime}(13.3 \mathrm{~cm}) \mathrm{D}$.
Price: $\$ 145$.

LABORATORY BENCH SERIES

LAB Series

Models 6200B - 6209B

LAB Series supplies, already regarded as the industry standard because of their reliability, versatility, and performance specifications, have recently been updated. The glass epoxy printed wiring board now mounts all circuit components via plated- through holes; a new package design achieves greater rack-mounting rigidity and ease in assembly. New production techniques result in improved reliability and lowered costs permitting Hewlett-Packard to manufacture these instruments at a competitive price.

In addition, on models $6200 \mathrm{~B}, 6201 \mathrm{~B}, 6202 \mathrm{~B}$, and 6203 B , special circuitcy has been included to increase the down-programming speed, thus making it commensurate with the up-programming capability.

To further increase bench utility, multiple range meters have been included as standard on all models. Switching the meter range switch to the "wrong" position will result in no damage to the meter or degradation of power supply performance.

Optional overvoltage "crowbar" protection is available on all models with outputs under 100 V de (this excludes only Models 6207B and 6209B).

Advantages

Multiple range meter
Remote programming and sensing
High-speed programming
Auto-series, auto-parallel, auto-tracking
Short circuit proof
Front and rear output terminais
Floating ourput
RFI conformance to MIL-T-6181D

Modes		62008 \ddagger	6201日:	62028 \ddagger	62038
Output	DC Voltage	0.20 V DUAL 0.40 V	0.20 V	0.40 V	0-7.5 V
	DC Current	0-1.5 A RANGE 0-0.75 A	0.1 .5 A	0.0 .75 A	0.3 A
Input		$\begin{gathered} 115 \mathrm{Vac}=10 \% \\ 50-400 \mathrm{~Hz}, 0.9 \mathrm{~A}, 70 \mathrm{~W} \end{gathered}$	$\begin{gathered} 115 \mathrm{Vac}=10 \% \\ 50.400 \mathrm{~Hz}, 0.8 \mathrm{~A}, 86 \mathrm{~W} \end{gathered}$	$\begin{gathered} 115 \mathrm{Vac}=10 \% \\ 50.400 \mathrm{~Hz}, 0.8 \mathrm{~A}, 66 \mathrm{~W} \end{gathered}$	$\begin{gathered} 115 \mathrm{Vac}=10 \% \\ 50-400 \mathrm{~Hz}, 0.9 \mathrm{~A}, 70 \mathrm{~W} \end{gathered}$
Load regulation	Constant Voltage	0.01% plus 4 mV	0.01% plus 4 mV	0.01% plus 4 mV	5 mV
	Constant Current	0.03% plus $250 \mu \mathrm{~A}$	0.03% plus $250 \mu \mathrm{~A}$	0.03% plus $250 \mu \mathrm{~A}$	0.03% plus $250 \mu \mathrm{~A}$
Line regulation	Constant Voltage	0.01% plus 4 mV	0.01% plus 4 mV	0.01% plus 4 mV	3 mV
	Constant Current	0.01% plus $250 \mu \mathrm{~A}$	0.01% plus $250 \mu \mathrm{~A}$	0.01\% plus $250 \mu \mathrm{~A}$	0.01% plus $250 \mu \mathrm{~A}$
Ripple and noise	Constant Vollage	$\begin{gathered} 200 \mu \vee \mathrm{fms} / \\ 1 \mathrm{mV}-\rho(\mathrm{DC}-20 \mathrm{Mhz}) \end{gathered}$	$\begin{gathered} 200 \mu \vee \mathrm{rms} / \\ 1 \mathrm{mV} \cdot \mathrm{p}(\mathrm{DC} \cdot 20 \mathrm{Mhz}) \end{gathered}$	$\begin{gathered} 200 \mu \vee \mathrm{mms} / \\ 1 \mathrm{mV} \mathrm{p}-\mathrm{p}(\mathrm{DC}-20 \mathrm{Mhz}) \end{gathered}$	$\frac{200 \mu \mathrm{~V} \mathrm{rms} / \mathrm{mhz})}{1 \mathrm{mV} \mathrm{p}-\mathrm{p}(0 \mathrm{C} \cdot 20 \mathrm{mhz}}$
	Constani Current	$500 \mu \mathrm{~A}$ rms	$500 \mu \mathrm{~A}$ rms	$500 \mu \mathrm{~A}$ rms	$500 \mu \mathrm{Arms}$
Remote programming	Constant Voltage*	200 ohms per volt	200 ohms per volt	200 ohms per voll	200 ohms per volt
	Constant Current \dagger	500 ohms 1000 per amps per amp	1000 ohms per amp	1000 ohms per amp	500 ofms per amp
Overload protection		Constant valiage/constant current circuit provides complete protection for the power supply Ior any overload condition. In addition, continuously adjustable current limiting in constant voltage operation and continuously adjustable voltage limiting in constant current operation provides oplimum protection for the load device.			
ContiolsMeter ranges		Off-On Swilch, Pilot Light, Concentric Coarse and Fine Voltage Control, Concentric Coarse and Fine Current Control, Concentric Meter Range and Output Range Swith.	Off-On Swith, Pilot Light, Concentric Coarse and Fine Voltage Control, Concentric Coarse and Fine Current Control, Meter Range Switch.	Off-On Switch, Pilor Light, Concentric Coarse and fine Voltage Control, Concentric Coarse and Fine Current Control, Mater Range Switch.	Off-On Switch, Pilot Light, Concentric Coarse and Fine voltage Control, Concentric Coarse and Fine Current Conirol, Metar Range Switch.
		$0.5 \mathrm{~V}, 0-50 \mathrm{~V}, 0.18 \mathrm{~A}, 0-1.8 \mathrm{~A}$	$\begin{gathered} 0.2 .4 \mathrm{~V}, 0.24 \mathrm{~V}, 0.18 \mathrm{~A}, \\ 0.1 .8 \mathrm{~A} \end{gathered}$	$0.5 \mathrm{~V}, 0.50 \mathrm{~V}, 0.0 .09 \mathrm{~A}, 0.9 \mathrm{~A}$	$0.9 \mathrm{~V}, 0.9 \mathrm{~V}, 0.4 \overline{\mathrm{~A}, ~ 0.4 ~ A}$
Options Refer to page 561 for descriptions		07-\$25	$08-\$ 25$ $13-\$ 60$ $09-\$ 45$ $14-\$ 80$ $11-\$ 50$	28-\$10	

[^53]
LAB Specifications

Transient Recovery Time-Less than $50 \mu \mathrm{~s}$ for output recovery to within 10 mv following a full load current change in output.
Internal Impedance - Less than 0.02 ohm from $D C$ to 1 kc . Less than 0.5 ohm from 1 kc to 100 kc . Less than 3.0 ohms from 100 kc to L mc .
Coollng - Convection cooling is employed. No moving parcs.
Power Cord - 3 -wire, 5 -foot power cord.
Size - $31 / 2^{\prime \prime}(8,9 \mathrm{~cm}) \mathrm{H} \times 12 \mathrm{~s} / \mathrm{g}^{\prime \prime}(32 \mathrm{~cm}) \mathrm{D} \times 81 / 2^{\prime \prime}(21,6 \mathrm{~cm}) \mathrm{W}$ -Half rack width.
Finish - Light gray pancl with dark gray case,

62068				
620485	6205 B	6206B	62078	62098
CONSTANT VOLTAGE/CURRENT LIMITING			CV/CC	
$0-20 \mathrm{~V} \text { DUAL } 0.40 \mathrm{~V}$	0.20 V TWO 0.40 V	0.30 V DUAL 0.60 V	0.160 V	0.320 V
0-0.6 A RANGE 0.0.3 A	0-0.6 A OUTPUTS 0-0.3 A	0.1 A RANGE 0.0.5 A	0.0.2 A	0.0 .1 A
$\begin{gathered} 115 \mathrm{Vac}=10 \% \\ 50.400 \mathrm{~Hz}, 0.4 \mathrm{~A}, 24 \mathrm{~W} \end{gathered}$	$\begin{gathered} 115 \mathrm{Vac}=10 \% \\ 50-440 \mathrm{~Hz}, 0.5 \mathrm{~A}, 50 \mathrm{~W} \end{gathered}$	$\begin{gathered} 115 \mathrm{Vac} \pm 10 \% \\ 50-400 \mathrm{~Hz}, 1.0 \mathrm{~A}, 66 \mathrm{~W} \end{gathered}$	$\begin{gathered} 115 \mathrm{Y} \text { ac }=10 \% 0 \\ 48.63 \mathrm{~Hz}, 1.0 \mathrm{~A}, 60 \mathrm{~W} \end{gathered}$	$115 \mathrm{~V} \text { ac } \pm 10 \%$ $48.63 \mathrm{~Hz}, 1.0 \mathrm{~A}, 60 \mathrm{~W}$
0.01% plus 4 mV	0.01% plus 4 mV	0.01% plus 4 mV	0.02% plus 2 mV	0.02% plus 2 mV
	- -	-	$200 \mu \mathrm{~A}$	$200 \mu \mathrm{~A}$
0.01% plus 4 mV	0.01% plus 4 mV	0.01% plus 4 mV	0.02% plus 2 mV	0.02% plus 2 mV
			$200 \mu \mathrm{~A}$	$200 \mu \mathrm{~A}$
$\begin{gathered} 200 \mu \mathrm{~V} \mathrm{~ms} / \\ 1 \mathrm{mV} \cdot \mathrm{p}(0 \mathrm{C}-20 \mathrm{Mhz}) \end{gathered}$	$\begin{gathered} 200 \mu \vee \mathrm{mss} / \\ \mathrm{ImVP} \cdot \mathrm{p}(\mathrm{OC} \cdot 20 \mathrm{Mhz}) \end{gathered}$	$\begin{gathered} 200 \mu \mathrm{Vms} / \\ \mathrm{LmV} \mathrm{p}-\mathrm{p}(\mathrm{DC} \cdot 20 \mathrm{Mhz}) \end{gathered}$	$\begin{gathered} 500 \mu \mathrm{Nms/} \\ 30 \mathrm{mVopp} \end{gathered}$	$1 \mathrm{mV} \mathrm{ms} /$ 30 mV p-p
		--	$200 \mu \mathrm{~A}$ rms	$200 \mu \mathrm{~A} \mathrm{mms}$
200 ohms per volt	200 ohms per volt	300 ohms per voll	300 ohms per volt	300 ohms per volt
\sim			75 K ohms per amp	150 K ohms per amp
Fixed current limit provides complete protection for any overload condition. This limit is set at approximately 700 $m A$ for the 20 volt range and 350 mA for the 40 volt range.	Fixed current limit provides complete protection for any overload condition. This limit is set at approximately 700 mA for the 20 volt range and 350 mA for the 40 volt range.	Fixed current limit provides complete protection for any overload condition. This limit is set for approximately 1.2 A for the 30 volt range and 600 mA for the 50 volt cange.	Same as 62008	
OH-On Switch, Pilot Light, Concentric Coarse and Fine Voltage Control, Concentric Meter Range and Output Range Swilch.	Combined Pilol Light and On. Of Bulton, Two foncentric Coarse and Fine Voltage Controls. Two Concentric Meter Range and Output Range Switches.	Off-On Swilch, Pilot Light, Concentric Coarse and Fine Voltage Conitrol, Concentic Meter Range and Outpul Range Switch.	Oft-On Switch, Pilot Light, 10-turn Voliage Control, Concentric Coarse and Fine Current Control, Meter Range Switch.	Off-On Switch, Pilot Light, 10-turn Voltage Control, Concentric Coarse and Fine Current Control, Meter Range Switch.
$0.5 \mathrm{~V}, 0.50 \mathrm{~V}, 0 \cdot .075 \mathrm{~A}, 0.75 \mathrm{~A}$	$0.5 \mathrm{~V}, 0-50 \mathrm{~V}, 0-.075 \mathrm{~A}, 0.75 \mathrm{~A}$	$0.7 \mathrm{~V}, 0.70 \mathrm{~V}, 0.12 \mathrm{~A}, 0-1.2 \mathrm{~A}$	$\begin{gathered} 0.20 \mathrm{~V}, 0-200 \mathrm{~V}, 0.24 \mathrm{~mA}, \\ 0.240 \mathrm{~mA} \end{gathered}$	$\begin{aligned} 0.40 \mathrm{~V}, & 0.400 \mathrm{~V}, 0.12 \mathrm{~mA}, \\ & 0.120 \mathrm{~mA} \end{aligned}$
10/13 I8s. (4,53/5,89 kg)	10/13 lbs. (4,53/5,89 kg)	12/17 lbs. (5,43/7,70 kg)	13/18 lbs. (5,89/8,15 kg)	13/18 lbs. $(5,89 / 8,15 \mathrm{~kg})$
\$144	$\$ 235$	\$169	\$235	\$235
$\begin{array}{ll} & 13-\$ 60 \\ 07-\$ 25 & 28-\$ 10 \\ 11-\$ 50 & \end{array}$	$07-\$ 50$ $13-\$ 140$ $11-\$ 50$ $28-\$ 10$ $15-$ Deduct $\$ 40$.	$07-\$ 25$ $13-\$ 60$ $11-\$ 50$ $28-\$ 10$	$\begin{array}{ll} 08-\$ 25 & 13-\$ 35 \\ 14-\$ 60 & 28-\$ 10 \end{array}$	$\begin{array}{ll} & 28-\$ 10 \\ 13-\$ 60 & 14-\$ 60 \end{array}$

Accessories:*

Part Number	Descrlation	Prioe
CO5	$8^{\prime \prime}$ black handle attached to side of $31 / 2^{\prime \prime} \mathrm{H}$ supply	$\$ 15.00$
14513 A	Rack Kit for mounting ons $31 / 2^{\prime \prime} \mathrm{H}$ supply	$\$ 20.00$
14523 A	Rack Xit for mounting two $3 / /^{\prime \prime} \mathrm{H}$ supplies	$\$ 10.00$

*See page 561 for rurther details.
Hlgh-Speed Programming - Models 6200B, 6201B, 6202B, 6203B: $30 \% / m s$ when programming in either direction between iv and maximum rated nutput; less than 2 ros between 0 and 15 .
Maximum Ambient Operating Temperature $-+50^{\circ} \mathrm{C}$.
tCurrent programming coefficient accuracy 6% of cureent rating plus 10% of output current soting.

MP8. 3

MPE. 5

The MPB- 3 and MPB. 5 Series of dc power supplies are highly regulated, medium power, constant voltage/constant current bench models. All include multiple range meters and provision for remote sensing, remote programming, auto-series, auto-parallel, and auto-tracking operation.

The DPR models contain two identical MPB-3 supplies mounted in a full rack-width chassis. All DPR features and specifications are identical to the MPB-3 with the exceptions listed on the following page.

Advantages:

Short circuit proof
Constant voltage/constant current operation with automatic crassover
Multiple range meters
Floating output
All silicon circuitry
Front and rear outpur terminals
No overshoot on turn-on, turn-off, or power removal Easily rack mounted
Overvoltage protection "crowbar" option
Auto-serics, auto-parallel, auto-tracking

MPB. 5 Specifications

Model	62924	B296a	ER28A	62904	6291A	6296A
Output \quad DC Current	0.10 V	0.20 V	0.204	0.40 V	0.40 V	0.60 V
	0.10A	0.5A	0.10 A	0.3 A	0.5A	0.3 A
Input:II5Vac $\pm 10 \%, 50 \cdot 60 \mathrm{~Hz}$	$3.5 \mathrm{~A}, 200 \mathrm{~W}$	3.5A, 160W	5.5A, 320W	$3.5 \mathrm{~A}, 170 \mathrm{~W}$	5.5A, 280W	4.5A, 250W
*Load regulation: The Constant Voltage Load Regutation specification is given for a load current change equal to the current rating of the	0.01% plus 1 mV	0.01\% plus 1 mv	0.01\% plus 1 mV	0.01% plus 1 mV	0.01% plus 1 mV	0.01% plus 1 mV
supply. The Constant Current Load Regulation specification is given for a load voliaga C C change equal to the voltage rating of the supply.	0.05\% plus 1 mA	0.05\% plus 1 mA	0.05\% plus 1 mA	0.05\% plus 1 mA	0.05\% plus 1 mA	0.05\% plus 1 mA
Line regulation: For a 10% change in the nom- CV nal line vollage at any outolt \qquad	0.01% plus 1 mV	0.01\% plus 1 mV	0.01% plus 1 mV	0.01\% plus 1 mV	0.01% plus 1 mV	0.01% plus 1 mv
voltage and current within CC raling.	0.05% plus 1 mA	0.05\% plus 1 mA	0.05% plus 1 mA	0.05\% glus I mA	0.05% dus 1 mA	0.05% plus 1 mA
Ripple and noise: At any line voltage and under CV any load condition within CC rating.	$500 \mu \vee$ RMS (25 mV peak to peak DC to 20 MHz)					
	5 mA RMS	3 mA RMS	5 mA AMS	3 mA RMS	3 mA RMS	3 mA RMS
Remote programming:All Programming terminals areCVlocated on rear located on rear barrier strips. C C	200 ohms per volt	200 ohms per volt	200 ohms per volt	200 ohms per volt	200 ohrms per voll	300 ohms per volt
	100 ohms per amp	200 ohms per amp	100 ohms per amp	500 ohms per amp	200 ohms per amp	500 ohms per amp
Meler ranges: (Accuracy:3\%)	$\begin{aligned} & 0.1 .2 V, 0 \cdot 12 \mathrm{~V} . \\ & 0-1.2 A, 0.12 \mathrm{~A} \end{aligned}$	$\begin{gathered} 0.2 .4 \mathrm{~V}, 0.24 \mathrm{~V} \\ 0.6 \mathrm{~A}, 0.6 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 0.2 .4 \mathrm{~V}, 0-24 \mathrm{~V}, \\ & 0-1,2 \mathrm{~A}, 0.12 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.5 V_{1} 0.50 \mathrm{~V} \\ & 0.4 \mathrm{~A}_{1} 0.4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.5 \vee 0.50 \mathrm{~V}, \\ & 0.6 A, 0.8 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}, 0.70 \mathrm{~V}, \\ & 0.4 \mathrm{~A}, 0-4 \mathrm{~A} \end{aligned}$
Weight: (Net/Shipping)lbs kg	$\begin{array}{r} 25 / 32 \\ 11,3 / 14,5 \\ \hline \end{array}$	$\begin{array}{r} 25 / 32 \\ 11,3 / 14,5 \\ \hline \end{array}$	$\begin{gathered} 30 / 40 \\ 13,6 / 14,1 \end{gathered}$	$\begin{array}{r} 26 / 33 \\ 11,8 / 15,0 \end{array}$	$\begin{array}{r} 30 / 40 \\ 13,6 / 14,1 \\ \hline \end{array}$	$\begin{array}{r} 29 / 38 \\ 13,1 / 12,7 \\ \hline \end{array}$
Price	\$350	\$350	\$395	\$350	\$395	\$395
Ooplions: Refer to page 561 for description	$05-\$ 10$ $09-\$ 45$ No charge if ordered with Option 28 11-\$55 $13-\$ 60$ $14-\$ 60$			$\begin{aligned} & 07-\$ 25 \\ & 28-\$ 50 \end{aligned}$	08-\$25	

[^54]

Output impedance: MPB-5 series: 0.001Ω series with $1 \mu \mathrm{H}$. For other models, see table belorv.

Controls: Concentric coarse and Gne output voltage and cucrent controls permit continuous adjustment over entire output span. Models 6294A and 6299A incorporate a 10 -turn front panel voltage control in liew of the concentric coarse and fine voltage controls. Switch selects front panel meter voltage or current scale.

Finlsh: Light gray panel with dark gray case.
Accessories: Rack Kits 14513 A and 14523A. See page 561.
Transient recovery time: Less than $50 \mu \mathrm{~s}$ is required for output voltage recovery in constant voltage operation to within 15 millivolts of the nominal outgut voltage following a change in output current equal to the current rating of the
supply or 5 amperes, whichever is smallec. The nominal out. pur voltage is defined as the mean between the no load and full load voltages.

Temperature ratings:

Operating: $0.50^{\circ} \mathrm{C}$ (consult factory for derating information for operation between $90^{\circ} \mathrm{C}$ and $71^{\circ} \mathrm{C}$)
Storage $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Size:
MPB-3- $31 / 2^{\prime \prime} \mathrm{H} \times 81 / 2^{\prime \prime}$ W $\times 141 / 2^{\prime \prime} \mathrm{D}$
$-8,9 \mathrm{~cm} \mathrm{H} \times 21,8 \mathrm{~cm} \mathrm{~W} \times 36,8 \mathrm{~cm} \mathrm{D}$
MPB. 5 - $51 / 4^{\prime \prime} \mathrm{H} \times 81 / 2^{\prime \prime} \mathrm{W} \times 16^{\prime \prime} \mathrm{D}$
$-13,3 \mathrm{~cm} \mathrm{H} \times 21,8 \mathrm{~cm} \times 40,7 \mathrm{~cm} \mathrm{D}$
DPR - $31 / 2^{\prime \prime} \mathrm{H} \times 141 / 2^{\prime \prime} \mathrm{D} \times 19^{\prime \prime} \mathrm{W}$
$-8,9 \mathrm{~cm} \mathrm{H} \times 36,8 \mathrm{~cm}$ D $\times 48,3 \mathrm{~cm}$ W

Modsl		MPB-3 82 14	MPE-3 62844	DPA 62534	MPB-3 6289A	$\begin{gathered} \text { DPA } \\ \text { 6256A } \end{gathered}$	MPB 3 6284 A	MPB-3 6299 A
Outpul \quad DC Voltage		0.7.5V	0.20 V		0.40 V		0.60 V	$0-100 \mathrm{~V}$
Outpot OC Current		0.5A	0-3A		0-1.5A		0.18	0.750 mA
Input: $115 \mathrm{Vac} \pm 10 \%$, $50-400 \mathrm{~Hz}$		$\begin{aligned} & 1,3 \mathrm{~A} \\ & 118 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1,5 \mathrm{~A} \\ & 1.28 \mathrm{~W} \end{aligned}$	$\begin{gathered} 3 \mathrm{~A} \\ 256 \mathrm{~W} \end{gathered}$	$\begin{aligned} & 1.3 \mathrm{~A} \\ & 110 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 2.6 \mathrm{~A} \\ & 220 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1.3 A \\ & 114 \mathrm{~W} \end{aligned}$	$\begin{array}{r} 1.5 \mathrm{~A} \\ 135 \mathrm{~W} \\ \hline \end{array}$
*Load regulation: The Constan Voltage Load Regulation CV is given for a load current change		5 mV	0.01% plus 4 mV		0.01% plus 2 mV		0.01\% plus 2 mV	0.01\% plus 2 mV
regulation is given for a lozo vollage chenge equal to the voltage rating of the suoply.	CC	0.01% plus $250 \mu \mathrm{~A}$	0.01% plus $250 \mu \mathrm{~A}$		0.01% plus $250 \mu \mathrm{~A}$		0.01\% plus $250 \mu \mathrm{~A}$	0.01\% plus $250 \mu \mathrm{~A}$
Line regulation: For a 10% change in the nominal line voltage at any output voliage and current within rating.	cV	0.01% plus 2 mV	0.01% plus 2 mV		0.01% plus 2 mV		0.01\% plus 2 mV	0.01\% plus 2 mV
	CC	0.01\% plus $250 \mu \mathrm{R}$	0.01% plus $250 \mu \mathrm{~A}$		0.01% plus $250 \mu \mathrm{~A}$		0.01\% plus $250 \mu \mathrm{~A}$	0.01% plus $250 \mu \mathrm{~A}$
Ripple and noise: At any line voltage and under any load condition within rating.	CV	$200 \mu \mathrm{RMSS} / \mathrm{I} \mathrm{mV}$ p.p (de to 20 MHz)						
	CC	4 mA RMS	2 mA	RMS	500μ	RMS	500μ A RMS	$500 \mu \mathrm{~A}$ RMS
Remote programming: All Programming terminals are located on rear barrier strips.	cV	200 ohms per volt	200 ohms per volt		200 ohms per voll		300 ohms per volt	300 ohms per volt
	CC	200 ohms per amp	500 ohms per amp		500 ohms per amp		1000 ohms per amp	1000 ohms per amp
Output impedance:		1 m n +1 $\mu \mathrm{H}$	$2 \mathrm{~m} \Omega+1 \mu \mathrm{H}$		$4 \mathrm{mn}+1 \mathrm{\mu H}$		$8 \mathrm{~m} \Omega+1 \mu \mathrm{H}$	16 m R $+1 \mu \mathrm{H}$
Meter ranges (Accuracy: 3\%)		$\begin{aligned} & 0.9 \mathrm{~V}, 0.9 \mathrm{~V}, \\ & 0.6 \mathrm{~A}, 0.6 \mathrm{~A} \end{aligned}$	$\begin{gathered} 0.2 .4 \mathrm{~V}, 0.24 \mathrm{~V}, \\ 0.4 \mathrm{~A}, 0.4 \mathrm{~A} \end{gathered}$		$\begin{aligned} & 0.5 \mathrm{~V} 0.50 \mathrm{~V}, \\ & 0 . .18 \mathrm{~A}, 0.1 .8 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 0.7 \mathrm{~V}, 0.70 \mathrm{~V} \\ & 0 . .12 \mathrm{~A}, 0-1.2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.12 \mathrm{~V}, 0.120 \mathrm{~V}, \\ & 0 . .1 \mathrm{~A}, 0.1 \mathrm{~A} \end{aligned}$
Weight: (Net/Shipping)	$\begin{gathered} \text { Ibs. } \\ \mathrm{kg} \end{gathered}$	$\begin{array}{r} 14 / 19 \\ 6,4 / 8,6 \\ \hline \end{array}$	$\begin{gathered} 14 / 19 \\ 6,4 / 8,6 \end{gathered}$	$\begin{gathered} 28 / 35 \\ 12,7 / 15,8 \\ \hline \end{gathered}$	$\begin{array}{r} 14 / 19 \\ 6,4 / 8,6 \\ \hline \end{array}$	$\begin{gathered} 28 / 35 \\ 12,7 / 15,8 \end{gathered}$	$\begin{gathered} 14 / 19 \\ 6,4 / 8,6 \\ \hline \end{gathered}$	$\begin{array}{r} 15 / 20 \\ 6,8 / 9,1 \end{array}$
Price		\$210	$\$ 210$	\$445	$\$ 210$	\$445	\$210	\$225
Options:	$\begin{aligned} & \text { MPB. } 3 \\ & \hline \text { PPR } \end{aligned}$	$\frac{07-\$ 25}{07-\$ 50} 08$	08-\$25	09-\$45	11-\$110		$\xrightarrow{13-\$ 60} 13-\$ 120-14$	00 $\quad 28-\$ 10$
Refer to page 561 for details			-\$50 09	-\$90	0-\$125	11-\$110		\$120 28-\$10

CC indicates constent current.
CV Indicates constant voltage.

Madel 6264B

NOTE: Chiof difference in " $A^{\prime \prime}$ model appearance is absence of crowbar adjust; crowbars are optional on "A" models.

Madel	6258 B	82598	E2god	12.39	8848
DC output	0-10 vilts ©0-20 amos	$0-10$ volt a $0-50$ amps	D-10 volls @ 0-100 amps	0-20 voits es 0-10 amps	0-20 volts @ 0-20 amps
AC tnput	$\begin{gathered} 115=10 \% \mathrm{Fac} \\ 57-63 \mathrm{HI} \\ 54.375 \mathrm{~W} \end{gathered}$	$115=10 \% V_{57-63} \mathrm{Vac}$	$\begin{gathered} 230=100 \% \mathrm{Vac} \\ 57-63 \mathrm{~Hz} \\ 11 \mathrm{~A}, 1700 \mathrm{~W} \end{gathered}$	$\begin{gathered} 115 \mathrm{~V} \text { ac } \pm 10 \% \\ 57-63 \mathrm{~Hz}, \\ 4 \mathrm{~A}, 350 \mathrm{~W} \end{gathered}$	$\begin{gathered} 115 \mathrm{Vac} \leq 10 \% \\ 57-63 \mathrm{~Hz} \\ 8 \mathrm{~A} .60 \mathrm{~W} \end{gathered}$
Load regulation: the constant voltage load curtent change equad to the current sating of the supply. The constanl cufent load regula.	0.01\% plus $200{ }_{\mu} \mathrm{V}$	$0.01 \%+200 \mu$	0.01% Dlus $200{ }_{\mu}$	0.01% olus 200 a	
tion speciflcalion is alven for the loso voliage change equal to the voltage rating of the CC supply	0.02% plus $500 \mu^{\text {A }}$	$0.02 \%+1 \mathrm{md}$	003% plus 2 mA	0.02\% plas $500{ }_{\mu} \mathrm{A}$	0.02\% plus $500 \mu^{\text {a }}$
Lise repulation: for a change in line voltage CV	0.0) \% plus 200 ${ }_{\mu} \mathrm{V}$	0.01\% plus $200{ }_{\mu} \mathrm{V}$	0.015% plus 200 \% 4	0.015 plus $200 \mu \mathrm{~V}$	0.01 \% plus $200{ }_{\mu}{ }^{2}$
voltage and cuprent within ratine.	0.02% plus $500 \mu^{\text {A }}$	0.02\% plus 1 mA	0.03\% plas 2 mA	0.02\% plus $500 \mu^{\text {A }}$	0.02% plus $500 \mu^{\text {A }}$
Ripple and nolse: at any line voltage and under any load condilian within rating.	$200 \mu \mathrm{Vrms} / 10 \mathrm{mV} \mathrm{p}-\mathrm{O}$		$1 \mathrm{mVrms/50} \mathrm{\vee P.P}$	$200{ }^{2} \mathrm{~V} \mathrm{mms} / 10 \mathrm{mV} \mathrm{p} \cdot \mathrm{P}$	
Under any loso condika with rater CC	5μ Arms	$25 \mu \mathrm{Ams}$	$50 \mathrm{~mA} / \mathrm{ms}$	3 mA Ims	5 mA Ims
Temparature coetficlent: output change par CV	0.01 \% plus $200{ }_{\mu} \mathrm{V}$	0.01% plus $200{ }_{\mu} \mathrm{V}$	0.01\% plus $200{ }^{2} \mathrm{~V}$	0.01\% olus $200{ }_{\mu} \mathrm{V}$	0.01% olus $200 \mu \mathrm{y}$
degree centigrade change in smbient ioliowling 30 minutes warmup	0.01\% plus 2 mA	0.01% plus 4 mA	0.01% plus 8 mA	0.01% plus 2 mA	0.01 \% plus 2 ma
Ramote drogramming: all grocramming ler. CV	200 ohms/volts	200 ohms,volts	200 onms/volt	200 ohrms/volt	200 ohms, vait
CC	$10 \mathrm{ohms} / \mathrm{smp}$	4 ohms/amp	2 ohms,amp	100 onms/amp	10 ohms/amo
Meters accuracy: 2%	$0-12 \vee$ and $0-24 \mathrm{~A}$	O-12 Vand 0-50 A	$0-12 v a n d 0-120 \mathrm{~A}$	D-24 Y and 0-12 A	D-24 Y and 0-25A
Indui dower connections	3-wife, 5-100t cold	Bardier strip	Barrier staip	3-wire, 5-foot cord	3-wire, 5-1001 cord
Inctes	$51 / 4 \times 171 / 20 \times 19 \mathrm{~W}$	YH×17\%/2 $\mathrm{O} \times 19 \mathrm{~W}$	$7 \mathrm{H} \times 17 \% \mathrm{O} \times 19 \mathrm{~W}$	$3 \mathrm{H} \mathrm{H} \times 1 \mathrm{Y} \mathrm{H} \times 19 \mathrm{~W}$	3% \% $\times 17 \% \mathrm{D} \times 19 \mathrm{~W}$
Welaht: (lbs) (net/shipping)	$42(19,1 \mathrm{~kg}) / 57(25.9 \mathrm{~kg})$	-	$90(4.8 \mathrm{Bk}) / 115$ (52.2 Kp	$34(15.4 \mathrm{~kg} / 48(12.7 \mathrm{~kg})$	42 (19.1 $48 . / 51$ (25.9 4.8)
Price	\$450	\$650	5175	\$435	\$525
OpNons refer to page 56) for descriplions	05-\$10.07-575, 08-525, 09-545, 10-850.		05-590. 05- \$175, 10-5125.	05-\$10, 07-525.08-325, 09-545, 10-850.	
	13-\$60, 14-560, 27-510, 28-510		$\begin{gathered} 13-\$ 35,14-\$ 35,16-\$ 50 \\ -2)-\$ 15,55-\$ 20 \end{gathered}$	13-560, 14-\$60, 27-510, 28-510	

Advantages

Overvoltage Protection Crowbar＊

Low peak－to－peak ripple
Continuously variable output voltage and cursent－ no range switching
Auto－series，auto－parallel and auto－tracking operation
Remote progranaming－voltage and curzent can be controlled by externa！resistance or control voltage
＂Internal and standard on＂日＂models，external and optional on＂A＂models．

Remore error sensing
Low output impedance
Constant voltage constant current operation with automatic crossover
Fully rated for any overload condition including continuous short circuit operation
Front panel voltmeter and ammeter
RFI conformance to MIL－I－6181D

Specifications

Radio frequency interference：all models are free from conducted and radiated RFI to the extent that they meet all the requitements of MIL－1－6181D．
Maximum operating temperature： 0 to $55^{\circ} \mathrm{C}$ ．Storage：-20 to $+71^{\circ} \mathrm{C}$ ．
Internal impedance as a constant voltaga source： $0.1 \mathrm{~m} \Omega$ in series with $1 \mu \mathrm{H}$ ．
Translent recovery time：less than 50 microseconds is required for output voltage recovery（in constant voltage operation）to within

10 millivolts of the nominal ourput voltage following a 5 amp change in ousput current．
Output terminals：an outpur terminal strip is located on the rear of the chassis．All power supply terminals are isolared from the chassis and either the positive or negative terminal may be con－ nected to the chassis chrough a separate ground terminal located adjacent to the outpur terminals．All models include front panel output terminals．They are banana jack type and limited to 3 amps maximum current output．
Finish：light gray front panel with dark gray case．

62858	6286日	82878	8285 A	8289	92718	8274A
0－40 volis＠ $0-3 \mathrm{smps}$	0.40 volls © 0.5 amps	0－40 volts＠0－10 amps	$0-40$ volts © $0-30$ amps	0－40 volts（3）0－50 amps	$0-60$ volts © 0 0 -3 mmps	$0-80$ volts © $0-15$ amps
$\begin{gathered} 115 \mathrm{Vac}=10 \% \\ 57-63 \mathrm{~Hz} \\ 3 \mathrm{~A}_{1} 180 \mathrm{~W} \end{gathered}$	$\begin{gathered} 115 \mathrm{Vac}=10 \% \\ 57-63 \mathrm{H} 2 \\ 4 \mathrm{~A}, 325 \mathrm{~W} \end{gathered}$	$\begin{gathered} 115 \vee a c,=10 \% \\ 57-63 \mathrm{H}, \\ 8 \mathrm{~A}, 550 \mathrm{~W} \end{gathered}$	$\begin{gathered} 230=10 \% \mathrm{Vac} \\ 57-6.3 \mathrm{~Hz} \\ 11 \mathrm{~A}_{1} 1600 \mathrm{~W} \end{gathered}$	$\begin{gathered} 230 \mathrm{~d} 10 \% \mathrm{Vac} \\ 57-53 \mathrm{~Hz}, \\ 18 \mathrm{~A} .2600 \mathrm{w} \end{gathered}$	$\begin{gathered} 115 \mathrm{Vac}-10 \% \\ 5 .-33 \mathrm{~Hz} \\ 4 \mathrm{~A}, 300 \mathrm{~W} \end{gathered}$	$\begin{gathered} 115 v \partial c_{y} \Rightarrow 10 \% \\ 57-63 H I_{1} \\ 16 A_{1} 1700^{W} \end{gathered}$
0.01% plus $200{ }_{\mu} V$	0.01% plus $200{ }_{\mu} \mathrm{V}$	0．01\％plus $200{ }_{\mu} \mathrm{V}$	0.01% plus 200μ	0.01% plus $200{ }_{\text {u }} \mathrm{V}$	0．01\％plus 200 «V	0．01\％plus 200 «V
0．02\％pius $500 \ldots \mathrm{~L}$	0．02\％plus $500 \mu^{\text {s }}$	0．02\％plus 5000 A	0.02% plus 3 miA	0．02\％plus 3 mA	0．02\％plus $500{ }_{\mu} \mathrm{A}$	0．02\％plus 2 mA
0.01% plus $200 \mu \mathrm{~V}$	0．01\％plus $200 \mu^{V}$	0.01% plus $200 \mu \mathrm{v}$	0.01% plus $200{ }_{\mu} \mathrm{V}$	0.01% Dius $200{ }_{\mu} V$	0.01% plas $200{ }_{\mu} \mathrm{V}$	0．01\％gies $200{ }_{\mu} \mathrm{V}$
0.02% plus 500 N	0．02\％olus $5000 \mu \mathrm{~A}$	0.02% plus $500{ }_{\nu} \mathrm{V}$	0.02% plus 3 mA	0.02% plus 3 mA	0．02\％plus 5000 A	0．02\％plus 2 mA
$200{ }^{2} \mathrm{Vms} / 10 \mathrm{mV} \mathrm{P} . \mathrm{D}$	$200 \mu \mathrm{~V} / \mathrm{ms} / 10 \mathrm{mV} \mathrm{p}-\mathrm{p}$	$200 \sim \vee \mathrm{~ms} / 10 \mathrm{mV}$ o．p	$1{ }_{\nu} \mathrm{V} \mathrm{rms}$	$10 \mathrm{rms} / 20 \mathrm{mV} \mathrm{p-p}$	$200{ }^{2} \mathrm{Vms} / 10 \mathrm{mV}$ O－p	$500{ }^{1} \times$ rms
3 ma rms	3 mA rms	3 mA ims	20 mA ／ms	30 ma 1 ms	3 mA ms	10 ma rms
0.01% plus $200{ }_{\mu} \mathrm{V}$	0.01% plus $200 \mu \mathrm{~V}$	0.01% plus 2000 V	0．01\％plus $500 \mu \mathrm{~V}$	0.01 多 plus $200{ }_{\mu} \vee$	0.01% plus 2000 N	0.01% plus $200{ }_{\mu} \mathrm{V}$
0.01% Dus 1 mA	0.01% plus 1 mA	0.01% plus 1 mA	0.01% plus 2 mA	0.01% plus 4 mA	0.01% dius 1 mA	0.01% plus 2 mA
200 obms／voll	200 ohms／volt	200 obms／volt	200 ohms／volt	200 ohms／volt	300 ohms／volt	$3000 \mathrm{hms} / \mathrm{volt}$
300 ohms／amp	200 chms／amp	100 shms／amp	6 ohms／amp	4 ohnes／ams	300 ohms／amp	$62 \mathrm{ahms} / \mathrm{amp}$
0－50 V and 0－4A	0－50 V and D－5 A	$0-50 \cup$ and $0-12 \mathrm{~A}$	0－50 V and 0－40 A	$0-50 \vee$ and 0－60 A	$0-70 \mathrm{~V}$ and 0－4 A	$0-70 \mathrm{~V}$ and $0-18 \mathrm{~A}$
3．w｜re，5－fool cord	3 －wire，5－fool cord	3 －wire． 5 －1001 cord	Barries strip	Barfiel strip	3．wire， 5.100 tcord	Barrier strid
$31 / 2 \mathrm{H} \times 171 / 2 \mathrm{O} \times 19 \mathrm{~W}$	$34 / 2 \mathrm{~N} \times 17 \% \mathrm{D} \times 19 \mathrm{~W}$	$5 \mathrm{~K} \mathrm{H} \times 1736 \mathrm{D} \times 19 \mathrm{~W}$	$7 \mathrm{H} \times 189 \mathrm{D} \times 15 \mathrm{~W}$	7 $\mathrm{H} \times 17 \% \mathrm{D} \times 19 \mathrm{~W}$	$31 / 2 \mathrm{H} \times 173 / 2 \mathrm{D} \times 19 \mathrm{~W}$	5 K H $\times 17 \%$ D $\times 15 \mathrm{~W}$
$8.9 \mathrm{H} \times 44.4 \mathrm{D} \times 48,3 \mathrm{~W}$	$8,9 \mathrm{H} \times 44.4 \mathrm{D} \times 48,3 \mathrm{~W}$	$16 \mathrm{H} \times 44,4 \mathrm{Dx} 48,3 \mathrm{~W}$	$17.8 \mathrm{H} \times 42.70 \times 48.3 \mathrm{~W}$	$17.8 \mathrm{H} \times 4.4 \mathrm{D} \times 48.3 \mathrm{~W}$	$8,9 \mathrm{H} \times 4.4 \mathrm{C} \times 48,3 \mathrm{~W}$	$14 \mathrm{H} \times 4.4 \mathrm{~L} \times 48,3 \mathrm{~W}$
$34(15,4 \mathrm{~kg} / 48(21,7 \mathrm{~kg})$	$34(15,4 \mathrm{~kg}) / 48(21,7 \mathrm{~kg})$	$42(19,1 \mathrm{~kg}) / 57(25.9 \mathrm{~kg})$	$93(42,2 \mathrm{kB} / 120$（ $54,5 \mathrm{~kg}$ ）	$93(42,4 \mathrm{~kg}), 120(54,5 \mathrm{~kg})$	$34(15.4 \mathrm{~kg}) / 48(2 \mathrm{l} .7 \mathrm{~kg})$	$75(34 \mathrm{~kg}) / 95(43,1 \mathrm{~kg})$
\＄350	\＄435	5525	5695	\＄875	435	5635
05－\＄10，07－\＄25，08－\＄25，09－\＄45，10－550，			05－\＄10，05－5！75，10－8125．13－\＄35，		05－510，07－\＄25，09－\＄85，	05－\＄10．06－5175，10－\＄125．
13－\＄60．14－\＄50，27－810，28－\＄10			14－573，27－\＄15		$\begin{gathered} 10-550,13-\$ 60.14-560 \\ 27-\$ 10,28-\$ 10 \end{gathered}$	13－\＄35． $\begin{gathered}14-835,17-550, \\ 18-\$ 50 \\ \\ \end{gathered}$

This Model 6384A is specifically designed for use with integrated circuits, micromodular circuits, and other low voltage semiconductor circuitry. Included in this half rack instrument is an overvoltage "crovbar" protection circuit. If for any reason an incipient overvoltage condition occurs, this completely independent circuit shorts the output terminals with an SCR crowbar within $10 \mu \mathrm{~s}$.

A temperature compensated zener diode is employed as the reference element in all-silicon series regulator feedback circuit which monitors and controis the output voltage. The resulting low ripple and low outpur impedance permit this supply to be used in critical applications where less well regulated supplies are not suited. See also the LVR Series on Pp. 576.577.

Protection

Short circult protection: The output is current limited and is fully rated for operation under any overioad condition includ. ing a direct short circuit, regardiess of how long maineained. Supply will automatically restore to normal operation upon overload removal.

Overvoltage protection: An independent built-in overvoltage crowbar circuir prevents the output voltage from exceeding a preset voltage under any failure condition. This crowbar circuit shorts the outpur within $10 \mu \mathrm{~s}$ following the onset of the overvoltage condition. The crowbar threshold voltage is variable between 4.5 and 6.0 volts by monitoring rear terminals while substituting a selected resistor.

Advantages:

Low output drift
High degree of output resolution
Low peak to peak ripple and noise
Low output impedance at all frequencies
$200 \mu \mathrm{sec}$ load transient recovery
No overshoot for turn-on, curn-off, or power removal
Floating output can be used as positive or negative source
Fully rated for any overioad condition

Specifications

Output: 4.5.5 V, 0.8A.
Load regulation: less than 1 mV from no load to full load.

Line regulation: less than lmV for a 10% change in the nominal line voltage.

1nput: 48.63 Hz, IIS VAC 510%, approximately 120 watts (230 V option available, see p. 561 .)

Temperature coefficlent: outpur change per degree centigrade change in ambient following 30 minutes warm-up: 0.01% $+200 \mu \mathrm{~V}$.

Transient recovery time: less than $50 \mu \mathrm{~s}$ is required for output voltage recovery in constant voltage operation to within 10 mV of the nominal output voltage following a 20% change in output current. The nominal output voltage is defined as the mean between the no load and full load voltages.

Stability: under constant ambient conditions, tatal drift for 8 hrs. following 30 minutes warm-up: $0.03 \%+10 \mathrm{mV}$.

Ripple and noise: at any line voltage and any load condition within rating: 5 mV p.p, 1 mV mms .

Temperature rating: operating: 0 to $55^{\circ} \mathrm{C}$. Storage: -40 to $+71^{\circ} \mathrm{C}$.

Output impedance

Less than 0.001 ohm from dc to 100 Hz .
Less than 0.01 ohm from 100 Hz to 1 kHz .
Less than 0.05 ohm from 1 kHz to 10 kHz .
Less than 0.2 hm from 10 kHz to 100 kHz .
Less than 2 ohms from 100 kHz to 1 MHz .

Controls

Single-turn output voltage control, combined off-on switch/ pilot light, and switch that selects voltage or current meter.

Dimenstons: $81 / 2^{\prime \prime}(21,6 \mathrm{~cm})$ wide $\times 31 / 2^{\prime \prime}(8,9 \mathrm{~cm})$ high x $125 / 8^{\prime \prime}(32,1 \mathrm{~cm})$ deep.

Welght: $12 \mathrm{lbs}(5,44 \mathrm{~kg}$) net; $15 \mathrm{lbs}(6,8 \mathrm{~kg}$) shipping.

Accessories: same as HVB Series. Refer to page 580, then page 561.

Options: 28, 10 (see page 561).

Advantages, MVR Series:

All solid-state

Short-circuit proof
Remote programming, remote error sensing
The MVR Series features a unique "Piggy-Back" circuit; low voltage series power transistors, which are required to dissipate only a fraction of their power rating, provide high regulation-yet the supply can withstand a direct short circuit across the output terminals.
All MVR models are short circuit proof. An all-electronic, continuously acting current limit circuit protects the supply for all overloads, including a direct short placed across the output terminals.

MVR Specifications

Outputs: $890 \mathrm{~A}-0$ to 320 volts, 0 to $600 \mathrm{~mA}, 895 \mathrm{~A}-0$ to 320 volts, 0 to 1.5 amps .
Line regulatlon: 0.007% or 10 mV for 10% charge in normal. Load regulation: 0.007% or 10 mV .
Rlpple and noise (rms maximum): 1 mV for both models.
Meters: $890 \mathrm{~A}-320 \mathrm{~V}$ and $0.8 \mathrm{~A} ; 895 \mathrm{~A}-320 \mathrm{~V}$ and 1.5 A .
Dimensions: $890 \mathrm{~A}-312^{\prime \prime} \mathrm{H} \times 163 / 4^{\prime \prime} \mathrm{D} \times 19^{\prime \prime} \mathrm{W}(88 \times 42 \mathrm{~s}$ $\times 483 \mathrm{~mm}$) ; $895 \mathrm{~A}-51 / 4^{\prime \prime} \mathrm{H} \times 163 / 4^{\prime \prime} \mathrm{D} \times 19^{\prime \prime} \mathrm{W}$ ($133 \times$ $425 \times 483 \mathrm{~mm})$.
Maximum operating temperature: $50^{\circ} \mathrm{C}$.
Temperature coefficient: less than 0.03%, plus $1.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
Stability: better than 0.1% plus 5 mV .
Translent recovery time: Iess than 100 microseconds.
Output terminals: outpur terminal strip is located on the rear of the chassis.
Input ac: $115 \mathrm{~V} \mathrm{ac} \pm 10 \%, 57$ to 63 Hz .
Waight (net/shipping): 890A-35/43 lbs (15,8/9,4 kg): 895A -50/66 lbs ($22,5 / 29,7 \mathrm{~kg}$).
Price: 890A-\$445; 895A-\$625.

Models 711A, 712C

These easy-to-use general purpose, low-power medium-voltage laboratory supplies are particularly suitable for experimental setups aod other medium-voltage bench applications. These instruments are designed for high regulation and low ripple. The 711 A contains a $0-500$-volt dc output at 100 mA along with an unregulated ac filament output, while the 712 C contains four outputs- 0.500 volts at $0.200 \mathrm{~mA}, 0$ to -150 volts at $5 \mathrm{~mA},-300$ volts at 50 mA , and ao unregulated ac filament source. The 712C is a new solid-state package.

712C Specifications
Output:
DC Main (CV/CC): $010500 \mathrm{~V} @ 0.200 \mathrm{~mA}$.
DC Fixed Bias: $-300 \mathrm{~V} @ 0.50 \mathrm{~mA}$.
DC Variable Bias: 0 to 150 V @ 5 mA .
AC Unregulated: $6.3 \mathrm{~V} C T$ @ 10 A .
input: 115 V ac $\pm 10 \%, 57-63 \mathrm{~Hz}, 2.5 \mathrm{~A} @ 115 \mathrm{Vac}$.
Load regulation:
DC Main: $0.01 \%+5 \mathrm{mV}$.
DC Fixed Bias: 50 mV .
DC Variable Bias is tied to fixed bias, hence source regulation is same as for fixed bias. Internal impedance 0 to 10,000 ohms, depeoding on bias control setting.

Line regulatlon:

For a 10% change in line voltage:
DC Main: CV- $0.01 \%+5 \mathrm{mV}, \mathrm{CC}-100 \mu \mathrm{~A}$.
DC Fixed Bias: 50 mV .
Ripple and noise:
DC Main: CV. $500 \mu \mathrm{~V}$ rms, 15 mV p-p (dc-20 MHz): CC-0.1 mA roms.
DC Fixed \& Vaciable Bias: CV— 0.01% rms, 0.03% p-p.
Dimenslons: $5-7 / 32^{\prime \prime} \mathrm{H} \times 163 / 4^{\prime \prime} \mathrm{W} \times 11 / 8^{\prime \prime} \mathrm{D}$. $(13.9 \mathrm{~cm} \times$ $42.5 \mathrm{~cm} \times 28.1 \mathrm{~cm}$).
Welght: net 22 lbs (10 kg); shipping $26 \mathrm{lbs}(11,8 \mathrm{~kg}$).
Price: $\$ 490$.
Accessorles furnished: Rack Mounting Kit, HP 5060-0775.

711A Specifications

Outputs; 0 to 500 volts de, 0 to 100 milliamps, 6.3 volts mas at 6 amps or 12.6 V ms CT at 3 amps unregulated.
Load regulation: less than 0.5% change or 1 volt change from no load to full load.
Une regulation: less than 0.5% change or 1 volt change for $\pm 10 \%$ line voltage change.
Ripple and noise: less than 1 mV rms.
Input: 11 s or 230 voles $\pm 10 \%$, s0 to 1000 cycles, approx. 145 watrs.
Dimensians: $73 / \mathbf{/ 月}^{\prime \prime}(18,7 \mathrm{~cm})$ wide $x 111 / 2^{\prime \prime}(31,5 \mathrm{~cm})$ high x $14 \mathrm{k} / \mathrm{m}^{\prime \prime}$ (38 cm) deep.
Welght: $20 \mathrm{lbs}(9,2 \mathrm{~kg}$) net; $26 \mathrm{lbs}(11,8 \mathrm{~kg}$) shipping.
Price: $\$ 275$.
Option 28: $230 \mathrm{Vac} \pm 10 \%$, single phase input: factory godification consists of reconnecting the multi-tap input power transformer for 230 -volt operation. Price, $\$ 10$.

6515A

6516A

HVR Series

HVB SERIES-This series has two compact, dc regulated bench supplies offering up to 3 KV in moderate currents. These high-voltage supplies ofies low cost, portability, and high performance for experimenting and circuit developing at the bench. Low ripple and impedance are achieved by a series regulator feedback circuit using a temperature-compensated zener diode for reference. The design also includes short-circait protection and current-Limiting. Ouput is floating. giving choice of negative or positive voltages up to LKV off ground. High per. formance design makes these supplies particularly suited for photomultiplier application, as well as for TWT's, CRT's, gas fow tubes, proportional counter tubes, and rapid high-voltage single trip electrophoresis. Circuits are all solid-state.

HVR SERIES-These three supplies are all tightly regu. lated (0.005%) and provide sufficient output current for many devices not capable of being powered from conventional low ourent, high voltage supplies. Such devices would include powes TVWT's, Klystrons, contimous wave magnetrons, power gas lasers, and electron beam welding devices. Circuitry includes constant voltage/constant current operation with automatic crossorer. Thumbuhecl voltage controls give you 0.002% resolution. Two meters-one for voltage, one for curfent-are standard with each model. As in the HVB Series, these supplics are short-circuit proof. With Roating output, you have the option of negative or positive voltages up to 2 KV of ground. Circuits are all solid-stare.

[^55]The SCR-1P Series consists of eight regulated de power supplies utilizing silicon-controlled rectifers in series with the transformer primary. Controlled by the output voltage and current settings, these supplies accomplish the desired reg. ulation using Harrison's unique "Ramp.Lock" phase control circuit. This circuit technique permits a reduction in the overall size and weight of the power supply and results in up to 79% efficiency at full output. Four models with output ratings of approximately 300 watts are packaged in a $31 / 2$ " high cack mounting cabinet, while the four models with approxinuately 900 wati output power capability are $51 / 4 / 4$ high. All supplies may also be used on the bench (atrachable rubber ficet for bench use available on sequest). These second generation SCR regulated power supplies also feature lower output ripple, tighter load and line regulation, and Constant Voltage/Constant Current operation with automatic crossover, and all-silicon circuitry.

Advantages:

Output continuously variable to zero in either voltage or carrent mode
Efficiency up to 75% at full ourpus
Excellent line transient immunity

Specifications

POWER SUPPLIES

3 KW REGULATED SUPPLIES SCR-3 series

Models 6453A, 6456B, 6459A

The SCR-3 Series of regulated supplies are suitable for high-power applications which require up to 200 amps output current and up to 3.6 kilowatts output power. These supplies can be connected in auto-series and auto-parallel for higher power applications. In this series of supplies, silicon-controlled rectifiers perform simultaneously the rectifying and regulating functions with resulting voltage regulation of less than 0.3%

Advantages:

Constant voltage/constant current
Minimum size, reduced weight
Continuously variable to zero volts
Excellent line transient immunity
50 millisecond recovery for load current changes
Short-circuit-proof
Remote programming
Remote error sensing
Auto-series and auto-parallel operation
75% efficiency at full load

Model	6463A	8466B	6459A
DC volts out	0 to 15 V	01036 V	0 to 64 V
DC amps out	010200 A	010100 A	01050 A
AC power in	208/230/460 $=10 \%$, 3 phase, 57 to 63 Hz ; 14 amps per phase		
Combined load and line regulation	$0.2 \%+10 \mathrm{mV}$	$0.2 \%+10 \mathrm{mV}$	$0.2 \%+10 \mathrm{mV}$
	1% or 2 A	1% or 1 A	1% or 500 mA
tRipple and noise (rms max, specified as percont of max, oulput voliage)	1\%	0.5\%	0.25\%
Remota programming Lall programming terminats located on rear bartier strips)	200 ohms/volt	200 ohms/volt	$300 \mathrm{ohms} / \mathrm{volt}$
	$10 \mathrm{hm} / \mathrm{amp}$	$2 \mathrm{hms} / \mathrm{amp}$	4 ohms/amp
\dagger Transient recovery time (less than 50 ms required for oulput voltage recovery to within A mV of nominal output voltage following a load change from fu'll load to half load or half load to full load)	$A=150$	$A=300$	$A=600$
Meters	20 V and 200 A	40 V and 100 A	80 V and 50 A
Input terminals	4-terminal twist lock conneclor		
Output terminals	tapped rectangular bus bars		
Cooling	internal fan		
Dimensions	$\begin{aligned} & 19^{\prime \prime} \mathrm{W}, 14^{\prime \prime} \mathrm{H}, 181 /{ }^{\prime \prime} \mathrm{D} \\ & (48,3 \times 35,6 \times 46,4 \mathrm{~cm}) \end{aligned}$		
Weight (net/shioping)	$\begin{aligned} & 225 / 262 \mathrm{lbs} \\ & (107 / 124 \mathrm{~kg}) \end{aligned}$	$\begin{gathered} 238 / 275 \mathrm{lbs} \\ (107 / 124 \mathrm{~kg}) \end{gathered}$	$\begin{aligned} & 238 / 275 \mathrm{lbs} \\ & (107 / \mathrm{L} 24 \mathrm{~kg}) \end{aligned}$
Price: Option 01, 02, or 03 must be specified when ordering	\$1375	\$1275	\$1275
Options: Refer to page 561 for description	06-8350	06-\$300	$06 . \$ 300$
	01.208 V ac input-no charg8, 02.230 V ac input-no charge, 03.460 V ac input-no charge.		
	05-\$25, 10-\$195, 31-\$40, 32-\$40		

$c c=$ constant current, cy $=$ constant vollage
tUse of supply at 50 Hz input (possible only with option 05) results in a 20% increase in transtent recovery time and pigeie.

10 KW REGULATED SUPPLIES
 SCR-10 Series Models 6463A-6483B

The SCR-10 Serics of all silicon, 10 kilowatt regulated supplies are intended for bigh porver applications which require a fixed or rariable ds source with moderate degree of regulation. Siliconcontrolled rectifiers in series with the transformer primary, and controlled by the outpur voltage and current settings, accomplish the desired regulation using Harrison's "Ramp-Lock" phase control circuit. This circuit technique permits a reduction in the overall size and weighe of the power supply and results in up to 73% efficiency at full output. All features of the SCR-10 Series are the same as given for the SCR. 3 Series, except that auto-series and auto-parallel operation is not possible.

Specifications

Controls; a single control allows continuous adjustment of output volsage over the entire output range. A single control allows continuous adjustment of ourpur current over the entire output range. Models 6475A, $6477 \mathrm{~A}, 6479 \mathrm{~A}$, and 6483 B have 10 -rum voltage controls.
Input terminals: a 4-pin jack and mating connector are supplied.
Output terminals: tapped recrangular bus bars.
Cooling: interna! fan.
Slze: standard 19 inch (483 mm) relay rack mounting, $261 / 4$ inches (669 mm) and $221 / 2$ inches (572 mm) deep.
Weight: $420 \mathrm{lbs}(191 \mathrm{~kg})$ nec, $500 \mathrm{lbs}(227 \mathrm{~kg})$ shipping weight.
Finlsh: light gray front panel with dark gray case.

$$
5-2+20+2
$$

[^56]
$3 \mathrm{~J}-380 \mathrm{~V}$ ac input- 3275 . 32 m 400 V ac input. $\$ 275$.

MODULAR SLOT SUPPLIES

Adjustable within $\pm 20 \%$ band
Madels 60063A－60246B

The SLOT series of modular power supplies is intended for applications requiring a fixed constant voltage source of dc．
The ourput voltage can be selected by adjusting the rear pand screwdriver control．The nominal output voltage is offset from the design center，used in the output rating charts at right，by up to 2 volts．The output voltage can be varied $\pm 10 \%$ of the design center without derating the output current：above $\pm 10 \%$ ，the outpur curtent is derated as illustrated in the graphs belor＇．

The mechanical and electrica！design have been accomplished with a view toward simplicity，without any compromise in com－ ponent quality or manufacturing technique．The result is a low cost，yet reliable power supply which can be bolted directly to standard rack panels（with only four screws）or included as a
power module in a larger chassis．All supplies are fully rated to $55^{\circ} \mathrm{C}$ ，and require no additiona！heat sinks．

A temperature compensated zener diode is employed as the reference element in an all－silicon series regulator feedback circuit which monitors and controls the output voltage．The resulting low ripple and low output impedance permit these supplies to be used in critical applications where less well segulated supplies are not suited．

All supplies are short circuit proof and will not be damaged by any overload regardless of how long imposed．If the output current exceeds the rated value，the cut back circuit is trig． gered and reduces the output current to a safe limit．When the overload is removed，the supply returns to normal operation．

The output is foating－thus any supply can be used as either a positive or negative source．

Specifications

MODEL	DC OUTPUT （Roter te Deraling Charls）		AC INPUT			RIPPLE \＆NOISE		SIZE	PRICE		
	NOMINAL VOLTS	AMPS	VOLTS	AMPS	WATTS	RMS	$\begin{aligned} & P-P(\{m V) \\ & d o t o \\ & 20 \mathrm{MHz}) \end{aligned}$		$1-9$	10－19	20－48
60063A	6	1.5		0.3	26		3	3	\＄ 87	\＄85	\＄81
60065A	6	3		0.75	63	\％	3	5	\＄110	\＄107	\＄103
60066A	δ	8	N	1.5	150	0	6	6	\＄110	\＄107	\＄103
60122 B	12	0.5	안	0.16	15.7	\cdots	3	2	\＄ 72	\＄ 70	$\$ 88$
60123B	12	1	\％	0.3	26	芭	3	3	\＄79	\＄ 77	\＄78
60125B	12	2.2	\％	0.75	62	空	4	5	\＄100	\＄ 97	\＄ 94
60128B	12	6	吕	1.75	153	${ }_{3}$	6	5	\＄179	\＄174	\＄169
60242A	24	0.25	\＃	1.5	15.5	80	3	2	\＄ 72	\＄ 70	\＄68
602438	24	0.5	$\stackrel{4}{2}$	0.3	26	\％	3		\＄ 79	\＄ 77	\＄74
602448	24	1	$\underline{3}$	0.5	45	O	3	4	\＄88	\＄85	$\$ 83$
602458	24	1.5		0.75	65	$\stackrel{\text { c }}{ }$	9	5	\＄100	\＄ 97	\＄94
60246B	24	3.5		2	160	$\underline{\square}$	12	f	\＄179	\＄174	\＄169

It chart does not include a slot supply to fill your needs，ask your hP sales Engineer for the custom slor serles data sheet．

Specifications

Load regulation：less than 0.05% from no load to full load．
Line regulation：less than 0.05% for 10% change in nomusal line roltage．
Temperature coefficient：outpur soltage change per ${ }^{\circ} \mathrm{C}$ is less than 0.025% after 30 －minute warmup．
Stability：the rotal drift for eight hours（after 30 minutes warmup） at a constant ambient is less than 0.1% ．
Temperature rating：operating： 0 to $35^{\circ} \mathrm{C}$ ；storage：$-4010+85^{\circ} \mathrm{C}$ ．
Output impedence：less than 0.3 ohms 10100 kHz ；less than 3 ohms to 1 MHz ．
Transient recovary time：less than $25 \mu_{\mathrm{S}}$ for output volrage re． colery to within 10 mV of the nominal ourput colage following a full load or 9 amp load change．whichever is less．
Overload protection：the output is current limited（non－adjustable） and is fully rated for operation under any overload condition including a direct short tircuit，regardless of how long maincained． Supply will automatically resiore to normal operation upon orer－ load removal．
Terminals：a rear barrier strip includes $A C, A C C, G N D$ ．+ Out， －Out，+ Sensing，and－Sensing cerminals．Either side of the supply may be grounded or the output may be operated foating at potentials of up co 300 V off ground．

Output control：screwdriver adjust，accessible through hole in end plate．
Mountling：four 8 －32 chreaded nuts embedded in mounting end plate facilitate assembly of modules to rack panels，chassis，etc．
Overall dimensions：

	Maunling face	Mosuto iongti
Size 2：	$31 / 8^{p}(8.6 \mathrm{~cm}) \times 41 / 8^{\prime \prime}(10.5 \mathrm{~cm})$	$4 V^{\prime \prime}(10,5 \mathrm{~cm})$
Size 3：	$35 \mathrm{E}^{*}(8.5 \mathrm{~cm}) \times 41 / \mathrm{B}^{N \prime}(10.5 \mathrm{~cm})$	$6^{\prime \prime}(15.2 \mathrm{~cm})$
Size 4：	$34 /{ }^{n}(8.6 \mathrm{~cm}) \times 511^{*}(13 \mathrm{~cm})$	$6^{\prime \prime}(15.2 \mathrm{~cm})$
Size 5：	$32 /{ }^{2}(8.6 \mathrm{~cm}) \times 51 /{ }^{\prime \prime}(13 \mathrm{~cm})$	$7.5 / 16^{\mu}(18.6 \mathrm{~cm})$
Size 6：	$44^{*}(10.8 \mathrm{~cm}) \times 51 /{ }^{\prime \prime}(13 \mathrm{~cm})$	$110(27.5 \mathrm{~cm})$

Weight：

	Hel	${ }^{6}$ hipplop
Slize 2：	$2.1105(0,95 \mathrm{~kg})$	$3.5 \mathrm{lds}(1.6 \mathrm{kB})$
Size 3：	$2.5 \mathrm{lbs}(1.1 \mathrm{~kg})$	$4.0 \mathrm{lbs}(1.8 \mathrm{~kg})$
Size 4：	$4.5 \mathrm{Jbs}(2 \mathrm{~kg})$	$6.5 \mathrm{lbs}(2,9 \mathrm{~kg})$
S120 5：	$6.0 \mathrm{lbs}(2.7 \mathrm{~kg})$	$8.0 \mathrm{lbs}(3,6 \mathrm{~kg})$
Size 6：	$13 \mathrm{lbs}(5.9 \mathrm{~kg}$ ）	$15 \mathrm{lbs}(6,8 \mathrm{~kg})$

Options：06，17，18، See page 551 for descrlptions．

Dual Slot Supplies

Model 60155C and 60153D are dual output SLOT supplies ideal for powering operational amplifiers. These new supplies provide a positive and negative is V dc output referenced to a common terminal and are internally connected for auto-tracking "rubber-band" operation. With the slave (- supply tracking the master (+) supply, any change of the internal reference source (e.g. drift, ripple) will cause an equal percentage change in the outputs of both the master and slave supplies.

The degree by which the slave supply varies as a percentage from the master supply is defined as "rracking error." The tracking error is less than 30 mV for each 1 V change in the master. For example, if the master supply output voltage drifted more negative by 0.5 V , the slave supply output volrage would become more positive by $0.5 \mathrm{~V} \pm 15 \mathrm{mV}$.
The features are identical to the standard units in the SLOT Sectes as listed on page 584.

Specifications

Unless otherwise indicated, the specifications are identical to the single output SLOT power supplies on the preceding page.
Dual output: $60355 \mathrm{C}: \pm 15 \mathrm{~V} \mathrm{dc}, 0.0 .75 \mathrm{~A} ; 60153 \mathrm{D}: \pm 15 \mathrm{~V} \mathrm{dc}$, 0.0 .2 A .

Output current capablity: as illustrated, the output voltage can be varied from 12 to 18 volts; but with outpus current rated according to chart above.
Input: $115 \mathrm{~V} \mathrm{ac} \dot{-} 10 \%, 48.440 \mathrm{~Hz}$.
Load regulation: less than 0.03% oulput voltage change for a load current change equal to the rating of the supply.
LIne regulation: less than 0.01% for $60155 \mathrm{C}, 0.03 \%$ for 60153 D output voltage change for a 10% change in line voltage.
Ripple and noise: less than $300 \mu \mathrm{~V}$ rms, 2 mV p-p (dc to 20 NHz).
Temperature coefficlent: output voltage change per degree centi. grade after 30 -minute warmup.

Master supply: less than 0.025%.
Slave supply: less than 0.015%.

Stability: total dxift for 8 hours (after 30 -minute warmup) at a constant ambient temperature.

Master supply: less than 0.1%.
Slave supply: less than 0.06%.
Slave tracking error: less than 30 mV for each IV change in the master outpur voltage.
Terminals: a cear barrier strip includes $A C, A C C,+$, , common, + sensing, - sensing, and common sensing terminals. Either side of the supply may be grounded or the output may be operated foating at potentials 300 V off ground.
Welght: (net/shipping) 60155C: $5.25 \mathrm{lbs}(2,4 \mathrm{~kg}), 7.25 \mathrm{Jbs}(3,2$ $\mathrm{kg}) ; 60153 \mathrm{D}: 2.5 \mathrm{lbs}(1,1 \mathrm{~kg}), 4.0 \mathrm{lbs}(1,8 \mathrm{~kg})$.
Slze: 60155C, size 5;60153D, size 3. Refer to dimensions under single SLOT specifications.

Price:	1.9	10.19	20.49
60155 C	$\$ 133$	$\$ 129$	$\$ 125$
60153 D	97	93	91

The MOD Series of plug.in modular power supplies was designed to meet the need for well-regulated, inexpensive chassis-mounting supplies. All input, output and control connections are made through the 11 -pin plug at the base of the module. Depending upon techniques and values of resistance employed ro connect these pins to controls, a designer can vary ourput over the complete voltage range of the supply, employ remote sensing, or use remote programming.
Current limit can be set at any value from zero to a value slightly greater than the current rating of the supply. A scres. driver adjustment slot permits readjustment of the current limit value without removing the module cover. This gives protection against any overload problem, including shorts accoss the output.

Specifications, MOD Series

Model	6343 A	6344A	6348A	6347 A	6354 A	6357A
DC output	$\begin{aligned} & 01018 \mathrm{~V} \\ & 010300 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0.1018 \mathrm{~V} \\ & 0101 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 01036 \mathrm{~V} \\ & 0 \text { to } 150 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 01030 \mathrm{~V} \\ 010500 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 010160 \mathrm{~V} \\ & 0 \text { to } 400 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 010320 \mathrm{~V} \\ & 010200 \mathrm{~mA} \end{aligned}$
AC input	$\begin{aligned} & 115 \mathrm{Vac}=10 \% \\ & 48 \text { to } 440 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac}=10 \% \\ & 48 \text { to } 63 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac}=10 \% \\ & 48 \text { to } 440 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 115 \overline{\mathrm{Vac} \pm} 10 \% \\ & 48 \text { to } 63 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 115 \mathrm{Vac} \pm 10 \% \\ 48 \text { to } 63 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 115 \mathrm{Vac} \pm 10 \% \\ 48 \text { to } 63 \mathrm{~Hz} \end{gathered}$
Load regulation	3 mV or 0.03%	3 mV or 0.03%	3 mv or 0.02\%	3 mV or 0.02%	0.005\% + 2 mV	$0.005 \%+2 \mathrm{mV}$
Line regulation	3 mv or 0.03\%	3 mV or 0.03%	3 mV or 0,02\%	3 mv or 0.02\%	$0.005 \%+1 \mathrm{mV}$	0.005\% + 1 mV
Ripple and noise	Less than 1 mV rms for any combination of line voltage, output voltage and load current.					
Stability	Less than 0.1% plus 10 mV tolal dritt for 8 hours (after 30 minutes warm-up) at a constant ambient.					
Temperature coefficient	Less than 0.033\%. plus $2 \mathrm{mV} / \mathrm{I}^{\circ} \mathrm{C}$.					
Size	A	B	A	B	0	c
Weight ($1 \mathrm{~b} / \mathrm{kg}$)	$\begin{gathered} 3 / 5 \mathrm{lbs} \\ (1,4 / 2,3 \mathrm{~kg}) \end{gathered}$	$\begin{gathered} 7 / 10 \mathrm{lbs} \\ (3,2 / 4,5 \mathrm{~kg}) \end{gathered}$	$\begin{aligned} & 3 / 5 \mathrm{lbs} \\ & (1,4 / 2,3 \mathrm{~kg}) \end{aligned}$	$\begin{gathered} 7,10 \mathrm{lbs} \\ (3,2 / 4.5 \mathrm{~kg}) \end{gathered}$	$\begin{gathered} 13 / 19 \mathrm{lbs} \\ (5,9 / 8,6 \mathrm{~kg}) \end{gathered}$	$\begin{gathered} 13 / 19 \mathrm{lbs} \\ (5,9 / 8,6 \mathrm{~kg}) \end{gathered}$
Price	\$120	\$165	\$120	\$165	\$259	\$259
Options	$\begin{aligned} & 05-\$ 10 \\ & 28-\$ 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 05 \$ 10 \\ & 28-\$ 10 \end{aligned}$	28-910	$\begin{aligned} & 05-\$ 10 \\ & 28-\$ 10 \end{aligned}$	$\begin{aligned} & 05-\$ 10 \\ & 28-\$ 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 05-\$ 10 \\ & 28-\$ 10 \\ & \hline \end{aligned}$

- Reter to page 561 for descriptions.

Strain gage supply

Designed to operate primarily as a power supply for strain gage application, the B01C is a solid-state power supply with greater than 10,000 megohms to ground or ac input and less than 1 pF capacity from output terminals to input pover line. See page 561 for rack kits. (Connections by barrier strip.)

Specifications

Output: 0 to 25 rolts at 0 to 0.2 gmp .
Load regulatlon: less than 2 mV change, no load to full load.
Line regulation: less than 2 mV change, for a change in line voltage from 105 to 125 volis.
Ripple and nolse: less than $100 \mu \mathrm{~V}$ rms.
Maximum ambient operating temperature: $50^{\circ} \mathrm{C}$.
Stablity: less than $0.1 \%+5 \mathrm{mV}$ total drift for 8 hours after 30 minute warmup.
Overload protection: current limiter protects supply from all overloads including direct shors.
Controls: coarse and vemier ior continuous voltage control.
Remote error sensingi at rear terminals.
Power: 105 to $125 \mathrm{~V} \mathrm{ac}, 55.65 \mathrm{~Hz}$.
Dimensions; $5^{\prime \prime}$ high, $147 / 8^{\prime \prime}$ deep, $19 / 8^{\prime \prime}$ wide.
Weight: net 4 lbs ; shipping 8 lbs.
Price: 1 to $9, \$ 149$ each; 10 to 49 , $\$ 145$ each; 50 to $99, \$ 140$ each; 100 and more, $\$ 135$ each.

Models 6823A and 6824A are dual-purpose de regulated power supplies and direcc-coupled amplifiers. Two or more of these units can be connected in Auro-Series to obtain greater voltage capability, High speed constant current operation can be obtained by simply adding an external resistor in series with the load and making minor changes in the rear barrier strapping.

Tro temperature-compensated zener diodes are employed as reference elements in a series regulator feedback circuit which monitors and controls the output roltage. The resulting low ripple and low outpue impedance permit these instruments to be used in critical power supply applications. Low internal dissipation assures reliability.

As a porer ampliker, both instruments offer a signal-to-noise ratio of 80 dB at full output with low distortion and 20 dB gain from dc. 20 kHz (kc); making them usêtul in a wide variety of appilcations. The output is inverted. Rack mounting hardoware is available for mounting singly or in pairs in $31 / 2^{\prime \prime}$ or $51 / 4^{\prime \prime}$ of rack height.

Advantages:

Power supply

Ourput adjustable through zero
High-speed programming
Short-circuit-proof
Low ripple and noise
Fast mansient recovery
No overshoot for turn-on, turn-off, or power removal
Power ampilifler
Variable gain
High signal to-noise ratio
Low distortion
Frequency response - dc to 20 kHz

Applications

As a de Power Supply, Nodels 6823A or 6824A can be controlled from the front panel, or renotely programmed with resistance or voltage. The low output drift and noise combined with high speed programming adapt this supply to a wide variety of laboratory and production testing applications.

As a de coupled Power Amplifer, the unusally low outpur impedance, discortion, ripple and noise make the 6823 A or 6824 A useful in servo system, as a pulse or oscillator amplifier, and for moror control. Constant Current output is readily achiered by connecting a curfent monitoring resistor to the rear terminal barrier strip-makes an ideal driver-amplifier for deflection coils!

For more information, refer to Application Note 82, Porver Supply/Amplifier Concepts and Modes of Operation, available free of charge from your local Hereletr-Packard feld sales office.

Specifications

MODEL \$823A	
High apesd progremmins do power supgly	10 watl poak output de power amplifilar
Oulput: $-2010+20 \mathrm{Vde} @ 0.0 .5 \mathrm{~A}$ Losd regulation: $0.02 \%+5 \mathrm{mV}$ Line requlation: $002 \%+5 \mathrm{mV}$ Rlpple \& nolse: 2 mV rms Transiant recovery time: less than 100 μ^{5} to within $5 \mathrm{mV}+0.02 \%$ of ihe nommal output. Remote programming: 500 ohms,'V. Also vollage programming. Programming soged: less than $50 \mu s$ apa required for drogramming between - 20 \checkmark and +20 V . Typically the programming time between 0 and 90% of the maximum voltage span is $20 \mu \mathrm{~s}$.	Output: 40 volis p-p @ $0-0.5 \mathrm{~A}$ Volisge gain: Variable 0-10 (20 dB) output inverted. Frequency rasponsoi at tull output, an de from dc to 20 kHz . Max. phase shift. dc -180° $\begin{array}{r} 00 \mathrm{~Hz}-181^{\circ} 1 \mathrm{kHz}-183^{\circ} \\ 10 \mathrm{kHz}-205^{\circ} 20 \mathrm{kHz}-225^{\circ} \end{array}$ Distortion: $<0.02 \%$ al 1 kHz and full out. put. Input impadance: 2 k ohms apprax. Inpul terminals: front and rear.
AC Inpul: $115 \vee \mathrm{ac} \pm 10 \%$, single phase, $50.440 \mathrm{~Hz} ; 0.33 \mathrm{amp}$. 24 wacts max. Mater: Oual purpose with selector switch; -24 to +24 wolts, -0.6 to +0.6 amps. Size: $31 / /^{\prime \prime} H \times 8 / /^{\prime \prime} W \times 13^{\prime} D(8.9 \mathrm{~cm} \mathrm{H} \times 21.8 \mathrm{~cm} W \times 13 \mathrm{~cm} \mathrm{D})$. Welght: 1s pounds (7.26 kg) net. 20 pounds (9.07 kg) shipplag. Price: $\$ 194$. Rack meunting kits: refor to pase S6). 14513A: mounls one $31 / z^{\prime \prime}$ high unit-add $\$ 20.00$ 14523A: mounts two $3 / z^{N}$ high units-sud $\$ 10.00$	

MODEL 6924A	
High soted pragramming do power supply	50 wall park oulpul do power amplifies
Output: -50 to +50 V OC © 0.1 .0 A Lodd regulation: $0.02 \%+5 \mathrm{mV}$ Line regulatlon: $0.02 \%+5 \mathrm{mV}$ Ripple \& noise. 10 mV rms. Transient recovsry lime: less than 100 ns to within $5 \mathrm{mV}-0.02 \%$ of the nominal oulput. Remote programming: $500 \mathrm{ohms} / \mathrm{V}$. Also voltage programming. Programming soeed: less thart $50 \mu^{9}$ ars required for pragramming batween - 50 V and $+50 V$. Typically the programning Ulas between 0 and 90% of the maximum voltago span is $20 \mu \mathrm{~s}$.	Dutput: 100 volls d-p © 0-1.0 A Vollaze gain: variable. $0-10(20 \mathrm{~dB})$, output inverted. Fiequency responsa; at full output, $\pm 3 \mathrm{~dB}$ from dc to 20 kHz Distortion: <0.02罗 at I hMz and Pull output inpul Impodance: $2 k$ ohms approx. Input terminals: front and rear.
AC input: 115 V ac $+10 \%$, single phase, $50-60 \mathrm{~Hz}, \mathrm{I} .3$ amps, 96 watts max. Meter: lriple purpose with selector swilch; -60 to +60 vofts, -1.2 to +1.2 amps, 0 to 60 V ms Size: $51 /{ }^{\prime \prime} \mathrm{H} \times 814^{4} \mathrm{~W} \times 13^{7} \mathrm{D}(14 \mathrm{cmH} \times 21.8 \mathrm{cmW} \times 33 \mathrm{~cm} \mathrm{O})$. Weight: 17 gounds (7.7 kg) net, 21 pounds (9.55 kg) shlpping. Price: $\$ 350$ Rack mounting kils: reter to page 561. 14S15A: mounts one 51/" hight unit-add 523.00 14525A: mounts two $51 /{ }^{\prime \prime}$ high units -add $\$ 13.00$	

Other specifications for both models

Temperature ratings: operating: 0 to $50^{\circ} \mathrm{C}$. Storage +20 to $85^{\circ} \mathrm{C}$.
Temperature coefficient: $0.015 \%+1 \mathrm{mV}$ per ${ }^{\circ} \mathrm{C}$.
Stability, $0.075 \% \div 5 \mathrm{mV}$ for 8 hrs . (after $1 / 2 \mathrm{hr}$. warm-up); ambient temperature variation heid to $3^{\circ} \mathrm{C}$.

Overload protectlon: the unit is complerely protected for all over. load conditions including a short circuit applied directly across the output terminals.
Output terminals: boch front and rear terminals are provided.
Option 28: $230 \mathrm{Vac}+10 \%$, single phase input. Factory modification consists of reconnecting the multi-tap input power teans. former for 230 -volt operation. See page 561 .

Electronic counters have proven to be the raost accurate, flexible, and convenient instruments available for making both frequency and time interval measurements. Since the incroduction of the first high-speed counter (the $10 \mathrm{MHz}_{2} \mathrm{HP}$ Mndel 524A) more than 15 years ago. Hewletl-Packard has developed a broad range of counters with a wide variey of fearures. The counters and associated equipment can measure frequen. cies from de to 40 GHz , and time intersals from 10 nanoseconds to more than 100 days.
The electronic cosunter is an instrument which compares an unknown frequence or time intertal to a known frequency or a known time incerval. The counter's logic is designed to present this information in an easy-ro-read, non-ambiguous, numerical display: The accuracy of this measurement depends primarily upon the stability of the known frequency, which usually is derived from the counter's internal oscillator or in the lowest cost counters, from the ac power line frequency. The oscillators in HP count. ers are designed and built by HP for optimum slability in each price class.

The decision as to which electronic counter is best suited for a specific application depends upon the range and type of measurements to be made. Sce the Electronic Counter Selection Guides on pages 593 and 594.

To go with this very complere line of electronic counters Hewiete Packard also offers many inpur and nutput accessories. Included are digital recorders for automatic recording of measurements; digital clocks which concrol measurement intenals and supply time information for simultaneous recording: digi-tal-to-amalug converters for high resolution analog records of digital neasurements; and scanners which can receive the outputs from several electronic counters for entry into a single recording device. Hewlett-Packard also manufactures magnetic and optical tachometers for rps measurement inputs to low-frequency electronic counters, and ar. curate analog frequency meters which also serve as highly linear. wide-band. FAI discriminators.

Counter elements

All electronic counters have several basic functional sections in common. These are interconnected in a variety of ways to per. form the different counter functions. The mose important components are: (I) the decade counting assemblies (DCA's) with risual numerical readouts to totalize and display the count; (2) the main gate, which controls count start and stop with respect to time, (3) the time base, which supplies the precise increntent of time to control the gate

Flgure 1. Function swisch set to manual Start and stop to determine Interval input signal.

Figure 2. Function switch set to Frequency and gate time selected by tume base switch.
for a frequency or pulse train measurement and (4) decade divider assemblies (DDA's) which allow variation of gate time. Other sections include: Schmitt trigger for signal shaping, display concrol, and logic control. The logic control interconnects the proper circuits for the desired measuremeat, selects the appropriate measurement units for display and initiates the measurement cycle. The various modes of electronic counter operation are described in the following paragraphs, and accuracy is discussed on page 592.

Totalizing

Electronic counters can be operated in a totalizing mode with the main gate fip. fop controlled by a manual start-stop switch as shown in Figure l. With the switch in Start (gare epen), the decimal counter assemblies totalize the input puises until the main gate is closed by the switch being changed to Stop. The counter display then represents the input pulses received during the interval between manual Start and onanual Stop. Generally, totalizing can also be remotely controlled.

Reversible counting

The unique feature of a reversible counter is each decade's ability to totalize in either a positive or negative direction. Signals on one input are added, while signals on the other input line are subtracred: alternately, signals on the first input line may be added or subtracted, when information regarding the direction of count is supplied to the second input line. The HP S280A can reverse its direstion of count in 250 ns .

Frequency measurements

For direct frequency measurements (Fig. ure 2) the input signal is first converted to uniform pulses by the Schmitt signal shaper. These pulses are then routed ibrough the main gate and into the decade counting as. semblies (DCA's) where the pulses are totalized. The numbes of pulses totalized during the "gate open" interval is a measure of the average input frequency for that inter. val. The count oblained, with the correct decimal point, is displayed and retained until a new sample is ready to be shown. The Sample Rate Control derermines the time between samples, resets the counter and initiates the next measurement cycle.
The time base selector switch selects the gating interva!, positions the decimal poim and selects the appropriate measuremenr units.
Measurement accuracy is discossed on page 592. For measurement of low level
signals (down to 1 mV rms), HP manufac. tures a video amplifer plug-in (the model S261A) for the HP plug-in counters. When using the s261A on the mose sensitive ranges, precaution should be caken to exclude the presence of stray radiation from the immediate measurement area because of ins high sensitivity. A front panei meter indicates whether the inpur level is adequate for the measurement.
High frequency measarements are dis. cussed later.

Period measurements

Period is the inverse of frequency ($\mathrm{P}=\mathrm{l} / \mathrm{f}$). Therefore period measurements are made with the input and time base connections reversed. This is shown in Figure 3. The unknown input signal controls the main gate time, and the time base frequency is counted in the DCA's. The input shaping circuit selects the positive-going zero axis crossing of successive cycles of the unknown as trigger points for opening and closing the gate.

Low frequencies may be determined more accurately by measuring period rather than frequency directly. This is true because the longer period of a low frequency allows more counts to accumulate in a period measurement; therefore, iesolution and accuracy are both improsed. This is discussed in more detail on page 592. For example, a frequency measurement of 100 Hz on the 8 -digit 5268 L Counter with a 10 -second gate time will be displayed as 0000.1000 kHz . A 10 period average measurement of 100 Hz on an HP 5248 L with 100 N Hz as the counted frequency, wrould be displayed as 100000.00 $\mu \mathrm{s}$. Thus, resolution is increased by a factor of 10^{4} and measuremest time decreased by 100.

Multiple period averaging

Multiple period averaging is a simple method for reducing error and improving resolution in period measurements. Accuracy is discussed thoroughly on page 592 where it is shown that the more periods oser which a signal is ateraged, the better the atcuracy,
The number of periods of the unknown to be areraged is selected by a front panel swich. The HP 5325A can average up to 10^{8} periods and several other HP counters can average up 1010° periods. In the low.

figure 3. Function switch set to Pariod and counted frequency selected by lime base switch.

Figure 4. Functlon switch set to Period Average. Input signal controls gate for counting time base frequency.
frequency measurement example above, the counter would display 10000.000 us for a 10 period arerage. (The selector switch auto. matically shifts the decima! point in the display to show the correct reading for a single period.)

Ratio measurements

The ratio of two frequencies is determined by using the one signal for the gate control while the other signal is counted (Figure 5). With proper transducers, ratio measure-

Figure 5. Ratio measurement, Function switch set to Period and time base switeh to Ext. Lower frequency controls gate, while higher frequency replaces time base as counted frequency.
ments may be applied to any phenomenon which may be represented by pulses or sine waves. Gear ratios and clutch slippage, as well as frequency divider or muleiplier operz. tion, are some of the measurements which can be made using this technique.
The accuracy may be improved by using the multiple period averaging technique by counting for 10^{N} cycles of the gate control signal. Sources of error are discussed on page 592.

Rate measurements

With a preset counter or a counter wirh a preset plug-in, frequency measuremencs can be normalized automatically to rate measurements by appropriate selection of the gate time. The counter will then display a readout in the desired unit of measurement. For exarmple: the HP 521 fL Presec Counter or the HP 52-48L Counter with the 5264 A Preser Plugin can be ser to a gate time of 600 milliseconds to cause the input from a 100.puise-per-revolution tachometer to be displayed directly in revolutions per minute.

Scaling

Severa! HP counters can scale (divide) an input by powers of 10 up to 10°. The scaled outpur is available from the rear of the counter.

Figure 6. Start and stop signals derived from two sources or from different points of same waveform as selected by Com-Sep switch.

Time interval measurements

Counters vary grealy in their time incerval measuring capability. Some counters only measure the duration of an electrical event, others measure the interval between the start of two pulses, but ihe most versatile models, known as "universal counters," have separate inputs for the start and stop commands and have separate uigeer controls which permit setting the trigger level amplitude, polaring, slope and rype of inpur coupling (ac or dc) for the start and stop channel. Since stop and start commands can originare from common or separate sources, this type of instrument can measure the interval from one point on a draveform to another point on the same

Figure 7. Frequency measurement with he. terodyne converter; counter measures difference frequency (diagram is of HP 5255A Converter).

waveform. Examples of universal counters are HP 5325A, 5223L and 5233L Counters and 5267 A , or 5262 A Time Interval Plug.in in an HP 5245, 5246,5247 , or 5248 Counter. Figure 6 is a generalized diagram of these versatile models. Time is displayed in μs, ms or s. Accuracy is affected by the same factors which affect period measurements. See page 592 for a detailed discussion of accuracy.

The HP 5267A Time Interal Plugin offers the greatest versatility in measuring time interval from 100 ns to $10^{\prime} \mathrm{s}$. Resolution is 10 ns from 100 ns to 1 s . The full complemenc of trigger controls, 100 mV sensitivity and constant input impedance of 1 MN/35
pF on all ranges permits measurements of any waveshape and from high or low impedance circuits. The 5262A Plug.in offers less versatulity and 100 ns resolution. The 5275 A is a special purpose counter for lime interval measurement only, it will measure from 10 ns 100.1 s with 10 ns resolution.
Measurement of the time required for a nomber of random events to occur is possible with the 5214L Preset Counter. This inserument's decade dividers may be preses to close the gate on the N th input pulse, where N is any number from 1 to 100,000 .

High-frequency measurements

The frequency range of a counter can be extended with hecerodyne converters, transfer oscillators or automatic dividers and for frequencies up to 350 MHz prescaling is available.

The unique capabilities of each will now be briefly described.
Heterodyne converters measure the arerage frequency of CW signals (even when FM'd) and give the greatest resolution for a given counter gate ume of any 「requency extension technique. Resolution is 1 Hz in $1 \mathrm{~s}, 10 \mathrm{~Hz}$ in $0.1 \mathrm{~s}, 100 \mathrm{~Hz}$ in 0.01 s , etc. (exception: Models 5255A and 5256A re. quire four times longer). Hewletr-Packard manufactures a series of heterodyne converter plug-in units (see pages 608, 609) which convers the unknown high frequency to a relared frequency which is within the counter's basic range. Measurements to 18 GHz are possible.

As an example π re shall refer to the HP 525sA Plug-in Unic (see Figure 7). The tuning cavir; selects the 200 MHz harmonic that gives a beat frequency output. After prescaling by a facior of four, the difference frequence is within the 50 MHz counting capability of the 5245 M . At the same time

Figure 8. Frequency measurement with con. ventional transfer oscillators; counter measures oscillator frequency (diagram is of HP 540 B and 2590 B).

Figure 9. Frequency measurement with MP 5257A Transfer Oscillator using new transfer oscillator principle: counter measures sampling frequency of sampler.
the 5245 M gate time is automatically ex tended by a factor of 4 so that direct rendout on the 5245 M is achieved. The frequency reading on the counter is then added to the setting on the tuning dial to give the unknown frequency:

Transfer oscillators, on the other hand, can measure pulsed signals as well as CW signals. Thes also have a wider bandwidth than heterodyne converters. Possible draw. backs of transfer oscillators, when compared to converters, are that they require more operator skill and time for initial set-up (because calculations of harmonic number might be needed), and a longer gate time is needed for equivalent resolution.

In operation, the transfer oscillator generares a vasiable frequency, which is adjusted so 1 harmonic of that frequency zero beats with the unknown signal (see Figure 8). The transfer oscillacor frequency is then measured on the counter and multiplied by the appropriate harmonic number to give the unknown frequency. In the HP 2590B, zero beat is obtained by an automatic phase lock loop after one of the nearest subharmonics has been manually tuned. Measure. ments to 18 GHz are possible with the HP 5257A, and 1040 GHz with the H^{P} E40524sL System or the HP 540B Transter Oscillator with related instruments.

The model 5257 A is HP's newest transfer oscillator. It plugs into the front panel of the HP 5245, 5246, 5247, and 5248 Counters and extends counter range so that continuous coverage from 50 MHz to 18 GHz is achieved in a very compact, convenient, easy-to-use package. It is a new concept in fre. quenc' extension using a broadband sampler in place of both the harmonic mixer and phase detector. It operates without an offset frequency; thus, once the harmonic number has been dialed inco the 5257A thumbwheel switches and the VFO tuned for phase-lock. frequency is read directly from the counter with no further calculation. It also measures pulsed RF frequencies. A simple tuning meter replaces the convencional "zero beat" oscilloscope with no sacrifice in accuracy. The broadband sampler offers high sensitivity over the entire 50 MHz to 18 GHz range and permits tuning by a single knob instead of requiring several auxiliary stub tuners to optimize sensitivity.

The 5257 A operates in a maner an. alogous to a stroboscope which uses a flash. ing lamp for measuring vibrational or rotary speeds. That is, if the 5257 A variable fre. quency oscillator output freguency (Figure 9) is set to any sub-harmonic (N) of the unknown input frequency f_{x}, then V_{1} will be I de voltage (otherwise it's ac) because the input waveform will be sampled at the same point each time the sampler is gated open. Thus, if we manually tune the VEO until $f_{D}=0$ (indicated by tuning meter) and measure f_{v} with an electronic counter, the counter reading will be the frequency of some subharmonic of f_{x}. The frequency of f_{x} can then be determined by mulriplying the countes reading by the harmonic number N . Dialing the number N into the thumbwheel switches on the 5257A performs this multiplication by extending the counter gate time by a factor of N. Since there is no offset frequency to add or subtract from the reading.
the counter displays F_{x} directly. "Zero beats" occut at intervals of $N f_{v}$ across the $V F O$ dial. The VFO dial need anly be used as an approximate indicator of VFO frequency since the electronic counter rapidly measures VFO frequency and displays up 108 signif. cant figures.

Tuning the 5257A is an uncritical operation. For CW signals, once the VFO is tuned through the proper frequency, it be. comes automatically and securely phase. locked to it. Pbase-locking does not occus for pulsed RF signals. Therefore, as in all transfer oscillators, accuracy is not as great when measuring the frequency of pulsed carriers as it is for CW signals. Tuning is also simple for pulsed carriers because zero bear is indicated by a maximum reading on the front panel meter.

See the HP Journal, Feb., '68, for a complete description of the 5257A,

In all transfer oscillators, harmonic num. ber is calculated from the VFO frequency measured at two adjacent lock-points ("zern beat"). If the aransfer oscillator nperates with an offset (IF frequency), calculation is lengthier.
Automatic frequency dividers provide auromatic measurement and direct readout of a wide range of CW frequencics, and furnish 1000 Hz resolution is 1 s . Some FMI can be tolerated. Measurements from 0.3 GHz to 12.4 GHz can be achieved using the HP S260A with a suitable counter or the HP s240A Frequency Meter. The 5240 A and 5260A zero beat with the input automarically and without offset and then provide a frequency input to the counter equal to exactly 1/100 or $1 / 1000$ of the unknown frequency depending upon the division ratio swiech setting.

Prescaling is accomplished by means of froquency division of the input signal. If the gate time is extended with the scale factor. the correct frequency will appear on the counter readout. The HP Model s252A Pre. scaler plug-in unit has three selectable scale factors: $\div 8, \div 4$, and $\div 2$ and is $d c$ coupled which makes it very useful for counting of random pulses or events. Because she Pre. scaler is a wideband instrument, it is more susceptible to noise than tuned instruments like the heterodyne converters. An adjustable trigger-level control on the Prescaler can be used to discriminate against unvanted sig.
nals. The accuracy of the Prescaler is the same as that of the counter although the measurement takes 2,4 , or 8 times as long sime, depending on the scale factor.

For very low signal levels, HP manufac. tures a Sensitive Prescaler (Model 5258A) with a maximum sensitivity of 1 mV mms and a frequency range of 1 MHz to 200 MHz . The scale factor is fixed at $\div 4$. For simplicity of operation, a meter indicates the input signal level.

Digital to analog conversion

In many measurement applications analog recordings can be of gecat value. In general it is not possible to make analog recordings directly from a counter. Most of HentettPackard's elecronic counters will provide the measurement data in BCD form. Using this BCD output and an HP Mrodel 580 A or 581A Digital in Analog (D/A) Converter, an analog recorder ourput is then available from the D/A converters. The 580 Series offers resolutions to 1 part in 10^{5}

A case where the D/A converters prove rery useful is in the evaluation of the stabulity of quartz crystal oscillators. By combining a counter, a D/A convcrter, and a strip chare recorder it is possible to obtain a plot of fractional frequency deviation.*

In general, when daca must be monitored continuously over a long period of time, the use of D/A converters in connection with electronic counters becomes very useful.

Counter accuracy

There are 3 main sources of error in counter measurements: ± 1 count ambiguity, time base instability, and trigger error. The causes and the effects of these errors are discussed below. ± 1 COUNI AMBIGUITY. The ± 1 count ambiguity is inherent in all electronic counter measurements because the input signal and the time base are normally not synchronized. As shown in Figure 10 , the count registered during the gating time t_{8} may be either 6 or 7 depending on the moment at which t_{8} begins. Thus, in sng measurement, the counter's display may be incorreer by one count.
-Thls and other stablity measurements are de. scribed In greater detall in the RP Application Note AN-52, avallable whout charge from the Hewlett-Packard Company.

Figure 10. An error of $\neq 1$ count can oceur because gate may open and close between input pulses. With gate open for uppor tg interval, 6 counts occur; 7 counts occur for lower interval.

The fractional effect of the $\dot{ \pm}$ count ambiguity is:

$$
\frac{1}{\text { total events counced }}
$$

Obviousiy, the more events counted, the smaller this error becomes. This explains why long gate times result in better accuracy in frequency measurements.
TIME BASE STABILITY. When the crrscal is in a precision oren, Hewlett-Packard separately specifies crystal aging rate, shortterm smability, termperature change and line voltage change as sources of rime base error.
Cyystal aging sare (also called long-term stability or drife rate) refers to slow, but predictable, variation in average oscillator frequency with time due 10 changes occurring in the quartz cosstal itself. After an initial period of rapid change when the oscislator is turned on. aging in a good crystal becomes quite slow and assumes a predictable linear characteristic. The slope of this line is the aging rate of the oscillator.
Since aging is cumulative, it is necessar: to periodically calibrare the oscillator. Calibration methods are discussed in HP Appli. cation Note 52 which is arailable upon re. quest.

Short-sesm stability specifcations indicare the effects of noise generated internally in the time base oscillator on the average frequency over a short cime, usually one second.

Short-cerm effects are so small that the spec is listed for only the very most stable time base oscillarors in precision orens. In the less stable oscillators, orther errors make the shortterm spec insignificant.
When comparing short-rerm stability specifications, it is important to remember that the averaging time used will derermine how good the spec appeais to be. A long averaging time will hide large frequency variatons. Hewletr-Packard always specifies rms short-cerm stabiliny over the realisticalls: short period of i second.
Line tolage and temperature specifications should be self-explanatory. The total inac-
curacy due to the time base is the sum of the aging, short-term, line voltage, and tempera. rure errors.
TRIGGER ERROR. Trigger error arises from noise on the gate-control signal. This noise sauses the gate to open or close at incorrece times and results in an erronenus count.
Sugnificant trigger error can occur only when an external signal controls the gate: that is, when period, ratio, and cime intenal measurements are being made.
Absolute trigger error is stated in time units and the fractional efiect is given by: error in time
total time gate is open
This equation explains why multiple period alerageng is such a good method for reducing period measurement crror (because it extends the gace time). As more periods are averaged. the effect of both trigger error and the 1 count ambiguity are reduced proportionally.
For the best MP counters, rrigger error is $<0.3 \%$ for one period if the signal is a sine wave with 40 dB signal-to-noise ratio, and if triggering occurs at zero volts on the signal. and if the signal amplitude is at the specified sensitivity limit of the counter (generally 100 mV rms). Trigger error is less than 0.3% if signal-to-noise ratio is improved, or if the input anplitude or rise time increased. For clean, fast rise time pulses, trigger error can be very lor.
total measleremient error. To calculate the error in any counter measuremene, simply sum the individual errors dis. cussed above.
In frequency measurements trigger error is zero, so the total error equation becomes:

$$
\begin{aligned}
& \text { erroritil }=S_{L T}+S_{T r}+T_{U}+V-C_{1} \\
& \text { where } \mathrm{S}_{\mathrm{r}} \mathrm{r}=\text { lang-term instability, } \\
& S_{i r}=\text { shost-term inscability. } \\
& \mathrm{T}_{\mathrm{r}}=\text { temperature } \text { ariation error. } \\
& \mathrm{V}=\text { line rollage error. } \\
& \text { and } C= \pm 1 \text { count error }=1 / \text { total } \\
& \text { events counted. }
\end{aligned}
$$

Figure 1I. Comparison of error vs measured frequency for frequancy measurements (plots labeled "gate time") and perlod moasurements. Example is for HP 5325A Counter. Total tlme base error assumed to be 2×10^{-7}. Note that low frequencies are best measured by multiple period averaging.

For Period, Ratio, and Time Interval measurements crigger error musr be included and the error equation is: errornoriod. mato, :l $=$ $S_{L T}+S_{S T}+T_{V} \div V+C+T r$, where $T r$ $=$ trigger error in time/total gate cime.
Figure 11 presents a good summary of this accuracy discussion. Notice how error decreases as frequency is measured over longer gate times and also hory mistiple period aver. aging is used to increase period accuracy. The minimum error in the figure, 2×10^{-5}, is equal to the total cime base instability.
In the section titled "Period Measure. ments" (page 589) it was mentioned that low frequencies are determined more accu. rately by measuring period than frequency directly. This is proven in Figure 11. The intersection points of the frequency and period error curves indicate the frequency below which beter accuracy is obtained by the Multuple Period Average technique.

Counter display

If a long gate time is used when a high frequency is counted, the encire answer will not be seen on the counter because the read. out capacity will be exceeded. To determine what part of the answer will be vistble, one must realize that councing starts with the righemost digit in the readour, progresses to the next digit to the left after a count of 9 has been reached, and so forth uncil all digits read 9. Next, account for the effect of gate time: if 9 MHz is counted for 1 s , a zotal of 900,000 counrs will be gated into the counting circuits and a 6 -digit counter will display 900,000 bur a 5 -digit counter will display 00000 . In the mast versatile 8 digit counters having gate times from $1 \mu \mathrm{~s} 1010 \mathrm{~s}$, the entire answer can alwaj's be made visible by suitable gate time selection. The convenient table below shows the naximum readout capacity (counting rate can be much greazer) for low cost counters having fewer digits and a more limited gate time selec. tion than more expensive units.

Qate	4-dight	5-digit	$6 . \mathrm{d}$ git
. 01 s	. 9999 MHz	9.9999 MH2	99.9999 MHz
. 1 s	99.99 kHz	. 99999 MHz	$9.99999 \mathrm{MHz}^{2}$
1 s	9.999 kHz	99.999 kHz	. 999999 MHz
10 s	. 9999 kHz	9.9999 kHz	99.9999 kHz

Lowest frequency measured

Counters can have ac or do coupled inpurs or both, the desired inpue coupling being selected by a from panel switch. As the name implies, de coupled inpues will pass input waveforms regardless of rise time. Ac coupled inputs discriminate against slow rise times; the frequencr range specified defines sine wave frequencies for which the snsitivity specification will be mer (eypically, 100 mV rms for freguencies down to several Hz). Most ac coupled counters will couns sine waves below the minimum frequency specified but a higher inpur amplitude will be needed; they will counr events of extremely low repeciition rate if the inpur wareshape counted has a fast rise time. Where contact closures are being counted beware of spurious rounts caused by con. tact bounce.

Summary of Electronic Counfers

	Inistrument	Hange	Fursotione＊	Readout Digits	$\begin{aligned} & \text { BCD } \\ & \text { Out } \end{aligned}$	Tlme base Agling Rate and （Gata Tlmes）	Madel	Price	Page
	Versatile，ultra－stable， fast warmup，accepts plug－ins	0 Hz to 135 MHz	F，P，MPA， R，MR，T \uparrow	8 in－line	Std．	$\begin{aligned} & \pm 5 \times 10-10 / \mathrm{day} \\ & (1 \mu \mathrm{~s}-10 \mathrm{~s}) \end{aligned}$	5248M	\＄3300	598
		0 Hz to 50 MHZ					5245M	\＄3100	595
	Ulitra－stable， 135 MHz ， fast warmup，accepts plug－ins	10 Hz to 135 MHzt	F_{\dagger}	8 in－line	Opt．	$\begin{aligned} & \pm 5 \times 10-10 / \mathrm{day} \\ & (1 \mu s-10 s) \end{aligned}$	5247M	\＄3150	801
	Versatile，accurate， accepts plug－ins	0 Hz to 135 MHz	F．P．MPA， R，MR，T \ddagger	8 in－line	Std．	$\begin{aligned} & \pm 3 \times 10^{-9} / \mathrm{day} \\ & (1 \mu 5-10 s) \end{aligned}$	5248 L	\＄2900	598
		0 Hz to 50 MHz					5245L	\＄2480	595
	Economical، accepis plug－ins	0 Hz to 50 MHz	$\begin{aligned} & \mathrm{F}, \mathrm{R}, \mathrm{MR} \\ & \mathrm{~T}, \mathrm{I} \end{aligned}$	6 in－line （70180pt．）	Opt．	$\begin{aligned} & \pm 2 \times 10^{-7} / \text { month, } \\ & \pm 3 \times 10^{-9} / \mathrm{day} \text { opt. } \\ & (1 \mu \mathrm{~s}-1 \mathrm{~s}) \end{aligned}$	5246L	\＄1800	802
	Economical， 50 MHz ，does not accept plug－ins	OHz 6050 MHz	F，P，MPA R，MR，T	7 in－line	Sto．	$\begin{aligned} & =2 \times 10^{-7} / \text { month } \\ & (1 \mu s-10 s) \end{aligned}$	5244L	\＄1900	615
	12.4 GHz automatic digital frequency meter	0.3 to 2.4 .4 GHz	F	8 in－line	Std．	$\begin{aligned} & \pm 2 \times 10^{-7} / \text { month } \\ & (0.1 \mathrm{~s}, 1.0 \mathrm{~s}) \end{aligned}$	5240A	\＄4750	611
		10 Hz 1012.5 MHz	F， 8						
	Versatile，economical	3 Hz to 12.5 MHz	F，P，MPA R，MR，T	7 in－line leading zeros blanked	Std．	$\begin{aligned} & \pm 2 \times 10^{-6 / m o n t h} \\ & (0.01 \mathrm{~s}-10 \mathrm{~s}) \end{aligned}$	5216A	\＄985	522
	Economical， 10 MHz	5 Hz to 10 MHz		5 in－line （6 opt．） zero blanking	Sto．	$\begin{aligned} & =1 \times 10-8 / \text { month } \\ & (0.015-10 \mathrm{~s}) \end{aligned}$	52218	\＄775	520
							53218	\＄775	
	Most economical، 10 MHz	5 Hz to 10 MHzt	F，T	4in－line （50r6opt） zero blanking	Not avail．	Power line （ $0.1 \mathrm{~s}, 1.0 \mathrm{~s}$ ）	5221A	$\$ 425$	620
							5321 A	\＄425	
	Economical，reads out to 11.0000 or 9.99999 MHz	5 Hz to $11 \mathrm{MHz} \ddagger$	F．T	6 in －line zero blanking	Not avail．	$\begin{aligned} & \pm 1 \times 10-\mathrm{s} / \mathrm{manth} \\ & (0.01 \mathrm{~s}-0.1 \mathrm{~s}) \end{aligned}$	H01．5321A	\＄705	620
	Universai counter	OHz to 12.5 MHz	$\begin{aligned} & \mathrm{F}, \mathrm{P}, \mathrm{MPA}, \mathrm{~S} \\ & \mathrm{R}, \mathrm{MR}, \mathrm{TI}, \mathrm{~T} \end{aligned}$	7 in－line zero blanking	Std．	$\begin{aligned} & =3 \times 10^{-7} / \text { month } \\ & (0.1 \mu \mathrm{~S}-10 \mathrm{~s}) \end{aligned}$	5325A	\＄1300	616
3	Universal counters	OHz to MHz	$\begin{aligned} & \mathcal{F}, P, M P A_{1}, T \\ & R, M R, T I, T \end{aligned}$	6 in－line	std．	$\begin{aligned} & \pm 2 \times 10^{-7} / \text { month } \\ & (10 \mu s-10 \mathrm{~s}) \end{aligned}$	5233L	\＄1675	618
을		OHz to 300 kHz	$F_{1} P, M P A$ ， R，MR，TI，T	5 in－line	Std．	$\begin{aligned} & =2 \times 10^{-6} / \text { week } \\ & (10 \mu s-10 \mathrm{~s}) \end{aligned}$	5223L	\＄1325	
2	Versatility st moderate cost	2 Hz to 1.2 MmHz	F，P，MPA R．MR，T	6 in－line	Sto．	$\begin{aligned} & \pm 2 \times 10^{-7} / \mathrm{month} \\ & (0.01 \mathrm{~s}-10 \mathrm{~s}) \end{aligned}$	5532A	\＄1450	623
保				6 columnar			5232A	\＄1350	
5		2 Hz 10300 kHz	$F_{0,} P_{M D} M P A$ R，MR，T	5 in－line	Std．	$\begin{aligned} & \pm 2 \times 10-5 / \text { week } \\ & (0.01 s-10 \mathrm{~s}) \end{aligned}$	5512A	\＄1050	523
言				5 columnar			5212A	\＄950	
$\underline{5}$	Low cost，low frequency	2 Hz to 300 kHz	F，R，T	4 in－line	std．	$\begin{aligned} & \text { Power ling } \\ & (0.01 \mathrm{~s}-10 \mathrm{~s}) \end{aligned}$	H22－52118	\＄850	623
0							52118	\＄750	
9				4 columnar	Std．	Power line （0．15， 1.0 s ）	5211A	\＄650	623
	Preset counter／controller	OHz to 2 MHz	T，C	$\begin{array}{\|l\|} 4 \text { in-line } \\ \text { (} 4 \text { or } 6 \text { opt.) } \end{array}$	std．	None	5331A／8	\＄950－1050	625
吡			f，R，T，C			$\pm 0.5 \times 10^{-6} /$ month	5332A／B	\＄1100－1200	
著	Reversible counter． versatile，high speed	0 Hz to 2 MHz	Add，subtract， l or 2 inputs		Std．	External（Internal optional）	$\begin{gathered} 5280 \mathrm{~A} \\ (5285 \mathrm{~A}) \end{gathered}$	$\begin{aligned} & \$ 1600 \\ & (\$ 500) \end{aligned}$	630
尓	Preset counter，normalizes count，versatile	2 Hz 20300 kHz	Rate，R，C， time for N events	5 in－line	Std．	$\pm 2 \times 10-8 /$ week	5214L	\＄1300	628
를	Time interval counter	10 ns to 0.1 s	II	7 columnar	Sto．	External	5275A	\＄2450	636
只	Preset scaler，timer	106 counts， 105 min or s	Preset T， tims	6 in－line （ 7 opt ．）	Sto．	$\begin{aligned} & \text { Total error } \\ & <=5 \times 10^{-5} \end{aligned}$	5590A	\＄1675	79

[^57]
FREQUENCY

ELECTRONIC COUNTERS
 50 MHz and 135 MHz plug-in counters 5245 Series

Hewlett-Packard's most accurate and versatile countersand the plug-ins that go with them-are described on the next 15 pages. All 8 counter models have been developed
from HP's 5245I-the industry standard for quality since its introduction in 1961 .

For your convenience in comparing these instruments, a summary of the various counters is given below.

Comparison and Summary of 50 and 135 MHz Counters (Models 5245-46-47-48)								
Model		$\begin{gathered} \text { M54-624645L } \\ \text { (pp. 696, 600) } \end{gathered}$	$\begin{array}{r} 52481 \\ (p .598) \end{array}$	6249M (p.698)	$\begin{aligned} & 5246 \mathrm{M} \\ & \text { (p.695) } \end{aligned}$	$\begin{aligned} & 8247 \mathrm{M} \\ & (\mathrm{p}, 801) \end{aligned}$	$\begin{gathered} 6048 L \\ (p, 602) \end{gathered}$	$\begin{gathered} 6244 \mathrm{~L} \\ \text { (p. } 8 \mathrm{E} 5) \end{gathered}$
Basic Measurement range		$\begin{gathered} 0 \mathrm{H} \\ 50 \mathrm{MHz} \end{gathered}$	0 to 135 MHz		$\begin{gathered} 010 \\ 50 \mathrm{MHz} \end{gathered}$	$10 \mathrm{~Hz}-135 \mathrm{MHz}$	0-50 MHz	$0-50 \mathrm{MHz}$
Digits in readout		8				8	6 6008 optional)	7 (80ptional)
Measurament Fenctions $\mathrm{F}=\mathrm{freq}$. $\mathrm{R}=$ ratio, $\mathrm{S}=$ input $\mathrm{P}=$ period, scaling,		$F, P, R, M P, M R, S$				F	F. R, MR	F, P, R, MP, MR, S
Time base Aging rate		$<3 \times 10-9 / 24$ hours		$<5 \times 10-10 / 24$ hours		$<5 \times 10^{-10 / 24 ~ h r s . ~}$	$<2 \times 10-7 / \mathrm{mo}{ }^{\text {a }}$	$<2 \times 10^{-7} / \mathrm{mo} .1$
Time base Warm-up		Normel		Rapid		Rapid	Room Temp. xtal ${ }^{1}$	Room Temp. xtall
Input impedance		$1 \mathrm{M} \Omega / 25 \mathrm{pF}$				$1 \mathrm{MR} / 25 \mathrm{pF}$	$1 \mathrm{Mn} / 25 \mathrm{pF}$	$\begin{aligned} & 10 \mathrm{~K} / 100 \mathrm{~K} / 1 \mathrm{M} \Omega ; \\ & 40 / 15 / 15 \mathrm{pF} \end{aligned}$
Gate times		$1 \mu s-10 s$				$1 \mu s-10 \mathrm{~s}$	$1 \mu \mathrm{~S}-1 \mathrm{~s}$	$1 \mu \mathrm{~s}-10 \mathrm{~s}$
Time bass outputs (in decade steps)		$\begin{aligned} & 0.1 \mathrm{~Hz} \text { to } \\ & 10 \mathrm{MHz} \end{aligned}$		0.1 Hz to 10 MHz Fixed $5 \mathrm{MH}_{2}{ }^{2}$		Fixed 5 MRz ${ }^{\text {z }}$	Fixed 1 MHz (10 MHz special order)	$0.1 \mathrm{Hz-1} \mathrm{MHz}$
$8 C 0$ oulput		Yes				Optional	Optional	Yes
Remote programming		Optional				Not Available	Not Available	Not Available
Input coupling		ac or de				ac only	acordc	acorde
Input attenuator		Yes				Not Required	No	Yes
Trigger level adjustment		Yes				Not Requirad	No	No
Freq. ratio Measurement (f_{I} / f_{2}); range, sensitivity. input resistance	t_{1}					None	$\begin{aligned} & 0-50 \mathrm{MHz} \\ & 0.1 \mathrm{~V}, 1 \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & 0-50 \mathrm{MHz}_{2} ; 0.1 \mathrm{~V}, \\ & 100 \mathrm{~K} \Omega / \mathrm{volt} \end{aligned}$
	t_{2}	$\begin{aligned} & 0101 \mathrm{MHz} \\ & 0.1 \mathrm{~V}, 1 \mathrm{M} \Omega \end{aligned}$					$\begin{aligned} & 100 \mathrm{~Hz} 2-1 \mathrm{MHz}: \\ & \mathrm{J}, 500 \Omega \end{aligned}$	$\begin{aligned} & 0-1 \mathrm{MHz}, \\ & 0.1 \mathrm{~V}, 100 \mathrm{~K} \Omega \end{aligned}$
Compatiole 5245 series plug.ins		$\underset{\substack{\text { All } \\ \text { (on pages } 603 \text { to 609) }}}{\text { (}}$				Transfer Osc, Freq. Converters, Prescalers, Video Amp.	$\begin{gathered} \text { All3 } \\ \text { (on pages } 603 \text { to 609) } \end{gathered}$	None
Price		$\begin{gathered} 5245 \mathrm{~L}: \\ \$ 2480.00 \\ M 54-5245 \mathrm{~L} \\ \$ 2880.00 \end{gathered}$	$\begin{aligned} & 5248 \mathrm{~L}: \\ & 2900.00 \end{aligned}$	$\begin{aligned} & 5248 \mathrm{M}: \\ & \$ 3300.00 \end{aligned}$	$\begin{aligned} & 5245 \mathrm{M}: \\ & \$ 3100.00 \end{aligned}$	\$3150	\$1800	\$1900

- Oven anclosed crystal 〈<3 $\times 10-\%$ day aging rate) optlonal,
${ }_{2} 5 \mathrm{MHz}$ output has high spactral purity; 5×10^{-11} (fms for 1 s averaging time) short term statility; is avalisale whenever counter is connected to ac iline.
${ }_{3}$ Six digits restricts time interval range to $10^{6} \mathrm{~s}(7,8$. digits optional), in 5246 L , Preset Unit 5264 A will only muttiply and divide frequencies by N and preset count.

ELECTRONIC COUNTERS
 Versatile 50 MHz plug-in counters
 Models 5245L, 5245M

Advantages:

Accept 13 plug-ins for wide variety of measurements High input impedance on all ranges
Ac or dc coupling
Two-mode trigger level control
Readout storage; BCD output
Ultra-stable time base in 5245M
These solid-state counters, which are identical except for their internal time bases, measure frequency, period, multiple period average, ratio, and multiple ratio. They can also be used to scale (divide) a frequency by decades. Plug-ins, which go directly into the front panel, extend frequency measurements to 18 GHz , permit time interval measurements, and will perform a variety of other functions. The basic counters (without plug-ins) offer a counting rate of 50 MHz with 8 -digit resolution.

Ultra-stable time base

Several years ago the time base oscillator in the 5245L, with is $<3 \times 10^{-0} /$ day aging rate, represented the state of the art in counter time bases, and it still serves as a secondary frequency standard in many applications today. But recently HP developed a compact, ultra-stable, rapid warm-up time base for use where even better performance is required. This new time base is installed in Model 5245M.

Compared to standard electronic counter time bases available previously, the 5245M's ultra-stable $s \mathrm{MHz}$ oscillator has a significantly better short-term stability ($<5 \times 10^{-11} \mathrm{rms}$ for 15 averaging) and long-term stability ($<5 \times 10^{-10} /$ day aging rate), and significantly less frequency change due to variations in line voltage, external load and temperature. The time base has rapid warm-up, excellent spectral purity, and the same usefulness as costly secondary frequency standards. These advancements mean greater precision, lower investment for counter calibration equipment, and greater versatility because of excellent performance and convenience when employed as a secondary frequency standard. The very low aging rate of the ultra-stable oscillator extends the time between calibrations, thereby keeping the counter in use
longer and reducing the time and money spent on calibration.
For maximum accuracy, the 5245M's time base is kept energized as long as the counter power cord is plugged into an energized power receptacle, whether the front panel switch is ON or OFF. The counter has a separate, internal, regulated power supply to permit operation of the oscillator when the remainder of the counter is turned off. The 5 MHz time base output is usable while the counter is being used for measurements.

Display storage

Both models have readout storage, which provides a continuous display of the most recent measurement. This display is held even while the instrument is gated for a new count. If the new count differs from the stored count, the display will shift to the new reading directly. Storage can be disabled.

Sample rate

A sample rate control is provided which determines the length of time following the gate closure during which the gate may not be reopened. When the Function Selector is set to Frequency, the Sample Rate adjusts the time between gates from less than 0.2 sec . to at least 5 seconds and is in. dependent of gate time. The control may aiso be set to hold a display indefinitely.

Input amplifier

A dual FET input amplifier provides $1 \mathrm{meg} / 25 \mathrm{pF}$ input impedance, independent of attenuator setting and frequency up to 50 MHz . Therefore, one needs not be concerned about input impedance changes affecting the signal source when the input attenuator switch is rotated. Also, low VSWR is more easily attainable. High impedance probes (e.g., HP 10000 Series) may be directly connected to the input and used in the same manner as with high frequency oscillo. scopes.

Basic counter operation

The $5245 \mathrm{~L} / \mathrm{M}$ (without plug-ins) measure frequencies and repetition rates of periodic or random pulses from 0 to

ELECTROWIC COUWTER sontinued
 Varsatile 50 MHz plug.in counters
 Models 5245L, 5245M

50 MHz . Gate times from 1μ s to 10 seconds are selected with a front panel switch. Multiple period and multiple averaging ratio to 10^{3} periods is obtained without need for a separate plug-in. This capability makes possible accurate frequency determination at low and intermediate frequencies. The increase in accuracy over that possible in single period or ratio is a direct result of division of the trigger error by the averaging factor, as well as the result of increased resolution. Ratios of frequencies that are almost identical can be accurately resolved.

The basic counter will also scale (divide) an input frequency as high as 50 MHz in decade steps by factors up to 10°. For example a 14 MHz signal can be divided to 0.014

Hz. A rear panel BNC connector and switch provide a choice of nine output frequencies.

Jnput signal triggering

Models 5245L and M have a front panel trigger level control with both preset and adjustable modes. In PRESET, trigger level is optimum for signals which are symmetrical about ground; it is useful for most applications, and is automatically selected when plug.ins are used (without moring the TRIGGER control to PRESET). In ADJUSTABLE the control can be rotated for counting positive or negative pulses, or for unusual signal conditions.

Electrical readout and remote control

Four-line BCD code output is provided and is suitable for systems use or for output devices, such as Model 562A or 5050B Digital Recorder, and Model 580A or 581A Digital to Analog Converter. Other codes and remote control of front panel switches are optional.

Specifications, 5245L, 5245M

Frequency measurements

Range: dc coupled, 0 to $50 \mathrm{MH}_{2}$; ac coupled, 25 Hz to 50 MHz (typical response of input amplifier $< \pm 1 \mathrm{~dB}$ over entire range).
Gate time: 1μ s to 10 seconds in decade steps.
Accuracy: ± 1 count \pm time base accuracy.
Readout: kHz or MHz with positioned decimal poinc; units annunciator in line with digital display.
Self-check: counts 10 MHz for the gate time chosen.
Perlod average measurements
Range: Single Period 0 ro : MHz . Mulciple Period 0 to 300 kHz .
Periods averaged: i period to 10^{6} periods in decade steps.
Frequency tounted:
1 and 10 Period 1 Hz to 10 MHz in decade steps. 100 Period . 10 Hz to 10 MHz . 1,000 Period . 100 Hz to 10 MHz . 10,000 Period 1 kHz to 10 MHz . 100,000 Period 10 kHz to 10 MHz .
Accuracy: ± 1 count \pm time base accuracy \pm trigger efrer.*
Readout: $5, \mathrm{~ms}$, or $\mu \mathrm{s}$, with positioned decimal point; urits an. nunciator in line with digital display.
Self-check: checks operation from 1 period to 10^{3} periods.
Ratio measurements
Displays: (f_{1} / f_{2}) times period multiplier; muftiplier: $1 \cdot 10^{3}$.
Range: $f_{1}: 0$ to 50 MHz . $\mathrm{f}_{\mathrm{g}}: 0$ to 1 MHz in single ratio, 0 to 300 kHz in multiple ratio: ratios averaged 1 to 10^{6} in decade steps.
Sensitivity: 0.1 V ims, each input (max).
Accuracy: ± 1 count of $f_{1} \pm$ rigger error* of $f_{s,} f_{1}$ is applied to the decimal counters (enters "Ext." jack on front panel); f_{2} is applied to decade dividers (enters Signal Input jack).
Readout: dimensionless; decimal point pasitioned for number of periods averaged.
Self-check: Period Average Self-check applies.
Scaling
Frequency range: 0 to 50 MHz .
Factor: by decades up to 10°, swiech selected on rear panel. For $\div 2, \div 4, \div 8$, add HP 5252A Prescalet.
Input: front panel. Signal Input jack.
Output: in place of time base output frequencies.
General
Display: 8 digits in-line with rectangular Nixie tubes; 99,999,999 maximun display; total width of display including units annunciator and auto-positioned decimal point indication does not exceed 7 inches.
Display storage: holds reading besureen samples; rear panel switch overrides storage.

Sample rate: cime following a gate closing during which the gate may not be reopened is rariable from less than 0.2 s io s s in Frequency mode, independent of gate time; display can be held indefricely.
Signal imput
Maximum sensitivity: 100 mV rms.
Coupling: ac or dc, separace BNC connectors. AC coupling has $600 \mathrm{Vdc}, 0.022 \mu \mathrm{~F}$ capacitor (-3 dB at approx. 7 Hz).
Impedance: $1 \mathrm{~N} / \mathrm{S}$ in paraliel with approx. 25 PF , all ranges.
Attenuation: step zttenuator (SENSITIVITY' switch) provides nominal sensitivities of $0.1,1$, and 10 V rms.
Trigger level adjustment (min.): front panel control has
$\pm 0.3 \mathrm{~V}$ trigger level range on 0.1 V position, $\pm 3 \mathrm{~V}$ range on 1 V position, $\pm 30 \mathrm{~V}$ range on 10 V position. A PRESET position automatically centers trigger level at 0 V .
Overload protection: diodes protect input circuit for up to 120 V rms ($<1 \mathrm{kHiz}$) on 0.1 V range, 240 V ms on 1 V range, 500 V rms on 10 V range. Input resistance for overload conditions (input amplitude $>$ ten times SENSITIVITY) is 100 $\mathrm{k} \Omega$ on 0.1 V range, and is approximately $1 \mathrm{M} \Omega$ on other ranges.
Pulse measurements: front panel TRIGGER LEVEL adjustment allows counting positive or negative pulses.
External input (selected by front panel Time Base switen): Maximum sensitivity: 100 mV mms .
Impedance: 1 M , approx. 20 pF , de coupled.
Overloadi diodes procect input circuit up to 120 V rms.
Digital output: 4 -line BCD 4-2-2-1, " 1 " scate positive; includes decimal poinc and mensurement unit. $8 \cdot 4 \cdot 2 \cdot 1$ available as Option 02 (" 1 " state positive) and Option 03 (" 1 " state negative); decimal point remains 4-2-2-1 (see J35. and J36options below).
" 0 " STATE LEVEL: -8 V , " ${ }^{\circ}$ " STATE LEVEL: +18 V .
Impedance: $100 \mathrm{k} \Omega$, each line.
BCD reterence levels: approximarely $+17 \mathrm{~V} .350 \Omega$ source: approximately $-6.5 \mathrm{~V}, 1000 \Omega$ source.
Print command: +13 V to 0 V slep; dc-coupled.
Hold-off requirement: +15 V min., +25 V max. from chassis ground (1000Ω source).
Gable connector: Amphenol 50 -pin 57.30500 .375 , HP Part No. 1251.0086, 1 required.
Operating temperature range: $-20^{\circ} \mathrm{C}$ to $\div 65^{\circ} \mathrm{C}$.
Power supply: 115 or 230 volts $\pm 10 \%$. 50 to 60 Hz ; 95 watts. (5245 N only: 150 W maximum during approximately first 2 minutes afier power line is energized.) 50 to 1000 Hz opera. tion. price on request.
Weight: net, 32 lbs ($14,4 \mathrm{~kg}$) with blank plug-in panel. shipping, $40 \mathrm{lbs}(18,2 \mathrm{~kg})$

Connectors: BNC (except remote program and BCD out).
Accassories furnished: 10503 A Cable, $4 \mathrm{fr} .(120 \mathrm{~cm}$) long. male BNC connectors. Detachable power cord, $71 / 2 \mathrm{ft}$. (200 cm) long, NEMA plug. Circuit Board Extender, rack mount conversion parts.
Dimenslons: $51 / 4^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $163 / 8^{\prime \prime}$ deep ($133 \times 425 \times$ 416 mm).
Prices: Model 5245L, $\$ 2,480.00$.
Model 5245M, $\$ 3,100.00$.
Optional and special features
Optlan 02. 4.line SCD 8-4.2.1, " 1 " state positive (for digits only) in lieu of 4-2-2-1 (identical in other respects to abore specifications), add $\$ 10.00$.
Option 03. 4-line BCD 8.4-2.1, " 1 " state negative (for digits only) in lieu of $4 \cdot 2 \cdot 2 \cdot 1$ (identical in other respects to abore specifications), add $\$ 10.00$.
J35.5245L/M: similar to Option 02, except has 8.4.2.1 nutput, " l " state positive for measurement uniss and decimal point as well as digits. (Note; M47.562A/AR and s050A Option 01 Printers are especially suitable for $\mathrm{J} 35.5245 \mathrm{~L} / \mathrm{M}$.)
Prices: J35-5245L, $\$ 2,510.00$; J35-5245M, $\$ 3,130.00$.

J36.5245L/M: similas to Option 03. except has 8.4-2-1 oupput, " 1 " state positive for measurement units and decimal point as well as digits. (Note: P64.562A/AR and 5050A Option 02 Printers are especially suitable for J36-5245L/M.)
Prices: J36-524SL, $\$ 2,480.00 ;$ J36-5245M, $\$ 3,130.00$.
Electromagnetlc compatibility: Modeis H60.5245L/M meet the requirements of military specification MIL-1.6181D. (Plug.in model numbers must also be prefixed H60.)
Prices: available on request.
Remate operation: all functions which may be controlled from the front panel controls (in normal use) may be programmed from a remote location except for the "Sample Rate" (as defined above) and the sensitivity and trigger control setting. Mating half of the control connecrors (2 required) is Amphenol 36 pin 57-30360.
Prices: H65.5245L, \$2,595.00.
H6S.S245M, \$3,215.00.
M07.5245L/M: have "GHz" added to readout and are comtrolied from 5260A Option 02 Automatic Frequency Divider. Readout is inhibited when 5260 A "searches." All remote capabilities of $\mathrm{H} 65.5245 \mathrm{~L} / \mathrm{M}$ are included (see above).
Pilces: M07.5245L, \$2,615.00; M07.5245N1, \$3,235.00.

Time Base, Model 5245L	Time Base, Model 5245M
Crystal frequency (internal): : MHz. Stablity Aging rate: <3 parts in 10° per 24 hours. \dagger Short term: <2 parts in $10^{\text {ro }}$ ems with measurement averaging time of one second under constant environmental and line volrage conditions. Tempersture: <2 parts in 10^{10} per ${ }^{\circ} \mathrm{C}$ from $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Line voltage: $< \pm 5$ parts in $10^{\text {th }}$ for 10% change in line voltage from 115 V or 230 V rms. Adjustment: Fine frequency adjustment (range approximately 4 x 10^{-8}) and medium frequency adjustment (range approximately ix 10^{-5}) are available from the fens panel through the plug-in hole. Coarse frequency adjustment (range approximately 1×10^{-3}) is available at the rear of the instrument. Output frequencles 1. At rear panel: 0.1 Hz to 10 MHz in decade steps, selected by rear panel switch. All frequencies available in manual function without interruption at reset except $100 \mathrm{~Hz}, 10 \mathrm{~Hz}, 1 \mathrm{~Hz}$, and 0.1 Hz which are interrupted by manual reset; 10 kHz to 10 MHz available continuously in all functions; 1 kHz available continuously for all functions except 10^{B} period average; stability same as internal time base. Output is: 5 whts p-p tectangular wave with 1000Ω source impedance at 1 MHz and lower: 1 V rms sine wase with 1000Ω source impedance only at 10 MHz . 2. At front panel: 0.1 Hz to 1 MHz in decade steps: available at "Ext." jack, selected by Time Base switch; arailability same as in paragraph 1 (above); stability same as internal time base; 1 V peak-to-peak. External standard Irequency: $1 \mathrm{MHz}_{\mathrm{H}} 1 \mathrm{~V}$ rms into 1000Ω. Can be substicuted for internal time base via rear panel EXT. STD. FREQ. connector.	Crystal frequency (internal): 5 MHz . Stability Aging rate: < 3 parts in $10^{\text {to }}$ per 24 hours after warm-up."* Short term (rms tractional frequency deviation): beiter than 5 parrs in 10^{11} for 1 second averaging time. Temperature: <s parts in $10^{11} /^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}(<2.5$ parts in 10° within the entire span of $0^{\circ} \mathrm{C}$ (o $50^{\circ} \mathrm{C}$). Line voltage: $< \pm 1$ part in $10^{\text {vi }}$ for 10% change in line voltage from 115 V or 230 V ms. Load stability: rypicaliy $< \pm 2$ parts in 10^{11} for any of the following loads: open, short, 50Ω resistive, 50Ω inductive, 50Ω capacitive. Warm-up: for "off" periods up to approximately 24 hours: 1 hour typical to reach 5 parts in 10° of the frequency that existed when turned off. The 5 MHz crystal oscillator operates whenever the porver cord is connected. Adjustment: fine frequency adjustment, range approx. $s \times 10^{-5}$, 16 -tum control accessible through plug.in accessory compattment in front panel. Conrse frequency adjustment, range approx. 1 x 10^{-0}. 20 -turn control at reas panel. Output frequencies I. At rear panel: s $\mathrm{M} \mathrm{H}_{z}$ sine wave. 1 V ms into 50 N . Avail. able at all times whenever power line cord is encrgized, whether front panel power switch is ON or OFF. Stability is as defined above. Signal-to-Noise Ratio rypically $>87 \mathrm{~dB}$ below rated output. Harmonic Distortion rypically $>40 \mathrm{~dB}$ below rated ourpur. Non-harmonic components typically >80 dB belone rated output. 2. At rear panel: 0.1 Hz to $10 \mathrm{~N}(\mathrm{~Hz}$ in decade steps: switch selected on rear panel; all frequencies available in manual function without interruption at reset except $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$. 1 Hz , and 0.1 Hz which are interrupted by manual reset: 10 kHz to 10 MHz available continuously in all functions: 1 kHz available continuously for all functions except 10^{8} period average: stability same as internal time base: 5 V p-p rectangular wave with 1000Ω source impedance at 1 MHz and lower: 1 V rms sine wave with 1000Ω source impedance only at 10 MHz . 3. At front panel: 0.1 Hz to $1 \mathrm{\lambda} \mathrm{~Hz}$ in decade steps; availabie at "Ext." jack, selected by Time Base switch; availability same as in paragraph 2 (above); stability same as internal time base: 1 V peak-to-peak. External standard frequency: 5 or $10 \mathrm{MHz}, 1 \mathrm{~V}$ rms, ineo 1000Ω. Can be substituted for internal time base ria rear panel EXT. STD. FREQ. connector.

[^58]
FREDUENCY

Advantages:

0.135 MHz basic ranges

Ultra-stable time base in 5248 M
Accept all plug-ins for 5245 Series
These new counters have the accuracy, plug-in accessory versatility and field-proven circuitry of the 5245 L and M , and also introduce several additional major features. The most important additions are extension of the basic frequency range to 135 MHz ; period measurement resolution of 10 ns; and, with the new HP 5267A Time Interval plug-in, time interval resolution of 10 ns .

Except for time base characteristics, the 5248 L and M are

ELECTRONIC COUNTERS

New 135 MHz plug-in counters

Models 5248L, 5248M

$5248 \mathrm{~L}, 5248 \mathrm{M}$

Specifications

Frequency measurement

Range: de coupled, 0 to 135 MHz
ac coupled, 25 Hz to 135 MHz (rypical response of input amplifier $\pm 1 \mathrm{~dB}$ over entire range.)
Gate time: $1 \mu s$ to 10 seconds in decade steps.
Accuracy: $\ddagger 1$ count \pm time base accuracy.
Readout: kHz or MHz with positioned decimal point; units annunciator in line with digital display.
Self-check: counts 100 MHz for the gate time chosen.

Period average measurements

Range: single period \qquad .0 to 1 MHz multiple period 0 to 300 kHz
Periods averaged: 1 period to 10^{3} periods in decade steps.
Frequency counted:
1 and 10 Period........... 1 Hz to 100 MHz in decade steps 100 Period 10 Hz to 100 NLHz 1,000 Period 100 Hz to 100 MHz 10,000 Period . 1 kHz to 100 MHz 100,000 Period . 10 kHz to 100 MHz
Accuracy: ± 1 count \pm time base accuracy \pm trigger error.*
Readout: $\mathrm{s}, \mathrm{ms}, \mu \mathrm{s}$, with positioned decimal point; units annunciator in line with digital display.
Self-check: checks operation from 1 period to 10^{3} periods
Ratio measurements
Displays: ($\mathrm{f}_{1} / \mathrm{f}_{2}$) times period multiplier; multiplier: $1 \cdot 10^{5}$.
Range: $f_{1}: 0$ to 135 MHz . f_{2} : 0 to 1 MHz in single ratio, 0 to 300 kHz in multiple ratio; ratios averaged I to 10^{8} in decade steps.
Sensitivity: 0.1 V rms, each input (max).
identical. The 5248 M , like the 5245 M , has a rapid warm-up, ultra.stable (<5 parts in 10^{10} per day aging rate) time base having a high degree of spectral purity. Its performance rivals that of many high-quality quartz oscillators now being used as secondary frequency standards. The 5248L has the same excellent time base used in the 5245L with an aging rate of <3 parts in 10^{0} per day.

Another notable feature of the $5248 \mathrm{~L} / \mathrm{M}$ counters is their single input connector for both ac and dc coupling. A front panel switch selects the desired coupling. Also, scaling can be performed on input signals as high as 135 MHz by decades up to 10°. Minimum sample time is $\approx 0.05 \mathrm{~s}$.

Attenuation: step attenuator (SENSITIVITY switch) provides nominal sensitivities of $0.1,1$, and 10 V rms.
Trigger level adjustment (min.): tront panel control has ± 0.3 V trigger level range oa 0.1 V position. $\pm 3 \mathrm{~V}$ range on 1 V position, $\pm 30 \mathrm{~V}$ range on 10 V position. A PRESET position automatically centers trigger lecel at 0 V .
Overload protection: diodes protect input circuit for up 10 120 V pms ($<1 \mathrm{kHz}$) on 0.1 V range, 250 V ms on 1 V range, 500 V cms on 10 V range. Input resistance for overload conditions (input amplitude $>$ ten times SENSITIV. ITY) is $200 \mathrm{k} \Omega$ on 0.1 V range, and is approximately $1 \mathrm{M} \Omega$ on other ranges.
Pulse measurements: front panel TRIGGER LEVEL adjust. ment allows counting positive or negative pulses.
Ratio input (front panel):
Maximum sensitivity: 100 mV rms.
Impedance: 1 MS , approx. 20 pF , de coupled.
Overload! diodes protect input ckt. up 10120 V rms.
Digital output: 4-line BCD 8.4.2-1, "1" state positive; includes decimal point and measurement unit. " 0 " STATE LEVEL: -8 V . " 1 " STATE LEVEL: +18 V . For " 1 " staie negative. order Option 03.
Impedance: $100 \mathrm{k} \Omega$, each line.
BCD reference levels: approximately $-17 \mathrm{~V}, 350 \Omega$ source: approximately $-6.5 \mathrm{~V}, 1000 \Omega$ source.
PrInt command: +13 V to 0 V sep, de coupled.

Time Base, Model 5248L

Crystal frequency (internal): 1 MHz .

Stability

Agling rate: <3 parss in 10° per 24 houes. \uparrow
Short term: <2 parts in 10^{10} ms with measurement averaging time of one second under constant environment and line voltage conditions.

Temperature: <2 parts in $10^{\prime \prime \prime}$ per ${ }^{\circ} \mathrm{C}$ from -20° to $-59^{\circ} \mathrm{C}$.
Line voltage: $< \pm 5$ parrs in 10^{10} for 10% change in tine voltage from 115 V or 230 V rms.
Adjustment: Gine frequency adjusement (range approximately $f x$ 10^{-8}) and medium frequency adjusment (range approximately ix 10^{-6}) are available from the from panel through the plug-in hole. Coarse frequency adjustment (range approximately 1×10^{-5}) is available at the rear of the instrument.

Output frequencies

At rear panel: 0.1 Hz to 10 MHz in decade sreps, switch selected on rear panel. All frequenctes available in naanual function with. out interruption at reset except $100 \mathrm{~Hz}: 10 \mathrm{~Hz}, 1 \mathrm{~Hz}$, and 0.1 Hz which are interrupted by manual reset; 10 kHz to 10 MHz a arailable continuously in all functions; 1 kHz auailable con. tinuously for a!! functions except 10^{5} perind average: stability same as internal time hase. Outpur is 5 inles 0 -p reciangular wave with 1000Ω source impedance at 1 MHz and lower; i V rms sine wave with 1000Ω source impedance only at 10 MHz .

Separate BNC gives 100 MHz sine wave, 100Ω srusce.
External standard frequency: $1 \mathrm{MHz}, 1 \mathrm{~V}$ rms into 1000Ω. Can be substitured for incernal lime base via rear panel EXT. STD. FREQ, connector.

Hold-off requirement: +15 V min., +25 V max. from chassis ground (1000Ω source).
Cable connector: amphenol $50-\mathrm{pin} 57.30500-375$, HP part 00. 1251.0086, 1 required.

Operating temperature range: $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Power supply: 115 or 230 volts $\pm 10 \%$, 50 to $60 \mathrm{~Hz} ; 125$
watts $\pm 10 \%$. (50 to 1000 Hz operation, price on request.)
Weight: net, 31 Jbs (14 kg) with blank plug in panel. shipping, $37 \mathrm{lbs}(17 \mathrm{~kg})$.
Connectors: BNC (excepr remote program and BCD out).
Accessories furnished: 10503 A cable, $4 \mathrm{ft}$. (120 cm) long, mate BNC connectors. Detachable power cord, $71 / 2 \mathrm{ft}$. (200 cm) long, NEMA plug. Circuit board extender, rack mount conversion parts.
Dimensions: $5 / 32^{\prime \prime}$ high $\times 163 / 4^{\prime \prime}$ wide $\times 163 / 8$ " deep ($133 \times$ $425 \times 416 \mathrm{~mm})$.
Prices: Model 5248L, $\$ 2900.00$, Model $5248 \mathrm{ML}, \$ 3300.00$
Optional and special features (at added cost):
Option 03. 4-line BCD 8.4-2.1, "1" state negative in lieu of " 1 " state positise (identical in other respects :o above ourput data).
Electromagnetic compatibility: $\mathbf{H} 60-5248 \mathrm{~L} / \mathrm{M}$ meet military specification MIL-1-6181D. Price on request.
Remote operation: H65-5248L/M, same as "Remote Opera. rion" in $5245 \mathrm{~L} / \mathrm{M}$ specs. Price on request.
M07.5248L/M: same as M07.524SL/M. Price on request.

Time Base, Model 5248M

Crystal frequency (internal): M / Hz.
Stability
Aging rate: < 5 parts in 10^{10} per 24 hours after warm-up. ${ }^{* *}$
Short term (rms fractional frequency deviation: better than 5 patts in 10^{11} for 1 second averaging time.
Temperature: <5 parts in $10^{11} /{ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\{<2.5$ parts in $10^{\prime \prime}$ within the entire span of $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$).
Line voltage: $< \pm 1$ part in 10^{15} for 10% change in line vollage from 115 V or 230 V ms.
Load stabillty: rypically $< \pm 2$ parts in 10^{11} for any of the follow. ing loads: upen, shori, so Ω resistive, $50!2$ inductive, so Ω capacitise.
Warm-up: for "off" periods up to approximately 24 hours: 1 hour typical to reach s parts in 10° of the frequency that existed when turned oft. The 5 MHz erstal oscillatur uperates whencier the power cord is connected.
Adjustment: fine frequency adjustment, range approx. $5 \times 10^{--}$. 16-turn control accessible through plug.in accessary compartment in front panel. Coarse frequency adjustment, tange appeox. $2 \times 10^{-4}, 20 \cdot 6 a m$ contsol at rear panel.
Output frequencles

1. At rear panel: $s \mathrm{MHz}$ sine wase. 1 V rms into so Ω. Arail. able at all times whenever power line cord is energized, whether frone panel power swiech is ON or OFF. Stability is as defined above. Sigral.to-Noise Ratio typically $>87 \mathrm{~dB}$ below rated output. Harmonic Distertion upically $>40 \mathrm{~dB}$ below rated oulput. Non-harmonic Components ypically' >80 dB below rated outpur.
2. At rear panel: 0.1 Hz 1010 MHz in decade steps: switch selected on rear panel: all frequencies arailable in manual function without interruption at reser except 100 Hz .10 Hz , 1 Hz , and 0.1 Hz which are interrupted by manual reset: 10 kHz to 10 MHz available continuously in all functions: 1 kHz available continuously for all functions except 10^{5} period average; stabulity same as internal time base; SV p-p rectangular wase with 1000 n source impedance at 1 MHz and lower: : V rms sine wave with 1000Ω source impedance only at 10 MHz .
Separare BNC gives 100 MHz sine wase, 100Ω sulurce.
External standard frequency: 5 or $10 \mathrm{M}(\mathrm{Hz}, 1 \mathrm{~V}$ rms. intu 1000s. Can be substituted for internal cime base via rear panel EXT. STD. FREQ. connector.
*Trigger error is $<i=0.3 \%$ of one perlod \div periods averaged) for signals with 40 dB or better signal-lonnoise ratlo, and 100 mb rms amplitude error decreases as signal-lo-noise ratio and input level increase.
(1) Burroughs Corporatlon.
** Up to 72 hours contlnuous operallon may be required to reach thls aging rate after fransportation or lengthy "off" perlods.
tAlter 72 hours of conllinuous operation.

Advantages:

New enclosure meets MIL specification for RFI and drip proofing
Operationally identical to 5245L counter
Meets MIL specification for temperature, humidity, vibration, shock, altitude
Easily carried and handled
The functional performance of the M54-5245L, and most of its circuits, are identical to that of the 5245 L . It is a de to 50 MHz plug.in counter which can perform a wide range of functions with great accuracy. Refer to page 596 for the full operating specifications of the M54-5245L

The frequency range of the M54-5245L can be extended to 18 GHz by the use of plug-in units. It accepts all of the plug in units for the 5245 Z (see pages 603-609). The plug. in units must have the $H 60$ modification in order to meet the MIL RFI specification (MIL-I-6181D).

The environmental resistance of the rugged 5245 L has
been increased by encasing it in a tough, fiberglass enclosure. The main improvements are drip proofing and improved RFI specifications. The fiberglass enclosure includes a detachable front panel cover with a conveniently located carrying handle (as shown in the photograph).

Environmental specifications

sides. Each shock has a duration of $11 \mathrm{~ms} \pm 1 \mathrm{~ms}$ and a half sine wave shape.
Operating altitude: operation at $15,000 \mathrm{ft}$. meets and exceeds MIL.E-4158C up to at least $+25^{\circ} \mathrm{C}$ (consult HP regarding higher temperatures).
Non-operating altltude: exposure to 50.000 ft , altikude without ill effect; meets and exceeds MIL-E-4158C. If additional en. vironmental data are needed, please consult HP.

Operating specifications

(Except for those !isted below, Operating Specifications are same as for the 5245 L given on page 596.)
Power supply: 115 or 230 volts $\pm 10 \%$, 50 to 400 Hz : 95 watts.
Weight: net, $37 \mathrm{lbs}(15,5 \mathrm{~kg}$)
Accessories furnished: fiberglass front panel cover. Detachable power cord, $71 / 2$ feet (200 cm) long, NEMA plug.
Dimensions: $5 / /^{\prime \prime}$ high, $16.15 / 16^{\prime \prime}$ wide, $161 / 2^{\prime \prime}$ deep (14.9 x $43 \times 42 \mathrm{~cm}$) without front panel cover; $211 / 8^{\prime \prime}(53,8 \mathrm{~cm})$ deep with front panel cover.
Price: Model M54.5245L, \$2,880.00.

ELECTRONIC COUNTERS Ultra-Stable Counting to 135 MHz
 Model 5247M

FREQUENCY

Advantages:

Io Hz to 135 MHz basic range
Ultra-stable, fast warm-up time base
Plug-ins for measurements to 18 GHz
Wide input voltage range withour level adjustment 8 digit readout
The 5247 M performs frequency measurements over a very wide frequency range with great accuracy and stability. It's rapid warm-up, ultra-stable crystal time base is the same as that used in the 5248M Counter, ensuring high accuracy soon after the counter is energized. The 5 MHz time base output frequency stability and spectral purity qualify it as a highly precise secondary frequency standard.

The same plug-in heterodyne converters, transfer oscillators and prescalers used in the $5245 \mathrm{~L} / \mathrm{M}$ and $5248 \mathrm{~L} / \mathrm{M}$ and 5246 L Counters can be used in the 5247 M . Thereby, the frequency range can be extended to 18 GHz . Other plug-ins for 5245 L cannot be used in the $52 \mathrm{x} \% \mathrm{M}$.

The 5247 M has a unique input section which accepes any inpur voltage level berween 100 mV and 10 V rms without adjustnent. This feature enables unskilled people to use it for routine measurements on non-complex aveaforms without attending to trigger level control adjustment. It's also useful where voltage levels vary widely and rapidly (e.g. when using tachomerer generators). However, where a general purpose counter is needed, or where complex wavetorms are to be counted, the trigger level controls of the HP 5248M Counter are usually required.

Specifications

Frequency measurement

Range: 10 Hz to 135 MHz (ac coupled).
Gate time: 1 us to 10,0 seconds in decade steps.
Accuracy: ± 1 count \pm time base accuracy.
Readout: $\overline{\mathrm{M}} \mathrm{Hz}, \mathrm{kHz}$ or Hz with positioned decimal point; units annunciator in line with digital display.
Time base
Crystal frequency: 5 MHz .
Stability
Aging rate: <5 pares in 10^{30} per 24 hours after warm-up (after 72 hours of continuous operation).
Short term: <s parts in 10^{11} for 1 second average (rms fractional frequency deviation).
Temperature: <5 parts in $10^{\prime \prime}$ per ${ }^{\circ} \mathrm{C}$ from 0° to $50^{\circ} \mathrm{C}$; <2.5 parts in 10^{n} within the entire span of 0° to $50^{\circ} \mathrm{C}$.
Line voltage: < ± 1 part in 10^{10} for 10% change in line voltage from 115 V or 230 V mm .
Load stabillty: typically ± 2 parts in $10^{\prime \prime}$ for any of the
following loads - open, short, son resistive, son inductive, son capacitive.
Warm-up: for "oft" periods up to approximately 24 hours: 1 hour typical to reach s parts in 10° of the frequency that existed when turned off (30 min ,, typical, to 1 part. in 10°). Time base operates whenever porver cord is connected.
Output frequencies: rear panel: s MHz sine wave. 1 V rms into 50Ω. Available at all times whenever power line cord is energized, whether front panel power switch is ON or OFF. Stability as defined above. Signal-co-Noise Ratio typically $>87 \mathrm{~dB}$ at rated output. Harmonic Distortion typically $>40 \mathrm{~dB}$ below rated output. Non-harmonic Components typically $>80 \mathrm{~dB}$ below sated ourput.

General

Display: 8 digits in-line; recrangular display tubes and display storage.
Slgnal input
Sensitlivity: 100 mV rms to 10 V ms (maximum) without level adjustment. Voltage exceeding $\pm 100 \mathrm{~V}$ de may cause damage.
Impedance: $1 \mathrm{M} \Omega$ shunted by 25 pF .
Connectors: BNC type.
Operating temperature range: $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Power requirements: 115 or 230 volts $\pm 10 \%$, 50 to 60 Hz : 95 W. except is 150 W , max., during approx. the first 2 minutes after power line is first energized.
Weight: net $30 \mathrm{lbs}(13.6 \mathrm{~kg}$) with blank plug-in: shipping $36 \mathrm{lbs}(16,4 \mathrm{~kg})$.
Accessories furnished: HP 10503A Cable, 4 feet long, male BNC connectors. Detachable power cord, $71 / 2 \mathrm{ft}$. (200 cm) long, NEMA plug. Circuit Board Extender. Rack mount conversion parts.
Price: Model $5247 \mathrm{M}, \$ 3150.00$.
Dimensions: $163 / 4^{\prime \prime}$ (425 mm) wide, $5.7 / 32^{\prime \prime}$ (133 mm) high, $16 \frac{1}{8^{\prime \prime}}(416 \mathrm{~mm})$ deep.
Chassis connectors: BNC type.
Options: digital output (Options 1 and 2):
Code: Oprion 2: 8-4-2-1 + ("0" level: -8 V ; " 1 " level: 18 V i impedance: $100 \mathrm{~K} \Omega$). Option 1: $8 \cdot 4 \cdot 2-1-\left(" 0{ }^{\prime \prime}\right.$ level: 18 V ; "1" level: -8 V ; impedance: $100 \mathrm{~K} \Omega$).
Reference level: $+17 \mathrm{~V}, 350 \Omega_{\mathrm{i}}-6.5 \mathrm{~V}, i \mathrm{k} \Omega$.
Print eommand: +13 V to 0 V step, do coupled.
Hold-off requirements: +15 V minimum, +25 V maximum from chassis ground (1000 ! source).
Price: Option 01 or 02, add $\$ 85$.
Option 3: cear terminal input in addition ro front parel input; specifications are the same as frone panel input. Price: Option 03, add $\$ 75$.

ELECTRONIC COUNTER Economical 50 MHz plug-in counter Model 5246L

The 5246L offers the basic $0-50 \mathrm{MHz}$ range, many of the circuit benefits, and plug.in accessory fearures of the S245L. Al. though, in the interest of economy, some of the 5245 L capabili. ries are omitted from the 5246L, versatility can be increased by optional fearures.

The 5246 L has display storage, a 6 -digit readout $(7$ and 8 digits optional), and without any plug.ins will measure frequency and frequency ratio. BCD output and a higher stability ($<3 \times 10^{-0} /$ day) cryseal time base are optional. A dual held. effect transistor input amplifier offers almost constant 1 meg . ohm/25 pF input impedance, and HP 10000 Scries Probes can be used.

Frequency ratio (f_{1} / f_{3}) is measured by connecting signal f_{2} (100 Hz to 1 MHz) in place of the counter's time base (BNC as rear), and connecting f_{1} (up to 50 MHz) to the SIGNAL INPUT. Multiple ratios can be measured from 10 to 10^{1} in decade steps.

Specifications

Frequency measurement

Range: do coupled, 0 to 50 MHz .
ac coupled, 25 Hz to 50 MMz (cypical response of input amplifer $< \pm 1$ dB over entire range).
Gate time: 1μ s to 1.0 second in decade steps.
Accuracy: ± 1 count \pm rime base accuracy.
Readout: kHz or MHz with positioned decimal point; units an. nunciator in line with digital display.

Time base

Frequency (internal): 1 MHz .
Stablifty Aging rate: less than 2×10^{-1} per monih.
Temperature: less than ± 2 parts in $10^{\circ}\left(+10^{\circ} 10+50^{\circ} \mathrm{C}\right)$ ± 2 parts in $10^{\circ}\left(0^{\circ} \mathrm{C}\right.$ to $\left.65^{\circ} \mathrm{C}\right)$.
Line voltage: less than ± 1 part in 10° for 10% change fron 115 V or 230 V rms.
Output frequency: $1 \mathrm{MHz},>3 \mathrm{~V}$ p-p into $1 \mathrm{k} \Omega$.
External Input: sensitivity: 1 vole rms into 500 ohms, 1 kHz to 1 $\mathrm{MHz}_{2} 2 \mathrm{~V}$ rens into $500 \Omega, 100 \mathrm{~Hz}$ to 1 kHz .

General

Dlsplay: 6 digits in-line with recrangular Nixie tubes and display storage: 999,999 max. display.
Display storage: holds reading between samples; rear panel switch overrides storage.
Sample rate: time following a gate closing during which the gate may not be reopened is continuously variable from less than 0.2 s to S s in Frequency mode, independent of gate time: display can be held indefinitely.
signal input
Maximum sensitivity: 100 mV rms.
Coupilng: ac or dc, separaie BNC connectors. Ac coupling has
$600 \mathrm{~V} \mathrm{dc}, 0.022 \mu \mathrm{~F}$ capacitor (-3 dB at approximaiely 7 Hz).
Impedance: $1 \mathrm{M} \Omega$ shunted by $25 \mathrm{pl}^{\text {² }}$.
Overload: diode clamps in series with $100 \mathrm{k} \Omega$ and $0.001 \mu \mathrm{~F}$ protect input circuir for up to 120 V ms $(<1 \mathrm{kHz})$. Inpet resistance for overload condition (beyond approx. 1 V) is spproximately $0.1 \mathrm{M} \Omega$.
Self-check: counts 10 MHz for the gace time chosen by the time base selector switch.
Operating temperature range: $0^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Power supply: 115 or 230 volts $\pm 10 \%$, 50 to 60 Hz : 95 W (50 to 1000 Hz operation, price on request).
Welght: net, $28 \mathrm{lbs}(12,8 \mathrm{~kg})$ with blank plug-in. shipping, $36 \mathrm{lbs}(16.4 \mathrm{~kg})$
Accessories furnished: HP 10503A Cable, $4 \mathrm{ft} .(120 \mathrm{~cm})$ long, male BNC connectors. Detachable power cord, $71 / 2 \mathrm{ft}$ (200 cm) long, NEMA plug. Citcuit board extender. Rack mount conversion parts.
Dimensions: $5.7 / 32^{\prime \prime}$ high $\times 163 / 4^{\prime \prime}$ wide $\times 163 / 8^{\prime \prime}$ deep (133 x $425 \times 416 \mathrm{~mm})$.
Price: Model S246L, $\$ 1800.00$.
Options
Optlon 01: 7 digit readout, add $\$ 100.00$.
Option 02: 8 digit readout, add $\$ 200.00$.
Option 03: 4-2-2-1 "1" state positive 4-line BCD output.
'0' Stare Level: -8 V.
"1" Stace Level: +18 V .
2mpedance: 100 K ohms, each line.
BCD Reference Levels:
Approximately +17 V , 350Ω source.
Approximately $-6.5 \mathrm{~V}, 1000 \Omega$ source.
Print Commend: +13 V to 0 V step. $\mathrm{d} c$ coupled. Hold-off Requirement: + is V min., +25 V max. from chassis ground (1000Ω source).
Cable Connector: Amphenol 57-30500.375 (HP No. $1251-0086$), 1 required.
Price: Option 03, add $\$ 75.00$.
Option 04: similar to Option 03 except output is $8 \cdot 4 \cdot 2-1$ " 1 " state negative 4 -line BCD . Add $\$ 85.00$.
Optlon 05: similar to Oprion 03 except output is $8-4.2-1$ " 1 " state positive 4 -line BCD. Add 885.00
Option 06: high-stability time base oscillator. "Stability" specifications for Model 5245L Time Base apply (see page 597). Also, External iniput: 1 V rms into 1000Ω, 1 MHz ; (2 V mm , 100 Hz to $: \mathrm{kHz}$: $1 \mathrm{~V} \mathrm{rms}, 1 \mathrm{kHz}$ to 1 MHz into 1000Ω available on special order). External inpur must be 1 MHz for readout in kHz or $\mathrm{N} \cdot \mathrm{Hz}$. For frequency ratio measurements, external input can be 100 Hz to 1 $\lambda \mathrm{Hz}$ with the above sensitivisies, Frequency and voltage specifications apply for sine wave inpues. Price: Oprion 06, add $\$ 300.00$.

PRESCALER; DIGITALVOLTMETER Increase capability of $5245 \mathrm{~L} / \mathrm{M}, 5248 \mathrm{~L} / \mathrm{M}, 5246 \mathrm{~L}$
 Models 5252A, 5258A, 5265A

 FREOUENCY
5252A Prescaler

The direct-counting frequency of the HP $5245 \mathrm{~L} / \mathrm{M}$, $5248 \mathrm{~L} / \mathrm{M}, 5246 \mathrm{~L}$ and 5247 M Counters is extended to 350 MHz using the Model 5232A Prescaler Plug-in. Prescaling is accomplished with transistor binary dividers which operate over the frequency range do to 350 MHz . No tuning is required. A rrigger level adjustment permits counting when unusual measurement conditions are encountered.

Prescalers divide the input frequency by a factor of 2,4 or 8 , and at the same time adjusting the counter's time base to provide a direct reading in frequency.

Specifications, 5252A*

Operating frequency range: $d c$ to 350 MHz .
Accuracy: same as the basic counter.
Input sensltivlty: 100 mV ims.
Maximum input 2 volts, +20 dBm , or 100 mW .
Input Impedance: 50 ohms (nominal).
Operating temperature range: $-20^{\circ} \mathrm{C}$ co $+55^{\circ} \mathrm{C}$.
Scaled output: $>100 \mathrm{mV} \mathrm{mms}$ inco 50 ohms is available at the AUX A BNC connector of the basic counter.
Weight: net $2.2 \mathrm{lb}(1 \mathrm{~kg})$; shipping $4 \mathrm{lb}(1,8 \mathrm{~kg})$.
Prlce: HP 5252A, $\$ 685$.

5258A Sensitive Prescaler

5258A installation, use and operation are similar to the 5252A. It is also useful as a video amplifier.

Specifications, 5258 ${ }^{*}$

Oparating frequency range: 1 MHz to 200 MHz .
Accuracy: same as the basic counter.
Input sensitivity: $1 \mathrm{mV} / 10 \mathrm{mV} / 0.2 \mathrm{~V} \mathrm{mms}$ as selected by front panel switch.
Resolution: 1 Hz in $45,10 \mathrm{~Hz}$ in 0.4 s , etc.
Maximum input: $3 \mathrm{~V},+22.5 \mathrm{dBm}$, or 180 mW . Input impedance: 50 .
Operating temperature range: $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Scaled output: 100 mV rms into 50Ω is available at the $A u x$ A output BNC connector of the basic counter.

Weight: net s ib $(2,3 \mathrm{~kg})$: shipping $7 \mathrm{lb}(3,2 \mathrm{~kg})$. Price: HP 5258A, $\$ 825$.

5265A Digital Voltmeter

The HP 5265A Digital Voltmerer Plug-in quickly converts your $5245 \mathrm{~L} / \mathrm{M}, 5248 \mathrm{~L} / \mathrm{M}$ or 5246 L Electronic Counter to an accurate de digital voltmeter. Operation is straight-fonvard-simply set range switch, connect the voltage to be measured and read.

A Local-Remote switch permits remote selection of the DVM mode or the regular electronic counter functions when used with an H65-5245L/M or H65-5248L/M Counter (remote control option).

Specifications, 5265A ${ }^{20}$

Voltage range: 6 -digit presentation of $10.0000,100.000$, and 1000.00 V full scale with 5% overrange capability.

Registration: on electronic counter.
Reads In: de volts with decimal point positioned by range son'tch: automatic polarity indicator.
Accuracy (0° to $+50^{\circ} \mathrm{C}$): $\pm 0.1 \%$ of reading; $\pm 0.01 \%$ of fs $<1 / 10$ fs (within 24 hrs and $\pm 10^{\circ} \mathrm{C}$ temperature change since last front-panel calibration adjustment and within 6 mos. of calibration of internal zener reference).
Range selection: manual.
Sample rate: 5 per second. Has storage.
Input resistance: 10.2 megohms to dc on all ranges.
Input filter:
AC rejection: 30 dB at 60 Hz , increasing at 12 dB per octave.
Response time: less than 450 ms to a step function to within 0.05% of final value.
Accessory furnished: $5060-0630$ 22-pin extender board.
Weight: ner $21 / 2 \mathrm{lb}(1,1 \mathrm{~kg})$; shipping $5 \mathrm{lb}(2,3 \mathrm{~kg})$.
Price: HP 5265A, \$625.
-When used with HP 5245 L (serial piefixed 402 and above) $5245 \mathrm{M} .5248 \mathrm{~L} / \mathrm{M}$, 5247 M or 5246 L Eleclionic Counters.

- When useo with HP $5245 \mathrm{~L} / \mathrm{M}, 5248 \mathrm{~L} / \mathrm{M}$, or 5245 L Electronic Counter.

5265A

5258A

10 ns TIME INTERVAL UNIT
 Highly versatile, 10 ns resolution Model 5267A

Advantages:

Resolution to 10 ns

High, constant input impedance
Versatile rrigger controls
Trigger point markers
Measure time interval or pulse length, spacing or delay
Will measure interval berween pulses on single or dual inputs

Model 5267A Time Interval Plug-in converts the 135 MHz HP Models 5248 L and 5248 M Counters into highly versatile, highly accurate time interval counters uith a resolution of 10 nanoseconds (rom 100 ns to l s (total range is $10^{\prime} \mathrm{s}$). Resolution of this order is of special importance in time interval mea. surements involving projectiles, explosives, shock n'aves, laser pulses, and other fast phenomena (light travels only 10 feet in 10 nanoseconds). Among other applications, 10 ns resolution is also valuable for measuring pulse iength, spacing and delay when calibrating pulse generators, and for measuring cable length using pulse transmission or pulse reflection techniques.

The 5267 A will measure the length of or spacing between electrical events regardless of polarity or wave shape; it is not limited to pulse measurements, but will handle sine waves, triangular waves, etc. Measurements are made in a precise straightornard manner, even where the events occur in two different circuits. Steering circuitry in the 5267 A permits mea. suring intervals between the starts of consecutive events, even when the events are of like polarity and occur on a single input line (the older 2262A Plug-in cannot do this).
Time is read directly on the counter with the units and decimal indicated. Since the counted signal is derived from its precise oscillator, counter time base accuracy is recained. High input impedance (constant on all ranges) and high sensitivity permit measuxements on high-impedance, low-voltage circuits.
Masker pulses, generated each time the input signal crosses the threshold set by the daal trigger level controls, are available on the rear panel of the counter for oscilloscope intensity (Z . axis) modulation. These marker dots identify the measured interval on the displayed input a'aveform.
By combining all the above capabilities in one relarively inexpensive plug.in, the 5267 A offers a flexibility that was previously unavailable in mose special.purpose time interval counters and councer plug-ins.

The 5267A can be also used in HP 52-45L or M, M54.5245L or M, and 5246 L Counters. It brings all the above features to those models except that the minimum interval is $1 \mu s$ and maximum resolution is 100 ns .

Operation

The count is started by a signal applied to the "Start" channel of the 5267 A and is stopped by a signal applied to the "Stop" channel. To ensure maximum versatility in time interval measurement, the 5267 A has separate threshold controls for each channel. These controls select the magnitude and polarity of the voltage as well as the slope of the signal required to actuate the channels. In addition, either two separate waveforms or the same waveform can operate the channels since separate inpur connectors are provided for the "Start" and "Stop" channels. The inputs can be connected rogether, when preferred, by a front panel SEP.COM switch on the 5267A.

Specifications

Range:

100 ns to $10^{5} \mathrm{~s}$ with HP 5248L or M Counter.
$1 \mu \mathrm{~s}$ to $10^{\circ} \mathrm{s}$ with $5245 \mathrm{~L}, 5245 \mathrm{M}, \mathrm{M} 54.5245 \mathrm{~L}$ or M , or 5243 L Counter.
$1 \mu \mathrm{~s}$ to $10^{6} \mathrm{~s}$ with 6.digit 5246L Counter.
Maximum resolution:
10 ns for intervals from 100 ns to 1 s with HP 5248L or M Counter; $0.1 \mu \mathrm{~s}$ for intervals from $1 \mu \mathrm{~s}$ to 10 s with 3245 L , $5245 \mathrm{M}, \mathrm{M} 54.5245 \mathrm{~L}$ or M, 5246L, or 5243 L Counter.
input repetition rate: 5 MHz , max.
Input coupling: ac or de (front panel switch for each channel).
Standard frequency counted: $100 \mathrm{MHz} 101 \mathrm{~Hz}^{*}$ in decade steps from counter or exrernally applied frequency up to 135 $\mathrm{MHz}{ }^{* *}$ in HP 5248 L or M Counter.
input sensitivity: 0.3 V p.p (min.) x A.TTENUATOR setting.
input impedance: $1 \mathrm{M} \Omega / 3 \mathrm{~s} \mathrm{pF}$ for peak input voltages up to 3 times the ATTENUATOR setting.
Maximum Input:
120 V rons for X 1 ATTEN. setting. 250 V rms for X 10 ATTEN, setring. 500 V rms for X 100 ATTEN. setting.
Accuracy (pulse): $=1$ period of standard frequency counted \pm lime base accuracy.
Registration: on counter.
Start-stop: independent or common channels.
Trigger slope: posirive or negative on Srart and Srop channels. indépendently selected.
Trigger amplitude: both channels adjustable from -300 to +300 V peak.
Markers: separate output pulses coincident with Scart and Stop trigger points on input araveforms; -10 volt amplitude, 0.7 $\mu \mathrm{s}$ width, from source impedance of approximately 2.5 kg ; available at rear panel of counter.
Reads In: $\mu \mathrm{S}$, ms, sec, with measurements unit indicated and decimal point positioned.
Accessories furnished: 10503A Cable Assembly, male BNC to male $B N C, 48$ inches (122 cm) long.
Weight: net, 1.5 ib (750 gms) , shipping $3.5 \mathrm{lb}(1,6 \mathrm{~kg})$.
Price: Model 5267A, 5400.00.

[^59]
T. I. UNIT; VIDEO AMPLIFIER $0.1 \mu \mathrm{sec}$ resolution; 1 mV sensitivity Models 5262A, 5261A

 FREQUENCY
5262A Time Interval Unit

The economical HP 5262A increases the versatility of HP plug-in counters by making possible accurate time interval measurements with 0.1μ sesolution. Time is read directly from the counter display with units and decimal point also indicated. Counter time base accuracy is retained, since the counted signal is derived from the time base oscillator. The HP 5262A measures from 1μ s to $10^{8} \mathrm{~s}$ with the $5245 \mathrm{~L} / \mathrm{M}$, $5248 \mathrm{~L} / \mathrm{M}$ or 8 -digit 5246 L ; to $10^{\circ} \mathrm{s}$ with the standard 5246L. It measures pulse length, pulse spacing and delays, and triggers from separate or common signals. The 5262 A may be used as an amplitude discriminator which permits counting only signals meeting requirements set by trigger level controls. The newer 5267A has many features not present in the 5262 A , but cannot be used as an amplitude discriminator.

Specifications, 5262A*

Range: $1 \mu 5$ to $10^{\circ} \mathrm{s}$ (8 -digit counter); $1 \mu \mathrm{~s}$ to $10^{\circ} \mathrm{s}$ (6 -digit counter).
Standard frequency counted: 10^{7} to 1 Hz in decade steps from HP counter or external frequency.
Accuracy (pulse): ± 1 period of standard frequency counted \pm time base accuracy.
Registrationt on electronic counter.
Input voltage: 0.3 volt, P-P, minimum, direct-coupled input. Input Impedance and overload: input impedance (constant up to 40 volrs times Multiplier setting).

Multiplar	Input Impedance		Max. Input
	Reshitanoe	Czpactiance	
$\begin{aligned} & \times 0.1 \\ & \times 0.2 \\ & \times 0.2 \end{aligned}$	$\begin{aligned} & 10 k \\ & 10 \mathrm{k} \\ & 30 \mathrm{k} \end{aligned}$	$\begin{aligned} & 80 \mathrm{pF} \\ & 80 \mathrm{pF} \\ & 40 \mathrm{DF} \end{aligned}$	$\begin{array}{r} 50 \mathrm{Vms} \\ =150 \mathrm{~V} \text { peak } \end{array}$
X1	$\begin{aligned} & 100 k \\ & 300 k \end{aligned}$	$\begin{aligned} & 20 \mathrm{pf} \\ & 20 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 150 \mathrm{Vrms} \\ + & 250 \mathrm{~V} \text { peak } \end{aligned}$
$\begin{aligned} & \times 10 \\ & \times 30 \\ & \times 100 \end{aligned}$	$\begin{array}{r} 1 \mathrm{M} \\ 3 \mathrm{M} \\ 10 \mathrm{M} \end{array}$	$\begin{aligned} & 20 \mathrm{pF} \\ & 20 \mathrm{pF} \\ & 20 \mathrm{pF} \end{aligned}$	$\pm 250 \mathrm{~V}$ peak

Start-stop: separate or common channels.
Trigger slope: positive or negative on start and stop channels, independently selected.
Trigger amplitude: both channels adjustable, -250 to +250 V .
Frequency range: 0 to above 2 MHz when used as input signal discriminator.

Markers: (HP 5245L/M, 5248L/M only) separate output voltage steps, 0.5 volt peak-to-peak from source impedance of approximately $7 \mathrm{k}, 100 \mathrm{p}$; available at rear panel of counter with negative step coincident with trigger points on input waveforms for positive slope and positive step coincident for negative slope.
Reads in: $\mu \mathrm{s}$, ms, s with measurements unit indicated and decimal point positioned.
Accossorles furnished: 10503A Cable Assembly, male BNC to male BNC, 4 feer (1220 mm) long.
Welght: net $2.5 \mathrm{lb}(1,1 \mathrm{~kg})$; shipping, $4 \mathrm{lb}(1,8 \mathrm{~kg})$.
Price: HP 5262A, 5250 .
Model 5263A: Similar to 5262A but available only in Europe. Please consult your local European HP office for details.

5261A Video Amplifier

The HP 5261A plug-in increases the sensitivity of HP plug. in counters to 1 mV over the range of 10 Hz to 50 MHz . The output level meter indicates when the signal level to the counter is acceptable for stable count. The auxiliary 50 -ohm output permits monitoring the unknown input signal to the counter with a scope. A 10 megohm $10: 1$ divider probe is available to facilitate frequency measurements in high-impedance circuits.

Specifications, 5261A*

Bandwidth: 10 Hz to 50 MHz .
Input sensitluity: 1 mV to 300 mV cms.
Max. Input: $100 \mathrm{~V} \mathrm{dc} ; 5 \mathrm{~V}$ ms (ranges: $1,3,10,30,100 \mathrm{mV}$). Input Impedance: approximately 1 megohm, is pF shunt. Output level meter: shor's acceptable signal level.
Accuracy: retains accuracy of electronic counter.
Auxlliary output: front-panel BNC for oscilloscope monitor. ing or driving external equipment; $50.0 h m$ source impedance; on amplifier's most sensitive attenuator range, 1 mV rms at input results in at least 100 mV rms at auxiliary output into 50 -ohn load; maximum undistorted output is 300 mV rms into a 50.0 hm load.
Accessory furnished: 10507A. Low Microphonic 50.0hm Cable. i feet (1220 mm) long. BNC connectors.
Accessories available: 10003A 10:1 Probe, 10 pF shunt, 600 V max., $\$ 30$: 10100 A 50 -ohm Feed-Thru Termination, $\$ 15$. Weight: net $2 \mathrm{lb}(0,90 \mathrm{~kg})$; shipping $4 \mathrm{lb}(1,8 \mathrm{~kg})$.
Price: HP 5261A, \$325.
-When used with HP 5245 L or M, 5248L or M, M54-5245L or M, or HP 5246 L Electric Counters. 5261 a can be used with 5248 L or M and 5247 M up to 50 MHz

Normalized readings; div, by N; count N events Model 5264A

The HP Model 5264A Preset Unit extends the versatility of the time bases of the HP $5245 \mathrm{~L} / \mathrm{M}, 5248 \mathrm{~L} / \mathrm{M}$ and 5246 L Counters, and the counters retain their basic functions and measurement range. Decade dividers in the preset unit control the counter gate; N may be any integer between 1 and 100,000 . The 5264A makes possible the following;
$\mathrm{N} x$ frequency measurements: gate time is controlled by the preset decades (N) and the counter's Time Base switch. The gate is held open for N periods of the time base setting.

This selectable gate time makes possible normalized readings or conversion of frequencies into practical units. The long gate times that are available ($5245 \mathrm{~L} / \mathrm{M}$ and $5248 \mathrm{~L} / \mathrm{M}-10^{6} \mathrm{~s}$; $5246 \mathrm{~L}-10^{5} \mathrm{~s}$) permit accurate measurement of low frequencies.
$\mathrm{N} \times$ period measurements ($5245 \mathrm{~L} / \mathrm{M}$ and $5248 \mathrm{~L} / \mathrm{M}$ only): measures the time for N events to occur in increments of $0.1 \mu \mathrm{~s}$ (5245) or 10 ns (5248) to 10 seconds, depending on the setting of the counter's Time Base switch. Period and multiple period measurements are also easily made. Period average is determined by dividing the time reading by N .
Ratio, $\mathrm{N} \times$ ratio measurements ($5245 \mathrm{~L} / \mathrm{M}, 5248 \mathrm{~L} / \mathrm{M}$ only) : measures ratio with choice of normalizing factors from 1 to 100,000 in one-digit steps. Counter displays $N f_{1} \div f_{2} ; f_{1}$ is counted for N periods of f_{2}.
Dividing by N : permits division by N of any inpur frequency up to 100 kHz . The counter's prescaling capability (up to 10^{2} in decade steps) allows frequencies as high as 50 MHz in $5245 \mathrm{~L} / \mathrm{M}$ and 135 MHz in $5248 \mathrm{~L} / \mathrm{M}$ to be divided by a five-digit number, provided that the frequency supplied the preset units (from the counter) does not exceed 100 kHz .
Preset Counting: N events are counted. The first event opens the gate; the Nth closes it. This feature is useful in batching, and the gate signal can be used to control external circuitry or relays.

Specifications, 5264A

Nx frequency (counter Signal Input)
Range: 0 to 50 MHz (10135 MHz in $5248 \mathrm{~L} / \mathrm{M}$).
Maximum sensitlulty: 0.1 V mons.
Input impedance: 1 megohm shuated by 23 pF .
Gate time: (set by counter Time Base and " N "' switches)
$10 \mu \mathrm{~s}$ to I s in $10 \mu \mathrm{steps}$
$100 \mu \mathrm{~s}$ to 10 s in $100 \mu \mathrm{~s}$ steps
1 ms to 100 s in 1 ms seeps
10 ms to $10^{2} \mathrm{~s}$ in 10 ms steps
0.1 s to $10^{\circ} \mathrm{s}$ in 0.1 s steps

I s to $10^{6} \mathrm{~s}$ in 1 s steps
t105 to 10° s in 10 s steps
Accuracy: ± 1 count \pm time base accuracy (5245L/M, 5246L) ± 1 count \pm time base accuracy $\pm 0.02 \mu \mathrm{~s}$ gate uncertainty ($5248 \mathrm{~L} / \mathrm{M}$).
† $\mathbf{N} \times$ period (counter signal Input)
Input frequency range: 0 Hz to 100 kHz .
Maximum sensitivity: 0.1 V rms.
Input impedance: 1 megohm shunted by 25 pF .
Time units: $0.1 \mu \mathrm{~s}$ (524S) to 10 s in decade steps or 10 ns (S248).
Accuracy: ± 1 count \pm time base accuracy \pm trigger error.**
$+N \times$ ratio
Reads: $N \times f_{1} / f_{2}$.
Accuracy: ± 1 count of $f_{1} \pm$ trigger error of f_{3},

	5248L/M		5245L/M, 6248L	
Freq. range Milz: dc 6	$135 \mathrm{MHz}$	$\begin{gathered} 12 \\ 100 \mathrm{MHz} \end{gathered}$	$30 \mathrm{MHz}$	$100 \mathrm{kHz}_{2}^{12}$
Sonsitivity V sms	0.1	0.1	0.1	0.1
Input Impedance	$1 \mathrm{~m} \Omega / 25 \mathrm{pF}$	1 Mor20 pf	$1 \mathrm{~mm} / 20 \mathrm{pF}$	$1 \mathrm{Maz} / 25 \mathrm{pF}$
Connects to counter BNG:	$\begin{aligned} & \text { Signal } \\ & \text { inpul } \end{aligned}$	fatlo	$\underset{\text { base }}{\text { Ext. TIme }}$	$\begin{aligned} & \text { Signal } \\ & \text { input } \end{aligned}$

Divide by N (5264A Auxillary lnput, $1 / \mathrm{N}$ mode)
Frequency range: 20 Hz to 100 kHz (sinusoidal).
Sensitivity: 0.1 V mms .
Input Impedance: 1 megohm, 50 pF sbunt.
Overload: signals in excess of 10 V rms may damage the instru. ment.
\dagger Prescaling: in decade steps to 10° of maximum rate of counter; (scaled output frequency $\leq 100 \mathrm{kHz}$).
Output: 0.2 V peak to peak centered at 0 volts, into high-impedance load; rise time $<1 \mu$ s, duration approximately $S \mu s$.
Preset (5264A Auxillary input)
Input frequency range: 20 Hz to 100 kHz .
Maximum sensitivity: 0.1 V rms.
Input impedanee: 1 megohm, 50 pF shunt.
Overload: signals in excess of 10 V rms may damage the instrument.
Preset range: 1 to 99,999 in steps of one.
Weight: net $3 \mathrm{lbs}(1,4 \mathrm{~kg})$; shipping $5 \mathrm{lbs}(2,3 \mathrm{~kg})$.
Accessory furnlshed: 10503 A cable, $4 \mathrm{ft}(1220 \mathrm{~mm})$ long, male BNC connestors.
Price: HP 5264A, \$650.

[^60]
TRANSFER OSCILLATOR Measures from . 05 to 18 GHz ; down converter Model 5257A

freauency

Advantages:

Measures CW, FM, or pulsed carriers Direct readout in frequency - no offset to add Tuning meter replaces oscilloscope pattern Automatic phase lock for CW and FM carriers No readout until tuned (CW inputs)
Simple single dial tuning-no stubs
The HP Model 5257A Transter Oscillator Plug-in extends the frequency measuring range of HP plug-in counters to 18 GHz . It is designed for use with the following counters: HP Models $5245 \mathrm{~L}, 5245 \mathrm{M}, 5246 \mathrm{~L}, 5247 \mathrm{M}, 5248 \mathrm{~L}$ and 5248M. HP Model 5257A measures CW signals and liM cartiers to within the counter's accuracy due to an automatic phase lock circuit (APC). The APC has a wide lock range (approx. $\pm 0.2 \%$ of input frequency). It will track a rapidly drifting signal, with intermittent signals it relocks without retuning whenever the signal is present, and it locks to carriers with heavy FM; e.g., 4 GHz carrier with 1 MHz peak deviation at a 10 kHz rate. Pulsed carriers with pulse widths as short as $0.5 \mu \mathrm{sec}$ may be measured with this instrument. The HP 5237A uniquely uses a tuning meter for this and other non-APC operation without loss of accuracy over CRT indicators. Optionaliy, a large screen oscilloscope may be connected to monitor zero beat tuning.

Senslitivity

High input sensitivity, even at the higher frequencies, is achieved by the wideband sampler at the input. There are no stubs to tune and the harmonic generator generally used in transfer oscillators is eliminated. By using an external oscilloscope for zero beat indication, and without phase lock, measurements may be made of CW signals down to -70 dBm and of pulsed signals down to -55 dBm .

Direct readout

Frequency is read directly on the counter when the proper vfo harmonic number is set on the front panel " N " thumbwheels. Thus, repeated measurements can be made quickly within certain bandwidth restrictions for the same " N ". When " N " is unknown it is easily found by taking two mea. surements and dividing the difference into the second of the two. An inhibit circuit prevents false readings in the APC mode by causing all zeros to be displayed unless the unit is locked into a CW signal.

Down conversion

The HP Model 5257A offers extra value by conveniently providing an 18 GHz hot carrier diode sampler driven by a tunable high stability oscillator from which the frequency converted amplified outpur is made available for other instrumentation. The carrier of this outpur is variable from de to about 1 MHz by tuning the vfo. Jnput signals from 16.7 MHz to 18 GHz can be down converted. Applications include

measurement of residual FM, FM deviation and FM modulation linearity, inspection of AM modulation envelopes on an oscilloscope, \% AM measurements, and frequency domain measurements with a wave analyzer.

For additional data see HP Journal, Feb. '68.

Specifications*

Frequency range: 50 MHz to 18 GHz .
Input signal capability: CW Signals. Pulsed RF Signals. Signals with high FM content.
CW measurement accuracy: retains counter accuracy.
Input sensitivity: 100 mV rms (-7 dBm) for input frequencies of 50 MHz to 15 GHz .140 mV mms (-4 dBm) for input frequencies of 15 to 18 GHz and VFO FREQUENCY of 125.133.3 MHz. Typical sensitivity: -24 to -7 dBn .

Input impedance: 50 ohms nominal.
Maximum input: +10 dBm for CW Signals. 2 volts $\mathrm{p}-\mathrm{p}$ for Pulsed RF Signals.
APC sock range: approximately $=0.2 \%$ of inpur frequency.
Metar: APC MODE-Indicares loop phase efror under locked conditions. PULSED RF MODE-Zero beat indicator.
Pulsed RF out: for external oscilloscope, 0.5 vole p-p. Output frequency range of dc to 1 MHz , approx.
Pulse carrier trequency measurements: minimun pulse width $-0.5 \mu \mathrm{~s}$. Minimum repetition rate- 10 pulses per second. Accuracy- 0.01 sycle per pulse width (error $\pm 20 \mathrm{kHz}$ or less).
VFO: frequency range-- 66.7 to 133.3 MHz . Drift-(With con. stant temperature in operational range of 0° to $59^{\circ} \mathrm{C}$) typically ± 2 parts in 10^{5} per minure immediately after turn on. Typically ± 1 part in 10^{\prime} per minute after 2 hours of opera. tion. Temperature variation-typically 1 part in 10^{\prime} per degree C.
Input connector: precision type \mathbf{N} fermale.
Waight: net, $71 / 4 \mathrm{lb}(3,3 \mathrm{~kg})$; shipping, $8 \mathrm{lb}(3,6 \mathrm{~kg})$.
Price: $\$ 2,100.00$.
Option 01: precision type APC. 7 input connector, add $\$ 25.00$.

[^61]FREQUENCY CONVERTERS
Measure to 18 GHz with counter accuracy Models 5251A, 5253B, 5254B, 5255A, 5256A

Advantages:

Retains counter accuracy
Up to 1 Hz resolution in 1 to 4 seconds counter gate time
Easy to operate-- has smooth, backlash-free, spuriousfree tuning and a level indicator
Cover do to 12.4 GHz with 2 converters (5254 B , 5255 A) ; to 18 GHz with 3 converters (add 5256A) Sensitivity is high and relatively constant
AC coupled input in most models
Frequency converters can increase the range of your $5245 \mathrm{~L} / \mathrm{M}, 5248 \mathrm{~L} / \mathrm{M}, 5246 \mathrm{~L}$ or 5247 M Counter to 18 GHz for CW signals. The stability and accuracy of the basic counter are retained in these higher frequency measurements because the converters use a multiple of the 10 MHz signal from the electronic counter crystal oscillator to beat with the signal to be measured. Operation of the equipment is simple and convenient permitting non-technical personnel to make frequency measurements up to 18 GHz quickly and ac. curately.

The basic measurement ranges of the counter are retained with the converter installed. Measurements to 50 or 135 MHz are obtained simply by moving the counter Sensitivity control off the "plugin" position and connecting the input signal directly to the counter input.

The AC coupled inputs of the $5251 \mathrm{~A}, 5253 \mathrm{~B}$, and 5254 B prevent $D C$ voltages which may be present along with the signal from affecting the measurement sensitivity or damaging the mixer circuits in the converter. The higher frequency AC coupled converters (5253 B and 5254 B) are unique in that the $A C$ coupling is integrated into the input circuit, so it behaves as a transmission line with good VSWR; this results in relatively constant impedance (and converter sensitivity) over the entire frequency range. Thus, performance of these higher frequency converters is better than if AC coupling were achieved by simply using a series capacitor. VSWRs of the 5255A and 5256 A are also excellent.

Models 5253B. $5254 \mathrm{~B}, 5255 \mathrm{~A}$, and 5256 A are cavicy. tured. Since constant bandwidth cavities are used, tuning peaks and dial "feel" (tuning peak spread) are the same over the entire dial.

Operation

The converter suberacts multiples of 10,50 , or 200 MHz (depending upon converter model) from the CW frequency to be measured and provides the difference to be measured by the counter. For example, if a frequency of 279.25 MHz is to be measured with the 5253 B , the operator tunes the converter dial upward until the converter Level Indicator shows an acceprable voltage level. This will occur at a dial reading (mixing frequency) of 270 MHz for a 279.25 MHz input. At this dial setting, the converter will subtract 270 MHz from the input signal and pass 9.25 MHz , which the counter will measure and display. The measured frequency is then the sum of the counter reading and the 52538 dial reacling.

Readout resoiution is 1 Hz with the counter gate time set at 1 second, 0.1 Hz at 10 seconds, 10 Hz at 0.1 second, etc. Counter gate time is automatically multiplied by 4 when the 5255A and 5256A are used. A technical article on the 5255A appeared in the Hewlett-Packard Journal, Sept. ' 66.

Model 5255A and 5256A

The $5256 A^{\prime}$ s high Erequency measuring range is unique in the microwave convester field. Previously, only transfer oscillators could make high accuracy measurements up to 18 GHz . Now, the 5255A and 5256A enable frequency measurements through X -band with greater speed, accuracy, and simplicity at comparable price.

The 5255 A or 5256 A can be used as a prescaler to extend the counting and direct readout range of the counter to 200 MHz . This is because the converters have an internal prescaler which divides both the 0 to 200 MHz heterodyne difference frequency and the counter's time base by a factor of four to achieve direct readout in M Hz on the 50 or 135 MHz counter. Prescaler input is available at the AUX IN port; inputs as low as 5 mV between 1 and 200 MHz are prescaled by 4 and displayed in MHz on the counter. 5254 B : 5255 A and 5256 A are also useful as down-converters; the heterodyne difference frequency is available at the AUX OUT port, so that microwave inputs can be beat down to $200 \mathrm{MHz} \max (5254 \mathrm{~B}, 50 \mathrm{MHz}$), for oscilloscope observation, etc. Similarly, by adding a detector at AUX OUT, the unies serve as receivers.

AUTO FREQUENCY DIVIDER Extends automatic counting range to 12.4 GHz Model 5260A

Advantages

Automatic measurement, 0.3 GHz to 12.4 GHz Direct readout, no calculations or offset Maintains counter accuracy Essentially constant 100 mV sensitivity

Automatic measurement and direct readout of an unusually wide range of $C W$ microwave frequencies can now be achieved using the HP Model 5260A with a suitable electronic counter. The 5260A divides input signals in the 300 MHz to 12.4 GHz frequency range by 100 or 1000 to provide an output signal in the 1 MHz to 12.4 MHz frequency range. Measurements are rapid and simple, with accuracy the same as for basic counter measurements, the frequency being displayed directly on the electronic counter. There is no ambiguity or offset, and no calculations are needed. Except for sclecting the proper division ratio, ALL TUNING IS AUTOMATIC AND NO ADJUSTMENTS BY THE OPERATOR ARE REQUIRED TO OBTAIN THE CORRECT OUTPUT READOUT.

Suitable Electronic Counters (No plug-ins required)

HP 5245 L or $\mathrm{M}, 5248 \mathrm{~L}$ or	HP 5246 L (see page 602)
M (see page 595,598)	HP 5244 L (see page 615)
HP M07.5245L or M,	HP 5247M (see page 601)

HP 5247M (see page 601)
M07.5248L or M
(see Option 02)
Measuring dc to 12.4 GHz
A system for rapid, automatic, direct readout of frequencies from ds to 12.4 GHz can be assembled by combining an HP 5245 L or $\mathrm{M}, 5248 \mathrm{~L}$ or $\mathrm{M}, 5247 \mathrm{M}$ or 5246 L Electronic Counter (dc to 50 or 235 MHz), 5252 A Prescaler Plug-in (dc to 350 MHz), and 5260A Automatic Frequency Divider (300 MHz to 12.4 GHz). It is only necessary to select the frequency range desired and read the electronic counter readout; no tuning or calculations are required. Note, however, that the 5252A Prestaler is NOT required for operating the counters from the 5260A. The 5252A Prescaler is only necessary for measurements from 300 MHz down to the top of the counter's basic range.

For theory of operation see HP Joumal, April ' 67.

Specifications

Range: 0.3 to 12.4 GHz .
Accurscy: retains accuracy of electronic councer.
Input sensitlvity; 100 mV rms (-7 dBm).
Input Impedance: 30 ohms nominal.

Input Vswh		
Fraq.	Typla!	Max.
0.3 .8 GHz	$1.2: 1$	$1.4: 1$
8.10 GHz	$1.4: 1$	$1.6: 1$
10.12 .4 GHz	$1.8: 1$	$2: 1$

Maxímum lnput: $\dagger 10 \mathrm{dBm}$.
Level Indicator: front panel meter indicates approximate input level, -10 dBm to $\div 10 \mathrm{dBm}$.
Division ratio: Front panel switch selects +100 (for use up to 1.2 GHz) or $\div 1000$ (from to 12.4 GHz) operation.

Input connector: precision Type N female.
Operation: completely automatic once the DIVISION RATIO switch is positioned.
Output frequency: 1/100 or $1 / 1000$ of input (1 to 12.4 MHz).

Output impedance: designed for so ohm (or higher impedance) load.
Output level: 0 dBm , nominal AGC .
Registration: input frequencies from 0.3 to 12.4 GHz are reeasured by measuring the 5260A output with a counter such as the HP S24SL or M, 5248L or M, 5247 MC , 9246 L or 5244Z, and suitabl: positioning the decimal point. Readout is direct with no offsen, ambiguicy, or arithmetic processing. See also Oprion 02, below
Measurement time: set by electronic counter gate time.
Power supply: 115 or $230 \mathrm{~V}=10 \%$, 50 to $60 \mathrm{~Hz}, 47$ watts (52 watts with Option 2). Other frequencies on special order.
Weight: net $29 \mathrm{lbs}(13,2 \mathrm{~kg}$) : shipping 33 lbs (15 kg).
Dimensions: $163 / 4^{\prime \prime}$ wide, $3.15 / 32^{\prime \prime}$ high, $163 / \mathrm{s}^{\prime \prime}$ deep ($425 \times 88 \times$ 416 mm).
Price: Model s260A Automatic Frequency Divider, \$3,700.
Options:

1. Amphenoi APC-7 Input Connector, add $\$ 25$.
2. Psovides 5260 A with circuitry such that, when used with the HP Model M07-5245L or M07.5248L or M Counter, the decimal point will be automatically positioned for readout in GHz , and the symbol "GHz" will appear in the counter's readout. Readout is inhibited and displays all, zeros unless an adequate input signal is present. Add $\$ 175$.

DIGITAL FREQUENCY METER Automatic Measurement to 12.4 GHz Model 5240A

FREQUENCY

Advantages:

Completely automatic operation in each range
No readout unless phase lock is established 8 digit rea dout with decimal point and units
BCD output with decimal point and units
Completely automatic measurement and direct readout of frequencies from 0.3 to 12.4 GHz can now be achieved with the HP Model 5240A Digital Frequency Meter. Even an unskilled operator can make fast and accurate measurements since no adjustments or calculations are needed to obtain the correct readout. The only front panel controls are Gate Time and Range switches and a Sample Rate control.

The s240A consists of an automatic frequency divider
(identical to the 5260A on the opposite page) and an integrated circuit counter in a completely self-contained unit. A bonas feature is that low frequency measurements from 10 Hz to 12.4 MHz can be made by using the counter section only.

Correct counting depends on having established phase lock, so the 5240A has been designed to automatically inhibit display and printer output until lock is obtained. This feature is especially useful in automatic systems to greatly reduce erroneous readings.

Time for phase lock acquisition is typically less than 100 ms. Signals with considerable AM and FM can also be accurately counted with this instrument.

Specifications

Automatic frequency divlder
Ranges: 0.3 GHz to 1.2 GHz and 1 GHz to 12.4 GHz .
lnput sensitivity: $100 \mathrm{mV}(-7 \mathrm{dBm})$.
Input impedance: so ohm nominal.
Input VSWR (type N or APC-7 connectors):

Frequency	Typical	Maximum
$0.3-8 \mathrm{GHz}$	$1.2: 1$	$1.4: 1$
8.10 GHz	$1.4: 1$	$1.6: 1$
10.12 .4 GHz	$1.8: 1$	$2: 1$

Maximum input: $\div 10 \mathrm{dBm}$.
Level indicator: front panel meter indicates approximate inpur level from $-10 \mathrm{dBm} t \mathrm{o}+10 \mathrm{dBm}$.
Input connector: type N precision feonale (APC.7 optional)
Operation: complerely auromatic afier RANGE switch is set.
Output frequency: 0.0 L or 0.001 of input available from rear panel BNC connecior.
Low frequency counter
Frequency measurements:
Range: 10 Hz to 12.5 MHz .
Gate times: $0.1,1.0 \mathrm{~s}$ (10 s a a aibable on special order)
Accuracy: ± 1 count \pm time base accuracy.
Readout: MHz or GHz_{z} with positioned decimal poine.
Self check: counts and displays 1 MHz for the gase time chosen.
Time base:
Crystal frequency: 1 MHz .
Stablity
Aging rate: <2 parts in $10^{\text {: }} p \in r$ month.
Temperature: <2 parrs in 10^{5} over the range $-10^{\circ} \mathrm{C}$ os $50^{\circ} \mathrm{C}:<20$ parts in 10° over the range $0^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Line voltage: i part in 10° for $\pm 10 \%$ change in line o oleage from 115 V or 230 V .
Output frequency: $1 \mathrm{M} \mathrm{Hz}_{2}, 2 \mathrm{~V}$ square wave inco $6 \mathrm{k} \Omega$ arail. able from rear panel BNC connector.
External time base: requires $1 \mathrm{M} \mathrm{Hz}, 2 \mathrm{~V}$ square ware into $1 \mathrm{k} \Omega$.

Signal input:
Coupling: ac.
Sensitivity: 100 mV rms.
Maximum input: 2 V ms
Impedance: 1 megohm shunted by 25 pF .
Remote resat: counter display and internal count reset in zern by grounding center of BNC connector on rear panel.

General:

BCD output: compatible with HP Models 562 A and 5050 B Digital Recorders with 8.4.2-1 " 1 " state positue. Printers can record decimal point and measucement units.
Output connector: Amphenol or Cinch Type 57.40500-375. HP part number 1251.0087, 50 pin, female. Maring connector Amphenol or Cinch Type $57.30500-375$, HP past number 1251 . 0086, 50 pin, male.
" 0 " state level: 0 V .
" 1 " state level: +5 V.
Impedance: $s k \Omega$, each line.
BCD reference leveis: ground; ti $V, 1 \mathrm{k} \Omega$ source
Print command: 1.5 V to 10 V step.
Hold-olf requirements:
Maximum: +15 V .
Minimum: \boldsymbol{T} J. SV .
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to 60 Hz .90 W .
Weight:
Net: $34 \mathrm{lbs}(16.8 \mathrm{~kg})$. Shipping: $30 \mathrm{lbs}(17,8 \mathrm{~kg})$.
Dimensions: $57 / 32^{\prime \prime}$ high, $163 / 4^{1 "}$ wide, $163 / 8^{\prime \prime}$ deep ($13.3 \times 424 \times$ 416 mm).
Accessory furnished: derachable power cord. $71 / 2$ feer (231 cm) long with NEMA plug.
Price: HP Model 5240A, sftso.
Option:

1. Amphenol APC. 7 Input Connector on high frequency inpul. add $\$ 25$.

FREQUENCY CONVERTER
Measure frequency to 15 GHz at counter accuracy
Model 2590B

Model 2590 B , in a single compact all-solid-state instrument, performs the functions of a transfer oscillator and a transfer oscillator synchronizer. (HP $540 \mathrm{~B}, \mathrm{p} .612$, is a transfer oscillator only).
By phase-locking an internal transfer oscillator to the signal frequency, Model 2590 B makes CW frequency measurements inherently equal to the accuracy of the external time base used, even on rapidly drifting signals. With the HP 5253B and 5245L or 5246 L complete coverage is provided from dc to 15 GHz with attainable accuracy as high as 2 parts in 10^{20}. Permanently phase-locked, the signal frequency's drift may be tracked continuously over long periods.

The 2500B automatic phase-lock is augmented by an automatic search oscillator, to simplify synchronization at system set-up. An automatic gain control eliminates input level adjustments. The instrument incorporates a precision FM discriminator and an envelope detector, for observation and accurate measurement of FM devjation, deviation cate and signal amplitude modulation.

FM and orher short-term frequency disturbances can be observed on an oscilloscope while phase-locked to the signal. For signals with carrier frequency sufficiently stable not to require phase-locking, accurate measurements of FM deviation and deviation rate may be made with the precision built-in distriminator. A separatc ourput from the envelope detector provides for oscilloscope observation and measurement of signal AM. in either FM or phase-locked operating modes.

The carrier frequency of pulsed signals can be determined to well within \pm f pars in 10° using the 2590 B with an oscilloscope. FM on the pulse can also be observed.

Specifications

Frequency range: 0.5 to 15 GHz . Optionally 121018 GHz .
Signal input: minimum level, rypically - -30 dBm at $0.5 \mathrm{GHz},-40$ dBm at 5 GHz , and -15 dBm at 13 GHz . With Option, -15 dBm from 12.4 to 18.0 GHz , ispical.
Lock-on range: $=0.15 \%$ minimum of signal frequency orer entire ransfer osciltator range. Track mode increases lock-range to
$\pm 0.35 \%$ of signal frequency at 240 MHz end of transfer oscillator range, decreasing to $\pm 0.1 \%$ at 390 MHz end.
Accuracy: \pm stability \pm resolution of measurement of transfer os. cillato: fundamental; stability, same as $10 \mathrm{~N} \cdot \mathrm{~Hz}$ reference supplied: resolution, ± 1 count at transfer oscilhator frequency, equiv. alent to 4.2 to 2.5 parts in 10^{3} with 1 sec counter gate or 4.2 to 2.5 parts in 10^{10} with 10 sec gate over 240 to 390 MHz range.

External reference: 10 MHz .0 .1 V min. into 90 obms.
FM measurement: discriminator characteristics when in FM mode: linearity (max. deviation from straight line through origin). better than $\pm 1 \%$ over bandwidth of $\pm 500 \mathrm{kHz}$, better than $\pm 5 \%$ over bandwidch of $\pm 2 \mathrm{MHz}$; video frequency response: 5 Hz to 1 MHz (3 dB points): center frequency, 30 MHz (nominal); sensitivity, $5 \mathrm{~V} / \mathrm{MHz}$ ($\pm 5 \%$); ourput impedance, 1.2 k ohm,

AM measurement: output, 200 mV p.p (nominal) for 100% modulation at 1 kHz ; frequency response, 30 Hz to 1 MHz , load impedance, 10^{d} ohms shunted by 12 pF max.
APC monitor: FAI on signal may be monitored when in APC op. erating mode; sensitivit; $\ddagger 2 \mathrm{~V}$ minimum for frequencr deviation of $\pm 0.25 \%$; deviation limits. APC mode can follow frequency deviations to full lock-on range at rates up to 100 Hz : above 100 Hz , deviation decreases at 6 dB /octave: impedance. measuring derice should have min. input impedance of 10^{5} ohms. shunt capacitance not greater than 150 pF .
Transfer osclilator: fundamental frequency range, 240 to 390 MHz : drifr, less than $5 / 10^{+}$per hour immediately after turn-on, less than $1 / 10^{5}$ per hour after 3 hours' operation (oscillator automatically corrected for drift in APC mode) : residual FN less (han 10 Hz rms; dial, $21 / 4$ " dia. calibrated in 5 MHz increments.
Power: $115 / 230 \mathrm{~V} \pm 10 \%$, 50 to 1000 Hz , approx. 35 W .
Operating conditions: ambient temperatures 0 th $55^{\circ} \mathrm{C}$, relative humidities to 95% at $40^{\circ} \mathrm{C}$.
Dimensions: $163 / 4^{\prime \prime}$ wide, $31 / 2^{\prime \prime}$ high, $16.5 / 16^{\prime \prime}$ deep behind panel ($426 \times 56 \times 414 \mathrm{~mm}$); instrument is fully enclosed for use on bench; may be mounted in 19" rack with side extensions to panel (furnished).
Weight: net 23 lbs ($10,4 \mathrm{~kg}$): shipping $30 \mathrm{lbs}(13,6 \mathrm{~kg}$)
Price: Model 2590B. $\$ 2150$.

TRANSFER OSCILLATOR Measure to 18 GHz with counter accuracy Model 540B

 FREQUENCY
USES:

Measure frequency to 12.4 GHz with the 540 B Transfer Oscillator plus an electronic counter.
Add a P932A Harmonic Mixer and measure frequency to 18 GHz .
Measure frequency of FM signals.
Determine FM deviation.
Measure signal frequency of pulsed signals.

The HP Model 540B Transfer Oscillator provides a straight. forward means of extending the frequency measurement range of many Hewlett-Packard Electronic Counters. It makes possible a completely flexible frequency measuring system for laboratory or industrial use. Adding the HP P932A Harmonic Mixer to the system further extends the frequency measuring range to 18 GHz .
The P932A mounts directly in the waveguide system and operates with the counter, mixing generated harmonics with the unknow'n microwave frequency. The mixer's beat frequency output is applied to the 540 B . The measuring procedure is the same as the procedure using the stoB's internal mixer.

The system's accuracy approaches that of the electronic counter on clean cw signals. On pulsed signals, accuracy is governed by carrier frequency and pulse length. On noisy or intense AM signals, the transfer oscillator system with the 5408 often provides the only means of accurate measurement. Overall system accuracy is greates than 10 times that of the best microwave wavemeters.
A direct-coupled reactance control circuit in the 5408 allows the oscillator to be locked at a sub-multiple of the measured frequency when it is desirable to measure automatically or record drift characteristics of microwave signal sources.

Model 540B may be used witle the folloring:
HP 5245L or M, 5248L or M, 5246L or 5247 M Electronic Counters with either a 5253A Frequency Converter or 5252A Prescaler. For greater versatility consider HP 5257A or 2590 B .

Specificałions

Frequency range: 10 MHz to 12.4 GHz .
Input signal: $<x^{\prime}, ~ F M, A M$ or pulse.
Input signal level: varies with frequency and individual crystals. (See chart, upper right.)
Accuracy: cr: approximately 1 part in 10° or better.

INPUT FREQUENCY - MHz; O REF $=1 \mathrm{~mW}$ into 50 ohms.

Oscillator

Fundamental frequency range: 100 MHz to 220 MHz .
Harmonlc frequency range: above 12.4 GHz .
Stability: $<0.002 \%$ change per minute after 30 -minute warm-up.
Dlal: six-inch diameter, calibrated in 1 MHz increments; ac. curacys $\pm 0.5 \%$.
Output: approximately 2 V into 50 ohms.
Amollfier
Gain: adjustable, to dB max.
Bandwldth: variable; high frequency: 3 dB point adjustable approximately 1 kHz to 2 MHz ; lorv frequency: 3 dB point switched from 100 Hz to below 10 kHz , then continuously adjustable to above 400 kHz .
Output: 1 V ems maximum into 1000 ohms.

Internal oscilloscope

Frequency range: 100 Hz to 200 kHz .
Vertical deffection sensitivity: 5 mV rms per inch.
Horizontal sweep: interral, power supply frequency with phase control, or external (connection at rear) with 1 V per inch, 20 Hz to 5 kHz .

General

Size: cabinet: $203 / 4^{\prime \prime}$ wide, $121 / 2^{\prime \prime}$ high, $1514^{\prime \prime}$ deep (527 x $318 \times 387 \mathrm{~mm}$) ; rack mount: 19 " wide. $101 / 2^{\prime \prime}$ high, $141 / 4^{\prime \prime}$ deep belrind panel $(483 \times 267 \times 362 \mathrm{~mm})$.
Weight: net $42 \mathrm{lbs}(19 \mathrm{~kg})$, shipping $51 \mathrm{lbs}(23 \mathrm{~kg}$) (cabinet) ; net $35 \mathrm{lbs}(15,9 \mathrm{~kg}$), shipping $48 \mathrm{lbs}(21,7 \mathrm{~kg})$ (rack mount).

Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ to 1000 Hz , approx. 110 W .
Accessorles furnished: 10503A Cable Assembly, \{' (1219 mm) long, BNC -to-BNC; a $6^{\prime \prime}$ jumper cable (BNC-toBNC) is included for use berween jacks on front panel.

Price: Model 540B (cabinel), $\$ 1150.00$. Model 5+0BR (rack mounted), $\$ 1150.00$.

Auxiliary equipment

5245L or M, 5248L or M, 5247M, 5246 L , M5-1.5245L Electronic Counters (pages 505 through 602).
5252A Prescaler (page 606).
5253B Frequency Converter (page 608).
Any suitable HP Oscilloscope.
P932A Miver, 12.4 to $18 \mathrm{GHz} . \$ 250$.

frEQUENCY

.
DC TO 40 GHz SYSTEM Versatile, accurate; uses standard instruments Model E40.5245L

Advantages:

Continuous coverage dc to 40 GHz
Wide phase lock range tolerates 0.1% FM, facilitates tuning
Calibrated local oscillator (l.o.) speeds measurements
High l.o. frequency avoids crowded lock points
Typical sensitivity -30 dBm
Adjustable i.o. power allow's optimizing sensitivity
Uses standard HP instruments-ach useful in many other applications
This versatile ds to 40 GHz frequency measuring system, which consists of standard HP instruments and a monitor tee, gives superior performance and easier operation than previously available special purpose microwave instruments, and the standard HP instruments are fully usable as general purpose instruments outside this system. Orners of some or all of these instruments can build up the system with a saving in initial cost, but with an investment in interconnection and checkout time.

A Model 5245L Counter and 5257A Transfer Oscillator measures do to 18 GHz . From 12 to 40 GHz , the HP 8690A Sreep Oscillator and H15-8692B Pluge in are the 2.4 GHz local oscillator of a second transfer oscillator (see Figure 1); an 8709 A Synchronizer phase locks it ro clean or heavily FM'd CW sig. nals. The monitor tee separates out the 20 MHz [F. For puised RF input signals the 8709 A is not required but an external oscilloscope is needed to display zero beat.
The system's high l.o. frequency ($2-4 \mathrm{GHz}$) spreads our lock points for easy tuning and permits measuring from 20 to to GHz using a harmonic number of 10 to facilitate calculation. The system can also measure CW signals to 1% accuracy using the 8690 A dial (without using the 5257 A).

The minimum inpur curve of Figure 2 is for 3 consecutive lock points being available across the entire l.o. band (two of these locks find the subharmonic of the unknown and the third is a check). When the input frequency is approximately known. only one lock point is required; then, a more practical sensitivity would be the absolute minimun curve. Sensinvity improves significantly if local oscillator power is adjusted while tuning for phase lock.

Specifications

12.4 to 40 GHz

Input signal capablity: CW signals. Signals with high FM conrent, Pulsed RF signals (using external oscilloscope).

CW measurement accuracy: ± 2 parts in 10° or better.
Input sensitlvity: betcer than -30 dBm at $12 \mathrm{GHz},-20 \mathrm{dBm}$ at 40 GHz . See Figure 2 for typical sensitivity.

Input impedance: 50 ohms nominal.
Maximum input: 1 mW .
Auto phase control lock range: better than 0.1% of inpur signal frequency.

Capture range: approximately 20% of Lock Range.
Lock indication: lamp turns of when system phase locks to CW or FM signals; meter indicates phase error.

VFO frequency range: 2 GHz to 4 GHz .

DC to 18 GHz

Specifications of HP 5245L Counter and 5257A Transfer Oscillacor apply (listed elsewhere in this catalog).

Price: E40-5245L System, approx. \$10,500 depending upon cabinets required.
Accessories available: the wareguide adapter needed to connect to the HP 11517A Mixer is govemed by user's waveguide system: HP 11520A Adapter ($26.5-40 \mathrm{GHz}$) , add 375. HP 11519A Adapter ($18-26.5 \mathrm{GHz}$), add $\$ 75$. HP 11518 A Adapter ($12.5 \cdot 18 \mathrm{GHz}$, add 575.

Figure 1. E40.5245L Systom.

Flgura 2. Typical sonslitivity using constant local oscimator power.

ELECTRONIC COUNTER
 50 MHz counting rate with 0.1 V sensitivity
 Model 5244L

 FREQUENCYThe HP 5244L Electronic Counter measures frequency, period, multiple period average, ratio and multiples of ratio with a maximum counting rate of 50 MHz . Rear connectors provide digital output in BCD form. Maximum sensitivity is 0.1 volt rms. The counter time base is a quartz crystal oscillator with an aging rate of less than 2 parts in 10° per month. Display storage provides a continuous display of the most recent measurenent. With the function switch in "Frequency," the "Sample Rate" control adjusts the time between gates from less than 0.2 second to at least 5 seconds.

Specifications

Frequency masurements

Range: 0 to 50 MHz , de input; 50 Hz to 50 MHz , ac input.
Input: 100 mV sensitivity; $100 \mathrm{k} \Omega / \mathrm{v}$ impedance.
Gate time: 1μ s to 10 seconds in decade steps.
Accuracy: ± 1 count \pm time base accuracy.
Readout: kHz or MHz with positioned decimal point: units an. nunciator in-line with digiral display.
Self check: counts 1 MHz for the gate time selected by tince base switch.
Period average measurements
Range: single period, 0 to 1 MHz : inultiple priod, 0 to 300 kHz .
Input: 100 mV sensiticiry; $100 \mathrm{k} \Omega / \mathrm{r}$ in!pedance.
Perlods averaged: 1 period to 10^{3} periods in decade steps.
Accuracy: ± 1 count \pm time base accuracy \pm trigger error.*
Frequency counted: single period. 10° to 1 Hz in decade steps: multiple period, $10^{4}, 10^{8}$ or $10^{4} \mathrm{~Hz}$.
Readout: s, nas, $\mu \mathrm{s}$ with positioned decimal point; units annunciator in-line with digital display.
Self check: gate time is $10 \mu \mathrm{~s}$ to 1 s : counts 100 kHz .

Ratlo measurements

Displays: $f_{1} / f_{\text {a }}$ times Period Average setuing-(Range of 1 in 10 ${ }^{5}$).
Range: $f_{1}: 50 \mathrm{~Hz}$ to maximum race of counter, $f_{2}: 0$ to 1 MHz in single period, 0 to 300 kHz in multiple period: periods aver. aged 1 to 10^{8} in decade steps.
Sensitivity: $f_{1}: 1 \mathrm{~V}$ ms from 100 Hz to maximum rate of counter, 2 V rms from 50 to $100 \mathrm{~Hz} ; 2500$ ohmi input impedance: $\hat{h}_{2}: 0.1 \mathrm{~V}$ rms, $100 \mathrm{k} \Omega$ input impedance.
Accuracy: ± 1 count of $f_{1} \pm$ trigger error* of f_{2}, where f_{1} is frequency applied to counting binaries (at Time Base Ext. jack) and f, is applied 10 decade dividers (at signal input jack).
Readout: dimensionless units with posicioned decimal.
Self chack: gate time is 10 us tol s: counts 100 kHz .

Time base

Crystal frequency: 1 MHz .
Stability:**
Aging rate: less than ± 2 parts in 10^{\prime} per manch. Temperature: less than ± 2 parts in 10° for a change from $+10^{\circ}$ to $50^{\circ} \mathrm{C}$. $=20$ parts in 10° for a change from 0° to $65^{\circ} \mathrm{C}$.
Line voltage: less than ± 1 pan in 10° for $\pm 10 \%$ line voltage change.

Output frequencles: 0.1 Hz to 1 MCHz in decade steps selected by Time Base switch.

General

Display: 7 digits in line with rectangular Nixieß iubes and display srorage.
Sample rate: time following a gate closing during which the gate may not be reopened is continuously variable in the frequency function from less than 0.1 second to 5 seconds. independent of gate time; display can be held indefinitely.
Signal input
Maximum sensitivity: 100 mV ms .
Coupling: ac or dc .
Impedance: $100 \mathrm{k} \Omega / \mathrm{V}$ ($10 \mathrm{k} \Omega$ at 100 mV), approximately, 40 pF on 0.1 V range, 15 pF on 1 and 10 V ranges.
Attenuation: step attenuator provides ranges of $0.1,1$ and 10 rolts.
Overload: dindes pratect input circuit up as 50 V rms on 0.1 roit range. 150 V ms on 1 •role range. 500 V rms an 10 . rolt range: 600 V dc tolerable.
Operating temperature range: $0^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}+$
Connectors: BNC type except for BCD output.
Output: 4-line 4.2-2-1 BCD with " 1 " state positive: 8.4-2.1 optional: " 0 " state: -8 rolts; " 1 " state: $\div 18$ volts; impedance: $100 \mathrm{k} \Omega$ each line; reference lerels: +17 rolts ($350 . \mathrm{nhm}$ source), -6.5 volts (1000 -0hm socree) ; print conmand: +13 rolis to 0 volt step, de coupled.
Hold-oth requiremant: $+i 5$ volts minimum, + IS volts maxi. mum from chassis ground, 1000 ohm source
Dimenslons: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $163 / 8^{\prime \prime} \operatorname{deep}(425 \times 140 \times$ 416 mm).
Weight: net 23 lbs ($10,4 \mathrm{~kg}$); shipping 35 lbs (16 kg).
Power: 115 or 230 volts $\pm 10 \%$, 50 to 60 Hz , approximately 80 watts (50 to 400 Hz operation, price on request).
Accessories furnlshed: 10503A cable assembly, 4 ft (1220 mm), male BNC connectors; detachable power cord $71 / 2$ ft (2270 mm) with NEMA plug: printed circuit board extender: rack adapter kit.
Price: HF 5244L. $\$ 1900.00$.
Options:

1. 8-digit registration, add 5100 .
2. 8-4.2.1 BCD ("I" stare positive) ourput (7.digit), add $\$ 10$.
3. 8.4-2-1 BCD (" 1 " state negative) outpur (7 -digit), add $\$ 10$.
4. 8-digir registration and 8-4.2-1 BCD ("1" state positive) output, add $\$ 110$.
5. 8-digit registration and 8-4-2-1 BCD (" 1 " state negative) output, add $\$ 110$.
RFI: The counter, modified to meet electromagnetic comparibility specification MIL-I-6181D, may be obeained by specifying HGo. 5244L. Add $\$ 350$.
"Trigger erfor tor sine a ave inple is $\frac{50.3 \% \text { of one period }}{\text { periods averaged }}$ for sizmals with -10 dB or more signal-to-noise ratio.
** The crystaf time base (better than $=3$ parts in 10^{6} pee 24 hours and better than 2 parts in 10^{10} rms with 1 second averaging which is used to the 3291 L

$\therefore-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ on special order or aith external time bise.

ELECTRONIC COUNTERS

Model 5325A

Advantages

Dual FET differential amplifer inputs
Differential Schmitt trigger circuits
Dual erigger level controls
Remote programming of all functions
Oscilloscope intensity markers
Measurement resolution of $0.1 \mu \mathrm{~s}$
Minimum $100 \mu \mathrm{~s}$ sample rate
BCD output with buffer storage
Readout blanking of undesirable zeros to left of count total Very lightweight

Uses:

Measure frequency
Measure time interval, period, period average
Count periodic and random pulses
Determine ratio and muliple ratio
With transducers, measure speed, How rate, and other physical variables
Scale input signals up to 10^{4}
Model 5325A Universal Counter is a general purpose 12.5 MHz instrument having dual, level adjustable, high impedance inputs.

Push-bution function switches instantly select the desired operating mode. The sample rate is variable from $100 \mu \mathrm{~s}$ to s s (including hold) for adjustment to optimim reaciout speed, and it includes buffer storage (print inhibis holds BCD transfer pulse) to bold information for external use.
Time base pulses are available as a rear panel connector, In start, the pulses are a scaled frequency equal to input a signal divided by the time base/multiplier switch setting.
In check, the 5325A counts its own 10 MHz for the gate times selected.

Dual channel inputs

The HP Model 5325A has dual channel, at or de coupled, level controllable differential inpur amplifers. Its unique differential Schmitt trigger circuits have a threshold band (error zone) of less than $: \mathrm{mV}$ to protect against false counting. Trigger level settings are. thus, clear cut and well defined for a count or no count, and undesired signals and noise below the trigger levels are rejected. These controls also select the start-stop points in time interval measurements. A three step attenuator changes the control range maximum in decades of ± 1 volt, ± 10 volts, and ± 100 volts. A separate/ common switch allows the inputs to operate from separate input signals or a single input signal. This design results in high stability, high sensitivity, and an input impedance of $1 \mathrm{M} \Omega$ shunted by only 35 pF .

Measurements

The 5325A measures frequencies from 0 to 12.5 MHz of either periodic or random signals. The counter's gate time is selectable in decade steps from $0.1 \mu \mathrm{~s}$ through 10 S with the decimal point and unics a a comatically displayed.

Accuracy of 5325A frequency measurements are excellent for its price class. A tast warm-up, oven stabilized, 10 MHz quartz crystal provides a dependable time base with an aging fate of less than 3 parts in 10^{\prime} per month. And the 10 s gate realizes a least significant figure of $\pm 0.1 \mathrm{~Hz}$.

Time interials of 0.1μ s to $10^{y} \mathrm{~s}$ can be measured with the 3325A. Rear panel BNC connectors furnish channel A and channel B marker pulses, 0.7μ s wide, for displaying and setting trigger levels with an oscilloscope or they may be used for actuating other circuits. A particularly valuable feature of the 5325 A for time interval measurements is the gate pulse, on a rear BNC connector, for intensifying on an oscilloscope the waveform segment between start-stop points.

The 5325A will measure the period of a single inpur cycle with a selectable resolution of $0.1 \mu \mathrm{~s}$ to 10 s for frequencies from dc to 10 MHz . Periods are fully displayed up to a 7 digit readout; e.g., $999999.9 \mu \mathrm{~s}$. When the count exceeds the number of digits in the readout an overfow lamp lights on the front panel.

The s325A offers period average measurements to reduce the effect of trigger error and \pm one count ambiguity. Periods averaged are selectabie from 1 to 10^{5} in decade steps for input rates from 0 to 10 MHz . Period average measurements result in higher accuracy ar low frequencies and faster measurements at high frequencies for equivalent resolution.
The 5325A offers frequency ratio measurements with a range of $0-10 \mathrm{MHz}$. For the ratio of two frequencies, $\mathrm{Fa} / \mathrm{Fb}$, the number of cycles of Fa that occur during a period of Fb are counted. The number of periods of Fb can be increased in decade seeps to $10^{\text {K }}$ periods for an increase in measurement accuracy. Decimal points are automatically positioned to give $\mathrm{Fa} / \mathrm{Fb}$, but no units are displayed since ratio is unitless.

Digital output and storage

The 5325A provides 4.line 1-2•4-8 output with ' 1 "' state positive. This output is suitable for systems use or ourput devices such as the HP Model 5050A Digital Recorder. The BCD output is stored after count so that peripheral equipment can examine this information while a new count is being made. This increased the overall speed of a measuring-rtcording system. Buffer storage on/off choice can be made with a rear panel switch.

Display storage provides a continuous display of the mos: recent measurement, even while the instrument is gating for a new coumt. The display changes only when a new count differs from the stored count. Storage may be switched off if desired.

Specifications input channels A and B

Range: dc coupled: 0.12 .5 MHz . ac coupled: $10 \mathrm{~Hz}-12.5 \mathrm{MHz}$.
Sensitivity: 0.1 V ims sine wreve.
0.5 V p-p pulse, 50 ns minimum pulse width.

Impedance: 1 MS shuated by 35 pF .
Maximum Input: 120 V rms ($<1 \mathrm{kHz}$) XI range

250 V rms	X 10 range
500 V ms	X 100 range

Overload level: 1.5 V ms X ATTENUATOR settings. Trigger level:

PRESET to trigger at 0 V , or adjustable:

$\pm 1 \mathrm{~V}$	X1 range
$\pm 10 \mathrm{~V}$	X 10 range
$\pm 100 \mathrm{~V}$	X 100 range

Trigger threshold band $<1.0 \mathrm{mV}$, teferred to input at 12.5 M Hz .
Slope: independent selection of positive or negative slope.
Channel inputs: common or separate lines.
Marker outputs: rear panel BNC. -12 V pulse, $0.7 \mu \mathrm{~s}$ width
(Marker A and B) $2 t$ start and stop of gate time.
Start
(Totalizing and scalling)
Frequency range: $0-10 \mathrm{MHz}$.
Function setting: START push button.
Factor: $1-10^{\prime}$ selectable in decade steps.
Input: channel A on front panel.
Output: rear pane! TINIE BASE BNC.
Display: channel A input divided by scaling factor.
Frequency
Ranga: 0-12.5 MHz.
Input: channel A.
Gate time: $0.1 \mu 5$ to 10 seconds in decade steps.
Accuracy: ± 1 count \pm time base accuracy.
Readout: MHz or kHz with positioned decimal point.

Time Interval measurement

Range: $0.1 \mu s$ to 10^{*} seconds.
Input: channels A and B; can be common or separate.
Thme base frequency counted: 10 MHz to 0.1 Hz selectable in decade steps.
Accuracy: ± 1 count \pm time base accuracy \pm trigger error. ${ }^{\text {a }}$
Readout: $\mu \mathrm{s}$, ms, seconds, or 10 's of seconds with posirioned decimal.

Perlod

Range: 0.10 MHz .
Input: channei A on front panel.
Frequency counted: 10 MHz to 0.1 Hz selectable in decade steps.
Accuracy: ± 1 count \pm time base accuracy \pm trigger error***
Readout: $\mu \mathrm{s}, \mathrm{ms}$, seconds, or $\mathrm{I} \mathrm{O}^{\prime} \mathrm{s}$ of seconds with positioned decimal.

Period average

Range: 0.10 MHz .
Periods averaged: 1.10^{x} selectable in decade steps.
Input: channel A on front panel.
Frequency counted: 10 MHz .
Accuracy: ± 1 count \pm time base accuracy \pm trigger error. ${ }^{*} \%$
Readout: ns, μs with positioned decimal.

Retio

Displays: $\mathrm{Fa}_{3} / \mathrm{Fb} \times$ Multiplier (M) $. \mathrm{M}=1$ through 10^{*}, selectable in decade steps.
Range: channel A $\quad 0.12 .5 \mathrm{MHz}$
channel B $\quad 0.10 .0 \mathrm{MHz}$
Accuracy: ± 1 count of $\mathrm{Fa} \pm$ trigger error of Fb .
Readout: dimensionless; positioned decimal point for number of periods averaged.

Time base

Crystal frequency; 10 MHz .
Crystal oven: self regulating solid-state type.
Stabillty:
Aging rate: less than 3 parts $\times 10^{\prime} / \mathrm{mo}$.
Temperature: $\leq \pm 2.5$ parts in $10^{\circ}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$.
LIne voltage: $\leq \pm 1$ part in 10^{\prime} for $\pm 10 \%$ line voltage variation.
Oscillator output: $10 \mathrm{MHz}, 1.0 \mathrm{~V}$ rms, 50Ω source impedance ar rear panel BNC.

External input: $\quad 1 \mathrm{MHz} \quad 1.0 \mathrm{~V} \mathrm{~ms}$
$2.5 \mathrm{MHz} \quad 1.0 \mathrm{Vmos}$
$5 \mathrm{MHz} \quad 1.0 \mathrm{~V} \mathrm{rms}$
$10 \mathrm{MHz} \quad 1.0 \mathrm{~V} \mathrm{~ms}$
Time base output: negarive pulses, +4 V to 0 V (open circuit), 100 ns wide. In all functions excepr START and RATIO, rate is 10 MHz divided by TINE BASE/MULTLPLIER switch setting. Available at rear panel BNC.
Scalling: TIME BASE/MULTIPLIER switch selects division of Channel A frequency in the START function. Available at TIME BASE connector.
Gate output: 0 V while gate open, +4 V while gare closed. Available at rear panel BNC.

General

Display: 7 digits; long-life neon digital display tubes.
Blanking: suppresses display of unwanted zeros left of the most significant digit.
Display storage: holds reading berween samples. Rear panel switch overrides storage.
Sample rate: FAST position: Continuously variable from less than $100 \mu s$ to approximately 20 ms . NORM position: Continuously variable from less than 20 ms to approximately 5 seconds. HOLD position: Display can be held indefinitely.
Reset: manual.
Overflow: front panel nean indicates when the display range has been exceeded.
Remote programming: all front panel controls are single line programmable except:
SEP.COM (separate-common) switch
Input Attenuators (see Option 01)
AC-DC Input Signal Coupling (see Option 01)
Measurement units and decimal poines are each single line pro. grammable
Connector mates with 50 -pin Amphenol $57-30500$ (HP 1251. 0086)

Control signal: single line control for each FLiNCTION. Control signal zero (0) volts de may be a contact closure to ground or electronic or TTL drive.
Digital output (for numerals only)
Code: 4-line 1-2.4-8 BCD, " 1 " state positive.

$$
\begin{aligned}
& \text { " } 0 \text { " state: }+0.25 \mathrm{~V} \text { at }-1 \mathrm{~mA}:+0.4 \mathrm{~V} \text { at }-5 \mathrm{~mA} \text {. } \\
& \text { "1" state: }+5 \mathrm{~V} \text { open circuir, } 2.5 \mathrm{k} \Omega \text { source impedance, }
\end{aligned}
$$ nominal.

Print command: +5 V to 0 V , dc coupled; occurs at end of gate.
Storage: buffer storage is provided so BCD ourput is constant while next measurement is being made.
Inhibit input: inhibits transfer of data to buffer storage when instrument's cycle time is less than time required for external equipment so interrogate BCD outpurs. Positive inhibit +5 V .
Chassis connector: special HP manufactured connector assem. bly. (See Accessories Available below.)
Connectors: all are BNC's except for Remote Programming (Cinch or Amphenol 57.40500-375) and BCD output.
Operating temperature: 0° to $50^{\circ} \mathrm{C}$.
Power requirements: 115 or 230 volis $\pm 10 \%, 50$ to $400 \mathrm{Mz}, 35$ watts maximum. Fast circuit breaker action with internal power reset switch prosects supply. Also resets when main power switch is tumed off.
Welght: net, $10 \mathrm{lb}(4,6 \mathrm{~kg})$; shipping is $\mathrm{lb}(6,8 \mathrm{~kg})$.
Accessories furnished: power cord, $71 / 2$ it HP 10503A, 50Ω BNC to BNC cable, $4 \mathrm{ft} .(122 \mathrm{~cm}), 2$ each. Rack mount kit with P.C. extender board.

Price: $\$ 1,300.00$.
Dimensions: $163 / 4$ " (429 mm) wide, $111 / 4^{\prime \prime}$ (286 mm) deep, $318 / 92^{\prime \prime}(88.2 \mathrm{~mm})$ high.
Accessories avallable: HP Cable $10513 \mathrm{~A}(6 \mathrm{ft}, 183 \mathrm{~cm})$ to con. nedt to HP 5050A Digital Recorder, Price, \$65.00.
Option 01: remorely programmable attenuator switch and ac/dc switch. Price: \$75.00.

[^62]
ELECTRONIC COUNTERS
 Versatile universal counters to 2 MHz

Models 5223L, 5233L

Advantages:

Trigger level controls usable in all functions
Bench or rack use, $31 / 2^{\prime \prime}$ panel height
Completely solid state design
Versatile, yet easy to operate
More accurate low-frequency measurements with multiple period averages
Low-level measurements without accessories; 0.1 Volt sensitivity

Coupling ac or dc
Display storage

Uses:

Measure frequency
Count periodic or random pulses
Measure period, period average, time interval Determine ratio and multiples of ratio
With transducers, measure speed, flow rate. other physical variables
Scale inputs
Models 5223L and 5233L are universal electronic coun. ters. They measure time interval, frequency, period, multiple period average, ratio and multiple catio. The 5223L provides a maximum counting rate of more shan 300 kHz and 5 -digit resolution, and the 5233 L provides a maximum counting rate of more than 2 MHz with 6 -digit resolution. Both instrument readouts ase in-line displays of rectangular digital tubes.

AC and DC coupling

The 5223L and 5233L ofier ac and de coupling. De coupling allow's accurate crigger point definition.

With the ac-coupled input, triggering responds to an average de level. Therefore. the trigger point may change
with wave shape and repetition rate. This situation is not significant in most frequency measurements since only the number of zero crossings are counted. However, if a pulse of large amplitude and duration is followed by a pulse of small amplitude and duration, the trigger may miss the small pulse, if circuit time constants are such that the average de level does nor have time to cecover. This would be a serious imitation in nuclear work, where counted pulses are random in amplitude and width. Also the variability of trigger point with reperition rate and wave shape (produced with ac coupling) is an important source of error in time interval measurements -the actual trigger point is alrays in doubr. For instance. triggering may be at a point of low slope near the top of a pulse where noise can cause appreciable error.

Optimum trigger point definition

Both the 5223L and 5233L feanure two identical input channels. Either separate or the same signals may be used to start and stop the count; the time interval measured may be selected between any desired points on either signal. Input channel controls allow selection of the slope, amplitude and polarity of the trigger voltage for all other measurement functions, as well as time interial.

Any input amplifier drift or noise will add to the trigger ambiguity'. The effect of this internal noise becomes increasingly apparent as the input signal-to-noise ratio decreases. Consequently, to improve precise measurements, each input channel of the 5223L and 5233L has been designed to minimize amplifier drift and noise. In these instruments the amplifier noise referred to the input is typically less than 100 microvoits.

The input amplifiers also possess a wide dynamic range such that the input signal peaks can exceed 10 times the high. est level control adjustment without changing the do level. For example, on the X 1 attenuator position, peaks consider. ably beyond 10 Volss do not alter the zero crossover point.

	5223L Electronic Counter	52331 Electronic Counter
	Range：de coupled； 0 to more than 300 kHz ；ac coupled： 10 Hz to more than 300 kHz ． Impodince：approx．i megohm， 80 pF shunt． Sensitulty： 0.1 V pms sine wave； 1 V pulse， 1 us min．width． Trigger level：-100 to +100 V ，adjustable，either positive or negative sfope；indepeodent controls on cach channel． Chanmel haputs：Common，Separate．Check． Marker output：avajiable at rear panel for oscilloscope iatensty modu． lation to mark trigser points on input waveform；>1 us duration and -15 V peak．	Range：dc coupled： 0 to more than 2 MHz ac coupled： 10 Hz to more than 2 MHz ． Impedance：spprox．I megobm． 80 pf shune． Sensitivity：0．IV rms sine wave： $1 V$ pulse， $0.2 \mu \mathrm{~s}$ min．width． Trigger level：-100 to +100 V ，adjustable eithes positive or nega． tive slope：independent controls on each channel． Channel inputs：Common，Sepatate，Check． Marker output：available ar fear panel for oscilloseope intensity modu－ lation to mark trigger points on idput waveforms； 1 us dueation and－15 V peak．
	Range： $10 \mu \mathrm{~m}$ to $10^{\circ} \mathrm{s}$ ． input：Channels A and B． Accuracy：＝1 count $=$ time base accuracy＝trigger error．＊ Reads fn：ms or s with positioped decimal． Measuroment sme from A to B． Self checkt period self check below applics，when icvels and slopes of both chamnels arc identical．	Range： $10 \mu \mathrm{~s}$ to $: 0^{7} \mathrm{~s}$ ． input：Channels A and B． Standard Prequency counted： 1 MHz to 0.1 Hz in decade steps or ex． rernal frequency 100 Hz to 1 MHz ． Aceuracy：$=1$ couns $=$ vime base accurscy $=$ trigger error．＊ Reads ini ms or xith positioned decimal． Measurement：time from A to B ．
突	Ranges 0 to $>300 \mathrm{kHz}$ ． Input：Channel A． Accuracy：$=2$ count x ume base accuracy． Reads In： kHz or MHz with posikioned decimal． Gate time： $10 \mu \mathrm{~s}$ to 105 in decades． Self check：counts 100 kHz for the gate time chosen by time base selector．	Range： 0 to $>2 \mathrm{MHz}$ ． Input：Channel A ． Accuracy：$=1$ count $=$ time base accuracy． Reads ln：$k H z$ or MHz with positioned decimal． Gate tima： 1μ s to 10 s in decades． Self eheck：counts 1 MHz for the gate time chosen by time base selector．
－	Range： 0 to 100 kHz ． input：Channel A ． Accuracy：± 1 count $=$ time base accuracy $=$ crisger eerur．＂${ }^{\text {＂}}$ Reads ini μ or ms with positioaed decimal． Frequenicy counted： 100 kHz to 0.1 Hz in derade seeps． Self check：gate time is 1 s ．frequeacy counted is 0.1 Hz to 100 kHz as selected by time base switch．	Range： 0 to 100 kHz ． Input：Channel A． Accuracy：$=1$ counk $=$ time base accuracy $=$ etigger enroc ${ }^{* *}$ Reads ins fins or with positioned decimal Frequency counted： 1 MHz to 0.1 Hz in decade seeps． Solf chock：pate time is 1 s：frequency counted is 0.1 Hz to 1 MHz as selected by time base switch．
\％ 0 0 0 0 0	Range： 010500 kFz ． Input：Channel A ． Accuracy；$=1$ count $=$ time bise accuracy $=$ trigger crios．${ }^{* *}$ Reads Int us or ms with positioned decimal． Frequency counted； 100 KHz ． Perlods averaged： 10 to 10^{n} in decade steos． Solf checki gale jime is $10 \mu \mathrm{~s}$ to 10 s （ 1 to 10^{0} periods of ： 00 kHz ）： counts 100 kHz ．	Range： 0 to 2 MHz （multipie period）．o to $1 \mathrm{MHz}(X 10)$ ，o to 100 kHz （X1）． Input：Channel A． Accurscy：$=1$ count $=$ time base accuracy $=$ teinger ertor ${ }^{*}$＊ Reads int ps or ns with positioned decimal． Perlods averaged： 10 to 10° in decade steps． Froguancy counted： 1 MHz Self check：gate time is $10 \mu \mathrm{~s}$ to 10 s （ $10 \mathrm{ta} 10^{\circ}$ periods of 1 MHz ；； couns I M／hz．
－	Range：Channel $A\left(F_{\Delta}\right): 0$ to above 300 kHz ；Channes $\mathrm{B}\left(F_{\mathrm{n}}\right): 0$ to 300 kHz （X10 to X10 ${ }^{\circ}$ ）， 0 to 100 KHz （Xi）． Input：Channels A and B ． Measures：$\frac{F_{\lambda} \text {（wultiplier）}}{F_{D}}$ Reads：$\frac{F_{A}}{F_{B}}$ or $\frac{1000 F_{A}}{F_{B}}$ ，dereading on multiplier setting． Accuracy：$: 1$ count of $F_{A}=\frac{\text { trigger error of } F_{11}}{\text { mulriplier retting }}$ Multsplier： 1 to 10° in decade steps． Self chack：couns 100 kHz for 10 ks to 10 s depending un multi． plice selting．	Renge：Channel A（ F_{A} ）： 0 ro more than 2 MHz ：Channel $\mathrm{B}\left(\mathrm{F}_{4}\right)$ ： 0 co 2 MHz （multiple period）． 0 to 1 MHz （X10）． 0 to 100 kHz （X1）． Inputi Chamels A and B ． Messures：$\frac{F_{1} \text {（multiplief）}}{F_{g}}$ Reads：$\frac{\mathrm{J}_{\lambda}}{\mathrm{F}_{\pi}}$ ，,$\frac{1000 \mathrm{~F}_{\mathrm{B}}}{\mathrm{F}_{\mathrm{R}}}$ ，depending on mulesplier setting． Accuracy：$=1$ coune of $F_{A}=\frac{\text { rigget etror of } F_{B}}{\text { multidici settin }}$ Multiplier： 1 to 10° in decade stsps． Self check：counts 1 MHz for $10 \mu 5$ to 10 s ．depending on multiplier setting．
	input：Channe！A． Multipilar：prescales input of Channel A in decades， 1 to $10^{\text {n }}$ ． Totalize：periodic events at rates to more than $3 \times 10^{3 /} / \mathrm{s}_{\text {；}}$ random cyents with pulse spacing of $3.3 \mu 5$ or more．	Input：Chinnel A． Muttlofler：prescales input of Channel A is decades， 1 to 100° ． Totalize：periodic events at rates to more than＇ $2 \times 10^{\prime \prime} / s$ ；random cvents with pulse spacing to 0.5 ps or less．
	Frequency（Internal）： 100 kHz ． Stabillty：aging rate：＜＝2 parts in $10^{9} /$ week；as a lunction of lioe volt－ age：＜！part in 10° loe 10% cbaness in line；as a function of ambient temperature：$<=20$ parts in $10^{8}\left(+15^{\circ} \mathrm{C}\right.$ to $\left.+33^{\circ} \mathrm{C}\right)$ ．© 100 parts in $10^{\circ}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+69^{\circ} \mathrm{C}\right)$ ． External Inputi sensitivitg： 1 V rms，sine wave into 1 K ohm；ranse： 100 Hz to 300 kHz ，sine wave． Outputs，rear panel Osclifator： $100 \mathrm{kHz}, 1 \mathrm{~V}$ peak to peak，open circuit：time base （separare BNC coanector）： 0.1 Hz 10100 kHz in decade sceps． 9 V peak open eircuit， 1 as width： 1000 －ohm source；2vailable in Period．Time Interval，and Manail without reset interruptions，	Frequency：（internal）： 1 MHz ． Stability：aging rate：＜ 2 parts in 10^{9} per month：as a function al line voleage＜$=1$ part in 10° for chasers of $=20 \%$ ：is a function of ambi． ent temperature：＜$=2$ parts in $10^{6}\left(+10^{\circ}\right.$ io $\left.+50^{\circ} \mathrm{C}\right),=20$ parts in 10° $\left(0^{\circ} 10+65^{\circ} \mathrm{C}\right)$ ． External Inperti rage： 100 Hz to 1 MHz ，sine wave：sensituvity： 1 V rar above $1 \mathrm{kHz}: 2 \mathrm{~V}$ e⿴囗十心． 100 Hz to 1 kHz ， Outpuls，rear panel Oscillators $1 \mathrm{MHz}, 3 \mathrm{~V}$ p．p：time base（separatc BNC connector）： 0.1 Hz to 1 MHz in decade steps， $\mathrm{s}^{\mathrm{V}} \mathrm{P} \cdot \mathrm{P}, 6000 \mathrm{bro}$ source；avail． able in Period，Time Interval，and Manual without reset inter． reptions．
苞	Range： 0 to 300 kHz ． Functlon settling：Manual． Input：Channel Factor：by decades up to 10° ． Output：feaf panel in place of time base oucput frequencies．	```Range: 0 to >2 MHz. Function seltIng: Manusk. Input: Channel A. Factor: by decades up to 10:. Output: rear pancl in place of time base outpu: frequencies; V p.p from 600 0has.```
	Printer ousput Output：fline $i-3-2 \cdot 1$ BCD， 100 k each line：＇ 0 ＇seate luvel． approx．$-28 \mathrm{~V}^{\prime 2}$＂1＂state level：-2 V ． Relerence levals：approx．-2.4 V， 350 －ohm source ieppedance． and $-26.9 \mathrm{~V}, 1000-0 \mathrm{hm}$ source． Print commarid：+28 V step from $2700.0 h m$ source in series with 100 DF ． Hold－aff requirements：chassis ground to +12 V maximum． Registrathon： 3 long life rectangular digital tubes with display storage． Sample rate：time folloxing a pate closing during which the gate may not be reopened is continuously variable from less than 0.2 s $10 ~ 5 s$ ． independent of gate time；display can be held indefinitely． Salf cfieck：in all function and wulciplier posizions． Operating temperature range：$-20^{\circ} \mathrm{C}$ to $+69^{\circ} \mathrm{C}$ ． Power： 115 or $230 \mathrm{~V}=10 \%$ ， 90 to $60 \mathrm{~Hz}^{* * *}$ ： 40 wixts． Dimensions： $163^{\prime \prime}$ wide． $3.15 / 32^{" 4}$ high， $111 / 4^{\prime \prime}$ deep（ $425 \times 86 \times$ 299 mal． Welght：nei 16 lbs（ $7,2 \mathrm{~kg}$ ）；shapping 22 lbs（ 10 kg ）． Price：Model 5223L， 51323.00 ， Option O2．： 1.2 .4 .8 BCD output（＂1＂state positive），in lien of 2－2．2－4 BCD ourput，add $\$ 10 . \dagger$	Prlnter oulput Output：f－line $4: 2.2 .1 \mathrm{BCD}, 100 \mathrm{k}$ cach lime：＂ O ＂state level： approx．-8 V：＂＇1＂state level：approx． 18 V ． Reference evevels：approx．$-13 \mathrm{~V}, 900$ ohm source impedanse，and approx．-3 V． 1200 ohm source impedance． Print command：+28 V step， 2700 －ohm source impedance： 1000 pF in serics． Hold－off requirements：from th V to -20 V ． Reglstratlan： 6 long tife rectangular digutal tubes with display storage． Measurements yniti suia resdout for frequency．period．Deriod a ver－ age，and tirae interval with positioned decimal point． Sample rate：time foilowing a gate closing during which the rate may not be reopened is continousty variable（rom less than 0.2 s to 5 s：independent of gare tirac；displiy can be held indefinitely． Self check：in all function and multiplier positions． Operattng temperature range： $0^{\circ} \mathrm{C}$ ． $60-65^{\circ} \mathrm{C}$ ． Dimenslons： $16^{3 / 4}$＂＇de． 3 －15／32＂high， $11^{\prime} / /^{\prime \prime}$ deed（ $525 \times 86 \times$ 285 mm ）． Welght：net $19 \mathrm{lbs}(8.5 \mathrm{~kg})$ ；shipping 24 lbs （ 11 kg ）． Price：Model 5233L， 51675.00 ． Option 02．：2．2－4．8 BCD output in lieu of 1．2．2．4 BCD，add $\$ 20.1$
 \therefore Line freguency limie imposed by cooling lan．ioption 03．－same 2s 02，except＂ 1 ＂state negative，add sio．		

Advantages:

High count rate al low price
Compact, rugged, lightweight
Blanking of insignificant zeros
Crystal controlled gate in some models
BCD output is siandard in some models
These four HP counters make extensive use of integrated circuits resulting in instruments which are lightweight, compact, reliable in service, and low cost. They feature a greater frequency range and more measurement versatility than were formerly available in low-cost counters. All fous counters have a sinusoidal frequency measurement range of $\$ \mathrm{~Hz}$ to 10 MHz . Minimum input sensitivity over this cange is 100 mV with an input impedance of 1 Ms shunted by 30 pF . Pulses can be counted at repetition rates over this range and at any lesser rare. Longlife neon digital display tubes provide a bright and very legible readout.
Use of integrated circuits in these counters made possible the incorporation of sophisticated display and storage features nor susually found in such low cost instruments. Readout storage provides a continuous display of the most recent measurement which is beld even while the instrument is gating for a new count. The display changes only if the new count differs from the old. A unique blanking feature suppresses the display of all unvanted zeros to the left of the count total. Blanking and display scorage can be disabled with a rear panel soritch. Mode's 52218 and $5321 B$ have, in addition. $B C D$ output in the $8.4-2.1$ code.

A sample rate control sets the length of time between counts. It is adjustable from approximately 50 ms to s s , and is independent of gate time. A hold position allows the display to be held indefinitely. All four counters include a check function where the counter counts its own time base for time interval measurements and for reassurance of proper operation of the instrument

In electrical design, Models 5221A and 5321A are identical; and Model s22iB is electrically the same as Model 53218 . For each of these versions there are available tro types of cabinets. Models 5221A and 5221B are housed in HP's standard $1 / 3$ width module enclosures, while Models 5321A and 53218 are housed in HP's standard $1 / 2$ width nodule enclosures. Thus. they may be mounted in a variety of combinations using the HP 5060 Series of adapter frames, filler panels, and accessory dratwers (refer to Modclar Enclosure Systems in this caralog) Up to four units may be installed in a single adapter frame.

The lower cost 5221A/5321A Counters make frequency and time interval measurements using the porver line frequency as a time base. A crystal time base is optional. For frequency, gate times of 1 s and 1 s are available, and with the gate open. input pulses are totalized. Time interval is measured by controlling gate time externally at a reas panel connector.

Models 5221A and 5321 A include a 4 .digir display as a standard feature. When the count is higher than can be totally displayed, the readout is the 4 least significant figures. Optional displays of 5 and 6 digits are offered. With the 1 s time base for 4,5 , and 6 digits respectively the maximun) frequencies for full display are $99.99 \mathrm{kHz}, 999.99 \mathrm{kHz}$, and 9.99999 MHz .

Models 5221 B and 5321 B Counters include a high quality room temperature quartz crystal time base with an aging cate of less than 1 part in 10^{3} per month. Also featured are a cali. brated 3 -decade sensitivity switch and selectable gate times from 01 s to 10 s for frequency measurements. Also the gate

: may be opened and closed manuslly for watizing inpec pulses. Time interial is acasured by conerolling gate time exteroally at a rear panel conncctor. The ratio of tero frequencies may be measured: a switch replaces the intemal time base "rt! the external signal source for gate control, inscrted at the rear paacl. The gate selector divides this external time base signal in decade seeps of $10^{2}, 10^{\circ}, 10^{\prime \prime}$, and 10°.

Models 52218 and 5321 B include a 9 -digit display as stand. afd with the option of a b-digit display. With 01 s gate time and the standard s-digits the instranents will display the count fully up to 10 MHz with a 100 Hz sesolution. A 6 -digit display and 1 s gate time will give the full count up to 10 MHz at a 10 Hz resolution

H01-5321A

Measures high frequencies at minimum cost; e.g. monitors frequency of HP 8601A, a 0.1 to 110 MHz generator/sweeper with a divided by 10 ausiliary output. It is sinilar to the 3321 A with Option 02 and Option 03 with the following exceptions: guaranteed io count to 11 MHz ; gate ciries of .015 and 1 s . and rear panel BNC paralleled rith input ionocctor. Price: $s 70 s$.

K01.5221A to K04-5221A

These are counter boards for built in use. Models K01.5221A, K02.5221A, and K03.5221A are identical to the main board used in the s221A/5321A Counter aith 4, 3, and 6 digit dis. plays, respectively. The same features are offered exiepe for off-board conerolling switches, controls, and input amplifier. Required inputs to the single printed hoard connector are: input signal to be counted between $\div 3 \mathrm{~V}$ and +5 V amplitude. 40 ms mininum pulse width. less than 10 ns rise and fall times; 5.1 V de a $750 \mathrm{~mA}, 170 \mathrm{~V}$ de at 1.5 mA for display tubes; $9 \mathrm{~V}^{\mathrm{r}}$ rms at 60 Hz for the time base.

Model K04.5221A input anplifice boand gives the same input characteristics as the 5221 A Counter lur the above counter boards. It climinares the need for preshaping input signals and provides a $1 \mathrm{Min}, 30 \mathrm{pF}$ inpur impedance.
Prices: K01.5221A $\$ 300$
$\begin{array}{lr}K 02.5221 A & \$ 350 \\ K 03.5221 A & \$ 400\end{array}$
K04-5221A $\leqslant 30$

Specifications

Models 5221A, 5321A

Frequency measurement
Range: 5 Hz to 10 MHz .*
Input: 1 V rms max. sensitivity: $1 \mathrm{M} \Omega / 30 \mathrm{pF}$.
Gate time: 1 s and 0.1 s derived from 60 Hz line frequency.
Accuracy: ± 1 count \pm power Line frequency accuracy. (line frequency accuracy is typically. better than 0.1% for commercial power in the U.S.)
Time interval measurement
Range: 1 to 9999 counts at $1 / 60 \mathrm{~s}$ each ($1 \mu \mathrm{~s}$ with Opt. 03).
Input: with GATE SELECTOR switch in OPEN, grounding EXTERNAL GATE BNC connector closes gate
Frequency counted: 60 Hz (1 M Mz with Opt. 03).
Accuracy: ± 1 count \pm time base accuracy \pm accuracy of external gate control signal.
Readout: multiply reading by 16.7 for ms interval.
Reset: press front panel RESET switch to reset counter to zero alter each reading.
Time base: 60 Hz power line frequency.

General

Display: 4 digits (5 and 6 available) with display storage, and automatic blanking of leading zeros. Rear panel switch disables blanking and display storage.
Sample rate: 50 ms to at least S . Automatic or manual reset.
Signal input
Sensitivity: . 1 V rms sine wave maximum sensitivity from 5 Hz to 10 MHz .
Pulses; 300 mV peak voltage (internal control adjusts for positive or negative pulses); 50 ns minimum pulse width.
Impedance: approximately $1 \mathrm{M} \Omega$ shunted by 30 pF .
Attenuation: continuous attenuator on front panel for counting from 100 mV to 250 V ms (approx.). Overload: at maximum sensitivity, input should not exceed 3.5 V rms to retain rated input impedance. Damage leve! is 15 V rms maximum sensitivity and 250 V rnss at minimum sensitivity.
Self check: counts power line frequency (crystal frequency with Option 03).
Operating temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power requirements: 115 or $230 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 12 \mathrm{~W}$ max.
Welght: net $51 / 4 \mathrm{lbs}(2,4 \mathrm{~kg})$; shipping $73 / 4 \mathrm{ibs}(3.5 \mathrm{~kg})$.
Accessories supplled: $71 / 2$ feet (231 cm) power cord. HP $10503 \mathrm{~A}, 4$ feet (122 cm) , 50Ω BNC to BNC cable.
Price: HP Model 5221A, $\$ 425$: 5321 A, $\$ 425$.
Dimensions:
5221 A: $51 / 8^{\prime \prime}(130 \mathrm{~mm})$ wide, $6382^{\prime \prime}(155 \mathrm{~mm})$ high, $8^{\prime \prime}$ (203 mm) deep. 5321A: $73 / 4 "(197 \mathrm{~mm})$ wide. $3^{\prime \prime}(76 \mathrm{~mm})$ high, $11^{\prime \prime}$ (279 mm) deep.

Options

01 ; 5-digit display, add $\$ 75$.
02: 6-digit display, add $\$ 125$.
03: 1 MHz crystal time base (same as $5221 \mathrm{~B} / 5321 \mathrm{~B}$), add $\$ 100.00$.
10: 50 Hz operation, add $\$ 25$.

$5221 \mathrm{~B}, 5321 \mathrm{~B}$

Frequency measurement

Range: 5 Hz to 10 MHz . *
Input: .I V rms sensitivity; $1 \mathrm{M} \Omega / 30 \mathrm{pF}$.
Gate time: rotary switch; . 01, 1, 1,10 seconds.
Accuracy: ± 1 count \pm time base accuracy.
Readout: 5 digits; 6 digits (Option OI).
FSinusoidal signal range for rated sensltivity. Pulses can be counted over thils range and al any lesser repotition rate.

Ratio measurement

Displays: $M \times f_{u} / f_{b} ; M$ can be $10^{\dagger}, 10^{5}, 10^{4}, 10^{\circ}$.
Range: $f_{s}: 5 \mathrm{~Hz}$ to $10 \mathrm{MHz} \mathrm{f}_{\mathrm{b}}: 1 \mathrm{kHz}$ to 1 MHz .
Sensitivity: $f_{n}: 0.1 \mathrm{~V} \mathrm{rms} / 1 \mathrm{M} \Omega ; f_{0}: 1 \mathrm{~V} \mathrm{rms} / 1 \mathrm{k} \Omega$.
Accuracy: ± 1 count of $f_{d} \pm$ trigger error of f_{b}.
f_{b} applied to EXT. TIME input on rear panel. f_{m} is a pplied to INPUT on front panel.

Time interval measurement

Range: $5 \mu \mathrm{~s}$ to 99,999 $\mu \mathrm{s}$ (5 digits), 5 to $999,999 \mu s$ (6 digits).
Input: with GATE SELECTOR switch in OPEN, grounding EXTERNAL GATE BNC connector closes gate.
Frequency counted: 1 MHz .
Accuracy: $\div 1$ count \pm time base accuracy \pm accuracy of exrernal gate control signal.
Readout: time interval in $\mu \mathrm{s}$.
Reset: press front panel RESET switch to resel counter ro zero after each reading.

Time base

Crystal frequency: 1 MHz .
Stablity: aging rate: $\langle 1|$ part in $10^{\delta} /$ month; Temperature ± 3 parts in $10^{3}\left(0^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right) \pm 5$ parts in $10^{\circ}\left(10^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}$): Line Volrage: $< \pm 1$ part in 10° for $\pm 10 \%$ variation in line voltage.
Output frequencies: $1 \mathrm{MHz}, 3 . \mathrm{V} \mathrm{p} \cdot \mathrm{p}$ open circuit, 100Ω.
External ingut: sensitivity: 1 V cms into 1 ks (10 V rons max).
Range: i kHz to 1 MHz .
General
Display: 5 digits (6 optional). Display storage and blanking are standard. Rear panel switch disables both
Sample rate: 50 ms to at least 5 s , automatic or manual reset.
Signal input: sensitivity: 0.1 V rms sine wave from $5 \mathrm{H}_{2}$ to 10 MHz . Stepped atienuator on front panel (.1, 1, 10 V rms) permits counting from 0.1 V to 300 V rms (approx.) : Pulses: 3 V p-p voltage: internal adjustment for + or pulses; 50 ns min. pulse width. Impedance: $1 \mathrm{M} \Omega$ shunted by 30 pF .
Overload level: input not to exceed 100 cimes attenuator setting to retain input impedance. Damage level: $15 /$ $300 / 300 \mathrm{~V}$ at attenuator setrings of $0.1 / 1 / 10 \mathrm{~V}$.
Self-check: counts 1 MHz for selected gate time.
Digital output: code: 8-4.2-1 "1" level positive; " 0 " Level: 0 V open circuit, $5.1 \mathrm{k} \Omega$; "1" Level: 5 V open circuit, 7.6 $k \Omega$; Reference Levels: Ground, +5 V. Print Command: Step from 5 V to 0 V , de coupled; 5 kn at s V . Hold-off Requirements: $>2 \mathrm{~V}$ dc inhibits gate opening; $56 \mathrm{k} \Omega$.
Chassis connectors: special HP-manulactured 36 -pin connector consisting of: 1 each HP part Nos. 1251.0334 and 1251-1115; 2 each 10513 - 1001 .
Operating temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power requisements: 115 or $230 \mathrm{~V} \pm 10 \%, 50-400 \mathrm{~Hz}, 17$ W max.
Weight: net $5.5 \mathrm{lb}(2.5 \mathrm{~kg})$; shipping, $8 \mathrm{lb}(3.6 \mathrm{~kg})$.
Accessoribs furnlshed: power cord $71 / 2$ feet (231 cm) long. HP $10503 \mathrm{~A}, 4$ feet (122 cm), 50Ω BNC to BNC cable.
Price: Models 5221B and s321B, \$775.
Dimensions:
5221B: $51 / 8^{\prime \prime}(130 \mathrm{~mm})$ wide, $63,2^{\prime \prime}(155 \mathrm{~mm})$ high, $8^{\prime \prime}$ (203 mm) deep.
53218: $73 / 4^{\prime \prime}(197 \mathrm{~mm})$ wide, $3^{\prime \prime}(76 \mathrm{~mm})$ bigh, $11^{\prime \prime}$ (279 mm) deep.
Option 01: 6 digit display, add 575.00 .
Accessories avallable: HP cable 10513A to connect to 562A/ AR and S050A Digital Recorders. Price: $\$ 65.00$.

ELECTRONIC COUNTER
 Versatile, IC, 12.5 MHz counter
 Model 5216A

Advantages:
Precision measurements: frequency, period, multiple period average, ratio, multiple ratio, time interval
Crystal time base
10 mV sensitivity
Blanking of insignificant zeros
BCD output (standard)
Model 5216A is a general purpose counter capable of a variety of measurements. It is designed extensively with integrated circuits providing the advantages of smaller size, less weight, and higher reliability.
The 5216 A has a maximum counting rate of 12.5 MHz . Minimum input sensitivity is 10 mV rms which may be raised in decade steps to 10 V rms with a front panel control. Gate times offered for frequency measurements are in decade steps from .01 s to 10 s , which are derived from a high stability quartz crystal oscillator. This counter will also measure single periods and average up to 10^{3} periods.

Internal storage, which may be disabled if desired, resules in a concimuous display of the most recent measurement on the 7-digit readout. At the same time the information is available in 4 -line BCD code at the rear panel.
The 5216A is housed in a standard $1 / 2$ module cabinet, which is convenient for beach use and easily rack mounted using the HP 5060.0797 adapter frame.

Specifications

Frequency measurement

Range: 3 Hz to 12.5 MHz .
Input: 10 mV rms sensitivity; $1 \mathrm{Ms} / 50 \mathrm{pF}$.
Gate times: $10,1,0.1,0.01 \mathrm{~s}$.
Accuracy: ± 1 count \pm time base accuracy.
Readout: MHz and kHz with positioned decimal point.

Time interval measurement

Range: $10 \mu \mathrm{~s}$ to 10 s .

Input: contact closure or saturated NPN transistor to ground. Signal duration $\geq 1 \mu \mathrm{~s}$. Current $\geq 2 \mathrm{md}$. START signal must end before STOP signal begins. Time from STOP to next START: $\geq 30 \mathrm{~ms}$ for externa! reset or $\geq 30 \mathrm{~ms}+$ sample time for internal reset. Rear panel BNC inputs.
Frequency counted: I MHz internal, or external standard.

Perlod measurement

Range: 3 Hz to 1 MHz single period; to 2 MHz in multeiple periods averaged.

Perlods averaged: $1,10,10^{2}, 10^{8}, 10^{\circ}, 10^{6}$.
Input: 10 mV rms max. sensitivity: 100 mV rms $<1 \mathrm{kHz}$.
Frequency counted: 1 MHz internal, or external standard.
Accuracy: ± 1 count \pm time base accuracy \pm trigger error.

Ratio measurement

Displays: ($\mathrm{f}_{1} / \mathrm{f}_{2}$) x multiplier; multiplier: $1 \cdot 10^{6}$.
Range, sensitivity: \hat{f}_{3} : 1 kHz to 10 MHz into external time base BNC connector, 1 V rms minimum into $1 \mathrm{~K} \Omega$. f: 3 Hz to 1 MHz single period; to 2 MHz in multiple period; 10 mV rms sensitivity except 100 mV rms belon 1 kHz .
Accuracy: ± 1 count of $f_{1} \pm$ erigger error of f_{1}.

Time base

Crystal trequency: 10 MHz .
Stability
Aging rate: $< \pm|4| \times 10^{-5} /$ month .
Temperarure: $< \pm 5 \times 10^{-6}$ from $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$; $< \pm 3 \times 10^{-8}$ from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Line voltage: $<1 \times 10^{-1}$ for $\pm 10 \%$ change.
Outout frequency: $1 \mathrm{MHz}, 3 \mathrm{~V}$ p-p minimum open circuit; source impedance is $2 \mathrm{k} \Omega \mathrm{max}$.
External standard input: 1 kHz to 2 MHz sinewave, 1 V rms into $1 \mathrm{k} \Omega(10 \mathrm{~V}$ rms maximum).

General

Display: 7 digits, long-Life Nixie ${ }^{(3)}$ tubes.
Display storage, blanking: yes.
Reset: automatic or manual by pushbutton or remote.
Sample time: 50 ms to 5 s or hold until reset.
Signal input
Senslitilty: 10 mV rms max.; 30 mV peak pulse, min. width 40 ns .
Impedance: approx. 1 M s shunted by 50 pF .
Attenuation: step attenuator, . $01,0.1,1,10 \mathrm{~V}$ rms.
Trigger level adjustment: continuously variable within srepped attenuator ranges.
Overload: input voltage should be $<60 \mathrm{~dB}$ above atrenuator setting 300 V rms may cause damage.
Selt-check: works on all functions.
Digital output
Code: 8-4.2-1, "1" state positive; "0" level: 0 V nominal; ' 1 " level: +5 V open circuit, nominal; source im. pedance: $7.5 \mathrm{k} \Omega$ maximum, each line.
Reference levels: ground; +5 V , low impedance.
Print command: step from 0 V to $+5 \mathrm{~V}, \mathrm{dc}$ coupled.
Hold-off requirements: volage from -10 V to -15 V .
Chassis connector: accepts HP Cable 10513A with one special connector for the 5216 A and one 50 pin Amphenol or Cinch rype $57-30500 \cdot 375$, HP part number 125 I . 0086 , male connector, for HP 5050 B or 562 A Digital Recorder.
Operating temperature range: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Power requlrements: $115 / 230 \mathrm{~V} \pm 10 \%$, $50-400 \mathrm{~Hz}, 20$ W maximum.
Weight: net $7 \mathrm{lbs}(3,1 \mathrm{~kg})$; shipping $8 \frac{1}{2} \mathrm{lbs}(3,9 \mathrm{~kg})$.
Accessories furnished: HP 10503 A 4 feet, 50Ω cable, BNC connectors. Derachable power cord $71 / 2$ feet (231 cm) long, NEMA piug.
Dimensions: $7.25 / 32^{\prime \prime}$ (190 mm) wide, $6.3 / 32^{\prime \prime}$ (15s) high, $11^{\prime \prime}$ (279) deep.
Price: HP Model 5216A, $\$ 985$.
(A) Eurroughs Corp. Trademark

Advantages:

Reliable, rugged
High input impedance, high sensirivity
Low poxer consumption with solid-state components Display storage
Accurate measurement of frequency, ratio, period, multiple period
Higher sampling rates; sampling time independent of gate time

These six Hewletr-Packard electronic counters offer the advantages of solid-state construction, broad measurement capabilities, rugged and compact packaging and a wide selection of performance characteristics.

Maximum counting rate ranges from 300 kHz to $1,2 \mathrm{MHz}$. A variety of visual readouts contain from 4 to 6 digits, with borh in-line digital tube and neon columnar displays. Features offered in common by all six counters include modular cabinets only $31 / 2^{\prime \prime}$ high, low heat dissipation and power consumption with solid-state components, 0.1 V sensitivity, display storage for non-blinking readout, four-line BCD output for systems and recorders (optional for s2d1A), flesible operation and reduced operator errors. When a counter is in the frequency mode, the time between counts is adjustable from less than 0.2 second to more than 5 seconds and is independent of gate time. Because time between counts is not dependent upon gate time, faster sampling rates are often possible.

The instruments are compact and reliable, have low power consumption and can operate with specified accuracy over a wide temperature range. Plug-in module construction increases instrument versatility and simplifies maintenance. Conservative design features such as the use of decade dividers in the gate generating circuits, provide operational stability and eliminate calibration prohlems. Input sensitivity is 0.1 V rms, input impedance, 1 megohm, 50 pF .

$5211 \mathrm{~A}, \mathrm{~B}$ Counters

Models 5211 A and 5211 B have a maximum counting rate of 300 kHz and make direct frequency and ratio measurements. They also measure speed in rpm and rps, when used with transducers, and count events occurring within a selected period of time. They offer four-digit resolution and neon columnar display. They are identical excepr for gare times and recorder
output. The 5211 A has gace times of 0.1 and 1 second; the 5211 B has a third gate time of 10 seconds.

Both offer manual control of the gate by a front-panel function saritch, by external contact closure or by 3 volt peak positive pulses at least $10 \mu \mathrm{~s}$ wide at halt-amplirude points. Time base is derived from the power line, and since power line fre. quency is usually held to better than 0.1%, the counters have an accuracy fully adequate for most industrial measurements. A special modification of the 5211 B , the $\mathrm{H} 22-5211 \mathrm{~B}$, offers an in-line readout.

5212A, 5512A, 5232A, 5532A Counters
With this group of solid-state instruments, two basic counters give maximum counting rates of 300 kHz and 1.2 MHz , with a choice of column or in-line readout. Each makes direct frequency, period, multiple period average and ratio measurements. Models s212A and S512A have a maximum counting rate of 300 kHz , 5 -digit resolution and respective displays of neon columns and long-life digital display tubes. Models 5232 A and 5532A have maximum counting rates of 1.2 MHz and 6 . digit resolution with the same readout choice.

The front panel of each counter has input atremuation control, display control, reset button and function switch. In the rear are the storage-disable switch, external standard input jack (permits use of an external oscillator as the counter time base) and digital recordes output connector. Self-check is provided for both frequency and period measurement modes.

General specifications

Operating temperature range: $-20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ for $5211 \mathrm{~A}, \mathrm{~B}$; $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ for 5212 A and $5512 \mathrm{~A} ; 0^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ for 5232 A and 5532 A .
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $60 \mathrm{~Hz}^{* *}$, less than 40 W .
Weight: all models, net less than $15 \mathrm{lbs}(6,8 \mathrm{~kg})$, shipping less than $21 \mathrm{lbs}(9,5 \mathrm{~kg})$.
Accessories furnished: 10503 A Cable, 4 feec long, BNC connectors; detachable power cord: circuit board extender.
Dimensions: $16 \frac{1}{4}$ " wide, $31 / 2^{\prime \prime}$ high, $11 / 4^{\prime \prime}$ deep ($125 \times 89 \times$ 286 mni); hardware furnished for converting to $19^{\prime \prime}$ wide by $31 / 2^{\prime \prime}$ high rack mount.
*The 5232 A and 5532 A will operate from $-20^{\circ} \mathrm{C}$ to $-65^{\circ} \mathrm{C}$ on special order or with an external time base.
**HP $5211 \mathrm{~A}, \mathrm{~B}$ require 50 or 60 Hz operacion (specify Option 01. for 50 Hz operation) ; $5212 \mathrm{~A}, 5312 \mathrm{~A}, 5232 \mathrm{~A}$ and 5532 A operate between 50 and 60 Hz line frequency with limit inuposed by fan.

HP Counter		52114.8	5212A	5512A	5232A	5532A
Max. counting rate		300 kHz	300 kHz	300 kHz	1.2 MHz	$1.2 \mathrm{MHz}^{2}$
Registration		4 digits columnar	5 digits columnar	5 digital display indicators	6 digits columnar	$\begin{gathered} 6 \text { digitital } \\ \text { display indicators } \end{gathered}$
Time base		power line; accuracy typically $=0.1 \%$ or belter	100 kHz crystal oscillator; aging rate, $\pm 2 \times 10^{6} /$ week		$\begin{aligned} & 1 \mathrm{MHz} \text { crystal osciliator; aging rate, } \\ &=2 \times 10^{-7 / m o n i s ~} \end{aligned}$	
Input		sensitivity, 0.1 V ims sine wave; input impedance approx. $1 \mathrm{meg} / 50 \mathrm{pf}$				
Period and multiple	Range	-	2 Hz 10300 kHz		2 Hz to 1.2 MHz	
period average measurement	Periods sveraged	-	1, 10, 102, $103,10^{4}, 105$			
	Accuracy	-	\pm one count $=$ time base accuracy, \pm trigger error			
	Readout	-	msec or μ sec with positioned decimal			
Frequency measurement	Range	2 Hz to 300 kHz			2 Hz 101.2 MHz	
	Gate time	$\begin{gathered} \hline 1,0.01 \text { sec; } ; 5211 \mathrm{~B}, \\ \text { additional } 10 \mathrm{sec} \end{gathered}$	$10,1,0.1,0.01 \mathrm{sec}$			
	Accuracy	\pm I count, $=$ time base accuracy				
	Readoul	$\underset{\substack{\mathrm{KHz}, \mathrm{Hz}_{2} \text { with } \\ \text { positioned decimal }}}{ }$	KHz with positioned decimal			
Ratio measuremen!	Display	f1/62	$\mathrm{h}_{1} / \mathrm{f}_{2} \times$ mulliplier: multiplier: 1-105			
	Range, Sensitivity		$\mathrm{f}_{1}: 100 \mathrm{~Hz}$ to $300 \mathrm{KHz}(1 \mathrm{~V}$ rms into 1000ohms) $; \mathrm{l}_{2}: 2 \mathrm{~Hz}$ to 300 kHz		$\mathrm{f}_{1}: 100 \mathrm{~Hz}$ 10 1.2 MHz [1 V rms into 500 ohms above $1 \mathrm{kHz}, 2 \mathrm{~V}$ rms into 500 ohms 100 Hz to $1 \mathrm{kHz} ; \mathrm{t}_{2}: 2 \mathrm{~Hz}$ to 300 kHz	
	Accuracy	+1 count of $f_{1}=$ trigger error of f_{2}				
Recorder outoul coptional al added cosk in 5211A; standard in all other modeis)		4-line BCD (4.2.2-1): 4-line BCD (8.4-2.1) available as Option 02				
	Impedance	100 K each ling				
	"0" state level	appraximately - 28 volts				
	"1" slate level	-2 volts				
	Reference Jevels print command	approximately -2.4 volts, 350 ohm sousce impedance; and approximately -26.9 volts, 1000-0hm source impedance				
		+28 V steß, from 2700 -hm source in series with 1000 pF				
	Hold -of tequirements	chassis ground to +12 volts maximum				
Price	H22-5211B, \$850	$\begin{aligned} & \text { HP } 5211 \mathrm{~A}, \$ 650 \\ & \text { HP 5211B, } \$ 750 \end{aligned}$	HP 5212A, \$950	HP 5512A, $\$ 1050$	HP 5232A. $\$ 1350$	HP 5532A, \$1450

These preset controllers/counters count clectrical events and issue output signals when preset count values are reached; the 5332A and 5332 B also measure and limit-detect input rates or frequencies. They provide practically all the features required in digital control and measurement applications: local and remote control, three versatile operating modes, wide frequency and voltage counting range, very fast recycling, high input impedance and sensitivity, lighted overflow indicator, and BCD output for recording or further digital processing. Applications include batching and precise control of weight, liquid level, length, rate, frequency, etc. The counters can also generate precise time intervals (or delays) and pulse trains. Use of integrated circuits provides compactness and maximum versa. tility coupled with economy, low power consumption and low heat dissipation.

Four models

To suit a wide range of instrument needs at least cost, there are four models to choose from. Major differences are:

The " B " versions (5331 B and 5332B) are dual preset controller/counters and have two sers of preser limits, while the "A" versions have but one set of preset limits.
The 5332 A and 5332 B have crystal time bases to permit measuring and limit-detecting frequencies (or rates) of random and limit-detecting frequencies (or rates) of random or periodic events from 0 to over 10 million pps at precise gate times of $0.01,0.1,1.0$, and 10 seconds. They also measure and limitdetect single and multiple frequency ratios as well as time intervals from $10 \mu \mathrm{~s}$ to 1.0 second. The $5331 \mathrm{~A} / \mathrm{B}$ are strictly preset controllers and do not have these additional capabilities. Consequently, the $5331 \mathrm{~A} / \mathrm{B}$ front panels do not have the FRE. QUENCY, FUNCTION nor the SAMPLE RATE controls. The latter is replaced by an ON/OFF power switch.

Operating modes

The three operating modes provided facilitate use in a wide variety of control applications.

In the MANUAI position of the FUNCTION switch, the
control line outputs change state when the count reaches the numbers set on the limit switches, and then counting continues. See Figure 1.

In HOLD, outputs are generated as in MANUAL, bur counting stops when the greater preset limit number is reached. See Figure 1.

The RECYCLE mode is the same as MANUAL except that when the greater limit is reached and the output lines have changed state, the counter automatically resets to zero and repeats the cycle. See Figure 2.

The 5331A and 5332A are single preset controllers and have one limit switch each, but otherwise the operation remains the same as for the 5331 B and 9332 B , which are dual preset counters and have two limit switches, L1 and L2.

Control outputs

When the count reaches the preset limits, de level changes occur on various output lines. There ace two output lines, Lo and Hi , in the single limit S331A and 5332A, and three lines. Lo, In, and Hi in the dual limit S331B and 53328 . This choice of several types of electrical outputs can simplify external circuit design. The outpurs are shown in Figures 1 and 2 and described under "Control Line Outputs" in the specifications.

In the FREQUENCY mode, and with the STORAGE switch on, the control outpurs become latching and change only when the preset limits are reached. That is, under these conditions the outputs are unaffected by operations such as resetting the counter. Latching operation is desirable in automatic control system applications to eliminate the unwanted transient that occurs when the counter resets to zero before a new measurement. For non-latching operation, turn the STORAGE switch off; then, when the counter resets, the control line voltages return to their "pre-lower limit" values.
In some applications, latching operation is desired but the control lines are to remain in their "out of tolerance" condition until an external command is given, instead of automatically changing when the out of tolerance condition is corrected. For this purpose, there's a special reset line on the remote control connector and, after an internal jumper is removed, control

5331A
lines can be reset by external contact closure or DTL or TTL circuits (saturated NPN transistor to ground).

Use as a delay generator

The 5332A/B can generate time intervals or time delays with great accuracy and adjustability. In this operation, the counter counts an internal 100 kHz signal, and the change in voltage states that occur on the control line outputs when the count preset on the limit switch (or switches) is reached define the desited time interval or delay (see Figure 1, for waveshapes). For example, with the lower limit switch set to 1000 a control line level change occurs after 1000 cycles of the 100 kHz signal have occurred; i.e. in 0.01 s . Thus, the limit switch number represents the generated time interval in tens of microseconds. The time interval begins when the START button is pressed (or equivalent remote start signal is given) and ends when the preset limit (or limits) is reached. The counter HOLD mode is used.

In the $5332 \mathrm{~A} / \mathrm{B}$ the 100 kHz signal is derived from the time base precision quartz crystal oscillator, and is connected to the counter input when a rear panel switch is placed in its CHECK position. An internal 1 kHz or 10 kHz signal can be substituted by a simple wiring change. Or, 1 MHz can be obtained by connecting the reac panel PREQUENCY STANDARD BNC to the INPUT BNC and placing the rear panel switch
at OPERATE (then, the limit switch settings express time intervals directly in microseconds). For longer time intervais use a suitable external signal lower than 1 kHz . Since the $5331 \mathrm{~A} / \mathrm{B}$ have no internal time base, an external frequency must be connected to the counter input for use as a time interval or delay generator.
Note that on the $5331 \mathrm{~B} / 5332 \mathrm{~B}$ "IN" control line tw'o intervals are generated: from RESET to LOWER LIMIT REACHED and from LOWER LIMIT REACHED to UPPER LIMIT REACHED

Use as a pulse generator

In this use, the counters generate precision pulse trains. Principie of operation is similar to when used as a time interval or delay generator except that the counter RECYCLE mode is used: the counter counts a fixed frequency and voltages on the control lines change when the preser limit (or limits) are reached. Waveshapes are shown in Figure 2. The counted signal is a precise 100 kHz signal from the quartz crystal time base oscillator in the 5332A/B when a rear panel switch is in its CHECK position (1 or 10 kHz available by minor wiring change) ; in the $5331 \mathrm{~A} / \mathrm{B}$ an external frequency must be connected. When the sounted frequency is 100 kHz , the limit switch settings represent pulse repetition rate in tens of microseconds.

Figure 2. Control line outputs in RECYCLE mode.

Figure 1. Control line outputs in MANUAL ane HOLD modas.
Specifications

```
5332A and 5332B only
Frequency measurements
Range: 0 to 10 MHz for measuring; 0 to 2 MHz for limit detecting.
Gate tlmes: \(0.01,0.1,1,10\) seconds.
Accuracy: \(\pm 1\) count \(\pm\) time base accuracy.
Storage: holds readings between samples.
Time interval measurements (MANUAL mode)
Range: \(10 \mu \mathrm{~s}\) to 1.0 second.
|nput:
Start: START pushbutton or remote. Stop: STOP pushbutton or temote.
```

Frequency counted: 100 kHz with rear panel OPERATE. CHECK switch at CHECK (1 and 10 kHz available by minor wiring change: or 1 MHz is available at FREQ . STD. connector with rear panel switch at OPERATE).
Accuracy: ± 1 count \pm time base accuracy \pm any error in external trigger circuit.
Readout: time interval in microseconds (counting 100 kHz). Ratio measurements (FREQUENCY mode)

Range and sensitivity:
f1: 0 to 10 MHz for measuring: 0 to 2 MHz for limit detecting.
0.1 V rms into $1 \mathrm{M} \Omega / 30 \mathrm{pF}$.
f2: 1 kHz to 1 MHz .
1 V mms into $1 \mathrm{k} \Omega$.
Accuracy: ± 1 count \pm trigger error of f 2 .*
Input:
t1: INPUT BNC.
12: EXT. FREQ. STD. BNC.

Time base

Frequency: 1 MHz crystal oscillator.
Stabllity:
Aglng rate: $<|0.5|$ parts in $10^{\circ} /$ month.
Temperature: $< \pm 3$ parts in $10^{3}\left(0^{\circ}\right.$ to $\left.65^{\circ} \mathrm{C}\right),< \pm 5$ parts in $10^{6}\left(10^{\circ}\right.$ to $40^{\circ} \mathrm{C}$).
Line voltage: $< \pm 1$ part in 10^{6} for $\pm 10 \%$ line voltage variation.
Output: (for external use)
Frequency: 1 MHz .
Voltage: 3 V P.P open circuit.
Impedance: 100 n source.
External lnput: (to substicute external frequency for internal time base.
Senslitivlty: 1 V rms into $1 \mathrm{k} \Omega$ (10 V ms maximum).
Range: 1 kHz to I MHz .

All models

Display: 5 digits (4 and 6 oprional).
Overflow: indicator glows when register capacity of 99999 has been exceeded.
Sample rate (5332A and 53328 only): 1 ms to 5 seconds or HOLD.
Reset: RESET pushbutton or remote.
Signal input:
Frequency range for rated sensitivity:

Made	Freq	Manual	Hota	Rooyole
do coupled, 0 Hz to:	2 MHz	2 MHz	1 MHz	500 kHz
ac coupled, 10 Hz to:	2 MHz	2 MHz	$1 \mathrm{MHz}^{2}$	500 kHz

Impedance: $1 \mathrm{M} \Omega$ shunted by 30 pF .
Sensltivlty: $0.1 / 1 / 10 \mathrm{~V}$ ims sine wave.
0.3 V p-p pulse, 50 os minimum pulse width.

Maximum Input: 120 V ms X 1 range
250 V rms X10range
500 V rms X X 00 range
Overload protection: 1.5 V ims X ATTENUATOR settings.
Trigger level: PRESET to trigger at 0 V or adjustable:

$$
\begin{aligned}
& \pm 1 \mathrm{~V} \text { on X1 range } \\
& \pm 10 \mathrm{~V} \text { on X10 range } \\
& \pm 100 \mathrm{~V} \text { on X100 range }
\end{aligned}
$$

Slope: independent selection of positive or negative slope.
Operating modes (selected at front panel or remotely):
Manual: control outputs are generated when the count reaches the number set on the limit switch or switches, but count. ing continues until reset manually.
Hold: control ourputs are generated when the count reaches any preset limit; counting stops when the limit number is reached in 5331A, 5332A or when the greater limit number is reached in $5331 \mathrm{~B}, 5332 \mathrm{~B}$.
Recycle: control outputs are generated when the count equals any preset limit; controller automatically resets to zero when the limit number is reached in 5331A, 5332A or when the greater limit is reached in $5331 \mathrm{~B}, 5332 \mathrm{~B}$. The counting cycle then repeats.
Frequency: see Frequency Measurements.

Control line outputs

Nominal levels: +5 V and 0 V per Figure 1 . Source impedance 2.5 kss for +5 V ; can sink 10 mA at 0 V .

Cycilng: per Pigure 1 and 2:
When counter is reset, voltages return to the "pre-lower Limit" values. Exception: when in FREQUENCY mode and with STORAGE switch on, the concrol line voitages "latch"; that is, they are stored and will change only if some future measurement falls into a different limit condition than the previous measurement (in GREQUENCY mode and with STORAGE off, control lines seturn to "pre-lower limit" values when counter is reset),
In RECYCLE mode, counter automatically sesets when count exceeds the larger limit (the only limit in 3331 A , 5332A) : simultaneously, the Hi output line drops to 0 V momentarily.
Self check (5332A and 5332B only): connects internal 100 kHz to input (1 and 10 kHz available after minor wiring change).
Digital output (corresponds to readout display):
Code: 1-2-4.8 BCD, "1" state positive.
" 0 " level: $0 \mathrm{~V}, 5.1 \mathrm{k} \Omega$ maximum source impedance.
"1" level: 5 V. $7.5 \mathrm{k} \Omega$ maximum source impedance.
(Lower source impedance available on special order.)
Print command: step from +5 V to 0 V, de coupled; impedance, $s k \Omega$ at $\div 5 \mathrm{~V}$.
Reterence levels: ground and +5 V ; negligible impedance.
Hold-off requirements: $>2 \mathrm{~V}$ dc; $56 \mathrm{k} \Omega$ input impedance.
Chassis connector: special Hewlett-Packard-manufactured connector assembiy.
Connectors: all are BNC's except for REMOTE FUNCTION which is HP \#1251.0292 (Cinch or female Amphenol 57.40240) and DIGITAL OUTPUT. Mate for REMOTE FUNCTION connector is HP \#1251.0293 (male Amphenol 57.30240).

Operating temperature: 0° to $50^{\circ} \mathrm{C}$.
Remote operation: separate line for RESET, START, STOP and FUNCTION (switch set to MANUAL) operated by DTL or TTL circuits (saturated NPN transistor to ground) or contact closure to ground. See Options for remote control of limit switches.
Also, START and STOP lines can be connected together and driven as a single line with pulses <500 ns wide; first pulse starts counting, second pulse stops it.
$5331 \mathrm{~A} / \mathrm{B}$ also have an additional control line; counting occurs as long as this line is held "low."
Power requirements: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz , 22 W max.
Welght: net, $8 \mathrm{lb}(3,6 \mathrm{~kg})$; shipping, $10 \mathrm{lb}(4,5 \mathrm{~kg})$.
Accessories furnished: HP 10503 A , son BNC to BNC cable. 4 ft (120 cm) ; detachable power cord, $71 / 2 \mathrm{ft}(230 \mathrm{~cm}$).
Dimensions: 7-25/32" W $\times 6.3 / 32^{\prime \prime} \mathrm{H} \times 8.0^{\prime \prime} \mathrm{D}(190 \times 155 \times$ 203 mm).
Prices: 5331A, \$950; 5331B, \$1,050; 5332A, \$1,100; 53328, \$1,200.
Accessories available: HP 10513A Cable to connect HP 5050 B Digital Recorder. Price: $\$ 65$.
Optlon 01: add I digit of readout and limit switches (6 toral), add \$100.
Optlon 02: delere 1 digit of readout and limit switches (4 total), $\$ 75$ less.
Optlon 03: remote control of 1 limit setting (4-line BCD). $5331 \mathrm{~A}, 5332 \mathrm{~A}, \mathrm{add} \$ 3 \mathrm{~s}$.
Option 04: remote control of 2 limit settings (4 -line $B C D$). $5331 \mathrm{~B}, 5332 \mathrm{~B}$, add $\$ 50$.
Other variations (contact closure limit outputs, etc.) on special order.

[^63]
PRESET COUNTER
 Normalizes data; controls, counts and times Model 5214L

Uses:

Measures normalized rate
Measures ratio
Measures normalized ratio
Measures time for N events to occur
Counts N events, giving an output pulse at the start and the end of the count
Allows N to be remotely preset
(N may be set to any integer from 1 to 100,000)
Model 5214L Preset Counter not only measures frequency and period and totalizes, as do most universal electronic counters, but it also performs the additional measurement functions enumerated under "Uses". Such versatility is achieved by using two sets of decades; one set registers the signal being counted, the other, which may be preset to any integer from 1 to 100,000, controls the gate. Provision has been made so that the number N can be remotely programmed. Separate output signals also are available to operate external equipment whenever the gate opens or closes. Solid state circuits are used throughout.

Rate measurement

In rate measurements, which correspond to the frequency measurements of ordinary counters, gate time is controlled by the preset decades (N), the time base (100 kHz), and the multiplier (M). The gate is held open for N periods ($N=1$ to $N=100,000$) of the frequency furnished by the time base. If the internal 100 kHz time base is connected directly to the preset decades (M at X 1), the gate time is set in $10 \mu s$ steps. Setting the Multiplier to X10 or X 100 divides the time base frequency by 10 or 100 respectively, so that time may be set in $100 \mu \mathrm{~s}$ or 1 ms steps, as well. Setting gate time for 1 second permits frequency measurements directly in cycles per second.

Being able to select gate time allows you to normalize readings or to convert frequencies into practical units. For instance, if a tachometer generator, which produces 100 pulses per revolution, is connected to a rotating shaft. you can set the gate to $10.000 \mathrm{~ms}(0.01 \mathrm{~s})$ and measure rps directly or your can set the gate for 60000 ms (06 s) and measure rpm.

The long gate times that are available (up to 100 sec onds) allow you to measure low frequencies or register the least significant digits of an input signal better to observe small variations of rate.

Ratio measurement

Model 5214L measures ratio over a wide range of frequencies and with a wide choice of normalizing factors. The signal connected to input B goes through the Multiplier switch and the preset decades, and controls the gate time; the signal connected to input A goes to the readout decades. Consequently, signal A is counted for a number of periods of signal B equal to the product of N and the Multiplier setting.

The number displayed by the readout decades is MNA;

B , where A is the frequency of the signal connected to input A, and B is the frequency of the signal connected to input B. Gate length from 1 to 10^{i} periods of signal B can be chosen in steps of 1,10 , or 100 . Input B also can be used for extending gate time or for applications requiring an external time base.

Time measurement

In the Time function, which corresponds to period measurements in conventional counters, the hp 5214 L measures the time in milliseconds for N events to occur. The measurement may be made in increments of $0.01,0.1$ or 1 ms by setting the Multiplier to XI, X10, or X100, respectively.
Period and multiple period measurements are also easily made with the function switch in the Time position, and period average is determined by dividing the time reading by N . The ability to choose the number of input cycles measured and to choose time increments of $0.01 \mathrm{~ms}, 0.1$ ms, or 1 ms allows the operator to achieve the greatest accuracy possible, or to obtain a required accuracy in the shortest measurement time.

Preset counting

When the Function switch is set to Preset at N, the 5214 L counts N events and provides an output pulse at the beginning and end of the preset count. This feature is useful in batching, as the gate signal can be used to control external equipment. Separate electrical output signals are available at the beginning and end of the count.

Display storage

All HP solid-state electronic counters have display storage which holds the most recent measurement even while the instrument is gated for a new count. If the new count differs from the stored count, the display will shift to the new reading directly. Where desirable, the storage feature may be disabled by a rear-panel switch.

Electrical readout

These counters provide a four-line BCD code output with assigned weights of 4-2-2.1 ("1" state positive with respect to " 0 " state). This output is suitable for systems use or for output devices such as HP 562A Digital Recorder, or the 580A. 581A Digital.to-Analog Converters. 8-4-2-1 BCD code output is also available at extra cost.

Specifications

Functions

Totalize (input A)
Range: 2 Hz to 300 kHz .
Sensitivity: ${ }^{*} 0.1$ volt rms sine wave.
Gate time: manual control.
Input impedance: 1 megohm, 30 pF shunt. Capaclty: 99,999 counts in units, tens or hundreds.
Rate (input A)
Range: 2 Hz to 300 kHz . Sensitivity: *0.1 yolt rims sine wave. Gate thme: $10 \mu \mathrm{~s}$ to L 5 in $10 \mu \mathrm{~s}$ steps: $100 \mu \mathrm{~s}$ to 10 s in $100 \mu \mathrm{~s}$ steps; 1 ms to 100 s in 1 ms steps. Accuracy: ± 1 count \pm time base accuracy. input impedance: 1 megohm, 50 pF shunt.

Preset (Input A)

Input frequency range: 2 Hz to 100 kHz .
Sensitivlty*: 0.1 V rms sine wave.
Reads: time for N events in ms.
Time units: $10 \mu \mathrm{~s}, 0.1 \mathrm{~ms}$ or 1 ms .
Input impedance: I megohm, 50 p t shunt.
Accuracy: ± 1 count \pm time base accuracy \pm rigger error. \dagger
Ratio
Dlsplay: $\mathrm{N} \times \mathrm{A} / \mathrm{B} \times$ Multiplier, Multiplier $x \mathrm{~N}$ ito 10^{*}.
Input A: frequency range 2 Hz to 300 kHz ; sensitivity, * 0.1 V rms sine wave; input impedance, 1 megohm, 50 pf shunt.
Input B: frequency range, 2 Hz to 100 kHz on XI (2 Hz to 300 kHz on X10 and X100): sensitivity, 0.1 V to 10 V rms; inpur impedance, I megohm, 50 pf shunt.
Accuracy: ± 1 count.
Internal time base stability
Aging rate: $< \pm 2$ parts in $10^{\circ} /$ week.
Temperature: $< \pm 20$ parss in $10^{r}+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$: $< \pm 100$ parrs in $10^{\circ}-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Line voltage: <1 part in 10° for $\pm 10 \%$ line.
General
Display: 5 long-life rectangular digital display tubes with display storage.
Sample rate: sample rate control determines length of time after gate closure before gate can be reopened; adjustable from 0.2 s min. to at least 5 s max. with counter in Rate, it is independent of gate time, and display can be held indefinirely.
Input connectors: BNC, on front and rear panels, wired in parallel.

Digital output

OLtput: 4 .line 4-2.2.1 BCD; 8-4-2.1 BCD oprional.

Impedance: 100 K each line; " 0 " state level: approx. -28 V; "1" state level: -2 V .

Reference levels: approx. $-2.4 \mathrm{~V}, 350$-ohm source imped. ance and $-26.9 \mathrm{~V}, 1000.0 h m$ source.
Print command: step from -29 V so -1 V from 2700 ohm source in series with 1000 pf .
Hold-off requirements: chassis ground to +12 V max.
Remote operation: number " N " can be remorely preset by appropriate contact closures.
Operating temperature: -20 to $+65^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ to $60 \mathrm{~Hz}, 35 \mathrm{~W}$ (line fre. quency limit imposed by fan motor).
Weight: net $15 \mathrm{lbs}(6,75 \mathrm{~kg})$: shipping $22 \mathrm{lbs}(10 \mathrm{~kg})$.
Accessories provided: tao 10503 A cables, f feet long, BNC connectors, circuit board extender, detachable power cord.
Outputs: positive pulse approx. 10 V high and 5 usec wide at gate opening and closing.
Dimensions: $163 / 4^{\prime \prime}$ wide, $3.13 / 16^{\prime \prime}$ high, $131 / 4{ }^{\prime \prime}$ deep ($426 x$ $97 \times 337 \mathrm{~mm}$); quickly converts to rack mount: $19^{\prime \prime}$ wide, $31 / 2^{\prime \prime}$ high, $111 / 4^{\prime \prime}$ deep behind mounting surface (483 x $89 \times 286 \mathrm{~mm})$.
Price: HP 5214L, \$1300.

Optlons

2. 8-4-2-1 BCD ("I" state positive) in lieu of 4-2.2-7. add $\$ 10$.
3. Same as Option 02. except " 1 " state negative, add $\$ 10$.
[^64]
REVERSIBLE COUNTER
 Counts up, down at 2 MHz rate; very versatile Model 5280A

The 5280A/5283A Reversible Counter/Plug.In combina. tion has two input channels (" A " and " B ") with an indi. vidual range of dc to more than 2 MHz . The superior trigger level controls for each channel allow the use of a wide range of inputs in all modes of operation. Drift of the differential do amplifiers, used in the input circuitry, is unusually low to provide more accurate definition and retention of set trigger points.

Three basic types of measurement provide exceptional versatility.

Algebraic A, B

A: The A input is totalized, de to more than 2 MHz , for the length of time the main gate is open.
$A-B$: The input A minus the input B is totalized, $d c$ to 1 MHz each channel, for the gate open period. In this mode the 1 MHz rate is retained while reversing direction of count, and while passing through zero.
$A+B$; The input A plus the input B is totalized, $d c$ to 1 MHz each channel, for the gate open period.

B: The 8 input is totalized, do to more than 2 MHz , for the length of time the main gate is open.

A directional MODE switch can be used to reverse the measurements in the above 4 modes, i.e., $-A,-A+B$, $-A-B$, and $-B$. In the $A-B$ and $A+B$ modes, an anticoincidence circuit is used to prevent the loss of any counts that arrive at the inputs in time coincidence.

Af(B)

In this mode of operation, A is counted forward when the B input is more positive than its trigger level setting, and A is counted in reverse when B is more negative than its trigger level. (laverse operation is possible). A unique count direction gating system is used to prevent the inherent propagation delay down the readout decades from limiting the input frequency capability of A. The maximum input to channel A in this mode is 2 MHz even when the 7 th and 8 th digits have been added to the readout. The count direction can be reversed without count error with a minimum of 250 ns between the reverse step function command and the next input pulse.

A Quad B

This mode of operation is designed to operate with transducers having two outputs separated 90° in phase (in quadrature). The A output is totalized, up or down, depending upon its phase relationship with the B input. When B leads A, A is totalized in a positive direction; when B lags A, A is totalized in a negative direction. (Inverse operation is possible.) The direction of count may be reversed at a 1 MHz rate, which is also the maximum frequency allowable on A and B.

Readout

Registration is by a 6 -digit in-line display of rectangular Nixie tubes with a 7th and 8th digit of display available on request. Overflow of the displayed readout is indicared by a front panel neon light. A long.life Nixie displays + or corresponding to the algebraic sign of the readout.

Four-line, BCD-coded output including polarity and overflow is provided as a standard feature with the assigned weights of 1-2-4-8 (" 1 " state positive with respect to the " 0 " state). This output is suitable for systems use, or for output devices such as the Hewlett-Packard Model 562A Digical Recorder, the HO4.580A and HO4.581A Digital-to-Analog Converters.

Gating
Three gating modes are available, selected by a front panel switch. Manual "OPEN" and manual "CLOSED" operate the main gate for all functional modes of the plug-in operation. Extemal "SINGLE" requires a de voltage applied to a rear panel "START" input for the desired gate open period. In the external "DUAL" position separate inputs to two wires at the rear "START" "STOP" connectors are required to open and close the main gate. Reset may be accomplished by a front panel push button or by applying an input to a rear panel connector.

5285A Universal Input Plug-In
The 5285 A Plugg In operates in conjunction with the 5280A Reversible Counter. Both units must be ordered; neither one will operate independently of the other.

Typical Applications

With laser interferometer for precision metrology.
With flow meters to measure and control liquid flow rates or volume in a tank.
With rotary optical encoders to measure and control position and velocity, for example, of rolls of paper.

For crystal frequency comparison in production testing. With optical encoders or stepping motors to indicate position of numerically controlled machine tools.

With V to F converters to integrate $d c$ voltages and thus obtain the average value of drift over a time period.

Request Application Note 85 for further discussion of applications.

Specifications

5280A Reversible Counter

General

Range: de to 2 MHz Channel A or Channel B (see 5285A specifications for details concerniag other input requirements).
Display: 6 long-life rectangular Nixie ${ }^{(3)}$ tubes (7th and 8 th digit of readout optional). + and - indication by long.life rectangular Nixie rube. Overflow indication by front panel neon light.
Reset: remore by contact closure or saturated NPN iransistor to ground. Input via rear panel BNC. Manual by front panel pushbutton.
Reset time: less then $10 \mu \mathrm{~s}$.
Inhibit: start channel is inhibited during reset time with the function switch in the DUAL position ooly. Inhibit released at end of reset time.
Gate light: gate light indicates main gate open.
Gate control
Manual: controlled by front panel function switch for OPEN and CLOSED positions.

External dual

Input: separate BNC's on rear panel for START and STOP inputs.
Sensitivity: sine wave 1 volt rms; pulse 2 V p-p.
Impedance: approximately 100 k ohms, 25 pF in shunt.
Trigger level: +10 volts to -10 vols, adjustable at the rear panel. Independent controls on each input.
Polarlty: + or - rear panel switch selects triggering slope.
External single
Input: START BNC on rear panel.
Sensitivity: sine wave 1 volt rms; pulse 2 V p.p.
Impedance: approximately 100 k ohms, 25 pF in shunt.
Trigger leval: +10 volts to -10 volts, adjustable at rear panel.
Polarity: + or - rear panel switch selects gate open polarity.
Gate: $(+)$ opens when input is positive with respect to the trig. ger level. Closes when input is negative with respect to the trigger level. (-) inverse of $(+)$. Manually switched do voltage is a satisfactory gating inpur.

Printer oufput

Code: 4-line 1-2-4-8 BCD.
" 0 " state level: approximarely -14 volts.
" 1 " state level: approximately +10 volts.
Impedance: 100 k ohms each line.
Reterence levels: 0 voles for " 0 " and " 1 " states.
Print command: positive 15 -volt step from -15 voits to 0 volts.
Hold-off requirements: exremally applied level change from 0 volts or more negative than 0 volts to +10 volts (effective with function switci in DUAL position only).
Overflow: single line output, 100 k ohms impedance. "OFF" level approximately +17 volts, "ON" level approximately -13 volts.
\pm Nixte sign (Indicates sign of count): single line output. 100 k ohms, impedance, + level approximately -15 volts, - level approximately +13 volts.
Physical specifications
Rear panel connectors: BNC "START" and "STOP" gare inputs. BNC rear terminal in parallel (RTIP) inpurs for " A " and "B" channels of the 5285A Universal Input plug-in. BNC input for external RESET. BNC MONTTOR outputs for channel A and 8 triggers. 50 pin mating connector for BCD outpu:. Amphenal \#57.30500.375 (HP \#1251-0086).
Rear panel controls: \pm polarity switch for single and dual gate control input. Trigger levei adjustments for "START" "STOP" inputs, ± 10 volts.
Power: 115 or 230 volts $\pm 10 \%, 50$ to $60 \mathrm{~Hz}, 110 \mathrm{~W}$ (with 5285A plug-in).
BBurroughs Corp.

Operating temperature range (5280A/5285A): $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ to $+69^{\circ} \mathrm{C}\left(+149^{\circ} \mathrm{F}\right)$.
Welght: Nek, 29 lbs ($13,2 \mathrm{~kg}$). Shipping, $40 \mathrm{lbs}(18,1 \mathrm{~kg})$. (Weights include plug.in.)
Price: $\$ 1600$.
Dimenslons: $51 / 4^{\prime \prime}$ high, $16 \frac{1}{4}$ " wide, $163 / 8^{\prime \prime}$ deep ($132 \times 425 \times$ 416 mm).
Option 01: 4 line BCD 4.2-2.1 " 1 " state positive in lieu of 8.4.2.1 " 1 " state positive. $\$ 15$ per decade.
H19-5280A: Addition of 100 kHz internal time base allows gate times of $0.1 \mathrm{~s}, 1 \mathrm{~s}$, and 10 s . The time base is the same 25 in the 5223 L counter. Add $\$ 54 \mathrm{~s}$.
H20-5280A: "Readout on the Fly" enables the count to be saved in an internal buffer storage register on command (within $10 \mu \mathrm{~s}$) without interrupting counting. Output in BCD code 8.4.2-1 "1" state negative, add $\$ 1200$.
H21-5280A: Same as H20-5280A except output in BCD code 4.2-2.1 " 1 " state positive, add $\$ 1200$.

5285A Universal Input Plug-In

(for uperation in HP Model 5280 A only)
Input channels (A and B)
Range: dc coupled: 0 to more than 2 MHz . ac coupled: 10 Hz to more than 2 MHz .
Impedance: approximately 1 megohm, 75 PF shune.
Maximum input: ac coupled, ± 600 volts peak; de coupled, 25 volts rms (X 1), 150 volts rms (X 10), 350 volts mm (X 100).
Sensitivity: 0.1 volt rms sine wave; 1 voll pulse, $0.2 \mu \mathrm{smini}$. mum width.
Trigger level: -100 to +100 volts, adjustable, independent con . trois on each channel.
Modes of operation
A Quad B: totalizes A as a function of B phase. Maximum rate 1 MHz (same frequency in both channels).
Totalizes A positively if B leads A.
Toralizes A negatively if B lags A.
(Above for directional MODE switch in FWD position. Count direction reversed with swith in REV position.)
$\mathrm{Af}(\mathrm{B})$: totalizes A as a function of B from de to more than 2 MHz . If B is positive, A is totalized positively. If B is negative, A is totalized negatively. Count direction reversed within 250 nsec of B step function command. (Direction of A counted as a function of B is reversed with directional MODE switch in REV position.)
Algebraic A, B : toralizes both A and B according to MODE selector setting.
A: A onls to greater than 2 MHz .
A-B: input A minus input B; to I MHz per channel. Anti-coincidence circuit prevents count loss when pulses arrive in time coincidence.
A + B; inpur A plus input B; 1 MHz per channel. Anti-coincidence circuir prevencs count loss when pulses arrive in time coincidence.
B: B only to $>2 \mathrm{MHz}$.
Direction of counting is reversed with the directional MODE switch in - position, i.e., modes would be $-A,-A+B$, $-A-B,-B$.
Physical specificatlons
Weight: Net, $3 \mathrm{lbs}(1,4 \mathrm{~kg})$. Shipped in 5280 A .
Dlmenslons: $4.25 / 64^{\prime \prime}$ bigh, $4-37 / 64^{\prime \prime}$ wide, $81 / 2^{\prime \prime}$ deep ($112 \times$ $116 \times 216 \mathrm{~mm})$.
Price: $\$ \$ 00$.

The versatility of Hewlert-Packard counters is greatly enhanced by complementary Hewlett-Packard equipment.

The HP 2590B Microwave Frequency Converter extends frequency range of a $5245 \mathrm{~L} / \mathrm{M}, ~ 5248 \mathrm{~L} / \mathrm{M}, 5247 \mathrm{M}$ or 5246 L Counter, 5253 B 500 MHz Frequency Converter Plug-In combination to 15 GHz . The HP 5260A Automatic Fre. quency Divider with a suitable Counter makes possible automatic frequency measurements up to 12.4 GHz .

The HP 2539A Digital Compatator and HP 2514A Dig. ital Scanner increase the number of systems applications by providing data handling for making Go/No-Go decisions on counter measurements, and by scanning the BCD outputs of up to six counters.

Various solid state output couplers increase the forms in which the BCD output of counters may be recorded and stored for additional data handling or processing by digital machines.

HP 562A and HP 5050B are solid state digital recorders that provide permanent printed records of counter measurements in digital form. X.Y and strip-chart recorders, in conjunction with HP 580A/581A Digital-to-Analog Converters, provide the user with a selection of equipment for analog recording of digital data.

The HP 2212A voltage-to-frequency converter transforms analog information (i.e., voltages) into signals suitable for feeding directly into electronic counters.

Figure 1 demonstrates the capability of the HP-2539A Digital Compatator to compare readings made with the HP 5246L Counter with a predetermined level (or predetermined upper and lower levels). The result of the comparison is available and may be printed by the HP 5050 B or 562A Recorder or may be fed back to the system being monitored by the counter, thus completing a feedback control system. Front-panel indication of the comparison is also avanable. The data from the counter used by the digital comparator in the actual comparison is available from the com-
parator in BCD form. It may be printed with the Go/No-Go indication by the digital recorder or converted to analog form by the HP 580A, 581A Digital-to-Analog Converters and plotred on an HP 680 Strip-Chart Recorder, providing a permanent, visual record of the comparison.

The system in Figure 2 demonstrates the use of the HP 2547A Coupler to scan up to six HP counters. In the figure, 5248L 135 MHz Counters with 5253B Frequency Converter Plug-ins and the HP 2590A Microwave Frequency Converter or HP 5260 A Automatic Frequency Divider, are used to measure microwave frequencies. Frequency measurements made by the counters are scanned by the 2547 A , and the data is made directly available, in BCD form, to one of seven types of ourput equipment. The coupler can be linked with the HP 562A or 5050B Digital Recorders, magnetic tape and punched tape recorders, card punch, typewriter, Teleprinter, or Flexowriter.

The 5050B Digital Recorder can print up to 18 columns at 20 lines per second, Numbers and a limited set of symbols can be printed. The code base is easily changed by changing an inexpensive code disc. Mixed codes can be used. Price: $5050 \mathrm{~B}, \$ 1900$ plus $\$ 70$ per column board (one board needed for every two columns used), $\$ 50$ or $\$ 65$ per input cable.

The HP 562A Digital Recorder (shown with HP H03. 5718 Digital Clock) prints measurements made by counters or records other digital data in parallel entry BCD or 10 -line decimal form. Maximum rate is 5 lines/s. BCD data is transferred in 2 ms . $\$ 2183$ for 11 columns. See page 135 .

The HP 5260A Automatic Frequency Divider zero beats with input frequencies between 0.3 and 12.4 GHz automatically and without offset, and then provides an output. frequency exactly equal to $1 / 100$ or $1 / 1000$ of the input frequency. Thus no tuning or harmonic computation are required, and the input frequency is displayed immediately and directly on an electronic counter. \$3450; page 610.

The HP 2515A Digital Scanner transmits digital data from up to six counters to one digital recording instrument. The scanner is compatible with the BCD outputs from all HP solid-state counters, data acquisition systems. The 251sA can operate in either sequential or random scanning modes with continuous scan, single scan or manual steps. \$4200 (3 sources, 12 digits per source) ; page 119.

The HP 580A Digital-to-Analog Converter accepts 4 line BCD output for all HP solid-state counters. It provides highly precise expanded scale plots on galvanometer or potentiometer recorders. $\$ 550$; page 137.

The HP 2590B Microwave Frequency Converter measures frequency to 15 GHz by phase-locking an internal transfer oscillator to the signal source. It enables observation of jitter, FM and AM even on drifting signals. Measurement accuracy is equal to that of the counter time base. A search oscillator is provided to simplify phase locking. $\$ 2150$; page 612. See also HP 540B, \$1150; page 613; HP 5257A, page 608.

The HP 2547A Coupler scans data from up to six counters, records on one digital recording device, Compatible with HP counters, nuclear scalers, DVM's having BCD output. Up to 10 characters per instrument may be recorded. System operates completely automatically. Price determined by number of inputs and output recorder; page 122.

The HP 2539A Digital Comparator compares BCD information against single or dual preset limits providing Go/ No-Go lamp indications and electrical output. Comparisons take less than 3 msec . The 2539 A provides all possible comparison conditions-combinations of relative sign and mag. nitude-encountered in measurement situations with counters. $\$ 2650$ for 6 digit and sign comparison; page 121.

$2212 A$
The HP 2212A Voltage-to-Frequency Converter transforms a dc input voltage to a proportional pulse rate output. The counter reads the average value of the signal over the sample period, thereby minimizing effects of noise and ripple. May be used to integrate analog signals over extended periods. $\$ 995$ (without counter); page 247.

FREQUENCY METER
 Wideband, highly linear FM Discriminator Model 5210 A/B

The Model 5210A Frequency Meter/FM Discriminator directly measures frequency or repetition rate of signals from 3 Hz to 10 MHz , independent of input voltage waveform. A sensitivity control allows for measurement of noisy sig. nals. The special \log linear scale offers an accuracy of 1% of reading from 10% of full scale up. With calibrated off. set (Option 01) the accuracy is up to 0.2% of full scale.

The s210A is also a wideband highly linear FM Discriminator with a 3 dB output bandwidth of better than 1 MHz for precise measurements on FM and PM signals. With output filers (HP 10531A) frequency deviation, modula. tion index, frequency response, distortion, incidental FM, and FM noise can be determined as well as "flutter" and "wow" to better than 100 dB below carrier frequency. It is particularly well suited for tachometry work with calibra. tion directly in rpm.

For more application details see HP Journal, March, 1967, and HP Application Note 87.

Specifications, 5210A

Frequency range: 3 Hz to 10 MHz in six decade ranges from 100 Hz full scale to $10 \mathrm{MHz}_{\text {full scale. }}$
Expanded scale: with a continuousiy adjustable OFFSET concrol. meter and recorder output display any 10% of full scale ex. panded to full scale.
Sensitivity: maximum sensitivity of 10 mV rms from 20 Hz to 10 MHz increasing to 200 mV at 3 Hz with four attenuaror ranges of $0.0 \mathrm{I}, 0.1,1.0$ and 10 V .
Input impedance: $1 \mathrm{M} \Omega$ shunted by 30 pF : used with HP 10003 A
$10: 1$ divider probe 10 Nr shunted by 10 pF .

Accuracy:

Discriminator output current: 0.2% of reading below 1 MHz . 0.3% of reading on 10 MHz range.
Meter: 1% of reading from 10% of full scale to full scale.
Expanded scale: 0.1% of full scale for differential frequency readings.
Callbration: crestal calibration oscillator at 100 kHz accurate $10 \pm 0.01 \%$.
Line voltage and frequency: changes in line voltage of $\pm 10 \%$ and frequency of 50.1000 Hz cause less than 0.05% change in outpur.
Temperature: frequency reading changes less than $0.02 \% /^{\circ} \mathrm{C}$ 100 Hz to 1 MHz ranges, $0.04 \% /{ }^{\circ} \mathrm{C} \quad 10 \mathrm{MHz}$ range from 0 $10+99^{\circ} \mathrm{C}$
Recorder output:
Level: potentiometer oucputs if 10 mV and 100 mV , adjustable from 9 nV to 11 mV and 90 mV to 110 mV for full scale: galvanometer ourpur 1 mA into $2 \mathrm{k} \Omega$ max for full scale. Adjustable $\pm 10 \%$ for $1 \mathrm{k} \Omega$ to $2 \mathrm{k} \Omega$ loads.
Linearity: 0.025% of full scale 100 Hz to 100 kHz ranges;
0.05% of full scale : MHz range; 0.1% of full scale to 10 $\lambda \cdot \mathrm{Hz}$ range.
Accuracy: same as discriminator output current above.
TIme constant: approximately 100 ms .

Discriminator output:

Level: adjustable 0.8 to 1.2 V for full scale.
Linearity: 0.025% of full scale 100 Hz to 100 kHz ranges. 0.05% of full scale i MHz range. 0.1% of full scale 10 MHz range.
Bandwidth: 3 dB down ar greater than 1 MHz .
Residual FM noise: ms line frequency components below 300 Hz are 100 dB below the 1 V full scale output. At other frequencies the rms noise deviations are at least 120 dB below the carrier frequency when the noise is measured in a 6 Hz bandwidth.
Power requirements: 115 or 230 V ac $\pm 10 \% 30-1000 \mathrm{~Hz}$ at less than 10 W .
Dimensions: $7.25 / 32^{\prime \prime}$ wide, $6.3 / 32^{\prime \prime}$ high and $11^{\prime \prime}$ deep; (190 $\times 135 \times 279 \mathrm{~mm}$).
Weight: net, $91 \mathrm{bs}(4 \mathrm{~kg})$; shipping, $11 \mathrm{lbs}(4,8 \mathrm{~kg})$.
Price: HP 5210A $\$ 625.00$: Option 01 add $\$ 125$.

Option O1, Calibrated Offset

General: the calibrated offset provides for display of any of the 10 major divisions on a separate full meter scale (the EXPAND scale). This allows frequency measurements to be made with higher accuracy than is possible using the mecer in the NORMAL mode.
Discriminator output: same as above extept bandwidth is 3 dB down at greater than 750 kHz .
Accuracy: 0.2% of full scale (range switch secting) for 100 Hz to 1 MHz tanges: 0.3% of full scale (range switch setting) for the 10 MHz range.
Temperature: the accuracy specification is increased by $0.01 \% /^{\circ} \mathrm{C}$ of reading on the 100 Hz to 1 MHz ranges and $0.03 \% 0^{\circ} \mathrm{C}$ of reading on the 10 MHz range from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ for deviations from $25^{\circ} \mathrm{C}$ when zero and self.calibration adjustments are made at the ambient temperarure.
Price: add $\$ 125$ to price of S210A/B.

HP 10531A, Filter Kit

General: the HP 10531 A Accessor' Fitter Kis provides a series of three plug-in low pass fiters which can be adjusted to cover frequencies from 100 Hz to 1 MHz . These filters provide rejection of carrier and cacrier harmonics while passing modulation components. Thus it is possible to measure demodulared signal components up to 20% of the carrier frequency using the HP 302A or 310A Wave Analyzers or similar narrow band volemeters on their most sensitice ranges. By lowering filter cur-off frequency or in case of wide deviation signals measurements may be made using less selective volumeters or orher instruments
Frequency range: the upper cur-off frequency can be adjusted from 100 Hz to 1 MHz . The lower cut-off frequency will vaty up to 10 Hz , depending on load resistance used with the filter.
Carrier rejection: with the outpur filcer the carrier and its harmonics are less than 30 mV rms cotal when the filter cur-off is less than 15% of the carrier frequency and drops to 1.0 mV maximum for filter cut-off frequencies less than 5% of the carrier frequeacy.
Output impedance: nominal 600Ω. However: marched loads are not sequired.
Output level: zero to full scale deviations give i V open-circuit at discriminator output.
Price: HP 10531A \$175.

Specifications, 5210B

Model 5210 B frequency meter is identical in construction and circuitry to 5210A but is calibrated in rpm for greater convenience in tachomerry applications.
Speed range: $6000 ; 60,000 ; 600,000 ; 6.000,000$ (CAL position) rpm.
Maximum resolution: 6 rpm .
Pilce: HP $9210 \mathrm{~B}, \$ 625.00$.

METERS; TRANSDUCERS
 Measure frequency, 3 Hz to 100 kHz
 Models 500B,C; 506A; 508A, B,C,D

FREQUENCY

The HPModel 500B directly measures the frequency of an altemating voltage from 3 Hz to 100 kHz . Suitable for laboratory and production measurements of audio and ultrasonic frequencies, it also is useful for direct tachometry measurements with a transducer such as HP 506A or 508A,B,C,D.

Readings on the 500 B and 500 C are not affected by variations of input signal level or power line voltage. The meter will count sine waves, square waves or pulses and will indicate the average frequency of random events. Provision is made for checking the calibration against power line frequency and to operate a recorder for a continuous frequency record or x-y plot.

Specitications, 500B

Frequency range: 3 Hz to 100 kHz 9 ranges in $10,30,100 \mathrm{se}$ quence.
Expanded scale: allows any 10% or 30% portion of a selecred range to be expanded to full meter scale (except 10 Hz range)
Input voltage: sensitivity: 0.2 V rms minimum for sine graves. +1 V peak minimum for pulses; maximum, 250 V peak; sensitivity control reduces threshold sensitivity
Input impedance: approx. $1 \mathrm{M} \Omega$ shunted by 40 pF BNC connector for inpur.
Accuracy: better than $\pm 2 \%$ of full scale (unexpanded); reading affecred less than 0.5% by $\pm 10 \%$ variation from nominal line voltage; expanded scale $\pm 0.75 \%$ of range switch setting.
Output linearity: (relation of input frequency to output curtent at the external meter jack) : on 100 kHz range, within approx $\pm 0.25 \%$ of full-scale value: other ranges, $\pm 0.1 \%$ of fuli-scale value.
Recorder output: 1 mA for full-scale defection into $1400 \pm 100 \Omega$.
Pulse output: to trigger stroboscope, elc., in synchronisn with input signal; to measure FM.

Photocell Input: phone jack on panel provides bias for Type 1 P41 Phototube, allows direct connection of 506A Tachometer Head. Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $1000 \mathrm{~Hz}, 110 \mathrm{~W}$.
Dimenslons: cabinet: $71 / 2^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high, $141 / 2^{\prime \prime}$ deep ($191 \times$ $292 \times 368 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $13^{\prime \prime}$ deep ($483 \times 178 \times 330 \mathrm{~nm}$).
Welght: net $17 \mathrm{lbs}(8 \mathrm{~kg}$), shipping 19 lbs (9 kg) (cabinet) : net 20 lbs (9 kg), shipping 30 lbs (14 kg) (rack mount).
Accessory furnished: 10501A Cable.
Accessorles avallable: 506A Opical Tachometer, \$195; 508A, B,C,D Tachometer Generators, 5125 each; 500日-95A Accessory Meter for remote indication (operates from recorder jack), $\$ 55$.
Price: Model 500B (cabinet), $\$ 425.00$, Model 500BR (rack mounr), $\$ 425.00$.

Specifications, 500C

Model 500C Frequency Meter is identical in construction and circuitry to 500 B but is calibrated in rpm for greater convenience in tachometry applications.
Speed range: 180 rpm (15 rpm with multiplying transducer) 10 $6,000,000 \mathrm{rpm}, 9$ ranges.
Accessory avalifable: 500C-95A Accessory Meter, sss.
Price: Model s00C (cabinet), $\$ 435.00$. Model s00CR (rack mount), $\$ 439.00$.

506A Optlcal Tachometer

Model 506A is a light source and photocell for use as a transducer with instruments such as HP 521 Series Electronic Counters, HP 500B Electronic Frequency Meter and HP 500C Electronic Tachometer Indicator.

Specifications, 506A

Range for direct reading: 1 to 5000 zps with 521 Series: 3 to 5000 rps with $500 \mathrm{~B} ; 180$ to $300,000 \mathrm{rpm}$ with 500 C ; lower speed may be measured by using a multisegment reflector.
Output voltage: at leasc 1 V rms, 300 to $100,000 \mathrm{rpm}$ (into 1 $M \Omega$ or more impedance) with reflecting and absorbing surfaces $3 / 4^{\prime \prime}$ square.
Light source: 21 candlepower. 6 V automotive bulb.
Phototube: Type 1P41.
Phototube blas: +70 to -90 V dc (supplied by $500 \mathrm{~B}, \mathrm{C} 521$)
Power: 115 or $230 \mathrm{~V}=10 \%$, 50 to 1000 Hz , 25 W .
Dlmensions: $22^{\prime \prime}$ high, $11^{\prime \prime}$ wide maximunn ($589 \times 279 \mathrm{~mm}$).
Welght: net, $81 / 2 \mathrm{lb}$ (4 kg) ; shipping, $101 / 2 \mathrm{lb}$ ($4,8 \mathrm{~kg}$).
Accessoris avallable: 56A-i6B Adapter Cable (connects 506A to 522B Counter), 540.
Price: HP 506A, \$195.

508 Tachometer Generators

Models 508A, B,C,D Tachomerer Generators are rotational speed transducers for use with electronic counters or frequency meters in making fast, accurate rpm measurements, 15 to $40,000 \mathrm{cpm}$. They are specifically designed to operate with Hewlett-Packard electronic counters and frequency meters.

Specifications, 508 Series

Stiaft speed range: $508 \mathrm{~A}, 15$ to $40,000 \mathrm{rpm} ; 508 \mathrm{~B}, 30$ to 30,000 $\mathrm{rpm} ; 508 \mathrm{C}, 40$ to $25,000 \mathrm{rpm}$; 508 D , 50 to 5000 rpm .
Output: 508A, 60 cycles/rev:; 508B, 100 cycles/rev; 508C, 120 cycles/rev.; 508D, 360 greles/reu
Output voltage: raries with speed and model; approx. 0.2-30 V.
Drive shaft: $1 / 4^{\prime \prime}$ diameter, projects 19/32".
Running torque: approx. 0.1 s in-0z; 0.5 in-0z at 1500 cpm
Peak starting torque: approximately 4 in-oz.
Dimenslons: $2-7 / 16^{\prime \prime} H, 31 / 2^{\prime \prime} \mathrm{W}, 33 / 4^{\prime \prime} \mathrm{D}(62 \times 89 \times 95 \mathrm{~mm})$.
Welght: net 2 Jbs (L kg) ; shipping $3 \mathrm{lbs}(1 \mathrm{~kg}$).
Price: HP $508 A, B, C, D, \$ 125$ each.

TIME INTERVAL COUNTER
 Measure intervals from 10 nanosec to 0.1 sec . Model 5275A

Model 5275A is ideally suited for precise digital measurements of short time intervals between events that can be represented by suitable electrical pulses. Resolution to 10 nanoseconds is achieved in automatic measurements over the full 10 nsec to 0.1 sec range of the instrument.

Counted frequency is 100 MHz , obtained from an external 1 MHz standard by a multiplier in the counter. Applications include measurement of explosive burning rates, speed and acceleration timing of vehicles in free-flight wind tunnels, and nuclear measurements.

Rugged, modular construction and solid-state components contribute to the quality and reliability of this instrument. Standard features of remote reset, rear-mounted trigger
terminals and 4 -line BCD output make the 5275A suitable for many applications that would otherwise require equipment of special design.

For system installation, the HP 101A 1 MHz Oscillator (see page 648) is capable of supplying the time base for as many as twenty 5275A Time Interval Counters. Using one frequency standard conserves valuable rack space and reduces system cost where several time interval counters are required.

For greater input impedance, higher sensitivity and more versatile trigger level control, consider the 5248L Counter with 5267 A Time Interval Plug-In. This combination gives 10 ns resolution but shortest interval measured is 100 ns , compared to 5275 A 's 10 ns .

Time interval measurement

Range: 10 nanoseconds to 0.1 seconds
Resolution: 10 nanoseconds.
Input: start, stop trigger by separate channels.
Frequency counted: 100 MHz .
Accuracy: ± 10 nanoseconds \pm time base accuracy
Readout: in microseconds, with decimal point.
Time base Input: (HP l0LA Oscillator recommended)
Frequency: 1 MHz .
Stability: comparible with measurement needs.
Amplitude: 1 V rms into 1000 ?.
Signal to noise ratio: 60 dB .
Phase and amplitude modulation: less than 0.2%.

General

Display: 7 places, digital, in neon columns.
Reset: automatic, manual, or remote, using rear terminals ($30 \mu \mathrm{~s}$ minimum connection to ground)
Input trigger pulse
Sensitlulty: 3 V peak, $0.5 \mathrm{~V} / \mathrm{ns}$ rise time, 5 ns width.
Impedance: 50s
Polarity: selectable, positive or negative.
Digital output
Code: 4-2-2.1; "0" level: -8 V , "l" level: 18 V , impedance: 100 kr , each line.

Reference level: + level $17.6 \mathrm{~V} ; 350 \mathrm{~S} ;-$ level -6.9 V ; 1000 Ω.
Print command: step from -6 to 13 V , dc coupled, 2000 ? source.
Hold-off requirements: 0 V enables the reset; +13 V disables reset: $10 \mathbf{k} \Omega$ impedance.
Chassis connector: BNC connector; mates with Amphenol 57.30500 .

Operating tamperature range: $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Power requirements: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $60 \mathrm{cps}, 50 \mathrm{~W}$.
Weight: net $15 \mathrm{lbs}(7 \mathrm{~kg})$; shipping $25 \mathrm{lbs}(11,4 \mathrm{~kg})$.
Accessorles furnished; two 10503 A cables, 4 ft . long, male $B N C$ connectors.
Price: HP 5275A, \$2-i50.
Dimensions: $163 / 4^{\prime \prime}$ wide, $3 \cdot 15 / 32^{\prime \prime}$ high, $19^{\prime \prime}$ deep ($425 \times 88 \times$ 483 mm).
Option 02; 4 line BCD output, 8-4.2-1, ' 1 " level positive in liev of 4-2.2-1 (identical in all other respects). add $\$ 10$.

Option 03: same as Option 02, except "1" level negarive, add $\$ 10$.

Hewlett-Packard offers Frequency \& Time Standards systems which provide accurate frequencies, time intervals and time-keeping capabilities. Further, Hew-lett-Packard systems provide means for comparing these quantities against national standards such as the National Bureau of Standards (NBS). Units of frequency or time cannot be kept in vault for ready reference. They must be generated for each use, hence must be regularly compared against recognized primary standards.
Frequency and Time Standard systems manufactured by Hewlett-Packard are used for control and calibration at ob. servatories, national centers for measure. ment standards, physical research labora. tories, missile and sarellite tracking stations, manufacturing plants and radio moniroring and transmitting stations. System applications include the following:

Distributed standard frequencies in factories or research facilities ("house standards"), controls of standard fre. quency, time standard broadiasts, synchronization of electronic systems for navigation, investigation of radio propa. gation phenomena, radio astronomy frequency synthesis, control, and adjustment of single sideband communication equip. ment.
Pour performance characteristics are of vital interest to users of frequency and time measurement equipment and standards: accuracy, precision, stability and reliability. Hewlett-Packard systems offer these four in ample measure, plus operational simplicity. Hewlert-Packard has devoted the efforts of an entire division to the continual improvement and in. novation necessary to keep in the forefront of frequency and time measurements and standards.

Types of frequency standards

At the present time, four types of frequency standards are in common use. These are:

1. The atomic hydrogen maser.
2. The cesium atomic beam controlled oscillator.
3. The rubidium gas cell controlled oscillator, and
4. The quartz crystal oscillator.

Of these four standards, the first two are referred to as primary frequency standards and the last two as sec-
ondary frequency standards. The distinction between a primary standard and a secondary standard is that the primary standard does not require any other reference for calibration; whereas the secondary standard requires calibrations both during manufacturing and during use as well as at certain intervals depending upon the stability desired. Hewlett-Packard is manufacturing all four rypes of frequency standards. The models are: for the hydrogen maser, the HP Model H-10 (not described in this catalog-data upon request): for the cesium beam frequency standard, the HP Model 5061A; for the rubidium standard, the HP Model 5065A: and for the quartz crystal oscillators, the HP Models 105 A and B , 106 A and B , and 107 AR and BR. Table 1 gives a summary of the advantages and
and $F=0, m p=0$ energy levels. The quartz bulb has tefion coated walls to reduce perturbation of the important energy states.
Inside the coated storage bulb, the hydrogen atom makes candom transits, being refected upon each encounter with the walls. During this interaction process within the bulb, the atoms tend to relax and give the energy up to the microwave field within the tuned cavity. This field also rends to stimulate more atoms to radiate, thus building in intensity until steady state maser operation is achieved. However, some atoms relax unproduc. tively due to collisions with the wall; magnetic inhomogeneity or other bydrogen atoms. Some atoms also escape through the bulb opening. Although the atoms undergo many collisions while in

TABLE 1
Sources of Advantages and Limitations for Frequency Standards

Standard	Prinolpal oonstruotion leature	Prinoipal advantage	Prinolpal IImitaiton
Alomic Kydrogen Maser	Active maser with coat. ed wall storage cell having longest atomic interaction time	Greatest intrinsic re. producibility, long and short - term stability. Primary standard capability	Size and weight
Cesium Atomic Beam Resonator Controlled Oscillator	Atomic beam interaction with fieldsminlmum disturbance of resonating atoms due to collisions and extraneous influences	High intrinsic reproducibility and long. term stablility. Desig. nated as primary standard for definition of time interval	Short-term stability
Rubidium Gas Cell Resonator Controlled Oscillator	Gas bulfered resonance cell with optically pumped state selection	Compact and light weight. Very high de. gres of of stability	Requires callibration against primary standard
Quartz Crystal Oscillator	Piezoelectrically active quartz crystal with electronic stabilization	Very compact, light and rugged. Inexpensive	Long term stability. Requires calibration against primary standard

limitations for these four types of fre. quency standards and the following paragraphs give more detailed descriptions.

Atomic hydrogen maser

Figure 1 gives a schematic diagram of an atomic hydrogen maser. A beam of atomic hydrogen is direcked through a highly inhomogeneous magnetic field which acts to selects atoms in states of higher energy from those in states of lower energy and allow's them to proceed into the quartz bulb. The quartz buib is enclosed in a tuned microwave cavity set to the ransition frequency of the hydrogen atom berween the $\mathrm{F}=1, \mathrm{~m}_{1}=0$
the bulb, their effective interaction time has been lengthened to more than 1 seeond. Perfecting these techniques, the extremely sharp resonance frequency has led to a Q approaching 10°. The low power level of approximately 10^{-13} watts requires that considerable amplification be used to obtain a useful standard frequency.

Figure 2 shows a block diagram of a complete hydrogen maser. It illustrates how a slave oscillator is phase locked to the maser. The Hewlett-Packard Model H. 10 Hydrogen Maser does not supply this phase lock system. It only supplies the maser frequency of $1.420 \div \mathrm{MHz}$ at a very low output level, namely $5 \mu \mathrm{~V}$

Figure 1. Atomic hydrogen maser diagram

Figure 2. Mydrogen maser block diagram
across 50Ω. The receiver system to trans. late the $1.420+\mathrm{MHz}$ hydrogen fre. quency to 5 MHz is available as a separate unit. Maximum long term frac. tional frequency excursion including resettability of the Hewletr-Packard H. 10 Hydrogen Maser is 2×10^{-12}. During observations of two hydrogen masers extending over a period of one year no long term drift of one with respect to the other has been derecred. Measurement resolution during this period was betrer than 1 part in $10^{\prime \prime}$. The short term stabilities for averaging intervals of 10 seconds is better than 1 part in 10^{13} ims.

Cesium beam frequency standard

Cesium beam standards are in use wherever the goal is very high accuracy primary frequency standard. In fact, the NBS frequency standard itself is of the cesium beam type. The cesium beam standard is an atomic resomance device which provides access to one of nature's invariant frequencies in accordance with
the relationship of quantum mechanics. The cesium standard is a true primary standard and requires no other reference for calibration.

Atomic frequency standards are based on the frequency, y, corresponding to a transition between two atomic states separating the energy by $\triangle E$:

$$
\Delta E=h \nu .
$$

where h is Planck's constant. Common to atomic standards are means for l)
selecting atoms in a certain energy state,
2) enabling long lifetimes in that state,
3) exposing these atoms to (microwave) energy, and 4) detecting the results.

For the cesium beam standard, the quantum effects of interest arise in the nuclear magnetic hyperfine splitting of the ground state of the atoms. The transition described as ($F-4, \mathrm{~m}_{\mathrm{r}}=0$) \leftrightarrow ($\mathrm{F}=3, \mathrm{~m}=0$) is observed.

The HP Model 5061A is a porrable cesium beam standard proved capable of realizing the cesium transition frequency to the same levels of accuracy and longterm stability usually achieved by large. scale laboratory models.

The 5061 A operates to keep an ultra stable quartz oscillator precisely "on fre. quency" via servo-control that refers, ultimately, to the center of the atomic resonance. The ourput signal is derived from the quartz oscillator, the cesium beam tube serves as its reference - and the two are linked by circuitry that includes means to adjust the frequency of the quartz oscillator to automatically compensare for its aging or drift.

A simplified sketch of the beam rube is shown in Figure 3.

It is possible to accelerate cesium atoms by a force dependent on the applied mag. netic field gradient together with the atom's magneric dipole moment. Thus cesium atoms can be sorted and focused by passing a beam of them through a magnetic field having a high gradient (" A " magnet). Atoms in the quantum state of interest are direcred down the beam rube and others are deffected away. These selected atoms then drift through a space where the field ("C" field) is kept low (typically, about 50 milligauss) and uniform and are subjected to microwave radiation corresponding to just the frequency which separates the two energy levels. The atoms flop from one energy state to the other; and those which have made the transition in the desired direction are selected and directed by a second field ("B" magnet) onto a detector.

Now, the maximum signal means that the maximum number of transitions are

Figure 3. Schematic of cesium beam resonator
occurring, which indicates that the injected microwave energy is of precisely the transition frequency. The oscillator which is the source of this energy is therefore known to be operating at a fre. quency directly related to the transition frequency. A constant of the atom has been made the frequency reference.

Rubidium vapor standard

Rubidium vapor or rubidium gas cell frequency standards fearure a high order of both shorrterm and long.term fre. quency stability. Both are important for progress in certain fields such as deep. space communications, satellite ranging. and doppler radar. Also, rubidium standards are noted for being of small size.

Rubiduim standards are similar to cesium beam standards in that an atomic resonant element prevents drift of a seandard frequency quartz oscillator through a phase lock loop. Such a system is shown in Figure 4, Yet the rubidium type is a secondary standard. Since the atomic resonant frequency of a rubidium gas cell is dependent upon gas mixture and gas pressure in the cell, it must be calibrated and then it is subject to a small degree of drift. The drift is typically 100 times less than the best quartz crystal standard.

A rubidium standard may also be smaller and lighter than previously described primary standards. Therefore. this type of instrument is ideal for transporting time and frequency from one 10 cation to another. For instance, HP Model 5065A weighs only 37 pounds and offers a built-in standby power battery with a 10 minute minimum capacity to allow moving the unit about a plant. And the HP Model E21-5065A portable rubidium rime standard is available for long haul transporration.

Criteria in choosing a rubidium standard should encompass the ease of calibration and time scale selection, and the method of clock puise synchronization when a clock is included. Hewiett-Packard has mastered all of these in the 5065A design. Using a single quartz oscillator at a frequency of $s \mathrm{MHz}^{\text {a }}$ thumbwheel controlled frequency syothesizer translares the 5 MHz to a frequency, which when multiplied, matches the atomic cell transition frequency. Simply changing the four thumbwheels to a predetermined number (table in operat. ing manual) shifts the synthesis ratio to give either UTC offsers or atomic A1 time. Thumbwheel steps are approximately 2×10^{-6} of frequency. Finer adjustments and calibration are performed by a front panel magnetic field control. This control is designed to give a linear frequency change with dial reading to make adjustments simple.

figura 4. Typical atomic standard phase-lock toop system.

Figure 5. Schematic representation of rubidlum-vapor cell resonator.

Model 5065A's Option 01 Time Sian. dard Eurnishes an output pulse of 1 pps as well as a frone panel 24 hour clock driven by a frequency standard signal. The time pulse may be delayed up to 1 second for phasing purposes using a sync pushbutton which synchronizes with an external pulse to $10 \pm 1 \mu \mathrm{~s}$ and the thumbwheels are setrable in $1 \mu s$ increments.

The high long term scability of the rubidium standard originates in the atomic resonator operating with a dy. wheel in the form of a very-high-quality quartz controlled oscillator. The closed. loop bandoridth of the control system is limited to about 2 H . Thus, the stability of frequency output for intervals (aver. aging times) of a fraction of a second is essentially that of the crystal oscillator. The short term stability of this oscillator is very high-equal to that of HewlettPackard's most stable crystal standard. As longer averaging times are considered, the control system constrains the crystal oscillator to the superior long term stability of the atomic resonator. The result is a combination of superior long and short term stability. The bandwidths of the control loop is a fixed value that yields the full short term stability of the
crystal oscillator without degradation by atomic resonator noise.

The rubidium resonator is shown schematically in Figure s. In operation, the rf osciliator produces in the spectral lamp a plasma in which the rubidium atoms are energized to an excited state. As the atoms then relax, they emit two closely spaced wavelengths. One of these is intercepted by the filter cell and the remaining enters the absorbtion cell.

Energy is absorbed in the cell as a pumping action takes place where Rb atoms are excited into the optical stace. This depletes one of the ground state energy levels of the gas molecules until no more radiated energy can be absorbed. The cell, thus, becomes transparent and a solar cell detects the amount of incident radiation. Microwave excitation of the absorbtion cell at the correct transition frequency ($6,834.685 \mathrm{MFz}$) causes a replenishment of the depleted ground state energy level such that further optical state pumping can take place.

The pumping absorbs some of the optical radiation such that less reaches the solar cell, and the presence of the correct frequency is thus detected. A small amount of low frequency fm is applied to the microwave carrier to allow accu-
rate phase sensing and synchronous detection.

Any error in frequency wrill be summed in the integrator, preventing any accumulated time error, and a correction voltage will be applied to the quartz crystal oscil. lator. This, in turn, counteracts the original deviation in frequency.

Quartz crysłal oscillators

The modern era of precision frequency control was initiated in the $1920^{\prime} s$ when the quartz crystal resonator was first applied in the conseruction of frequency oscillators. Its use in instruments for the generation and measurement of precision frequencies is now universal in national and industrial laboratories of the world. Today, the most exacting uses demand atomic resonance conerol. Nonetheless, quartz crystal oseillators remain the workhorses of virtually every frequency control application.

When used to control an oscillator, a quartz resonator is mounted between con. ducting electrodes, usually thin metailic (gold) coatings deposited directly on the crystal by evaporation. Mechanical sup. port is provided at places on the crystal chosen to avoid any inhibition of the desised vibration and if possible such that unwanted vibration modes are suppressed. Advantage is taken of the piezoelecrric effect thar lisks mechanical vibra. tions and electrical effects in certain crystals. An alternating voliage at a selected natural frequency applied across a properly cut quaftz crystal causes it to vibrate. This crystal resonator behaves as though it were an electrical network and can be made to impose its own frequency upon an oscillator circuí.

An inherent characteristic of crystal oscillators is that their resonant frequency changes slightly as they" age. This "aging rate" or "drift" of a well-behaved oscil. lator is almost constant. After the initial aging period (a fer days to a month) the rate can be taken to be constant with but slight error. Once the rate is measured, it is usually easy to correct data to remove its effect. Over a long period, the accumulated error drift could amount to a serious error. Thus, periodic frequency checks are needed to maintain a quartz crystal frequency scandard. (The cesium beam standard, on the other hand, has no known drift.)

Hewlett-Packard offers the Models 105A/B Quartz Oscillators rated at 5 parts in 10^{10} per day long term stability, the HP Models $106 \mathrm{~A} / \mathrm{B}$ rated at S parts in $10^{\prime \prime}$ per day long-term stability, and the ruggedized HP Models 107AR/BR, rated at $s \times 10^{30}$ per day. Such exceptional stability (and, substantially better performance is attained under normal oper-
ating conditions) results from careful attention to all controilable factors such as selection of the highest quality crystals, their operation in precision temperature controlled ovens, and their incorporation into inherently stable circuits designed for low power dissipation within the crystal.

Spectral purity

Spectral purity is the degree to which a signal is coherent or, expressed in another way, a single frequency with a minimum of side band noise power. It is greatly desirable to have high spectral purity in a standard signal from two standpoints. One, when used as a fre. quency and time reference the short term percurbations will be less for higher accuracy. And two, in applications where the standard frequency is multiplied to very high or microwave frequencies the frequency spectrum of the signal will be reasonably narros.

The signal and its frequency spectrum are analogous to, a frequency modulated wave where the total power is constant. If the frequency multiplying device is broadband, the ratio of the total sideband power to the signal power increases as the square of the multiplying factor. Consequently the increased sideband power must come from the carrier. With increasing multiplication factors the spectrum of the signal spreads since the increased sideband amplitude causes intermodulation between sidebands to become appreciable. For frequency multiplication the standard's signal-to noise ratio will be degraded 6 dB per octave and 20 dB per decade.

Hewlett-Packard quartz oscillators are designed to give exceptional spectral purity. After high multiplication they give specrra which are only slightly degraded from the fundamental frequency. Figure 6 shows a noise spectrum plot for the HP 106A/B Quartz Oscillator (see

Figure 6. Spectrum of a 5 kHz beat note al 9.2 EHz : comparison of two HP 106A,B Os. sillators.

Hewletr-Packard Application Note 52, "Frequency and Time Standards." page 5.3 for details of this noise measure. ment).

Stability

Long term stability refers to siow changes in the average frequency with time due to secular changes in the resonaror and is usually expressed in fractional parts fer unit of time. Short term stability refers to changes in average frequency over a time sufficiently short so that change in frequency due to long term effects is negligible. To be meaningful, this specification should reflect variation in frequency caused by unwanted components of noise and spurious signals. It is Hewlett-Packard's practice to specify this inslability in terms of RMS Fractional Frequency Deviation.

A short term stability specification should include a statement of averaging time to be meaningful. The longer the averaging time used, the more the deviation is obscured since the average must approach the mean or nominal output frequency in the long run. In comparing specifications for standards, one should keep these facts in mind. Also, there can be a considerable difference in actual per. lormance if the specifications denote peak deviations over the time designated, averaged pealk deviations over the given time, or simply a straight line approximation of the short term deviations. Hewlett. Packard's practice is to additionally in. clude maximum RMS Phase Deviation as a staristical measure of peak deviation.

The mathematical relationship which relates frequency, time, and phase de. viation is:

where Δf represents the frequency deviation from the mean or average value of $f ; \Delta t$ is the observed period deviation from z, the average or mean period of a single cycle of i; and $\Delta \phi$ represents the phase deviation in radians from ϕ, for the average or mean value of ϕ over the averaging time. RMS or standard devia. tion values are obtained by calculation from these deviation measurements. An RMS value means that 68.3% of all observed deviations are less than the RMS value, 95.1% will be less than two times the RMS value, and 99.7% will be less than three times the RMS value.

When the $\Delta f_{\text {rims }}$ value is normalized by dividing it by F the RMS fractional frequency deviation is obtained. This gives values in parts in 10^{x}; for instance. 1×10^{-11} over an averaging time of 1 second for Model 105 Quartz Frequency Standard.

Figure 7. Typical short term stablity of Hewlett-Packard frequency standards.

Short term stabilities of the various standards offered by Hewlett-Packard are compared in Figure 7. The long term drift was removed from the curves so that the short term variations could be more readily recognized.
Long term stability, or long-term instability in the alternate sense, refers to gradual drift in average frequency due to changes in the resonator or changes in other components of the oscillator. For quartz oscillators this is often termed "aging rate" and specifed in "parts per day." Rubidium standards being more invariant are specified in "parts per month." On the other hand, Cesium Beam Standards and Hydrogen Maser Standards are primary units having no gradual change or drift. Therefore, these primary standards are given a specified accuracy to within which the frequency is guaranteed. They also have a reproducibility specification which means that through a sequence of comparisons (as of an instrument against a standard) the unit will yield a mean or standard devia. rion. Use of this term implies that the instrument was independently adjusted between comparisons, so the resettability of the instrument is a factor.
Aging or long term drift can be in either direction; i.e., either higher or lower in frequency. Thus the specifica. tions are often given as \pm parts in 10^{x}. If plus or minus is not stated, it is im. plied unless otherwise noted.

Frequency standards and clocks

Time standards and frequency stand. ards have no fundamental differencesthey are based upon dual aspects of the same phenomenon. The reciprocal of time interval is frequency. Frequency measure-
ments are measurements of the number of cycles-counted one by one-per time interval (second). For precision oscilia. tors, a complete statement of frequency must include the time scale in use, so chat the exact length of the time interval is specified.
As a practical matter, to maintain a time standard places stringent additional requirements upon a frequency standard. A clock is a device for counting cycles. The time it keeps is a function of irs driving frequency: in effect, a clock integrates frequency. Even a small frequency error can cause large time errors to accumulate, for a clock must measure off nearly 100,000 seconds in just one day.

The basis for a modern time standard clock is an ultra-stable oscillator, ofren a quartz crystal oscillator. The low frequency convenient for clock operation must be derived from the high quartz frequency (typically, 0.1 MHz to 5 MHz) in a way that does not degrade its ac. curacy. This is accomplished by fail-safe regenerative dividers. A local cime standard, then, comprises 1) a stable, precision oscillator and 2) a frequency divider and clock.

A cesium beam standard is an excel. lent frequency standard to drive a clock because of its extremely good long-term stability. If a quartz oscillator or orner secondary standard is used, it must be evaluated for rate of drift and be kept carefully corrected.

The Hewlett-Packard Model 5061A Cesium Beam Frequency Standard and Model sobsA Rubidium Frequency Standard offer an Option 01 Time Standard.
The Option ol provides the units with a 1 pulse per second clock output
available at both front and rear panel BNC connectors. The clock is driven by 1 MHz , internally connected. The clock pulse is adjustable with respect to a reference by 6 thumbwheel switches in decade steps from 1μ s to 1 s . An in. ternal screwdriver adjustment allows fine continuous adjustment over any $1 \mu \mathrm{~s}$ range. The thumbwheel switches are lo. cated under the access door in the top cover.

The time standard option includes a Patek Philipe 24 hour clock movement indicating time in hours, minutes and seconds. Advance/Stop pushbuttons on clock module allow clock to be set to the nearest second. Pressing an internal sync button automatically synchronizes the 1 pps ciock pulse to an external syne pulse.

Frequency comparison by VLF broadcast

One excellent way to keep a local system's frequency-hence, time interval -referenced against master time interval is by use of a low frequency standard broadcast such as the National Bureau of Standards WWVB, 60 kHz . Prime means for doing this with ease and con. venience is the HP 117A Comparator. This unit is a complete system in itself. The strip chart produced by the 117 A records minute by minute the results of a precision phase comparison (resolution, 1 $\mu \mathrm{sec}$) of the local signal against the re. ceived signal to show frequency offset or error of the local standard.

Reliable, fail-safe operation

Hewlett-Packard frequency and time standards have many features that ensure
ease of operation and maintenance. This allows house frequency standards and timekeeping systems to be operated at the highest possible accuracies. Herwlett. Packard standards have built-in dependability. For example, regenerative dividers of the non-self-starting type are used in the 115BR frequency divider and clock; the very presence of an ourput signal is a positive indication that divider output has not lost time relative to the driving signal. The dividers stop and remain stopped upon any interruption of signa! or of supply power.

The HP 105A/B, 106A/B and 107AR/ BR quartz oscillators have a digital indicator. calibrated in parts in $10^{\prime \prime}$ (10^{24} for $105 \mathrm{~A} / \mathrm{B}, 107 \mathrm{AR} / \mathrm{BR}$), which greatly facilitates making fine corrections to bring the oscillator back to reference frequency, as determined by offset measurements made against NBS via the 117A Comparator.

Standby power supplies

Minimum down-time, important for any system, is vital to a time standard. Its w'orth depends directly on continuity of operation. Non-interrupted operacion is also imporeant to ultra-precise quartz oscillators. If a crystal is allored to cool from its operating remperature, upon renexed operation it may assume a frequency offset and even an altered aging rate for a short period of time.

Hewlett-Packard standby pou'er supplies ensure continued operation despite line interruprions, and operate over a range of ac line voltage to supply regulated de to operate frequency standards and frequency dividers and clocks. The batteries in the supplies assume the full load immediately when ac power fails.
Alarm systems include local indication of operating conditions and provisions for remote alarms.

Variable frequency source

There are applications in many areas such as microwave spectroscopy and production testing of frequency sensitive devices for an instrument having the basic stability and spectral puriry of a precision quartz oscillator, yer offering not just a few but many thousands of discrete frequencies. This capability is offered by the line of frequency synthesizers produced by Hewlett-Packard. The Model 5100 B / $5110 B$ covers the frequency range of 0.01 Hz to 50 MHz in 0.01 Hz steps. The Model 510sA/s110B covers the frequency range of . 1 MHz to 500 MHz in . 1

Hz steps. Other models cover various other ranges.

Atomic and universal time scales

The time interval of the atomic time scale is the International Second, defined in October 1967 by the Thirreenth Gereral Conference of Weights and Mea. sures:

The Universal Time Scale, UT2 is related to the earth's zotation and has been proceeding at a rate slightly slower than that of the atomic scale. Its time interval-second-is slightly longer.
U. S. Standard Time, kept by the U. S. Naval Observatory's master clock, differs from nominal UT2 by an integral number of hours. The time interval broadcast by NBS stations WWV. WWVH and WWVL is that of a stepped approxima. tion to UT2. WWVB (60 kHz) broad. casts the aromic second, withour offset.

A time scale which approximates UT2 can be produced by oscillations offset from the atomic frequency in an amount proporrional to the difference in the intervals employed. By international agreement, the amount of this frequency offset is fixed each year by the Bureau International de l'Heure, in Paris: for 1968 ic is -300×10^{-18}.

Operational complications which arise owing to the need for changed offsets from year to year are eased considecably by design provisions Hewlett-Packard makes. The HP SOG1A and HP s065A can be easily referenced to either of the two time scales, Atomic, A.I, or UTC. The UTC time scale is the stepped approximation of the UT2 time scale. These changes arc accomplished by simply changing the setting on a set of 4 thumbwheel switches located inside the unit under to top cover. The HP 117A Comparator is adjustable simply by a gear ratio change in the translator kit.

Hewlett-Packard systems anticipate future needs as well, and can easily be set up to new offser UTC offset scales as required.

Timekeeping to microsecond accuracy

Studies and systems requiring synchronized measurements at points widely separated in distance increasingly demand time standards capable of microsecond accuracy. Examples are studies of the propagation of electromagnetic waves, advanced systems for navigation, and air. craft collision avoidance.

In the 1967 Flying Clock Experiment* Hewlett-Packard demonstrated a system of three cesium beam time standards, one stationary and two cransported by commercial airlines and automobiles on a 100,000 kilometer journey, that maintained time over 41 days to a mutual agreement within two microseconds.

Older methods relying on high fre. quency radio signals cannot correlate widely separated clocks to much better than a millisecond. The use of a portable time standard that travels among all the clocks of a system to cocrelate them with a master clock has proved to be ideal means of establishing time to microsecond accuracies.

Hewlett-Packard offers a portable time standard, the E21.5061A, which has proved itself capable of microsecond ac. curacy and which is easily transported by commercial airlines and automobiles.

Hewlett-Packard time and frequency standard

The HP House Standard has as its basic reference the HP 5060A Cesium Beam Standard. The output is continually compared in phase with the U.S. National Bureau of Standards (NBS-A) at Boulder, Colorado by reception of NBS standards stations WWVB and WWVL via HP 117A Comparators. The stan. dard is also compared to two of the U.S. Navy's VLF stations. Time is correlared on each occasion when the HP Flying Clocks visit U. S national timekeeping centers. Frequency is maintained in agreement with NBS.A with an accuracy of parts in 10^{11}. Studies have shown this standard to rank among the world's most accurate.

Time is maintained relative to the Nava! Observatory's master clock to an accuracy of betrer than ± 2.5 mictoseconds. This accuracy is verified with Flying Clock trips f:om the Naval Ob. servacory to both Hewlett-Packard Palo Alto and Hewlerr-Packard Geneva, Both locations have been designated U.S. Naval Observarory Time Reference stations.

A precision time comparison is made by the use of the HP 5325A Electronic Counter.

The measurement is one of totalizing pulses during the interval separating the one-second ticks generated by the flying clock and those generated by the reference clock.
Hewlett-Packard Application Note 52, "Frequency and Time Standards", discusses practical aspects of equipment, operation, and time scales (100 pages).

[^65]
CESIUM BEAM TUBE
 $\pm 1 \times 10^{-11}$ long term stability
 Model 5082A

FREOUENCY \& TIME STANDARDS

Applications

Ultra Pracise Frequency Standards for the calibration of lesser standards and the study of oscillator performance.
Tlme Keeping during long continuous intervals in which the highest degree of uniformity and reliability is required.
Communications for the fine resolution of frequencies up through the microwave spectrum.
Spectroscopy for the resolution of the finest details of physical spectra.

The HP Model 5082A Cesium Beam Tube (formerly BLR-2) is an ultra stable resonator or frequency reference component based upon the quantum mechanical properties of Cs^{133}. A unique motion within the cesium atom is coupled to an electromagnetic circuit to provide a resonance signal for the accurate control of frequency in electronic oscillators.

Through the use of the Cesium Beam Tube, it is possible to construct electronic oscillators with an extremely high degree of reproducibility and stability. Long term drifts and aging effects which are unavoidable in the best quartz crystal oscillators are absent in cesium beam stabilized oscillators. The Cesium Beam Tube is applied as the reference component in a feedback control system. All radio frequencies may be derived from the cesium controlled frequency without loss of precision by the use of well established synthesizing techniques.

Features

High Intrinsic Reproducibility-The HP Cesium Beam Tube characteristics ate reproducible from unit to unit with no requirement for calibration against a primary standard during manufacture or doring use.

Unifom Magnetic Field-To realize the highest degree of inteinsic reproducibility, the tube has been designed with special attention to the uniformity of the magnetic field in the atomic interaction space. Particular care has been exercised with respect to shielding factors and with respect ro end effecrs.

High Q Resonance-Resonance Q of $3.5 \times 10^{\prime}$ permits high accuracy from associated oscillator circuits.

Reliability, Long Life-The 5082A provides the highest degree of reliability and long trouble-free operation. Tube life exceeds commonly accepted standards for microwave tubes.
Mass Spectrometer Detector-The high performance potential of the cesium beam technique is fully realized by the use of an efficient mass spectrometer detector which eliminates spurious impurity signals. Reliability and stability would otherwise be compromised by impurity signal pulses occurring, for example, as infrequently as once per week.

Construction-The tube is designed to ensure maximum accuracy in the alignment of the beam deflecting components. Every advantage is taken of the most advanced microwave tube technology to attain reliable, rugged construction. The vacuum envelope protects all critical parts from environmental effects. There are no external adjustments.

Specifications

Electrical

Frequency: $9,192,631,770.0 \pm 0.2 \mathrm{~Hz}$.
Long term stability: ± 1 part in 10^{11}.
Reproduclblity: ± 1 part in 10 ${ }^{11}$. (Reproducibility refers to the degree to which resonance frequency is the same from one unit to any other.)

Output voltage: (signal/noise) 750 min. for L second time constant.

Output signal: $5 \times 10^{-8} \mathrm{~A}$ at resonance peak.
Operating Ilfe: 10,000 hour warranty $\left(35^{\circ} \mathrm{C}\right.$ max. storage temp.). For details request 5082A Data Sheet.
Orientation: Frequency change is less than 5×10^{-12} for any position in the earth's feld.

Mechanical

Dimensions: 251/4" long; diameter approximately $55 / 8^{\prime \prime}$.
Welght: $23 \mathrm{lbs}(11,5 \mathrm{~kg})$ net; $34 \mathrm{lbs}(15 \mathrm{~kg})$ shipping.

Power requirements

R-F power: $30 \mu \mathrm{~W}$ maximum.
C-Fleld supply: nominal +20 mA dc regulated into 1Ω.
Hot wire íonzer: $1.5 \mathrm{~V}, 3.0 \mathrm{~A}$ ac or dc.
Mass spectrometar: nominal +14 V dc regulated to 0.5%.

Cesium oven: steady state, nominal 5 V at 0.8 A ac or dc. Thermistor included for proportional control.

Electron multipller: -1800 to -2500 V dc $\pm 0.1 \%$ at $50 \mu \mathrm{~A}$ maximum.

Ion pump (internal): initial, 1 mAdc at +3500 V. Sready state, nominal $1 \mu \mathrm{~A}$ dc at +3500 volts $\pm 15 \%$.
Price: Model 5082A, $\$ 5500$.

FREQUENCY \& TIME STANDARDS

Advantages:

Accuracy of ± 1 part in 10^{11}
Circuit-check meters and lights monitor operation
Clock and Digital Divider built-in (optional)
Standby battery supply built-in (optional)
All solid-state circuits, low power consumption Compact- $83 / 4$ inches high, 60 pounds
The Hewlett-Packard Model 5061 A is a compact, self. contained primary standard of the atomic beam type, utiliz. ing Cestum 133. A cesium beam tube resonator stabilizes the output frequency of a high quality quartz oscillator. Solid. state modular design is used throughout, and the closed-loop, self-checking control circuit yields exceptional accurscy of $\pm 1 \times 10^{-11}$, The 5061 A has provision for an optional in. ternal clock and digital divider and for battery with 1 hour (typical) standby power capacity.

The cesium beam tubes exhibit frequency perturbations so small that independently constructed tubes compare within a few parts in 10^{12}. Outstandingly reliable, these tubes have a 2.5 year typical life (guaranteed 10,000 hours). The 5061 A can easily be referred to cither of the two time scales in wide. spead scientific usc: UTC or Atomic. The change is accomplished by changing a set of 4 thumbrheel switches and a slide switch, located under the top cover.

The quartz crystal oscillator used in the 5061 A has superior characteristics even withoue control by the atomic resonator. The quarz oscillator portion of this cesium beam standard is identical to the HP 105A.

The 5061A is compact and porable, no complex perma. nent installation is required.

Operation

In the atomic resonator a beam of state selected Cesium. 133 atoms passes through a microwave cavity. When the frequency of the microwave magnetic field is near the hyperfine transition frequenc; of Cesium 133, it induces transitions from one energy level to another. Those atoms which have undergone such a transition are then detected by a hot wire ionizer and electron multiplier. The microwave field, derived

CESIUM BEAM FREQUENCY STANDARD
 Compact primary standard, $\pm 1 \times 10^{-1}$ accuracy Models 5061A, E21.5061A

Figure 1
from a precision quartz oscillator by frequency multiplication and synthesis, is phase modulated at a low audio rate. When the microwave frequency deviates from the center of the atomic resonance, the current from the electron multiplier contains a component alternating at the modulation rate and proportional to the frequency deviation. This component is then filtered, amplified, and synchronously detected to provide a do voltage proportional to the frequency deviation. The integral of this do roltage is then used to auromatically tune the quartz oscillator to zero frequency error.

The control circuit provides continuous monitoring of the output signal. Automatic logic circuitry is arranged to presene an indication of correct operation. Figure 1 shows a simplified block diagram of the 5062 A operation.

E21-5061A

The E21-5061A consists of a 5061 A Cesium Beam Standard and a K02.5060A Power Supply joined together with a bracket to make one portable unit. The poser supply, which can be operated from 6 or $12 \mathrm{~V} \mathrm{dc}, 24$ to 30 V dc , or $115 / 230 \mathrm{~V}=10 \%, 50.400 \mathrm{~Hz}$, will provide approximately 8 hours standby power (from batteries) for the 5061A. Thus the E21-5061A is a truly portable, primary frequency standard, and with option 01 on the 5061 A , a complete flying clock of considerably smallec dimensions than the E20-5060A."
-See Hewlett-Packard Journal, Augusi 1965 and December 196).

Specifications

5061A Cesium Beam Standard

Accuracy: $\pm 1 \times 10^{-11}$.
Reproducibllity: ${ }^{*} \pm 5 \times 10^{-12}$.
Long term stability:* $\pm 1 \times 10^{-11}$ (for life of rube).
Short term stability: rear panel switch selects 1 s or 60 s !oop time constant (see figure below).

Warm-up kime: $3 / 4$ hour to fully operational from $25^{\circ} \mathrm{C}$ ambient temperature.
Harmonlc distortion: (5 MHz, I MHz, and 100 kHz) down more than 40 dB from rated output.
Non-harmonically related output: (5 MHz , i MHz , and 100 kHz) down moce than 80 dB from rated outpur.
Output frequencles: $5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$ sinusoidal, 100 kHz clock drive.
Output voltages: l V ems into $\mathrm{s} 0 \Omega$; clock drive suitable for Hewlett-Packard Frequency Divider and Clocks.
Output terminals: $5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$, front and rear BNC connector, 100 kHz clock drive, reac BNC connector.
Time scale: adjustable with 4 thumbwheel switches and a slide switch from 0 to $-700 \times 10^{-50} .12 .63 \ldots$ MHz test frequency available on rear panel.

Cesium Beam Tube

Tube life: rypically 2 to 3 years. 10,000 operating hours guaranteed within 2 years of receipt of tube.
Length: $16 \pm 1 / 16 \mathrm{in}$.
Diameter: approximately $51 / 8$ in.
Weight: 16 lbs .
Line width: $550 \mathrm{~Hz}(\pm 20 \%)$.
S/N Ratio (Voltage): typical, 1000 ($1 / 4 \mathrm{~Hz}$ noise bandwidth).
RF power $(9192+\mathrm{MHz}): 30 \mu \mathrm{~W}$.
Power Input, $25^{\circ} \mathrm{C}$, typlcal: 6.5 W .

Quartz Oscillator

Aging rate: <5 parts in 10^{10} per 24 hours.
Signal-to noise ratio: for 1 and $s \mathrm{MHz},>87 \mathrm{~dB}$ at rated output (in a 30 kHz noise bandwidth, 5 MHz output filter bandwidth is approx. 100 Hz).
Frequency adjustments:
Fine adiustment: S parts in 10^{9} range, with dial reading parts in 10^{10}.
Coarse adjustment: 1 part in 10°, screwdriver adjustnent at front panel.
Stability: as a Function of Ambient Temperature: $<2.5 \times 10^{-0}$ total frequency change from 0° to $+50^{\circ} \mathrm{C}$.

As a Function of Load: $< \pm 2 \times 10^{-11}$ change for open circuit so short, and son R,L,C load change.
As a Function of Supply Voltage: $< \pm 5 \times 10^{-11}$ change for 22 to 30 Vdc or for $115 / 230 \mathrm{~V}$ ac. $\pm 10 \%$.

Genera)

Environmental: cypical temperature stability is better than $\pm 5 \mathrm{x}$ $10^{-12}, 0$ to $50^{\circ} \mathrm{C}$. Humidity, 0 to 95%. Typical magnetic sta. bility is better than $\pm 5 \times 10^{-21,} 2$ gauss field, any orientation. Production 5061A's have passed the vibration per MIL.STD. 167, electromagnetic compatibility specincation, MIL-I6181D (EMC, also known as RFI) and shock Mil.N. 21200 class 1.
Power: 115 or $230 \mathrm{~V} \mathrm{ac} \pm 10 \%$, so to 400 Hz or 22 or 30 V dc. 39 W operating from de with options. Approximately 75 W operating from as with options.
Dimensions: $163 / 4^{\prime \prime}$ wide $\times 163 / 8^{\prime \prime}$ deep $\times 83 / 4^{\prime \prime}$ high (425×46 $\times 221 \mathrm{~mm}$).
Welght; net, 60 lbs , no options. Option 01 add 2 lbs . Option 02 add 5 lbs.
Accessories furnished: Rack Mounting Kir 5060-0777; 22 pin plug. in extender board 5060.7202 ; detachable 6 tt . ac power cord, connectors 1251.0038 (Cannon MS 3106A10SL.35C) and 1251.0037 (A.P.M. Corp.) LPI 131M (NUP 12LM).
Accessories available: 103A-16A dc Cable (connecrs 5061A to s085A de output), $\$ 21.50$.
Price: HP Model 5061A, $\$ 14,800,00$.

Option 01 Time Standard

Clock pulse:

Rate: 1 pulse per second.
Amplitude: $+10 \mathrm{~V} \pm 10 \%$ peak.
Width: $20 \mu \mathrm{~s}$ min.
Raise time: < 50 ns.
Fall time: $<1 \mu \mathrm{~s}$.
Jitter: < 20 ns .
All specs are with 50Ω load.
Synchronization: $10 \mu \mathrm{~S}(\pm 1 \mu \mathrm{~s})$ delayed from reference input pulse (rear BNC). Reference pulse must be $>-5 \mathrm{~V}$, with a rise time >50 ns.
Price: Option 01, add $\$ 1,500.00$.

Option 02 Standby Power Supply

Capacity: 30 minutes minimum (1 hour typical at $25^{\circ} \mathrm{C}$) at full charge.
Charge control: autonatic when ac power is connected.
Indicator: a frone panel light flashes when ac powes is interrupted and battery is being used.
Price: Oprion 02, add $\$ 600.00$.
Option 03
(combines Options 01 and 02)
Price: Option 03, add $\$ 2100$.

[^66]
FREOUENCY \& TIME STANDARDS

RUBIDIUM FREQUENCY STANDARD Compact, lightweight atomic standard
Models 5065A, E21-5065A

Advantages:

Low price atomic standard.
Long term drift rate of $<2 \times 10^{-11} / \mathrm{mo}$.
Short term stability of $<7 \times 10^{-4}$ for 100 s a verage.
Frequency synthesizer time scale changer.
Calibrated dial fine frequency adjustment.
Battery standby power guards against powier failure (optional).
Clock with precision 1 pps (oprional).

Uses:

Precise frequency source for sytsems operating in the radio spectrum.
Coherent signal sources of all rypes.
Precision timekeeping.
House standards and calibration laboratories.
The HP Model 5065 A is an atomic-rype secondary frequency standard which uses a rubidium vapor resonance cell as the stabilizing element. As a result, its long rerm stability exceeds typical quartz oscillaror frequency standards by 10 to 100 times. Furthermore, it has excellent short term stability. These feateres contribute to its desirability as a coherent signal source, as a master oscillator for radio and radar systems where special requirements for stability and/or aarrow bandwidth must be met, as a precision timekeeper where the better performance of a cesium beam primary standard is not required, and as a house frequency standard for improved accuracy with fewer NBS calibrations compared to that required with quartz standards.

A thumbwheel settable frequency synthesizer is a standard feature of this frequency standard. The user can, himself, easily set his 5065A Standard to either Atomic or UTC time, or other offsets to suir a particular requirement, with 4 thumbwheels and a slide switch.
Front panel controls and circuit check merer of the 5065 A are prorected by a drop-down panel door. The magnetic field control provides fine frequency adjustment with which the frequency can be set to a precision of less than 2×10^{-12} withour reference to a chart. Oscillator frequency adjustrnents are to correct for aging of the 5 MHz low noise quastz oscillator which is phase locked to the aromic frequency and provides the standard $5 \mathrm{MHz}, 1 \mathrm{MHz}$, and 100 kHz outputs. The circuit check meter with selector switch monitors key voltages and currents for routine maintenance readings, calibration procedures, and fault finding.
The $\operatorname{so6sA}$ is designed for assured operation-to give the user confidence that the standard output signals afe correct and locked to the atomic frequency. Logic within the unit main. tains power to a "continuous operation" light on the front panel at all times-if operation is interrupted, even momentarily, for any reason the light goes out and stays our until manually reset. The logic reser button on the control panel is for this purpose. An integrator limit light warns if the atomic to quartz resonator phase-lock error voltage is high and should be adjusced.

A standby power option provides 10 minutes, minimum, of off power-line operation. For longer periods use the 5085A standby power supply or the K02-5060A. Swirch over to batery is automatic. A front panel light warns ahen ac power has been lost. The time standard option generates 1 puise per second, available at a front panel BNC connector. The clock pulse phase is adjustable with respect to a reference in precise increments from $1 \mu 5$ to 0.1 s . A variable control allows adjustment
from 0 to 1 us. A clock movement indicates hours, minutes, and seconds

The HP Model $\operatorname{so6s}$ A is contained in a stall sized package and is lightweight in comparison to a cesium beam standards. Additionally, the rubidium resonance cell is much more frequency stable than quartz oscillators while subjected to shock and vibration. Its environmental specińcacions include temperature, shock, vibration, EMC, humidity, and magnetic field effects.

E21-5065A

Portable time standard

E21-5065A portable time standard is a complere system for precision timekeeping and for transporting time from one location to another. Its main components are the 5065A Rubidium Standard with digital clock and divider (option 01) and the K02.5060A power supply with 6 or more hours standby. Its batteries recharge from a wide variety of power sources includ. ing 115 of $220 \mathrm{~V} .30 \cdot 100 \mathrm{~Hz}$, ac and 6 or 12 V dc. Thus, it may be powered from commercial aircraft, auto electrical systems, storage batceries, commercial power lines, or its orin internal batteries. The component units are held rogether by two side bars.
Welght: $110 \mathrm{lb}(50 \mathrm{~kg})$.
Dlmenslons: $163 / 4^{\prime \prime}(425 \mathrm{~mm})$ wide, $14^{\prime \prime}(395 \mathrm{~mm})$ high, $183 /{ }^{\prime \prime}$ " (467 mm) deep.
Price: \$12,300.00.

E20.5065A
 Portable time standard

Electrically identical to the E21-5065A described above, the E20.5065A differs in thas the component instruments are enclosed in a single aluminum cabiner.
Price: a vailable on request

HP 5065A shown with Option 03 consisting of clock and siandby battery
Specifications, 5065A

Frequency stability:
Long term: $2 \times 10^{-1 x}$ per month (maximum limit of drift rate).
Short term: $\frac{\Delta \hat{i}}{f}(\mathrm{Srd} . \mathrm{D} \in \mathrm{v}$) Avg. Time

$$
\begin{array}{lr}
<7 \times 10^{-12} & 1 \mathrm{sec} . \\
<2.2 \times 10^{-12} & 10 \mathrm{sec} . \\
<7 \times 10^{-11} & 100 \mathrm{sec} .
\end{array}
$$

Calibration aceuracy: set at factory to $\left\langle \pm 1 \times 10^{-15}\right.$ of specified time scale.
Time scale: set at factory to UTC unless specified differently.
Tunability:
Coarse frequency synthesizer adjustment:
Range: 1000×10^{-70}
Resolution: $<2 \times 10^{-8}$, thumbwheel adjustable.
Fine frequency magnetic field adjustment:
Range: 2×10^{-9}.
Resofution: 2×10^{-52}.
Warm-up: within 1×10^{-10} in one hour and 5×10^{-11} in 4 hours after 24 hours "off" time.
Outputs:
Frequencies: $5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$ and isolared 100 kHz clock drive for external clocks.
Voltage levels: 1 V rms inco so ohms at $s \mathrm{MHz}, 1 \mathrm{MHz}, 100$ $\mathrm{kHz} ; 0.5 \mathrm{~V}$ rms into 1000 ohms at 100 kHz , clock drive.
Connectors: BNC front and rear for $5 \mathrm{MHz}, 1 \mathrm{MHz}_{1} 100 \mathrm{kHz}$: BNC rear for 100 kHz clock drive.
Harmonlc distortion: (s $\mathrm{M}(\mathrm{Hz}, 1 \mathrm{M}(\mathrm{Hz}, 100 \mathrm{kHz})>40 \mathrm{~dB}$ down from rated outpur.
Non-harmonic distortion: ($5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$) $>80 \mathrm{~dB}$ down from rated output.
Signal-to-nolse ratio: for 1 and $5 \mathrm{MHz},>87 \mathrm{~dB}$ at rated ocupur (in a 30 kHz noise $\mathrm{bw}, 5 \mathrm{MHz}$ ourput filter bwis approx, 100 Hz).
Environmental:
Temperature, operating: $0^{\circ}-50^{\circ} \mathrm{C}$. Frequency change is $\langle 1 \times$ 10^{-18} over this range.
Temperature, non-operating: -40° to $+75^{\circ} \mathrm{C}$. (With options. to $50^{\circ} \mathrm{C}$.)
Production units have passed type tests as follows:
Humidity: 0 to 95% relative humidity.
Magnetic fleld: $<1 \times 10^{-11}$ frequency change for 1 Gauss change (earith's Geld is lypically 0.5 Gauss). Vibratlon: MIL-Std-167.
Shock: MIIE-T-21200, Class 1 (30 G 's).
Electromagnetlc compatibillty (EMC): MIL-I-6181D.

Mating connectors:

EXT DC input: 125 !-0126 (5 -contact), Cannon MS 3106E-14S-5S (Series ME) furnished.
Clock output: 1251-0127 (4 contact), Cannon MS 3106E-14S-2P (Series $M(E)$.
AC line: 1251.0038, Cannon MS 3106A-10SL-35 (C).
Power: 115 or $230 \mathrm{~V} \mathrm{ac} \pm 10 \%, 50$ to 400 Hz : or 23 to 30 V dc . Approx. power tequired:

	24 Vdc	115 V ac
Without options:	Add 85 W	49 W
Oprion 01	8 W	8 W
Option 02	02	6 W
Option 03	Add 8 W	15 W

Accessories furnished: power cord, $6 \mathrm{ft}(180 \mathrm{~cm})$ detahable. Rack Mounting Kit, HP 5060-0775. Accessory Kit, HP 05065. 6066, includes Micon connector adapter male-niale, mating connector 1251.0126 for EXT DC input. 3 circuit board extenders, test cable, and a special coil cuning screwdriver.
Dimensions: $163 / 4^{\prime \prime}$ (425 mm) wide, $5.7 / 32^{\prime \prime}$ (132.6 mm) high, $183 / 8^{\prime \prime}$ (467 mm) deep.
Weight: net, $37 \mathrm{lb}(16,8 \mathrm{~kg})$. Option 01 add $2 \mathrm{lb}(.9 \mathrm{~kg})$: Option 02 add $3.5 \mathrm{lb}(1,6 \mathrm{~kg})$.
Accessories avallable: EXT DC cable: connect 5065A to 5085A standby supply, 103A-16A, \$21.50.
Price: $\$ 7,500.00$.

Option 01 time standard

Clock puise:
Rate: 1 pulse per second. Fall time: <i $\mu \mathrm{s}$.
Ampiltude: $+10 \mathrm{~V} \pm 10 \%$.
Width: $20 \mu \mathrm{~s}$ min.
Jitter: <20 ns.
All specs are with 50Ω load.
Rise time: < 50 ns .
Synchronization; $10 \mu 5(\pm 1 \mu s)$ delayed from reference inpul pulse (rear BNC). Reference pulse must be $>+s \mathrm{~V}$, with a rise time <50 ns and width $>0.3 \mu \mathrm{~s}$.
Clock movement: 24 hrs, Patek Philippe.
Price: Option 01, add $\$ 1,500.00$.

Option 02 standby power supply

Capacity: 10 -minute minimum at $25^{\circ} \mathrm{C}$ after full charge (incl. Op. tion 01).
Charge control: front panel Fast-Floar-Reset charge switch,
Indicator: a front panel light flashes when ac power is interrupeed and battery is being used.
Price: Oprion 02, add $\$ 300$.

Option 03

(Combines Options 01 and 02)
Price: Option 03, add $\$ 1,800.00$.

Performance of quartz oscillator only
 (Rubidiam control loop open)

Aging rate: $<5 \times 10^{-10}$ per 24 hours.
Frequency adjustments:
Fine adjustment; 5×10^{4} range, with dial reading parts in 10^{15}.
Coarse adjustment: 1 part in 10^{3}. screwdriver adjustment at front panel.
Stability:
As a function of ambient temperature: $<2.5 \times 10^{-1}$ total, 0° to $+50^{\circ} \mathrm{C}$.
As a function of load: $< \pm 2 \times 10^{-11}$ for open circuit in shore. and $50 \Omega \mathrm{R}, \mathrm{L}, \mathrm{C}$ load change.
As a function of supply voltage: $\left\langle \pm 5 \times 10^{-1}\right.$ for 22 to 50 V dc , or for $115 / 230 \mathrm{Vac}, \pm 10 \%$.

FREOUENCY \& TIME STANDARDS

Advantages:

High spectral purity
Well-buffered outputs
Solid-state reliability

Uses:

In-house frequency and time standards
Microwave spectroscopy
Comparisons with atomic standards
Advanced navigation, communication systems
Models 105A,B, 106A,B and 107AR,BR Quartz Oscilla. tors provide state-of-the-art application in precision frequency and time standard systems because of their excellent long and short term stability characteristics, spectrally pure outputs, unexcelled reliability, and ability to operate under a wide range of environmental conditions.

The Models 107 AR and 107 BR are rugged, hermetically sealed, precision quartz oscillators for frequency and time standards. Model 107AR operates from $26 \pm 4 \mathrm{~V}$ dc; Model 107 BR operates from the ac line and includes a 2 -hour standby battery mounted within the oscillator. Both instruments provide sinusoidal signals of $5 \mathrm{MHz}, 1 \mathrm{MHz}$, and 100 kHz with excellent short term stability and long term drift rate. They operate over a wide range of environmental conditions.

QUARTZ OSCILLATORS
State-of-the-art frequency stability
Models 105A, B; 106A, B; 107AR,BR; 101A

Models $107 A R$ and 107 BR have been prototype tested to conform to the shock and vibration requirements of MIL.E. 16400E. MIL-E-16400E subjects the instrument to vibration at 5 to 33 Hz rates with excursions from 0.03 to 0.01 inch in each of three mutually perpendicular planes. Under the shock test the instrument receives nine blows from a 400 -pound hammer. Blows are from one foot, three and five feet in each of three planes.

Particuiar care was taken to provide a spectrally pure 5 MHz output which, when multiplied high into the miciowave region, provides signals with spectra only a few cycles wide. Spectra less than 1 Hz wide can be obtained in X-band (8.2 to 12.4 GHz). The stability and purity of the 5 MHz output make it suitable for doppler measurements, micro. wave spectroscopy, and similar applications where the reference Érequency must be multiplied by a large factor.

Provision also has been made in the 107 AR and 107 BR Quartz Oscillators so that they can be voltage controlled; therefore these oscillators can be used in phase locked systems. The sensitivity of this automatic frequency control is such that a change from +5 to -5 volts will change the output by approximately 2 parts in 10^{8}.

The models 106A, B have the highest long term stability

of the HP quartz oscillators. In addition to high stability these oscillators have very high spectral purity and HewlettPackard's unexcelled reliability.

The heart of these oscillators is an extremely stable 2.5 MHz quactz crystal mounted with other critical components in a proportionally controlled double oven. The crystal and this type of control results in an oscillator with extremely good long term stability-bettec than 5 parts in 10^{11} per day. Short term stability is also excellent, being 1.5 parts in $10^{11} \mathrm{rms}$ for sample periods as short as 0.1 second.

The 5 MHz output provided by these oscillators has the stability and high spectral purity of the 2.5 MHz crystal, Spectra only a few cycles wide may be obtained in the GHz region by multiplication of the 5 MHz output.

Models 106 A and B are identical in every respect except for their power requirements. The $106 B$ operates from 115 or 230 volts ac line or from an external de power supply (HP 5085A recommended) and contains an emergency standby power supply capable of sustaining operation for 8 hours. The 106A requires an external supply voltage of 22 to 30 V dc , such as the HP 5085A.

The models $105 \mathrm{~A}, \mathrm{~B}$ are the latest addition to the HP quartz oscillator line. They fill a need for a smaller and more economical and yet highly stable precision quartz oscillator for frequency and time standards. Both models can be operated from the ac line; the 105B has a built-in 8 -hour standby battery supply for uninterrupted operation should line power fail. Both models have $5 \mathrm{MHz}, 1 \mathrm{MHz}$, and 100 kHz sinusoidal outputs with excellent short term stability (1 part in $10^{13} \mathrm{rms}$ for 1 s averaging time) and aging rate (<5 parts in 10^{10} per day). In addition, the $105 \mathrm{~A} / \mathrm{B}$ features rapid warmup. Typically, the oscillatoc will be within 5 parts in 10° of the previous frequency in one hour after an "off" period of approximately 24 hours under lab conditions.

The basis of these oscillators is an extremely stable 5 MHz , 5th overtone quartz crystal developed by Hewlett-Packard.

New technologies in the crystal mounting and packaging have resulted in a cleaner crystal which in turn has a lower aging time. The crystal, oscillator and AGC circuit are all enclosed in a proportional oven which reduces the temperature effects on these components and circuits.

Each frequency output of the $105 \mathrm{~A} / \mathrm{B}$ is buffered to provide an output stable to within ± 2 parts in 10^{11} regardless of load changes occurring in any other output. Buffering between the outputs, in addition to the excellent stability of the 5 MHz crystal, makes the 105 A and 105B ideal for application in frequency standard systems requiring use of multiple outputs. The 105 A and 105 B may be used in complex systems with complete assurance that loading changes, such as accidental shorts or disconnections in other outputs, will not affect frequency of the output of primary concern.

Provision has been made in Models 105 A/B to control the output frequency, using an externally applied voltage for uses such as phase lack systems. A 10 V change in applied voltage will change the 5 MHz output frequency by approximately s parts in 10^{5}.

101A

Hewletr-Packard Model 101 A 1 MHz Oscillator is a highstability crystal controlled oscillator suitable for many field and laboratory applications. Although designed specifically to be the time base for Model 5275A Electronic Time Interval Counter, the high precision capabilities and low cost of Model 101 A make it an ideal instrument for many other applica. tions as well.

Long term stability of 5 parts in 10^{8} per week is achieved by careful oscillator design and by housing the high quality crystal and associated critical components in a well-regulated oven. This unit will operate over the wide ambient temperature range of $-5^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

Stability, including all effects of line, load, and ambient temperature variation over specified ranges, is better than 3 parts in 10^{8}. A front panel adjustment permits frequency adjustment over a range of approximately ± 1 part in 10^{6}.

Specifications, Model 101A

Stability

Short term: 3 parts in 10^{8}.
Long term: 5 parts in 10^{8} per week.
Output frequencies: : MHz and 100 kHz (sinusoidal), rear BNC connectors.

Output valtage: 1 V rms min into 50 ohm load.
Distortion: less than 4% into rated load.
Oven temperature Indicator: front panel dial thermometer.
Froquency adjustment: front panel screwdriver adjust with range of approximately ± 1 part in 10° for calibration from prinary standard.

Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 2$ to 15 W de. pending on oven cycle.

Dimensions: $16 / 4^{\prime \prime}$ wide, $31 / 2^{\prime \prime}$ high, $111 / 2^{\prime \prime}$ deep ($426 \times 89 \times$ 292 mm).

Weight: net approximately $10 \mathrm{lbs}(4,5 \mathrm{~kg})$; shipping 13 lbs ($5,5 \mathrm{~kg}$).
Accessories furnished: $10503 \mathrm{~A}, 4$-foot (122 cm) cable assem. bly, each end terminated by BNC male connector.
Price: mode! 101A, $\$ 700$.

Specifications

Models	107AR,BR
Output frequencies	$5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$ sinusoidal; 100 kHz clock drive
Output voltages	$5 \mathrm{MHz}, 1 \mathrm{MHz}$, and 100 kHz , I V mins into 50 ohms; 100 kHz for driving HP frequency divider and clocks, 0.5 V rms into 1000 ohms
Stability (long term)	$<\|5\| \times 10^{-10}$ per 24 hours
As a function of ambient temperature	$< \pm 1 \times 10^{-10}$ from $0^{\circ} 10+50^{\circ} \mathrm{C}$
As a function of humidity	none (instruments are hermetically sealed)
As a function of load	$< \pm 2 \times 10^{-11}$ for any resistive load change
As a function of supply voltage	$(107 \mathrm{AR})< \pm 5 \times 10^{-11}$ for 22 to 30 Vdc
As a function of line voltage	(107BR) $< \pm 1 \times 10^{-11}$ for 10% change from 115 or 230 Vac
RMS deviation of 5 MHz (shorllerm stability)	
Noise-to-signal ratio (5 MHz)	at least 87 dB below rated 5 MHz output; output filter bandwidth is approximately 125 Hz
Harmonic distortion ($5 \mathrm{MHz}, 1 \mathrm{MHz}$, and 100 kHz)	down more than 40 dB from rated output
Non-harmenically related output (5 MHz 1 MHz , and 100 kHz)	down mors than 80 dB from rated output
Oulput terminals	$5 \mathrm{MHz}_{2} 1 \mathrm{MHz}, 100 \mathrm{kHz}$, front and rear BNC connectors: 100 kHz clock drive, rear 8 NC connector
Frequency adjustments fine adjustment Coarse adjustment	5 parts in 10^{8} total; 1 part in 10^{8} per rev; 1 part in 10^{10} per division at 10 divisions per revolution 1 part in $10^{\circ}\left(=0.5 \times 10^{-6}\right)$
Environmental Storage temperature Operating temperature Humidity Vibration and shock	$-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (mfr. specifies $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ limit for 107BR battery storage) $0^{\circ} \mathrm{C} 10+50^{\circ} \mathrm{C}$ instrument is hermetically sealed, will operate under water without degradation of periormance completely passes vibration and shock require. meats of MIL.E. 16400 E
Weight	107AR: net $20 \mathrm{lbs}(9 \mathrm{~kg}$), shipping 38 tbs (17 kg); 107BR; net $35 \mathrm{lbs}(16 \mathrm{Kg}$), shipping $53 \mathrm{los}(24 \mathrm{Kg})$
Dimensions Heighi Width Depth	$\begin{aligned} & 5 \cdot 7 / 32^{\prime \prime}(133 \mathrm{~mm}) \\ & 19^{\prime \prime}(483 \mathrm{~mm}) \\ & 1618^{\prime \prime}(416 \mathrm{~mm}) \end{aligned}$
Power	107AR: 22 to 30 Vdc , approx. 12 W operating, 15 W during warm- $\mathrm{up} ; 1078 \mathrm{R}$: 115 or 230 Vac $=10 \%$, 50 to 1000 Hz , approx. 25 W peperaling with battery on trickle charge (30 W on fast charge), 33 W during warm-up (38 W on fast charge)
Price	Model 107AR, $\$ 2600$ Model 107BR, \$2950

Specifications

Modals	108A, B	105A, ${ }^{\text {B }}$
Oulput frequencies	$5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$ sinusoidal; 100 kHz clock drive	5 MHz , I MHz, 100 kHz sinusoidal; I MHz or 100 kHz clock drive
Output voliages	$5 \mathrm{MHz}, 1 \mathrm{MHz}$, and 100 kHz I driving HP frequency divider ohms	rms into 50 ohms; 100 kHz for clocks, 0.5 V rms into 1000
Stability (long term)	$<\|5\| \times 10^{-11}$ per 24 hrs	$<\|5\| \times 10^{-10}$ per 24 hours
As a function of ambient tamparature	$< \pm 1 \times 10^{-10}$ from 0° to $+40^{\circ} \mathrm{C}$	2.5×10^{-6} toial from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
As a function of humidity	none (basic oscillator is sesled)	none
As a function of load	$< \pm 2 \times 10^{-i l}$ for any resistive load change	$< \pm 2 \times 10^{-12}$ for open, short, $50 n$ resistive, inductive and capacitive
As a function of supply voltage	$(106 \mathrm{~A})< \pm 3 \times 10^{-11}$ for 221030 Vdc	$< \pm 5 \times 10^{-11}$ for 22.30 Vdc
As a function of line vollage	$(106 \mathrm{~B})< \pm 1 \times 10^{-11}$ for $\pm 10 \%$ change from 115 or 130 V ac	$<=5 \times 10^{-16}$ for $115 / 230 \mathrm{Vac} \pm 10 \%$
RMS deviation of 5 MHz (short. term slability)	averaging time max. fractionali.frequency devistion $(\Delta f / f)$ max. rms phase daviation (miliradians) 1 ms $8 \times 10-10$ 0.03 10 ms $1.5 \times 10-10$ 0.04 0.1 s $1.5 \times 10-11$ 0.04 1 s $1.5 \times 10-11$ 0.4 10 s $1.5 \times 10-11$ 4	
Noise-lo-signal ratio (5 MHz)	at least 87 dB below rated 5 MHz output; output filler bandwidth is approximately 125 Hz	$>90 \mathrm{~dB}$ below rated output; output filter bandwidth (3 dB) is 100 Hz
Harmonic distortion (5 MHz, I MHz, and $100 \mathrm{kHz})$	down more than 40	from rated output
Non-harmonically related output (5 MHz) 1 MHz , and 100 kHz)	down more than 80	from rated oulput
Output terminals	$5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$, front and rear 8 NC connectors; 100 kHz clock drive, and electrical frequency control rear BNC connactor	$5 \mathrm{MHz}_{1} 1 \mathrm{MHz}, 100 \mathrm{kHz}$, front and rear BNC connactors; clock drive and electrical Irequency control, rear BNC conneclors
Frequency adjustments Fine adjustment Coarse adjustmeni	2 parts in 10^{8} total: 1 part in 10^{10} par rev: 1 part in 10^{11} per division at 10 divisions per revolution 5 parts is $10^{7}\left(\pm 2.5 \times 10^{-i}\right)$	5×10^{-5} total, with digital dial reading parts in 10^{10} 1×10^{-8} (screwdriver adjustment)
Environmental Storage temperature Operating temperalure Humıdity Vibration and shock	$-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (mfr. specifies $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ limit for 106B battery storage) $0^{\circ} \mathrm{C} 10+40^{\circ} \mathrm{C}$ basic oscillator is sealed	$-40^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ (mfr. specifies $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ limit for losB battery storage) $\begin{aligned} & 0^{\circ} \mathrm{C} 10+50^{\circ} \mathrm{C} \\ & 0-95 \% \\ & \text { Mil. STD }-167 \\ & 30 \mathrm{G}^{\prime} \mathrm{S} \end{aligned}$
Weight	106A: net $25 \mathrm{lbs}(11,3 \mathrm{~kg})$, shipping $33 \mathrm{lbs}(15 \mathrm{~kg})$; 106B: net $39 \mathrm{lbs}(17,6 \mathrm{~kg}$), shipping $47 \mathrm{lbs}(21,3 \mathrm{~kg})$	105A: net $16 \mathrm{lbs}(7,3 \mathrm{~kg})$, shipoing $23 \mathrm{lbs}(10,4 \mathrm{~kg})$. 105B: net 24 lbs . ($10,9 \mathrm{~kg}$), shipping, $31 \mathrm{lbs}(14,1 \mathrm{~kg})$
Oimensions Height Width Depth	$\begin{aligned} & 6-31 / 32^{N}(177 \mathrm{~mm}) \\ & 163 /{ }^{\prime \prime}(425 \mathrm{~mm}) \\ & 16^{3} \mathrm{~g}^{\prime \prime}(416 \mathrm{~mm}) \end{aligned}$	$3-15 / 32^{\prime \prime}(88 \mathrm{~mm})$ $16 \$ 4^{\prime \prime}(425 \mathrm{~mm})$ 11/4" (286 mm)
Power	106A: 22 to 30 Vdc , negative ground, approx. 8 W operating, 13 W during warm-up; 106B: 115 or $230 \mathrm{Vac}=10 \%, 50$ to 1000 Hz , negative ground approx. 17 W operating with battery on trickle charge (27 W on fast cherge), 33 W juring warm-up (43 W on fast charge)	105A: $115 / 230 \mathrm{~V}=10 \%, 50.400 \mathrm{~Hz}$, at 17 W (21 W warm-up) 1058: $115 / 230 \mathrm{~V}=10 \%, 50-400 \mathrm{~Hz}$, at 18 W (24 W warm-up), at float charge. Add 12 W for fast charge Both: 22.30 V de at $6.4 \mathrm{~W}(10.3 \mathrm{~W}$ warm-up)
Price	Model 106A, \$3650 Model HP 1068, $\$ 3750$	Model 105A, $\$ 1500$ Model 105B, $\$ 1800$

117A

Advantages:

> Plots minute-by-minute phase record
> Provides all equipment needed for frequency comparison Offers one microsecond resolution
> Makes available 100 kHz phase-locked output

Uses:

Offset and drift dererminations for crystal oscillators Quick and easy checks of counter time-base accuracy Monitors atomic standards against N.B.S.
The HP 117 A VIF Comparator measures the frequency off. set of a local standard frequency source against a radio signal based on the N.B.S. Frequency Standard oo an accuracy that can reach a few parts in 10^{11} in a 24 -hour period. The HP 117 A thus provides a link between house frequency standards and the Boulder. Colorado, laboratories of the National Bureau of Standards (NBS) via station WWVB, which broadcasts at 60 kHz on a continuous basis.

The strip chart produced by the HP 117A eccords, minute by minure, the resules of a precision phase comparison of the local signal against the received signal to show frequency offser or error of the local standard, and over a few hours to a day or more, its drift rate.
Local precision frequency sources, such as quartz crystal oscillators that dive clocks or synthesizers or that serve as counter rime bases, can be quickly compared in irequency for purposes of calibration or can be monitored over as long a time as desired to determine their behavior and to measure longterm drift rate.

Method of Operation

The VLF Comparator is a complete system (exclusive of local standard) which consists in one package of a receiver, an electronic servo-controlled oscillator which functions as a narrow band tracking filter, a linear phase comparator, and a strip chart recorder. The servo loop and phase-locked oscillator provide a continuous output signal despite noise and interfering signals. A front panel meter can be switched to shon rela. tive signal level, phase lock with WWVB, or phase comparison. Ourput terminals on the rear provide for the connection of external galvanometer and potentiometer recordings if desired. A loop antenna with builr-in preamplifier and 30 meters of lead.in cable is included.

The recorded trace is easily evaluated directly in terms of
frequency offset with a transparent template supplied with the instrument. Chart speed is 1 inch per hour and full-scale chart width may be set for either so ${ }_{\mu \mathrm{sec}}$ or $16.2 / 3{ }_{\mu} \mathrm{sec}$ by operation of a front panel switch. The readability of the trace and the overall stability of the comparator easily provide a resolution of better than $1 \mu \mathrm{sec}$ under normally encountered laboratory conditions.

NBS Standard Broadcast WWVB

The WWVB 60 kHz signal reaches a primary service area that includes the entire continental United States. NBS controls the broadeast feequency to within $\pm 2 \times 10^{-11}$ of its in. tended value. NBS publishes monthly, in Proceedings of the IEEE, frequency correction data relative to WWVB and also to the other standard broadcasts, which are WWV and WWHV (high frequency) and WWVL.

WWVB is referenced to the National Bureau of Standards Frequency Standard and its frequency is not offset. WWVB seconds pulsts are those of the time scale NBS-A. for which rime interval is the international (atomic) second. (Frequency of the orher NBS services is offset by an amount coordinated through the Bureau International de l'Heure: for 1968 , offser is -300×10^{10}. Purpose of the offset is to make the second of time interval correspond closely to that of UT-2, the time seale in ordinary use.)

Accuracy of the HP 117A approaches that of the broadcast signal itself. The HP 117A takes advantage of the phase-stable nature of the lower frequencies to make possible quick com. parisons to accuracies far exceeding those achieved by use of the older high frequency services. In the continental U.S., frequency standard comparisons to an accuracy of a part in 10^{10} can be approached in an 8 hr. period. A 24 -hr. period may give 2 parts in 1011, and a 30 -day period may give accuracies of parts in 10^{12}. The local standard being calibrated must, of course, be of a quality commensurate with the realization of such high accuracies.

Template

A transparent template, overlayed on the HP 117A's strip chart eecording, enables the operator to read at a glance the frequency offset of his local standard. The remplate curve most nearly matching the chart's trace is selected, then offset is read directly, togerher with its sign. The sign indicates whether local frequency lies above or below reference frequency.

Atomic and UT-2 Time Scales

Many users prefer to maintain their local frequency standard referenced to the interval of UT-2, the time scale in ordinary. use, rather than to NBS.A. (These two scales are explained at the beginning of the "Frequency and Time Standards" section.) Use of a translator kit adapts the 117A for UT-2 service. Hewlett-Parkard offers two translators:

The 00117-91027 Translator Kit installs in the 117A. A power-line-driven synchronous motor and gear train rotate a phase shifter to continuously retard the phase of the WWVB signal, thereby decreasing the frequency. Power-line frequeacy changes of 0.1% cause translation errors of only about 1.5 $x 0^{-11}$. Most lines average much less than 0.1% frequency deviation over extended periods.

The K10-117A Translator is a separate instrument for use external to the 117 A . It also uses a motor-driven phase shifter. It shifts the frequency of, and derives its time base from, the external 100 kHz (1 MHz , optional) source being compared with WWVB, and is unaffected by line frequency. The direction of translation can be changed.
In both translators, the correct gear ratio is supplied for coordinated frequency offset in effect ar time of purchase. Different gear ratios will be available at a nominal charge to change the translation ratio when the offset is changed. The 117 A is available with the 00117-91027 translator installed (see Specifications).

Antenna

The loop antenna supplied with the 117A contains a preamplifier which allows at least 300 meters of cable (30.5 meters supplied) between antenna and receiver. The cable's center conductor carries power to the preamplifier.
Antenna location and orientation are important. For best signal pick-up it should be mounted on the roof (it is sealed against the weather) and oriented with the plane of the loop aligned with signal direction.

Additlonal Information

A complete discussion of the use of lower frequency broad. casts in frequency standardization is included in Hewlert. Packard Application Note 52, "Frequency and Time Standards."

Phase Comparison Record

The slope of the trace plotied by the 117A's strip chart re. corder is, at a given instant, frequency offses between the local standard and the received signal. This slope may be read at a glance with the transparent template supplied with the instrument. Two offer readings separated by a span of time usually chosen to be one day give all data needed to allow a determination of the drift rate of the local standard (drift rate is given by the difference in offiset over a specified elapsed time).

Greatest accuracy results when the user selects the times he makes observations to fall in a period when propagation conditions are stable, as revealed by the nature of the trace. VLF signals are normally highly stable when the entire propagation path is in sunlight. Near sunrise and sunset, the diurnal shift makes an apparent change in the offset.

Any VIF Comparator is but one element of the system which the user must consider: (1) transmitted signal, (2) transmission path, (3) VLF comparator, and (4) local standard. Since the first two elements are not under the user's control, he must make his observations in accordance with reception conditions. While VLP signals ate noted for their stability, variations in propagation conditions do exist and must be taken into account.

European service

A modified 117A may be used to receive the is kHz frequency and time broadcast of HBG, Prangins, Switzerland. This station is one of the most accurate services in Europe.

It broadcasts the atomic standard frequency to a published accuracy of 2×10^{-11}.
The standard 117 A may be used to receive MSF, Rugby, England, which broadeasts the aromic standard frequency on 60 kHz with an accuracy of 1×10^{-10}.

Specifications, 117A

Received standard frequency: 60 kHz . NBS station WWVB.
Sensitivity: $1 \mu \mathrm{~V}$ into 50Ω.
Local standard input: 100 kHz , 1 V ims inco 1000Ω (divider to accept 1 MHz at extra cost)
100 kHz phase-locked output: S V rectangular positice pulses into 3000Ω.
60 kHz test output: self-cherks the 117 A .
Recorder outputs: phase comparison and relative signal strength: 0.1 mA ds into 1400Ω and 0.100 mV dc from 2000Ω.

Overall phase stablity: $\pm 1 \mu \mathrm{~s} 0.50^{\circ} \mathrm{C}$.
Chart speed: $1 \mathrm{in} / \mathrm{ht}$ (6 or $12 \mathrm{in} / \mathrm{hr}$ available).
Chart width: $50 \mu \mathrm{~s}$ or $162 / 3 \mu \mathrm{~s}$ (selected by front panel switch).
Meter readings: three switch positions: (1) relative signal level: (2) phase comparison calibrated stale $0.50 \mu 50.162 / 3 \mu \mathrm{~s}$ full scale; (3) phase-lock range indicated insures negligible phase error.
Adjustments: a front panel control adjusts free-running frequency of voltage-controlled oscillator: three rear panel adjustments provide calibration of phase comparison, full-scale adjustment for internal recorder, internal meter, and external galvanometer recorder.
Storage temperature: -50° to $+75^{\circ} \mathrm{C}$.
Operating temperature: $0^{\circ} \quad 1030^{\circ} \mathrm{C}$.
Dimensions: $163 / 4^{\prime \prime}$ wide. $3.15 .132^{\prime \prime}$ high, $131 / /^{\prime \prime}$ deep (425×88 $\times 337 \mathrm{~mm}$).
Weight: 117A: ner $20 \mathrm{lbs}(9,1 \mathrm{~kg})$, shipping $22 \mathrm{lbs}(10 \mathrm{~kg})$; anrenna: net $12,5 \mathrm{lbs}(5,7 \mathrm{~kg})$, shipping $21 \mathrm{lbs}(0,5 \mathrm{~kg})$.
Powar: 115 or $230 \mathrm{~V} \pm 10 \%, 60$ cycles, 40 watts.
Accessories (included):
10509A l00p antenna: antenna has electrical height of 1.6 mm , is 43 in (109 cm) in diameter and mounts on 1 -in. pipe chread. Operating temperature: -60° to $+80^{\circ} \mathrm{C}$. Also available separately (for use only with HP 117A). \$280.
10512A coaxial lead-in cable: son BNC.BNC connectors 100 feet ($30,5 \mathrm{~m}$) long. Also available separately, $\$ 30$.
Accessorles (not included with 117A):

Time Scale Translators:

 00117.91027 translator kit, \$350 K10.117A translator. \$1,100.9281-0081 recorder chart paper: box of six 30 - ft rolls, $\$ 12.50$.
Prices: 117A including 10509A antenna/preamp and 10512A leadin cable, $\$ 1400$.
H21-117A: is model 117A with 0117-91027 traaslator installed, $\$ 1775$.

FREOUENCY \& TIME STANDARDS

STANDBY POWER SUPPLIES For Frequency and Time Standards Models 5085A, K02-5060A

Advantages:

2 amperes at 24 volts
Up to 18 ampere.hours of standby
Solid state, modular
Uses:
Continued operation
of primary standards when
ac line power is interrupted
The HP Model 5085A 24 volt 2 ampere power supply keeps primary frequency or time standard systems in operation when ac line power is interrupted. Specifically designed to deliver standby power to the HP Cesium Beam Standards, Rubidium Vapor Suandard, and peripheral equipment, the S085A will also serve HP Quartz Oscillator Frequency Standards and the $115 B R$ Frequency Divider and Clock. The only requirement is that the total current drawn from the supply not exceed 2 A for any extended period of time.

The frequency and time standard system is not anfected dur. ing changeover since no switching is used in transferring power from line to battery operation and back again.

Vented nickel-cadmium batteries with an 18 ampere-hour guaranteed capacity (derated from 25) are used in the 5085A. They provide about 8 hours of standby power for the 5061 A Cesium Standard or 3065 A Rubidium Standard (ac average ambient emperature of $23^{\circ} \mathrm{C}$).

Front panel lights indicate mode of operation, report fuse failure, ac interrupt.

Specifications, 5085A

Output voltage: $24 \pm 2 \mathrm{~V}$ de at rated current.
Maximum rated current (rotal external load): 2 amperes."
Standby capaclty: (At $25^{\circ} \mathrm{C}^{* *}$) 18 ampere hours after 48 hours with manually operated CHARGE switch set to CHARGE.
Alarm indicators: Panel lamps indicate: (1) FUSE FAILURE, (2) AC POWER, (3) AC INTERRUPT, (4) CHARGE.
Remote alarm provisions: SPDT relay contacts provided at rear terminals for operating remote alarm from separate power system. Contacis rated at 3 A (resistive) 115 V ac or 28 V dc .
Panel meters: Voltmeter and ammeter indicate battery voltage and battery charge/discharge current.
Power requirements: 115 or $230 \pm 10 \%$ Vac: 50 to 400 Hz (2.0 A max at 115 V line).

Output connectors: MS tipe female connectors at reas mare with 106AR, 107AR. 5061A, 5065A power cables (Cannon Par: No. MS3102R145.5P. HP No. 1251-0129).
Battery (supplied) Venced nickel-cadmium 25 ampere-hour capaciey derated to 18 ampere-hours. Periodic maintenance sequired.
Additional (external) battery provision: MS3102R14S.2S female connctor, with cap. at reser.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $6.31 / 32^{\prime \prime}$ high, $163 / 8^{7}$ deep (425 x $177 \times 46^{-} \mathrm{mm}$).
Weight: ner, 75 lbs ($34,1 \mathrm{~kg}$); shipping. 101 lbs (45.9 kg) in. cluding battery. Option ol (no battefies) is $50 \mathrm{lbs}(22.8 \mathrm{~kg})$ less.
Accessories furnished:
AC Power Line Power Cable. 6 fees long Instrument Exiension Slides (for sid. 24" deep rack).
Price: Model 5085A (complete with batteries), $\$ 1: 00$
Options: Specify Option 01 if batteries are to be excluded. Model 5085A with Option 01 is 5950.

[^67]

The K02.9060A was specifically made as a portable standby power supply for the SOGIA and 5065 A "Flying Clocks" and incorporates a number of features not found in the 5083A. The K02.5060A has a special inverter which will allow it to operate from 6 or 12 V dc or 24 to 30 V dc besides $115 / 230 \mathrm{~V}$. The nickel-cadmium batteries are of the sealed type and thus spill-proof.

Tentative Specifications, K02-5060A

Output voltages: $115 / 230 \mathrm{~V} \mathrm{ac}$, (nominal). 50 to 400 Hz . 26 ± 4 volrs dc.
Output current:
ac. 0.5 A
$\mathrm{dc}, 2 \mathrm{~A}$.
Standby capacity: 12 ampere-hours at $25^{\circ} \mathrm{C}, 7$ hours standby when used in E21-9061A, 6 hours in E21.9065A.
Recharging: 1.6 hours recharging time sequired for each ampere hour of discharge.
Alarm indicator: external power failure.
Panel meters: Voltmeter. Ammeter indicating voleage and current of 4 internal batteries and load.
Power requirements: 6 or 12 V de $-10 \%+20 \%$; or 24 to 30 V dc : or $115 / 230 \pm 10 \% \mathrm{~V} \mathrm{ac}$, 50 to 400 Hz . Can be connected simultaneously with ac or other de power inputs for extra standby reserve.
Output connectors:
ac: CA•3102R-10SL-3S
dc: MS.3102R-14S-5S.
Input connectors on instrument:
6 and 12 V dc: MS-3102R-16.11P.
24 to 30 V dc: GR type.
ac: MS-3102R-10SL-3P.
Battery: four paralleled, 20 series Ni.Cd cell. 3.5 ampere-hour, rechargeable batteries that can be individually removed from the circuit without interfering with power supply operation.
Dimenslons: $163 / 4^{\prime \prime}$ wide. $6.31 / 32^{\prime \prime}$ high. $163 / 9^{\prime \prime}$ deep (425 x $177 \times(16 \mathrm{~mm})$.
Welght: net. 67 lbs.
Accessories furnished: ac Power line cable. 6 teet long Price: $\$ 2850$.

FREQUENCY DIVIDER, CLOCKS
 Time comparison capability to $\pm 1 \mu \mathrm{~s}$
 Models 115BR, H20-115BR

Advantages:

Generates precise time signals
In-line digital readout
Compatible with atomic or quartz frequency standards Suitable for mobile applications

Uses:

Frequency and time standard systems
Time comparisons against broadcast time signals
The HP $115 B R$ and the $\mathrm{H} 20-115 B R$ Frequency Divider and Clocks generate precise time signals, offers the convenience of digital readout, and provide features which make possible highly accurate comparisons against national time standards. Detailed records of oscillator drift rates and of time and frequency differences can be obtained. The H20115 BR is modified for $\pm 1 \mu \mathrm{~s}$ capability versus the $\pm 10 \mu \mathrm{~s}$ of the 115 BR .

Time readout is an in-line digital display of hours, minutes and seconds. An additional drum allows an operator to resolve time visually to 0.1 s or by stroboscopic methods to 0.01 s .

Overall time comparison accuracy is $\pm 1 \mu \mathrm{~s}$ (H20-2158R) and the divided outputs have very little jitter. The time reference control is a precision resolver and the unique optical gate system cannot contribute jitter.

Hewlett-Packard Application Note 52 explains in detail how a time comparison system, set up to use precise time signals from WWV or another standard broadcast, can yield timekeeping accuracy to within a millisecond and enable studies of oscillator frequency drift rate and error. For micro. second accuracy a portable master clock is an ideal means for establishing this reference.

Success of time comparisons, typically made over periods of weeks or months, depends upon continuous operation. Premium electrical and mechanical components used in the 115BR insure maximum reliability. The non-self-starting regenerative dividers avoid noise and spurious signal problems.

Driving standard

The 115 BR input frequency is 100 kHz . Recommended driving standards include the HP $105 \mathrm{~A} / \mathrm{B}, 106 \mathrm{~A} / \mathrm{B}$, $107 \mathrm{AR} / \mathrm{BR}$ Quartz Oscillators, HP s065A Rubidium Standard, and HP 5061A Cesium Beam Standard. The HP $5061 A$ and 5065 A option 01 is a self-contained Frequency Divider and Clock which has considerably better rise and fall times and less jitter than the 115BR.

Specifications, 115BR, H20-115BR
input frequency: 100 kHz for ordinary time, input bandwidth $\pm 300 \mathrm{~Hz} ; 100.3 \mathrm{kHz}$ for sidereal time, on special order.
Input voltage: 0.5 to 5 V rms.
Pulse outputs: (see chart).
Accuracy: same as input frequency.
Input Impedance: 300Ω nominal.
Auxiliary output: amplitude, 0.25 V rms minimum; source impedance, approx. 1200 ; frequency, 100,10 and $1 \mathrm{kHz}(60 \mathrm{~Hz}$ on special order).
Time reference: lisBR is continuously adjustable, calibrated in $10 \mu \mathrm{sec}$ increments; numerical display from 899.9 ms to 000.0

ms in-line vernier in $10 \mu \mathrm{~s}$ increments. H20.115BR has $1 \mu 5$ increments and 999.99 ms vernier.
Effect of transients: will not gain or lose time because of: (1) $\pm 300 \mathrm{~V}$ step function on 100 kHz input; (2) 0 to 50 V puises. 0 to 500 pps , 1 to 10μ s duatation on 100 kHz input; (3) $\pm 4 \mathrm{~V}$ step in 26 V dc input.

Charateralstic	Posltive tlak	Nequitive thak	Auxillary pulse	Positiva* 1 kHz plps
Pulse rate amplitude	$\begin{aligned} & 1 \rho \rho s \\ & \\ & \\ & +10 V^{k *} \\ & \text { min. } \end{aligned}$	$\begin{aligned} & 10 p s \\ & 10 V^{* * *} \\ & \text { min. } \end{aligned}$	$\begin{aligned} & 1 \text { pps } \\ & +4 \mathrm{Vmin}, \\ & \text { open ckt. } \\ & +2 \vee \mathrm{mmin}, \\ & \text { into } 50 \mathrm{~g} \end{aligned}$	$\begin{aligned} 1000 \text { pps } \\ +4 \vee \text { min. } \end{aligned}$
Rise time	(420) $0.5 \mu 5$ max. $2 \mu \mathrm{smax}$	$\begin{gathered} (\mathrm{H} 20) \\ 0.5 \mu \mathrm{~s} \max . \\ 2 \mu \mathrm{~s} \max . \end{gathered}$	$1 \mu \mathrm{~s}$ max.	$2 \mu \mathrm{smax}$.
Duration	$20 \mu s$ min.	$20 \mu \mathrm{~s}$ min.	$200 \mu \mathrm{~s}$	$20 \mu \mathrm{~s}$ min.
Jitter	$\begin{gathered} (\mathrm{H} 20) \\ 0.05 \mu \mathrm{~s} \text { max. } \\ 1 \mu \mathrm{~s} \text { max. } \end{gathered}$	$\begin{gathered} (\mathrm{H} 20) \\ 0.05 \mu \mathrm{~s} \text { max. } \\ 1 \mu \mathrm{~s} \text { max. } \end{gathered}$	$1 \mu \mathrm{~s}$ max.	$1 \mu \mathrm{~s}$ max.
Recommended load impedance				$\begin{aligned} & 1000 \Omega \\ & \text { min. shunted } \\ & \text { by } 1000 \text { of } \\ & \text { max. } \end{aligned}$

Tomp stabllity H20-115BR $\quad<0.02 \mu \mathrm{~s} \quad$ change $/{ }^{\circ} \mathrm{C}$
*Negative pulsos avallsble on special order.
**For any load impedance higher than minimum recommended.
Monitor meter; checks supply voltage, divider operation (100 kHz , $10 \mathrm{kHz}, 1 \mathrm{kHz}$) and tocal clock current.
Power: 22 to 30 V dc , negative ground for operating with $106 \mathrm{~A}, \mathrm{~B}$ or $107 \mathrm{AR}, \mathrm{BR}$, (may be selected by a swich); approximately 2.5 W ; recommended supply, 5085 A .

Environmental tests: *
The 115BR Frequency Divider and Clock has been prototype-tested to pass the following military environmental specifications.

1. Temperature: MIL-E-I6400C, Class 4, Paragraph 4.6.7. (Nonoperating test limits: $-40^{\circ} \mathrm{C}$ so $-60^{\circ} \mathrm{C}$.)
2. Hurnidity: MIL-E-16400C, Paragraph 4.6.8.
3. Vibration: MIL-E-16400C, Paragraph 4.6.14.
4. Inclination: MIL-E-16400C, Paragraph 4.6.14
5. Shock: MIL-E-16400C, Paragraph 4.6.14.

The 115 BR is an airtight and watertight instrument.
DimensIons: 115BR: $19^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $12^{\prime \prime}$ deep behind panel ($483 \times 133 \times 356 \mathrm{~mm}$).
Weight: 115 BR: net $35 \mathrm{lbs}(15,8 \mathrm{~kg}$), shipping $51 \mathrm{lbs}(23,0 \mathrm{~kg})$.
Accessories furnished: 113 A -16E Cable, 6 feer long (1830 mm), connects 115 BR or 115 CR to 724 BR , 725 AR , or 5085 A standby power supply.
Price: Model 115 BR , $\$ 3000$; Model H20.11SBR, $\$ 3010$.

FREQUENCY \& TIME STANDARDS

FREQUENCY SYNTHESIZERS

Hewlett-Packard frequency synthesiz. ers translate the stable frequency of a precision frequency standard to any se. lected one of thousands, even billions of frequencies over a broad spectrum that extends from dc to 500 MHz . The selected frequency is known to quartz crystal oscillator accuracy; resolution is as fine as 0.01 Hz ; and a new frequency can be switched upon electronic command in 20μ s or from a keyboard as fast as the operator can push buttons. One synthesizer can do the work of a whole battery of oscillators and special-purpose signal generators and can do it betrer.

Synthesizers find application in many areas where the stability of a high quality standard is required, including advanced communications, radio sounding, testing of frequency sensikive devices, and spectrum analysis.

The range of syathesized frequencies available is greatly extended with the Hearlett. Packard Şathesizer, Model $5105 \mathrm{~A} / 5110 \mathrm{~B}$, which covers 0.1 MHz to 500 MHz .

Hewlett-Packard Synthesizers

Model No.	Range	Minlmum Step
$5100 \mathrm{~B} /$	0.01 Hz 1050 MHz	0.01 Hz
51108		
5102 A	0.1 Hz to 1 MHz	0.1 Hz
	0.01 Hz to 100 kHz	0.01 Hz
5103 A	1 Hz 1010 MHz	1 Hz
	0.1 Hz to 1 MHz	0.1 Hz
$5105 \mathrm{~A} /$	0.1 MHz 10500 MHz	0.1 Hz
5110 B		

All of the Hewlett-Packard Synthesiz. ers offer digital selection from a pushbutton keyboard or by remote switch closure, and in addition, a search oscillator for continuously variable frequency selection. All derive their outpur frequency by the direct synthesis technique, one capable of translating the stability and spectral purity of the source to the selected output. All have a self-contained 1 MHz source, a precision quarty. oscillator of excellent stability, and all can use in its place an external 1 MHz or 5 MHz standard.

Direct vs. indirect synthesis

Two basic approaches to frequency synthesis are "direct" and "indirect". Direct synthesis simply performs a secies of arithmetic operations on the signal from the frequency standard to achieve the desired output frequency. In indirect synthesis, a master oscillator is phase locked ro signals derived from the standard.

The direct synthesis approach has the pronounced advantages of permitting fine resolution, fast saitching, and a spectrally pure output signal.

Indirect synthesis, on the orher hand, can offer the advantage of lower cosr for less stringent applications where use of the more sophisticated, high spectral purity, rapidly programmed, direct frequency synthesizer is unwarranted.

The synthesis operation

The s100B/s110B and the glosA/ 3110 B synthesizers are made up of two completely solid-state units: the synthesizer proper, and the driver.

The driver contains a frequency source, a spectrum generator, and appropriate selective networks. The source is a high quality crystal oscillator housed in an oven. It is well protected from line voltage variations, and has an aging rate of less than 3 pasts in 10° pes day. A crystal filter at the osciliator output limits the noise bandwidth to about iso Hz .

The spectrum generator is a sleprecovery diode. Active filtering, synchronously tuned transistor stages and frequency dividers provide a series of fixed frequencies between 3 and 39 MHz which are fed to the synthesizer unit.

The syothesizer unit contains harmonic generators and suitable mixers, dividers, and amplifiers to derive the desired output frequency as a function of the fixed frequencies. The front-pancl pushbutions actuate a diode switching matrix. All frequencies appearing at the inputs to this matrix are always present. This is one of the key advantages of the direct synthesis method. The limitations on switching speed are just the time constants on the filtering circuits in the supply line to the switch and circuir band. widths.

High-speed switching

The oscillograrn of Figure 1 shows the speed which is typical of Hewlett-

Figure 1. Switehing speed, Model 5103A: 1.2 MHz to $2.7 \mathrm{MHz}, 30 \mathrm{kHz}$ switehing rate. 5 $\mu \mathrm{s} / \mathrm{cm}, 10 \mathrm{MHz}$ Range.

Figure 2. Stabllity monitoring equipmont.
Packard synthesizers when they change output frequency under electronic com. caad. The upper waveform is synthesizer output; the lower is the externally applied switching voltage. Note the vircual absence of dead time and switching transients.

Signal purity

Two of the central design objectives for the Hewlett-Packard symthesizers were (1) virtual elimination of non. harmonically related spurious signals and (2) the reduction of noise to as low a level as possible. Noise appears as a small, candom phase modulation which adversely affects the shoct-tern stability of a signal.

Performance of the Model 51008/ s 1108 is typical of Hewlect-Packard syn. thesizers and attests to the attainment of these objectives: non-harmonically related signals are at least 90 dB below the selected frequency, and signal to phase noise ratio is greater than 54 dB (in a 30 kHz noise bandwidth centered on the signal, with a 1 Hz central band excluded).

At Hewlett-Packard, a considerable number of engineering years have been spent on problems of frequency stability and its measurenment. Routine production line tests are made of frequency stability with the use of specially designed equip. ment of a sophistication not often found even in frequency measurement research laboratories. Figure 2 shows a multichannel short-term frequency stability monitor used t_{1} check each HewlettPackard synthesizer driver. This equipment monitors both rms and peak phase noise of all the driver outputs at the same time and shows an alarm light if any one of the set limits is exceeded. For additional information on the theory of operation, refer to Hewlert-Packard Application Nore No. $\% 6$.

FREQUENCY SYNTHESIZER APPLICATIONS

FREQUENCY \& TIME STANDARDS

Hewlett-Packard Rrequency Synthesiz. ers are signal sources (essentially mul. tiple frequency standards) whose output frequency can be selected from a key board or by electronic command to a very high resolution. Such an instrument with its extremely high spectral purity and stability constitutes a powerful tool in a wide range of systems and scientific applications.

Communications

The high specteal purity of syothe. sizer output signals makes them ideal as local oscillators in receiver applications where frequency agility and/or narrow I.F. bandwidths are required of the receiver.
Their very stable outpur frequencies make these synthesizers suitable for use in homodyne receiver circuitry. The advantages of using a synthesizet in this application are simplicity and freedorn from image problems, both of which plague many receiver designs.
Data handling systems in all areas of industry and military applications use mag. netic tape as a storage medium, linking the receiver to the data processing and analysis equipment However, magnetic rape is not without fault, introducing certain distortions to the data. A synthesizer may be used to eliminate the degrading effects wow and flutter have on information that is received and stored on magnetic tape. This use is facilitated by the ability of the user to bypass the internal crystal filter in the synthesizer driver section. The inpur reference frequency may be offset by as much as 0.25%, with the same percentage ofiset translated to any output frequency. Thus, a recorded reference channel on the tape can be used as the reference frequency of the Synthesizer, and wow and furter can be removed by comparing the data channel with a conyenient synthesizer output frequency derived from the refer. ence channel.
A surveillance receiver system which monitors multiple data channels by rapidly switching between channels is an ideal area of application for one of the Hewlett-Packard Erequency synthesizers. With its rapid, bighly repeatable switching capability, a synthesizer will serve as the local oscillator in this type of receiver, providing the proper local oscillator frequency for each channel under surveillance. A similar application arises in radio sounding applications, used to de-
ternine the maximum usable frequency allowed by ionospheric conditions. Since these conditions are always in a state of change, the ability of a synthesizer to generate test transmissions rapidly over the entire hf spectrum makes it an important tool for radio sounding.

The high spectral purity which characterizes the Hewlett-Packard synthesizers allows signal multiplication to microwave frequencies. HP synthesizers are ideal for use as the local oscillator in microwave communications systems.
A laboratory-type receiver capable of flat response over a broad range can easily be arranged with use of one of the synthesizers as the local oscillator, together with a broadband mixer and a narrow-band amplifer. For example, a combination of the HP s10sA/s110B Synthesizer, the HP 10514A Mixer, and the HP 415D SWR Meter exhibits an exceedingly fiat response over the range 100 kHz to 500 MHz and a sensitivity greater than 10^{-14} watt.

Radar

The $5100 \mathrm{~B} / 5110 \mathrm{~B}$ is capable of switch. ing between output frequeacies in 0.01 Hz increments at a very fast tate; thus it is capable of making very good approximations of frequency versus time functions. This performance feature finds application in high performance "chirp" radar installations, which require an ultra linear sweep.
In doppler radar applications the Hew-lett-Packard frequency synthesizer easily supplies all the necessary requirements for precise velocity measurements. The excellent stability of the synthesizer makes it ideal as the basic signal source in the transmitter, which requires stability capable of staying within a receiver bandwidth only a few cycles wide in the microwave region. A $5100 \mathrm{~B} / \mathrm{s} 110 \mathrm{~B}$ of anotber of the synthesizers also is well suited for use as the local oscillator in the doppler receiver, where the local oscillator must be capable of rapid change in order to keep the returning signal within the narrow receiver bandwidth.

NMR applications

Nuclear magnetic resonance spectroscopy methods are used to determine the qualitative and quantitative structure of molecules. In NMR, the strength of an applied do magnetic feld and the frequency of simultaneously applied rf field
uniquely determine the spin-interaction of nuclei. In this application the broad frequency range and precise 0.01 Hz increments of frequency are very valuable.

Short-term stability measurements

Hewlett-Packard synthesizers are ideal for use in systems to evaluate short-term frequency stability. Often denoted as phase noise, short-term stability can be characterized by three measures: a phase noise vs. frequency of offset plot, a total measurement of instability over a fre. quency band, and statistical parameters. Theit own excellent stability makes HP synthesizers ideal for use in systems to make these measurements on sigmal sources (such as oscillators) and on a variety of circuits: amplifiers, limiters, and filters. Systems for phase noise measurement utilizing the synthesizer offer a practical solution to problems of production testing. A synthesizer can serve as the frequency reference and also as the source of excitation for the circuit to be evaluated.

Synthesizer specials

Since their introduction in 1963. Hew-lett-Packard synthesizers have found many unusual applications. Users have been quick to take advantage of synthesizer versatility and have shown great ingenuity in applying synthesizers to many research, manufacturing, and field instrumentation needs that otherwise could have been met only by costly laboratory. designed equipment.
Where none of the standard synthesizers can serve the need, however, Hewletr-Packard engineers in the synthesizer design group stand ceady to apply their special knowledge to select, adapt or modify synthesizers to meet a customer's special requirements. It often proves to be the case that needs can be met with instruments built on the production line to narrowed environmental specifications, or with faster switching speed, of with changed output frequency ranges. Whenever possible, the synthesizer group specifies simple modifications that can be made at relatively low cost to the customer, thereby avoiding the far greater expense of special engineering design. Where necessary and warranted, though, this group will devise and build special synthesizers. Discuss your requirements with your Hewlett-Packard field engineer.

FREOUENCY \& TMME STANDARDS

FREQUENCY SYNTHESIZERS
Broad frequency coverage, dual-range
Models 5102A, 5103A

The HP Models 5102A and 5103A Frequency Synthe. sizers increase synthesizer capability, providing instruments with dual-output frequency ranges of 100 kHz and 1 MHz (5102 A), and 1 MHz and 10 MHz (5103A).

The 5102A provides output frequencies from 0.01 Hz to 100 kHz and from 0.1 Hz to 1 MHz in increments of 0.01 Hz and 0.1 Hz respectively. Output frequencies fram 0.1 Hz to 1 MHz in increments of 0.1 Hz , and from 1 Hz to 10 MHz in 1 Hz increments are provided by the 5103A. Both instruments synthesize the output frequency from a single frequency source, translating the stability of the source to the output frequency via a direct synthesis technique. A very stable quartz oscillator, provided with each synthesizer. or an external 1 MHz (or 5 MHz) frequency stondard may be used as the frequency source.

A Level control on the front panel allows continuous adjustment from 300 mV to 1 volt rens, of frequencies greater than 50 Hz available at the front-panel BNC. For frequencies below 50 Hz , the signal is taken from a rear-panel Low Level output BNC. Frequencies available at the rear-panel BNC have a signal strength of approximately 80 mV for the 5102 A and 20 mV for the 5103 A .

Dual-range feature

The two distinct (dual) frequency ranges of the 5102A and 5103 A provide the user with extended capability at minimum cost and without sacrifice of a convenient module size. The upper range extends the frequency capability of each model, at the same time retaining high levels of stability and spectral purity. The higher frequency capability has frequency increments that are the same percentage of the range maximum as in the lower frequency range.

The choice of frequency range is dependent on the maximum frequency required and is selected by the Range switch located on the front parel. The Range switch also positions a moveable label bar, conveniently indicating the decimal value of each column of pushbuttons. For both ranges the output frequency is selected three ways.

With the Frequency Select switch in the Local position, the output frequency is selected by seven columns of pushbultons, arranged for rapid frequency selection. A locking switch is provided to prevent accidental operation of the pushbuttons once they are set. In addition, the full range of each column may be continuously varied either manually or externally by a search oscillator. Any frequency or search oscillator position locally controlled may be remotely selected via rear-panel connectors to each of the front-panel pushbuttons. The Frequency Select switch is positioned in Remoke for remote control. Combined local-remote operation also is possible with the switch in the Local position. Any column not locally selected may be remotely controlied. Less than $20 \mu s$ are required to switch between frequencies in the local mode of selection and also in the remote mode if proper impedance levels are selected for the remote controller. The switching speed is very rapid and accurate, due to the direct synthesis technique used, which eliminates slower, phase-locked loops.

The search oscillator provides continuous tuning in any selected column plus an external sweep capability. This is an L.C oscillator which allows the operator to continuously "search" any significant column from 1 MHz to 0.1 Hz either manually by a front-panel control or remotely by application of a suitable voltage. The typical voltage vs frequency characteristic is shown in Figure 1. The approximate slope is

10% of the selected column's range per V. The search oscillator may be frequency modulated from an external source at a maximum sine wave rate of 1 kHz while retaining the voltage control calibration.
If the search oscillator is used, the stability of the synthesizer output is determined by either that of the standard instrument or that of the search oscillator--depending on the column which is "searched."
Outputs from the 5102A and 5103A are very clean over the full frequency ranges. Careful design and solid-state modular construction yield the high order of spectral purity essential for applications requiring clean and stable frequencies.

Figure 1.

HP Modal	61024					6103A			
Output frequency:	100 kHz range: 50 Hz to 100 kHz ; 1 MHz range: 50 Hz to 1 MHz					1 MHz range: 50 Hz to 1 MHz ; 10 MHz range: 50 Hz to 10 MHz			
Output voltages:	Maximum output I V rms ± 1 dB into 50Ω resistive load. Level contiol (front panel output 8 NC)provides a minimum of 10 d8 continuously variable attenualion.								
Auxiliary outpuls:	(1) Low lavel: de to velue of range, both ranges (rear-panel BNC); (2) fo +30 MHz (fo is selected frequency, dc to 1 MHz , both ranges) rear-panel BNC; (3) 1 MHz frequency standard (rear-panel BNC)								
Auxiliary output vollage:									
Digital frequency selection:	 Selection by front. panel pushoutton or by remote contact closure; any change in frequency may be accomplished in $<20 \mu$ provided appropriate rear-panel connection is used								
Switching time:	$<20 \mu \mathrm{~s}$ for any change in frequency								
Search oscillator:	Provides continuously variable frequency selection in any deslred column over complete range of that column; manual by a front-panel control or by an external voltage (-1 to -11 volis)								
Signal 10-phase noise ratio (output)*;	$\begin{aligned} & \text { (Output): } 100 \mathrm{kHz} \text { range, }>74 \mathrm{~dB} \\ & \text { MH2 range, }>64 \mathrm{~dB} \\ & \left(\mathrm{t}_{0}+30 \mathrm{MHz}\right):>60 \mathrm{~dB}, \end{aligned}$					(Output): 1 MHz range, $>64 \mathrm{~dB}$ 10 MHz range, $>54 \mathrm{~dB}$ $\left(\mathrm{t}_{0}+30 \mathrm{MHz}\right):>60 \mathrm{~dB}$			
Signal.to.AM noise ratio*:	(Output): 100 kHz range $>80 \mathrm{~dB}$ for fife. quencies above 30 kHz : 1 MHz range, $>74 \mathrm{~dB}$ for freguencies above 100 kHz ($\mathrm{f}_{0}+30 \mathrm{MHz}$) $:>80 \mathrm{~dB}$								
RMS fractional frequency devietion:	(Output):					(Output):			
	100 kHz range		1 MHz range			1 MHz range		10 MHz range	
	Avg.	100 kHz Output frequency	$\begin{array}{\|l} \hline \text { Ave. } \\ \text { Time } \end{array}$	100 kHz Oulput Frequency		$\begin{aligned} & \text { Avg } \\ & \text { Time } \end{aligned}$	1 MHz Output Frequency	$\begin{aligned} & \text { Avg. } \\ & \text { Time } \end{aligned}$	10 MHz Oulput Frequency
	$\underset{\substack{10 \mathrm{~ms} \\ 1 \mathrm{~s}}}{ }$	3×10^{-8} 3×10^{-10}	$\underset{\substack{10 \mathrm{~ms} \\ 1 \mathrm{~s}}}{\substack{\text { che }}}$	1×10^{-7} 1×10^{-9}	${ }^{1 \times 10^{-8}} 1 \times 10^{-10}$	$1{ }_{10}^{10 \mathrm{~ms}}$	1×10^{-8} 1×10^{-10}	(10 ms	3×10^{-9} 3×10^{-1}
	$15_{0}+30$	M ${ }^{\text {aziz): }}$					+30 $\mathrm{NH2}$):		
	$\xrightarrow{\text { Aver }}$	$\operatorname{sing}^{\text {g }}$		Sutput Frequancy		Average Timm		Output F	requency
		$1 \mathrm{~ms}^{\text {ms }}$		$\begin{aligned} & 6 \times 10^{-10} \\ & 1 \times 10^{-11} \end{aligned}$		10 1			(10-10
Spurious signals:									
Harmoric signals:	>3588 on all ranges, all outputs (with proper termination)								
Internal frequency standard:	1 MHz quartz oscillator								
Internal frequency standard asing râte:	less than ± 3 paris in 10^{9} per 24 hours								
Stability of internal frequency standeró (as function of ambient temp.): (as function of line voltage):	$=5 \times 10^{-11}=2 \times 10^{-10}$ per ${ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$ $=5 \times 10^{-11}$ for $y \pm 10 \%$ change in line voltage (115 or 230 V)								
Exierna] irequency standard:	1 MHz or $5 \mathrm{MHz}, 0.2 \mathrm{~V}$ io 5 V rms across 500Ω								
Standard input requirements:	stabillty and spactral purity of synthesizer will be partially determined by the characleristics of external standard if used								
Operating temperature range:	$010+55^{\circ} \mathrm{C}$								
Dimensions:	$163 / /^{\prime \prime}$ wide, $10 \cdot 15 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep$(425 \times 266 \times 416 \mathrm{~mm})$								
Weight; power:	net $75 \mathrm{lbs}(34 \mathrm{Kg})$, shipping $132 \mathrm{lbs}(60 \mathrm{~kg}$; 115 or $230 \mathrm{~V}=10 \%, 50-400 \mathrm{~Hz}, 50 \mathrm{~W}$								
Price:	\$7,200					57,800			

FREOUENCY \& TIME STANDARDS

Advantages:

Frequencies from 100 kHz to 500 MHz
Push-button selection in 0.1 Hz increments, plus
Search oscillator
Remote programming
Switching speed typically $20 \mu \mathrm{~s}$
Spurious 70 dB down
All solid-state, modular construction

Uses:

Offers new levels of spectral puxity and stability for such applications as:
Accurate doppler measurements
Microwave spectroscopy
Nacrow-band telemetry
Automatic testing of frequency-sensitive devices Communications systems

The Model 5105A Frequency Synthesizer, a new member of the Hewlett-Packard group of synthesizers, extends fre. quency synthesis capability to 500 MHz . The 5105 A provides push-button or remote selection of any frequency from 0.1 MHz to 500 MHz in steps as small as 0.1 Hz . The 5105 A shares with the other Hewlett-Packard synthesizers the utilization of direct synthesis. This technique translates the stability and spectral purity of the source to the selected output, and in addition, provides a fail-safe output. The 5110B Synthesizer Driver supplies the 22 fixed frequencies required as input to the 5105 A . The 5110 B is capable of driving up to four 5105A Synthesizers. Source for the frequencies is a precision 1 MHz quariz oscillator of excellent stability. If desired for special applications, an external I MHz or 5 MHz frequency standard can be used instead. These features, plus others such as phase modulation input and variable output level, establish the $5105 \mathrm{~A}-5110 \mathrm{~B}$ as a precision variable frequency standard which brings a new capability to the frequency range 0.1 to 500 MHz .

Continuous Tuning, Sweep, FM

A search oscillator provides continuously variable frequency selection over the range of any one column except the tens and hundreds of megahertz columns (the lefthand two). Operation of a front-panel control manually tunes the search oscillator over the complete frequency range of the selected digit, that is, over incremental ranges from 1.0 Hz through 10 MHz . One of the advantages afforded by continuous control is the easy identification of an unknown frequency by beating it against the synthesizer outpur.

The search oscillator also may be controlled by applica. tion of a de voltage (-1 to -11 volts, linearity $\pm 5 \%$) which enables remore operation and gives sweep capability.

FREQUENCY SYNTHESIZER 100 kHz to 500 MHz in 0.1 Hz increments Model 5105A

The search oscillator can be frequency modulated from an external source (sinewave) at a maximum rate of 1 kHz while retaining the roltage control calibration.

Remote operation

The 5105A.5110B offers control fexibility never before possible in a precision frequency source of its range. Any frequency or search oscillator position available from the keyboard can be remotely selected and can be rapidly switched: in $20 \mu \mathrm{~s}$, typically.

Rear panel connectors on the 5105A provide pins corresponding to each front panel pushbutton, a ground connection, and a -i 2.6 volt line for use in remote programming. A combination of remore and local programming may be used, if so desired.

No actual contact closure, such as a relay, is required. The -12.6 volts de may be applied to the selected pin by electronic means.

The remarkably fast switching speed, valuable for such tasks as automatic digital frequency tracking, is one of the significant advantages of the direct synthesis method.

Figure 1. Synthesizer switching speed ($25 \mu \mathrm{~s} / \mathrm{cm}$).

Fast switching

Figure 1 shows (upper trace) the 5105A-51108 output frequency switched between 399.8 MHz and 400.2 MHz with 400 MHz subtracted to display switching in greater detail. The sweep is $25 \mu_{\mathrm{S}} / \mathrm{cm}$. The lower trace is that of the switching waveform applied to the synthesizer.

Low noise performance

To achieve the excellent low-noise output specified for the 5105A-5110B Synthesizer over the full range requires the utmost care in desigre to identify and minimize noise sources followed by extensive testing at each stage of man. ufacture.

5105A, 5110B

Figure 2 shows phase noise distribution at 500 MHz . The ratio of output signal to single-sideband phase noise (in a 1 Hz bandwidth) is plotted against frequency of offset from the signal.

The noise performance refiected in this plot is remarkable for an instrument as complex and versatile as the 5105 A . 5110 B , and demonstrates its suitability for applications where spectrum requirements are critical. One such application would be as a local oscillator in a single-sideband communications system, both for transmitters and for receivers.

Figure 2. Log plot of phase noise.

Spectal purity and stability

Spurious signals are at least 70 dB below the selected out. put. This reflects the extrenely high level of spectral purity and stability achieved for the $5105 \mathrm{~A}-5110 \mathrm{~B}$ by advanced design.

Many applications require that a signal be multiplied. If the frequency multiplying device is broadband, the ratio of total sideband power to signal power increases as the square of the multiplying factor; since total power is constant, the increased sideband power must come from the carrier. The spectrum begins to spread, owing to intermodulation.

To achieve a signal having a good spectrum after high multiplication requires that the original signal have the highest possible signal-to-phase noise ratio. The 5105A has a signal-to-phase noise ratio (measured in a 30 kHz band centered on the signal, excluding the 1 Hz centra! band) which is excellent:

At $1 \mathrm{MHz}, 48 \mathrm{~dB}$
At $100 \mathrm{MHz}, 48 \mathrm{~dB}$
At $500 \mathrm{MHz}, 40 \mathrm{~dB}$

Specifications

Specifications for the 5105A Synthesizer are presented on page 663. Specifications for the 5110 B Synthesizer Driver are presented on page 664.

FREOUENCY \& TMME STANDARDS

Advantages:

Digital frequency selection
0.01 Hz frequency increments

Spurious 90 dB down
Remote programming
Switching speed typically 20μ s
The Hewlett-Packard Model 5100B/5110B Frequency Synthesizer provides any output frequency from 0.01 Hz to 50 MHz , selectable in steps as small as 0.01 Hz . The output frequency is derived from a precision single frequency source through direct synthesis, a technique which translates the stability and spectral purity of the source to the selected output. A precision I MHz quartz oscillator is provided, or an external i MHz or 5 MHz standard may be used.

Spectral purity

Particular care has been exercised in the design of the Model $5100 \mathrm{~B} / 5110 \mathrm{~B}$ to insure that a very clean output signal is provided over the entire frequency range. A high order of spectral purity is essential for accurate doppler measurements, microwave spectroscopy, narrow band telemetry or communications, and similar applications. The design and construction of the $5100 \mathrm{~B} / 5110 \mathrm{~B}$ make it possible to obtain output signals with a spurious content at least 90 dB below the selected output.
The 5110B Synthesizer Driver generates 22 spectrally pure signals from the standard signal. 21 of these frequencies are then fed to the 5100 B Frequency Synthesizer by means of rear panel BNC connectors and are continuously available. The variable output signal is synthesized from these fixed frequencies by a series of arithmetic operations.

Fast switching

Since no phase-locked loops are involved, switching from one output frequency to another can be accomplished very rapidly, either from the front panel pushbuttons or remotely. Typically, 20μ s are required to change output frequency.

Remote control

Any frequency or search oscillator position that can be selected by front panel pushbuttons can also be remotely selected. Connectors located on the 5100 B rear panel provide pins corresponding to each front panel pushbutton position, a ground connection, and a -12.6 volt line for use in remote programming. The -12.6 volts is available in two arrangements - continuous and switched. This lends additional versatility since it enables the use of a combination of remote and local programming.

An actual contact closure such as a relay is not required for remote control of the Synthesizer. The required - 12.6 volts dc may be applied to the selected pin electronically.

Modular construction

Modular construction has been used throughout the $5100 \mathrm{~B} / 5110 \mathrm{~B}$. The modular concept enables the system to

FREQUENCY SYNTHESIZER
 DC to $50 \mathrm{MHz}, 5$ billion discrete frequencies

Model 5100B/5110B
meet stringent demands regarding spurious signals since the isolation that it affords minimizes spurious coupling. It also enhances serviceability. Careful design and quality control insure that all modules are interchangeable from one instrument to another.

Search oscillator

The search oscillator can be selected either locally or remotely and swept either locally or cemotely. Besides facilitating searching for an unknown frequency, the search feature permits frequency modulation of the output at a maximum sinewave rate of 1000 Hz , phase locking the synthesizer into another system, or sweep operation with a sweep range as small as 0.1 Hz . The incremental range of the search oscillator is between 0.1 Hz and 1 MHz , depending upon the column selected for search. Any one of the right-hand eight columns may be searched.

Simple operation

Operation of the $5100 \mathrm{~B} / 5110 \mathrm{~B}$ is straightforward. The output frequency is selected simply by depressing one pushbutton in each of the 20 columns of pushbuttons. Any frequency that can be selected by the pushbuttons can be programmed remotely. The Lock-Operate switch prevents accidental operation of the pushbuttons. The Circuit Check switch and meter on both the 5100 B and 5110 B provide quick and easy checks of internal circuits. The Frequency Standard switch selects either the 1 MHz internal quartz oscillator or an external frequency standard, if desired.

Specifications

The table on the facing page lists specifications for the 5100 B Synthesizer. The 5110B Synthesizer Driver is presented on page 664.

Specifications
 5105A, 5100B Synthesizers

Specifications	5105A*					51008*			
Output frequency	100 kHz to 500 MHz					de to 50 MHz			
Digital frequency selection	0.1 Hz through 100 MHz per step. Selection by front panel pushbutton or by remote switch closure. Any change in frequency may be accom. plished in $20 \mu \mathrm{~s}$ typically.					0.01 Mz through 10 MHz per step. Selection by front panel pushbutton or by remote switch closure. Any change in frequency may be ac. complished in 20μ stypically.			
Output voltage	Fixed: $0 \mathrm{dBm} \pm 1 \mathrm{dBm}$ into a 50 ohm resistive load. Variable: -6 dBm to $\geqq 6 \mathrm{~d} 8 \mathrm{~m}$ into a 50 ohm resistive load.					I volt rms $\pm 1 \mathrm{~dB}$ from 300 kHz to 50 MHz . I volt $\mathrm{rms}+2 \mathrm{~dB},-4 \mathrm{~dB}$ from 50 Hz to 100 kHz , into a 50 ohm resistive load. Nominal source impedance is 50 ohms. 15 mV sms minimum open circult from 100 kHz down to dc, at separate rear output connector, source impedance of 10,000 ohms with shunt capacitance approximately 70 pF .			
Search oscillator	Provides continuous variable frequency selection with a selectable incremental range of 1.0 hz through 10 MHz . Manual or external voltage (-1 to -11 volts) control with linearity of $\pm 5 \%$. The search oscillator may be externally swept up to a 1 kHz sinewave rate.					Provides continuously variable frequency selec. tion with an incremental range of 0.1 Hz through 1 MHz . Manual or external voltage (-1 to -11 volts) control with linearity of $\pm 5 \%$.			
Phase modulation	(rear panel input) ± 3 radians maximum deviation; do -1 MHz rate.								
Signal-to-phase noise ratio	Measured in a $30 \mathrm{k}, \mathrm{y}$ band centered on the signal lexcluding a 1 Hz band centered on the signal) is greater than:					Greater than 54 dB in a 30 kHz band centered on the signal (excluding a 1 Hz band centered on the signal).			
Signal-to-AM noise ratio	(Above 100 kHz): Greater than 7488 in a 30 kHz band.								
9MS fractional frequency deviation (with a 30 kHz noise bandwidth)	Avaragin time	Output Frequency				Output Frequency			
		1 MHz	50 MHz	100 MHz	500 MHz	1 MHz	5 MHz	10 MHz	50 MHz
	10 ms 1 s	1×10^{-9} 2×10^{-9}	2×10^{-9} 4×10^{-11}	1×10^{-9} 2×10^{-11}	6×10^{-10} 1×10^{-11}	3×10^{-8} 3×10^{-10}	6×10^{-9} 6×10^{-11}	$\begin{aligned} & 3 \times 10^{-9} \\ & 3 \times 10^{-11} \end{aligned}$	6×10^{-10} 1×10^{-11}
Spurious signals	Non-harmonically related signals 8 re at least 70 dB below the selected frequency.					Non-harmonicaily related signals are at least 90 dB below the selected frequency.			
Harmonic signals	25 dB below the selected frequency, (applicable to fixed output when terminated in 50 ohms).					30 d8 below the selected frequency (when terminated in 50 ohms).			
Dimensions	$163 / 44^{\prime \prime}$ wide, $163 / /^{\prime \prime}$ deep, $10-15 / 32^{\prime \prime}$ high ($425 \times 416 \times 266 \mathrm{~mm}$).								
Weight	net, 82 lbs (37 kg); shipping, $96 \mathrm{lbs}(44 \mathrm{~kg}$).					net, 75 lbs (34 kg); shipping, $97 \mathrm{lbs}(44 \mathrm{~kg}$).			
Equipment furnished	Decade test cable: 05105-6054/55. Cable As. sembly (connects 5105A Synthesizer to 51108 Driver) permits up to approx. 2.5 feet vertical separation.					05100.6180 Decade Test Cable, 05100.6066 Output Cable, 05100-6212/13 Cable Assembly con. nects 5100 Bynthesizer to 51108 Driver. Permits rack mounting a 51008 up to approx. 2.5 ft . above or below the 51108 Driver. A special-length-cable assembly will be required for other mounting arrangements.			
Special cable	Special cable available. Specify configuration and length (50 ft . max.). Cable is supplied in four-foot increments. Price: $\$ 40$ per four-foot increment.					If a special-length cable assembly is required, order spec C05-51108. Specify configuration and length (max. separation 50 feet). Cable is supplied in four-toot increments only. Price: $\$ 40$ per four-foot increment.			
Price	model 5105A, \$9750. (Requires 51108)					model 51008, \$8150. (Requires 51108)			

[^68] thesizer contribution to ovefigll performance when an extermal standaro of tess spoctral purlty than in the 5110 a is connected to the 5110 B .

The HP 5110B Synthesizer Driver supplies the HP 5100B and 5105A Synthesizers with 22 fixed, spectrally pure signals derived from a 1 MHz precision quartz oscillator.

The frequency synthesizer system comprising the 5105A Synthesizer and the 5110 B Driver provides output frequencies from 0.1 to 500 MHz in increments as small as 0.1 Hz . The $5100 \mathrm{~B}-5110 \mathrm{~B}$ system provides outpur frequencies from de to 50 MHz in increments as small as 0.01 Hz . These synthesizers are described on pages 660-663.

The 1 MHz quartz oscillator which is the source for all output frequencies of the synthesizer driver is stable to 3 parts in 10^{9} per 24 hours. To help maintain this excellent crystal stability, oven circuits are energized any time the instrument is connected to the power line. A circuit check meter allows verification of correct oven operation.

Where special requirements make it necessary that synthesized frequencies be derived from an external frequency standard, a rear panel connector on the 5110 B accepts a 1 MHz or 5 MHz signal. The output spectural pucity is partially dependent on the purity of the remote frequency standard.

These synthesizer drivers are each capable of driving up to four synthesizers. Drivers equipped in accordance with Options 02 through 04, for driving from two to four synthesizers, must have additional outputs not in use terminated in 50 ohms in order that full specified spurious performance be met.

Specifications Synthesizer Driver 51108 For the 5100B and 5105A Synthesizers

Output frequencies: Provides 22 fixed frequencies for Fre. quency Synthesizer operation; 3.0 through 3.9 MHz in 0.1 MHz steps ($50 \mathrm{mV}+1,-3 \mathrm{~dB}$) 30 through 39 MHz in 1 MHz steps, 24 MHz , and $20 \mathrm{MHz}(100 \mathrm{mV} \pm 1.5 \mathrm{~dB}$), sos system. Note: 20 MHz is not used with the 5100 B Synthesizer.

1 MHz buffered output ($1 \mathrm{~V} \pm 1.5 \mathrm{~dB}$ into a son resistive load) available at rear panel connector.

Internal frequency standard:

Type: 1 MHz Quartz Oscillator.
AgIng rate: Less than 3 parts in 10° per 24 hours.
Stability: As a function of ambient temperature: $\pm 2 \times 10^{-10}$ per ${ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. As a function of line volt. age $\pm 5 \times 10^{-11}$ for a $\pm 10 \%$ change in line voltage (rated at 115 or 230 volts sms line voltage).

Short term (with internal crystal filer) : Adequate to provide the 5100 B and 3105 A performances noted on page 663.

Phaso-locking capability: A voltage control feature allows s parts in 10^{+}frequently concrol for -5 to +5 volts applied externally.
External frequency standard input requirements: I MHz or s $\mathrm{MHz}, 0.2 \mathrm{~V}$ ims minimum, 5 V maximum across 500 ohms. Stability and spectral purity of Frequency Synthesizer will be partially determined by the characteristics of the external standard if used.
Dlmensions: $263 / /^{\prime \prime}$ wide, $5.7 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep ($425 x$ $133 \times 416 \mathrm{~mm}$).

Welght: Net. $54 \mathrm{lbs}(25 \mathrm{~kg}$). Shipping, $67 \mathrm{lbs}(30 \mathrm{~kg}$).
Operating temperature range: 0 to $+55^{\circ} \mathrm{C}$.
Interference: Complies with MIL-I-26600, Class 1 and 3, MIL1.6181D.*

Susceptliflty: Complies with MIL-I.26600, Class 1 and 3, MIL-I-6181D.

Power: 113 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 cycles, 35 WW .
Optional features: The Synthesizer Drivers are capable of driving up to four Frequency Syathesizers: Option 02, outputs for driving two synthesizers, $\$ 125$; Op. tion 03, for three, $\$ 235$; Option 04, for four, $\$ 345$.

Accessories avallable: 10510A BNC termination, sos, If Option 02.04 has been selected, outputs nor connected to a Synthesizer must be terminated in 50Ω if full specifed spurious performance is required. For each set of ourpurs not connected to a Synthesizer, 22 of these 505 terminations are required; thus, if Option 04 Driver is connected to only one Synthesizer, 66 would be required. Price, $\$ 5$ each.
Special interconnecting cable sets are described on page 663.
Note: Small phase jumps may be experienced in additional synthesizer when first is switched in frequency:
Price: model 5110B, \$4350.

[^69]APT-16-1 Pulse Ware Transducer 60.62
C34-431C Power Meter-Ruggedized 291
F3B Line Follower System 148
FTA Force Transducers 185
G2B Null Detector 148
S1-4 Solid Sample Injector 42
2FA $11^{\prime \prime} \times 17^{\prime \prime} \mathrm{X}$-Y Recorder, 2 pen 141
3LV Linear Velocity Transducers 185
3LVA Linear Velocity Transducers 185
6LV Linear Velocity Transducers 185
7 30" $\times 30^{\prime \prime}$ X.Y Recorder 140
7DCDT Displacement Transducer 184
7LV Lincar Velocity Transducers 185
24DCDT Linear Dispiacement Transducers 184
40D Keyboard 148
50 B Automatir Attenuator 42
53 Battery Converter 159
60 Backfush Valve 42
80 Pyrolyzer 42 42
100
101A Quartz Oscillator 648
105A, B Quartz Oscillator 648
106A, B Quartz Oscillator 648
107AR, BR Quartz Oscillator 648
11sBR Frequency Divider and Clock 655
H20-1198R Frequency Divider and Clock 655
117A VLF Comparator 652
K10-117A Time Scale Translator 652
120B 450 kHz Oscilloscope 495
122A Dual Trace Oscilloscope 486
$130 \mathrm{C} 200 \mu \mathrm{~V} / \mathrm{em}$ Oscilloscope 497
132A Dual Beam Oscilloscope 498
13SA 81/2" $\times 11^{\prime \prime}$ X-Y Recorder 140
136A 81/2" $\times 11^{\prime \prime}$ X.Y Recorder, 2 pen 141
140 A Plug. In Oscolloscope Main Frame 512
141A Variable Persistence Oscilloscope Main Frame 513
143A Large-screen Oseilloscope Main Frame 514
180A Plug. In Oscilloscope Main Frame 535
Hs1-180AR Oscilloscope 70
180E Ruggedized Plug-In Oscilloscope 546
181A Variable Persistence Ostilloscope Main Franme 536
185 C-H-N Analyzer 45
190A Q Meter 261
191A TV W'aveform Oscilloscope 328
196A Oscilloscope Camera 551
196B Oscilloscope Camera 551
197A Oscilloscope Camera 552
200
200AB Audio Oscillator 367.377
200 CD Wide Range Oscillator 376, 377
201C Audio Oscillator 376, 377
202A Low Frequency Function Generator 374
202C Low Frequency Oscillator 377
202H FMAM Signal Generator 350
202J FM-AM Signal Generator 391
203A Variable-Phase Generator 371
204C Oscillator 375
205AG Audio Signal Generator 380
206A Audio Signal Generator 380
207H Univerter 391
208A Test Oscillator 378
209A Sine/Square Oscillator 375
211A Signal Generator 409
211A Square Wave Generator 349
211 B Square Wave Generator 348-349
213B Pulse Genemtor 350
214 A Pulse Generator 352
215A Pulse Generator 353
216A Pulse Generator 354
218AR Digital Delay Generator 351
219A,B,C Digital Delay Generator Plug-Ins 351
220A Square Wave Generator 349
221A Square Wave Generator 349
222A Pulse Generator 355
230A Signal Generator Power Amplifer 489
232A Glide Slope Signal Generator 409
236A Telephone Test Oscillator 323
241A Pushbutton Oscillator 378
250B RX Meter 258
260A Q Meter 259
267A, B,C Differential Transducer 60.62
268 Differencial Pressure Transducer 60.62
270 Pressure Transducers 60.62
$281 \mathrm{~A}, \mathrm{~B}$ Waveguide-to Cosx Adapters 312
292A,B Waveguide-to Waveguide Adapters 312
297A Sweep Drive 444
299A 1-Channel Porlable Rec. Sys., Thermal 157.159
300
301 1.Channel Portable Rec. Sys., Thermal 157-159
302A Wave Analyzer 325, 444
302B Vapor Pressure Osmometes 32... 540
310A Wave Analyzer
184
184
311A Transducer Amp.-Indicator
311A Transducer Amp.-Indicator 184
313A Tracking Oscillato 323, $446 \cdot 447$
320 2-Channel Portable Rec. Sys., Thermal 157.159
321 2.Channel Portable Rec. Sys., Thermal 157.159
322A 2-Channel Porcable Rec. Sys., Thermal 137.159
331 A Distortion Analyzer 435, 436
Hos.332A Distortion Analyzer 435, 436
332A Distortion Analyzer 435,436
333A Distortion Analyzer 435, 436
H0s.334A Distortion Analyzer 435,436
334A Distortion Analyzer 435, 436
340B Noise Figure Meter 314
342A Noise Figure Meter 314
343A VHF Noise Source 314
345B IF Noise Source 314
347A Waveguide Noise Source 314
349A UHF Noise Source 314
350C Artenuator Set 383
350D Attenuator Ser 383
350.2B DC Plug-in 60.62
350.3A EEG/ECG Plug.in 60.62
350.12 GSR Bridge Plug in $60 \cdot 62$
350.15 Thermal Dilution Plug-in 60.62
350.16 DP/DT Plug-in 60.62
350-100B DC Preamplifier 60.62
350.1100 CM Carcier Preamplifer $60-62$
350-1300C DC Coupling Preamplifier 60.62
350.1500A Low Level Preamplifer 60.62
350.1700 C Heart Sound Preamplifier 60.62
350.2700 C High Gain Preamplifer 60.62
$350.2700 . \mathrm{CB}$ EEG Kit 60.62
350.3200 A ECG/General Purpose Preamplifier 60.62
$350.3200 . \mathrm{C8}$ ECG Kit 60.62
350.3400A Cardiotach Preamplifier 60.62
350.3400 .C9 ECG Kit 60.62
350.3700A Integrating Preamplifer 60.62
350-5000 Respiratory Preamplifer 60.62
353A Patch Panel 321, 383
H02.353A Telephone Parch Panel 321

MODEL NUMBEA MOEX cantimusd

362 to 3304A

362 -series Filters, Microwave 306
375A Variable Attenuators 305
382A,C Variable Attenuators 305
393A Precision Variable Coaxial Attenuator 302
394A Precision Variable Coaxial Attenuato: 302
400
400D Vacuum Tube Voltmeter 210
400 E High Accuracy AC Voltmeter 209
$400 \mathrm{E} / \mathrm{EL}$ AC to DC Converter 252
400EL High Accuracy AC Voltmeter 209
400 F Fast Response Voltmeter 207
400FL Fast Response Valtmeter 207
400GL High Frequency DB Voltmeter 208
400 H Vacuum Tube Voltmeter 210
400L Vacuum Tube Voltmeter 210
402 High Efficiency Gas Chromatograph 36
403A AC Portable Voltmeters 211
403B AC Portable Volmeters 211
410B Vacuum Tube Voltmeter 215
410C Multifunction Volimeter 214
411A RF Millivolumeter 217
412A Voltmeter, Ammeter, Ohmmeter 220
413A DC Null Voltmeter 218
414A Auto Voltmeter 218
4158 SWR Indicator 294
415E SWR Meter 293
416B Ratio Meter 285
419 A DC Null Volt-Ammeter 198, 219
420A, B Crysta! Detector, Microwave 307
422A Crystal Detector, Microwave 307
423A Crystal Detector, Microwave 307
424A Crystal Detector, Micromave 307
425A DC Microvolt-Ammeter 221
427 A Multi-Function Meter 213
428B Clip-on DC Milliammeter 224
430C Power Meter, Microwave 289
C34.431C Ruggedized Power Meter 291
432A Power Meter 286
434A Calorimetric Power Meter 292
440 A Detector Mount 283
442B Probe, Slotred Section, Microwave 284
444A. Probe, Untuned, Microwave 284
446B Probe, Waveguide, Mirrowave 284
447B Probe, Coaxial, Micronave 284
448A Slotted Line Sweep Adapter 283
450A Stabilized Amplifier 485
456A AC Current Probe 229
457A AC to DC Converter 252
461A General Purpose Ampliner 488
462A Fast Pulse Amplifier 488
463A Precision AC Amplifier 487
465A General Purpose Amplifier 486
466A General Purpose Amolifier 485
467A Power and Voltage Amplifier 486
476A Bolometer Mount 294
477B Thermistor Mount 289
478A Thermistor Mount 288
485B Detector Mounts 294
486A Thremistor Mount 285
487 Thermistor Mount 289
489A. Microwave Amplifer 490
491C Microwave Amplifer 490
493A Microxave Amplifier 490
495A Microwave Amplifier 490

500

500 Membrane Osmometer 50
s00B,C Frequency Meter, Tachometer 635
506A Optical Tachometer 635
s08A,B,C,D Tachometer Generator 635
532A/B Frequency Meter 308
36A Frequency Merer 308
537A Frequency Meter 308
s40B Transfer Oscillatos 613
561B Digital Recorder 136
562A Digital Recorder 133
565A Digical Recorder 136
571B Digital Clock 134
580 A Digital-Analog Converters 13?
s81A Digital-Analog Converters 137
s85DT Linearsyn Transducers 185
594DT Linearsyn Transducers 184
606A HF Signal Generator 388
606 B HF Signal Generator 388 388
$608 C, D, E, F$ Signal Generator, VHF 392
612A Signal Generator, UHF 397
614A, B Signal Generator, UHF 400
616B Signal Generator, LHF 400
618C Signal Generator, SHF 402
620B Signal Generator, SHF 402
623B SHF Test Set 401
624C X-Band Test Ser 401
626A SHF Signal Generator 404
628A SHF Signal Generator 404
651B Test Oscillator 381
652A Test Oscillator 381
653 A Test Oseillator 327
654A Test Oscillator 327, 382
658-2000 8-Channel Galv. Driver Amplifier 173
658.2900 8. Chanael Low Gain Amp 173
658.3400 8-Channel Med. Gain Amplifier 173
675A Sweeping Signal Generator $386,417,419$
675A, 676A Netrork Analyzer 466
676A Phase/Ampliuxde Tracking Detector 418,419
680 5" Strip Chari Recorder 152
700
700 Laboratory Gas Chromatograph 37
711A DC Power Supply, Medium Voltage 579
712C DC Power Supply, Medium Voltage 579
715A, 716B Klystron Power Supplies 296
721A DC Power Supply, Bench 571
735A DC Transfer Standard 194
E02.735A Transfer Standard Reference 194
E02.738BR Voltmeter Calibration System 198
$740 B$ DC Siandard/Differential Volemeter 192, 193
741 B AC.DC Differential Volmeter/DC Standard 196, 197
745A AC Calibrator 191
752-series Directional Couplers 299
$760 \cdot 3 \mathrm{~A}$ Cardio Tachometer Plug-in $60 \cdot 62$
760.40A Junction Box 60.62
760.41 Juncrion Box $60 \cdot 62$
760.1300 DC Prearnplifier 60.62
760-1600A ECG Preamplifier 60.62
760-2200 Respiration Rate Preamplifier 60.62
760.2700A High Gain Amplifer 60.62
760.3000 Carrier Amplifer $60 \cdot 62$
760.3100 Pressure Processor Preamplifier $60 \cdot 62$
774D.777D Dual Directional Couplers 297
775 Automakic Preparative Gas Chromatograph 38
776 Manual Preparative Gas Chromatograph 38
778 D Dual Directional Coupler 296
779 D Directional Coupler 296
780.18 ECG.EEG Preamplifier 55
780.19 Patieat Monitor 55
780.21 Remote Alarm Indicator; 780-800B Remote Monitor. 55
780.37A Central Station Console 55
790-series Directional Couplers 297
800
801C DC Power Supply, Strain Gage 686
805C Slotted Line, Coaxial, Microwave 284
809 C Carriage, Waveguide, Microwave 284
810 B Slotted Section 283
814B Carriage, Waveguide, Microwave 284
8158 Slotted Section 283
816A Coxyial Slotted Section 282
817A Coaxial Swept Slotted Line Sysrem 282
8518 Display Section, Spectrum Analyzer 458
852A Display Section, Specrrum Analyzer 458
870A Slide-screw Tuners 311
874A Calibrated Susceptance 531
885A Waveguide Phase Shifers 311
890A DC Power Supply-Med. Voltage Supplies 579
80SA DC Power Supply-Med. Voltage Supply 579
900
905 A Sliding Load 309
907A Sliding Load 309
908A Termination (Coax) 309
909A Termination (Coax) 309
910 Waveguide Terminations 310
X913A Termination, high-power 310
914 Moving Loads 310
920A, B X923A Waveguide Shorts 310
X930A Shorting Switch, Waveguide 310
932A Harmonic Mixer 312
934A Harmonic Mixer 312
938A Frequency Doubler Set 406
940 A Frequency Doubler Set 406
1000
1051A, 1052A Combining Case 227
1102B Sampling Accessory Kit 528
1104A/1106A Trigger Countdown 528
1104A/1108A Trigger Countdown 528
1105A/1106A Pulse Generator 350, 528
110SA/1108A Pulse Generator 350, 528
1109A Hi Pass Filter 528
1110A AC Current Probe 549
1111A AC Probe Amplifier 549
1116A Testmobile 550
1117B Testmobile 550
1118A Testmobile for 180 and 1200 Oscilloscopes 550
1119A Testmobile 550
1119B Tesmobile 550
III9C Tesmobile for 180 and 1200 Oscilloscopes 550
1119D Tesmobile for 180 and 1200 Oscilloscopes 550
il22A Probe Power Supply 549
1123A Active Probe 545
1129 A Hi Pass Filter 528
1200A/B 500 KHz Dus) Trace Oscilloscope 502,503
1202A/B $500 \cdot \mathrm{KHz}$ Oscilloscope 504, 505
$1205 \mathrm{~A} / \mathrm{B} 500 \mathrm{KHz}$ Dual Trace Oscilloscope 502,503
$1206 \mathrm{~A} / \mathrm{B} 500 \mathrm{KHz}$ Oscilloscope 504,505
1208A/B X.Y Display 501
1280 Series Pressure Transducer 60.62
1281 Pressure Transducers 185
1300A Large-screen X.Y Display 506
1400A Differential Amplifier for 140 System 518
1401A Dual Trace Amplifier for 140 System 518
1402A Dual Trace Amplifier for 140 System 515
1403A. Guarded Differential Amplifer for 140 System 519
405A Dual Trace Amplifier for 140 System 516
1306A High Sensitivity Amplifier for 140 System 517
1407A High Sensitivity Amplifier for 140 Spstem 519
1410 A Sampling Vertical Ampliter for 140 System 522
1411 A Sampling Vertical Amplifier for 140 System 524
1419A Time Domain Reflectiometer for 140 System 529
1416 A Swept Frequency Indicator for 140 System 530
1420A Time Base for 140 Sysrem 520
1421A Time Base/Delay Gemerator for 140 System 521
1422A Time Base for 140 System 320
1423 A Time Base for 140 System 520
1424A Sampling Time Base for 140 System 526
1425A Sampling Time Base/Delay Generator for 140 System 527
1430A Sampler for 1411A 525
1431A Sampler for 1411A S25
1432A Sampler for 1411A 524
1500A Electrocardiograph 56
1506B Heart Sound Amplifer (Medical) 56
1508A ECG Amp., 3.Channel 96
1509A ECG Amp., 6-Channe! 56
1510A Electromyograph 56
isIIA Electrocardiograph, Mobile 56
1520A Vector System 56
1801A 50 MHz Amplifer for 180 System 537
1802A 100 MHz Amplifier for 180 System 540
1803A Differential/AC Offset Amplifier for 180 System 538
1804A Four Cbannel Amplifer for 180 System 538
1815A TDR/Saropler for 180 System 542
1816A Sampler for 1815A 542
1817A Sampler for 1815A 542
1820A Time Base for 180 System 539
1820B Time Base for 180 System 541
1821A Time Basc/Dclay Generator for 180 System 539
1822A Time Base/Delay Generator for 180 Systern 541
1900A Pulse Generator Main Frame 358
1905A Rate Generator Plug-in for 1900A 359
1908A Delay Generator Plug-in for 1900A 359
1915A Variable Transition Time Output for 1900A 360
2000
2000A Time-Shared BASIC System 120, 111
2010K.I Data Acquisition Systems 124, 125
2012A, B,C,D Data Acquisition Systems 126, 127
2020 Series Digital Magnetic Tape Units 111
2060 Logic Module Test System 123
2114A Digital Compurer 104-111
2114A Respiration Rate Transducer 60.62
2115A Digital Compute 104.111
21168 Digital Computer 104-111
2212A Vollage to Frequency Converter 247
2300 series Data Acquisition Systems 128, 129
2310A/B High Speed Data System 128
2310C High Speed Data System 128
2311A High Speed Data System 128
2312A Low Speed Data System 128
320A Low Speed Data system 128
2323A Low Speed Data System 128
2401C Integrating Digital Volmeter 119, 246
2402A Integrating Digital Voltmeter 119, 244
2410B AC/Ohms Converter 118, 246
2411 A Data Amplifier 118
2470A Deta Amplifier 484
2515A Digital Scanner 121
2539A Digital Comparator 119
2547A Coupler 121
2560A System Programmer 120

3305A to 7034A

3305A Sweep Plug-in for 3300A

374,416
3370A Digical Integrator 43, 44
Voltmeter252
406A 216, 217
3410A AC Microvaltmeter 206
3420A DC Differential Voltmeter/Raciometer 195
$3420 B$ DC Differential Voltmeter/Ratiometer 195
3430A DC Digital Voltmeter 234
3434A High/Go/Low Comparator 235
3439 A Plug-in Digital Voltmerer 236. 237
3440A Plug-in Digital Volmerer 236, 237
3441A Range Selector for 3439A/3440A/3434A 238
3442A Aurouratic Range Selector for 3439A/3440A/3434A. 238
3443A High Gain/Auto Range Unit for 3439A/3440A/3434A
239
$3445 A$ AC/DC Range Unit for 3439 A/3440A/3434A 240
3446A AC/DC Remore Unit for 3439A/3440A/3434A 240
3450A Digital Multi-Function Merer 241, 242, 243
H04-3460A Digital Voltmeter 250,251
3460B Digital Voltmeter 248
3461 A AC/ohms Converter, DC Preamplifer 249
$3513 A / 3514 A$ (Part of 3950 and 3955 Series) 179.182
990 Series)176, 179, 180
$3534 \mathrm{~A} / 3525 \mathrm{~A}$ (Part of 3055 Sers) 180
3526A/3527A (Part of 3950 Series) 176, 181. 182
3529A Magnetometer Probe for 428B 224
Cl1.3529A Magnetonerer Probe
180, 181
3535 A FM Record Amplifier (dc .20 kHz) $180,181,182$
3537A Direct Reproduce Amplifier (300 kHz) 180, 181
3538A FM Reproduce Amplifer (dc .20 kHz)81, 182
3550 B Po 320, 321
H02-3550S Special Portable Test Sec 321
H03-35s0B Special Portable Test Set 321
3555B Telephone Tesmeter 22
3556A European Test Meter 322
3590A Wave Analyzer 49
3390A Low Frequency Spectrum Analyzer 324
3592A Auxiliary Plug-in 442,443
3593A Sweeping Local Oscillator Plugrin 443
3594A Swreeping Local Oscilator Plug-in 443
3604A 183
3605A FM Frequency Source 183
3680A AC Power Supply 183
3681 A Tape Servo 183
3701/2/3A Microwave Link Analjzer 334-341
3722A Noise Generator 361.364
Ho1.3722A Noise Generator 361, 362,36538
3900-series Magnetic Tape Recorders (Medical) 67
3900-5eries Magnetic Tape Recording Systems 176, 177
3907.06A Voice Channel Amplifier 178
3907-07A Input Signal Coupler 178
3907.11A Remote Control 67
3907-11A Remote Control Unit 178,183
3907B Lowr-Band Magnetic Tape Recorder (7.Track) 176. 177
3914 B Low. Band Magnetic Tape Recorder (14.Track) 176, 177
3917B Intermediate-Band Magnetic Tape Recorder (7-Track) 176,177
3924 Intermediate-Band Magoeuc Tape Recorder (14.Track) 176, 177
3950-series Instrumentation Magnetic Tape Recorders 176, 17 ?
4204A Digital Oscillator 379
4260 A Universal Bridge 25
4328A Milliohmmeter 222
4329A Resistance Meter 223
4440B Decade Capacitor 222
4508B 8-Channel Oscillographic Recorder, U.V 172
4508BT Recording System, U.V 65
4524B 24-Channel Oscillographic Recorder, U.V 172
4561B Monitor, Recording System, Optical 65
4564B Photographic Recording Systern 65
4568B Photographic Recording System 64
4689A Remote Monitor Oscilloscope 66
4800A Vector Impedance Meter 254
4815A RF Vector Impedance Meter 255
4900A Cable Faule Locaror 316
4901A Cable Fault Locator 316
9904A Cable Fault Locator 316
4905A Ulrrasonic Translator Detector 316
4910B Open Fault Locator 316
4916A Ultrasonic Translator Detector 316
4917A Ĺlurasonic Translator Detector 316
4918A Ultrasonic Translator Detector 316
4950A L'lurasonic Translator Detector 316
5000
H042.5050B Digital Recorder 81
H018-5050B Digital Recorder 72
5050B Digital Printer 133
5050B Option Ss Digital Clock 134
K02.5060A Standby Power Supply 654
5060-Modular Accessories 228
5060.0243 Joining bracket kit 72
9061A Cesium Beam Frequency Standard 644
E21.5061A Cesium Beam Time Standard 644
5065A Rubidium Frequency Scandard 646
E21-5065A Rubidium Time Srandard 646
5082A Cesium Beam Tude 643
5085A Standby Power Supply 654
5100B Frequency Synthesizer 662
5102A Frequency Synthesizer 658
3103A Frequency Synthesizer 658
5105A Frequency Synthesizer 660
5110B Frequency Synthesizer Driver 664
9201L Scaler-Timer, Pulse Height Analyzer 82, 83
5202 L Scaier-Timer 82, 83
52031 Scaler 82, 83
5210A, B Frequency Meter/FM Discriminator 634
s211A,B Electronic Counter 623
H22-5211B Electronic Counter 623
s212A Electronic Counter 623
5214 L Preset Electronic Counter 628
5216A Electronic Counter 622
5221 A, B Electronic Counter 620
K01.5221A to K04.5221A Electronic Counters 620
5223L Electronic Counter 618
5232A Elecronic Counter 623
52331 Electronic Counter 618
5240A Digital Frequency Meter 611
5244L Electronic Counter 615
5245L/M Electronic Counter 594
E40-5245L 40 GHz Measuring System 614
M54.5245L Electronic Counter 600
s346L Elecronic Counter 602
s247M Electronic Counter 601
5248L, M Electronic Counter 598
s251A Erequency Converter Plugin 608
5252A Prescaler Plug-in 603
5253日 Frequency Converter Plug.in 608
5254B Frequency Converter Plug-in 608
25A Frequency Converter Plug-in 608
5256A Frequency Converter Plug-in 608
5257A Transfer Oscillator Plug.in 607
526sA Digital Volmeter Plug-in 603
5267A Time Interval Counter Plug-in 604
s275A Time Interval Councer 636
s180A Reversible Electronic Counter 630
5285A Universal Input Plug-in 631
s32IA, B Electronic Counter 620
3323A Universal Electronic Counter 616
S331A Preser Controllers/Counters 625
5332A Preset Controllers/Counters 625
K15.5400A 8.Input Mixer (Multichannel Analyzer) 73
K10-5400A Log Display (Multichannel Analyzer) 73
K09.5400A 8-Input Router (Muttichannel Analysis) 73
H06-5400A Multichannel Analyzer with Signal Averaging 70K05.5400A Mrulti-Inpur Muldi-Scale (Mrultichannel Analysis) 73
K 20.5400 A BCD to Binary Converter (Multichannel Analyzer) 735401 A Multichannel Analyzer$70,71,72$
H06-5401A Multichannel Analyzer with Signal Averaging 73
5405A, 5406A Multiparameter Analyzer 74
sA10A Power Supply/Interface 70
s416A Analog-to-Digital Converter 70
$05421-6030$ Display cable, MCA (dual 36.pin) 72
$05421-6033$ Power cable, MCA (50.pin) 72
05421.6034 Data cable, MCA (50-pin) 72
05421.6035 ADC decimal cable, MCA (dual so.pin) 72
s422A Digital Processor 70
5431B Display Plug-in 70
5480A Signal Analyzer 88
5485A Tro channel Input 88
5486A Process Conirol 88
5495A I/O Coupler 90
s512A Electronic Councer 623
5532A Electronic Counter 623
5554A Preamplifier 84
5560A Automatic Sample Changer 80
5561A, s562A Gas-flow Counting Systems (Nuclear) 80
5563A. 5564A Gas-flow Counting Sistems (Nuclear) 81
5565A Nuclear Counting System, Scincillation Detector 81
5580A/B NIM Power Supply 76
5982A Linear Amplifer 76
K01 thru K09.5582A Delas Line Kits for Linear Amplifer. 76
5583A Single Channel Analyzer 76
H32.5583A Single Channe! Analyzer 81
5584 A Dual Timing Pickofi 78
5985A Fast Coincidence 78
5590A Scaler-Timer 79
5601A Numerical Display 55
s610A A to D Concerter 122
5636 H -Band Tesi Sec 401
5750B Rescarch Gas Chromatograph 35
5795A Automatic Preparative Attachment 39-40
5901 B Auto. Viscometer 51
5903A Printer for Auto.Viscometer 51
59G0A Atomic Absorption Photometer 48,49
6000
6101 A STB Power Supplies 566
6102A STB Powcr Supplies. 566
6106A STB Power Supplies 566
6110A STB Power Supplies 566
6111A STB Power Supplies 566
6112A STB Power Supplies 566
6113A STB Power Supplies 566
6116A STB Power Supplics 566
6130B Digital Voltage Source 564
6131B Digita! Volage Source 564
6177B Constant Current DC Power Supply 568
6181B Constant Current DC Power Supply 568
6200B LAB DC Power Supply 572
6201 B LAB DC Power Supply 572
6202B LAB DC Power Supply 572
6203B LAB DC Poner Supply 572
$6204 B$ LAB Dual Range, DC Power Supply 572
6205B LAB Dual Ourput, DC Power Supply 572
$6206 B$ LAB Dual Range, DC Power Supply 572
6207B LAB DC Power Supply 573
6209B LAB DC Power Supply 572
6213A DC Power Supply, Bench 570
6214A DC Power Supply, Bench 570
6215A DC Power Supply, Bench 570
6216A DC Porver Supply, Bench 570
6217A DC Power Supply, Bench 570
6218A DC Power Supply, Bench 570
62308 DC Power Supplies, MPM 569
6224B DC Power Supplies, MPM 569
6226B DC Poxer Supplies, MPM 569
6253 A DPR Power Supplies 575
625sA DPR Power Supplies 575
6256B DC Power Supplies, LVR 576
6259 B DC Power Supplies, LVR 576
6260 A DC Power Supplies, LVR 576
6263B DC Power Supplies, LVR 576
6264B DC Power Supplies, LVR 576
6263 B DC Power Supplies, LVR 376
6266B DC Power Supplies, LVR 576
6267B DC Power Supplies, LVR 576
6268A DC Power Supplies, LVR 576
6269A DC Power Supplies, LVR 576
271B DC Power Supplies, LVR 576
6274A. DC Power Supplies, IVR 576
6281 A MPB- 3 Power Supplies 575
6282A MPB-s Power Supplies 574
6284A M(PB. 3 Power Supply 575
6285A MPB-s Power Supplies 974
6286A MPB. 5 Power Supplies 574
6289A MPB. 3 Power Supplies 575
6290A MPB. 5 Power Supplies 574
6291A MPB-s Poner Supplies 574
6294 A MPB-3 Power Supplies 575
6296A MPB-5 Poner Supplies 574
6399 A MPB. 3 Power Supplies 575
6343 A DC Power Supply, Modular Plug in 586
6344 A DC Power Supply, Mocular Plug in 586
6346 A DC Power Supply, Modular Plug in 586
6354 A DC Power Supply, Modular Plugin 586
6357A DC Power Supply, Modular Plug-in 586
6384A ICS Power Supply 578
6427 B SCR.1P Power Supply 581
$6428 B$ SCR-IP Power Supply 581
6433 B SCR-1P Power Supply 581
6434 B SCR. 1 P Power Supply 581
6438B SCR•IP Pon'er Supply 581
6439B SCR.lP Power Supply 381
G43B SCR.!P Power Supply 581
6448 B SCR-1P Poner Supply 581
6453 A SCR. 3 Power Supply 582
6456B SCR. 3 Power Supply 582
6459A SCR-3 Power Supply 582
6463A SCR-10 Power Supply 583
6464 A SCR-10 Pawer Supplies 583
6466A SCR-10 Power Supplies 58.
6469 A SCR-10 Power Supplies 585
6472A SCR. 10 Powes Supplies 583
6475A. SCR-10 Power Supplies 583
6477A SCR-10 Power Supplies

MODEL NUMBER INDEX continued

7035A to 17009B

7035A 81/2" $\times 11^{\prime \prime}$ X.Y Recorder 139
7100 B 10" Strip Chart Recorder, Dual Channel 150
7101B 10" Strip Chart Recorder, Single Channel 150
H10.7127A Single Channel Strip Charr GC Recorder 41
7127B 10" Strip Chart Recorder, Single Channel 150
H10.7128A Dual Channel Strip Chart GC Recorder 41
7128B 10" Strip Chant Recorder, Dual Channel 150
7214A Diagnostic Sounder 56
7560A Log Converters, Dual Channel 146
7561A Log Converers, One Channel 146
7562A Log Converters 147
7563A Logarithmic Amplifier 147
7597A Trend Recorder 153
77018 1-Channel Oscillograph, Thermal 165
7702B 2.Channel Oscillograph, Therma 166
7704 B 4.Channel Oscillograph, Thermal 167
77068 6.Channel Oscillograph, Therma 165
7708 B 8.Channel Oscillograph, Therma 168
7712B 2.Channel Oscillograph. Thermal 63
7714A 4.Channel Oscillograph, Therma 63
9716A 6-Channel Oscillograph, Thermal 63
7717B 6-Channel Oscillograph, Thermal 63
7718A 8.Channel Oscillograph, Therma 63
7719B 8-Channel Oscillograph, Therma 64
7720A 8.Channel Oscillograph, Thermal 64
7721A 6.Channel Oscillograph, Therma 64
7722B 8-Channel Oscillograph, Thermal 69
7723B 6-Channel Oscillograph, Thermal 65
7727A 6.Channel Oscillograph, Thermal 169
7729A 8-Channel Oscillograph, Thermal 169
7731A 16-Channel Oscillograph, Therma! 169
773 AA Monitor, Oscillograph, Thermal 65
7736A 6.Channel Oscillograph, Therma 168
7737A 6.Channel Oscillograph. Therma 169
7738A 8-Channel Oscillograph, Therma 168
7739A 8.Channel Oscillograph, Therma 189
7802B Desbrillator 55
7803A Monitor Scope 55
7804A Pacemaker 55
7805B Signal Delay 55
7810A Mobile Cart 55
7822A Arrhythmia Monitor 54. 59
7824A Analog Display 55
7825A Trend Recorder 54,55,153
7837A Central Station Console 55
7839C Mobile Resuscitation Syssem 55
7858B 8-Channel Oscillogeaph, Ink 170.171
7868A 8-Channel Oscillograph, Ink 66
7878A 8-Channel Oscillograph, Ink 170.171
8000
8002A Pulse Generaror 3.44
8003A Pulse Generator 344
8004A Pulse Generator 347
8005A Pulse Generator 346
8020A Cardiotocograph 56
8051A Loudness Analyzer 96
8052A Imoulse Sound Level Merer 98
8054A Real-Time Audio Spectrum Analyze 93
8055A Filrer Set 98
8057A Precision Noise Generaror 102
8060A Real-Time Spectrum Nodule 93
8062A Impulse Sound Level Meter 98
8400 C Molecular Rotational Resonance Spectrometer 46
8403A Modulator 300
8405A Vector Voltmeter 467
8406A Frequency.Comb Generator 460
8410A Network Analyzer System 469
8411A Harmonic Converter 472
8413A Phase.Gain Indicator 472
8414A Polar Display 472
8430-series Filters, Microwave 306
8439A Notch Filter 460
8441A Preselector 459
8442A Crystal Filter, Microwave 459
8470A. Crystal Detector, Microwave 307
8471A Crystal Detector, Microwave 307
8472A Crystal Detector, Microwave 307
8478B Thermistor Moun 288
8490-series Fixed Coaxial Atmenuators 304
8541 -series Automatic Network Analyzer 478
85518 Spectrum Analyzer 326, 455,532
K-15-85siB Up-Converter 460
8553L/8552A Spectrum Analyzer 326, 450, 532
8601A Generaror/Sweeper 384, 387, 420
86i4A Signal Generator 398
861 AB Signal Generator 398
8616A Signal Generator 398
8616B Signal Geaerator 398
8690-series Sweep Oscillator 423
E20-8690A Stabilized Oscillator Systems 431
H15-8690 RF Units 431
K04-8690A Calibrator 425
8698B RF Unit 428
8699B RF Unit 430
8705A Signal Multiplexers 433
8706A Control Unir 432
8707A RF Unit Holder 432
8708A Synchronize 394
8709A Synchronizer 431
8717A Transistor Bias Supply 477
8730-series PIN Modulators 300
8740A Transmission Test Unit 474
8741A Refection Test Unit 474
8742A Reflection Test Unit 474
8743A Reflection/Transmission Test Unit 475
8745 S-Parameter Test Set 476
8747A Waveguide Refection/Transmission Test System 475
8761 Coxxial Switch 313
8801A Low Gain DC Preamp 160
8802A Med. Gain DC Prearap 160
8803A High Gain DC Preamp 160
8805A Carrier Preamplife 161
8806B Phase Sen, Demod 162
8807A ACDC Converter 162
8808A Log Level Preamp 163
8809A Spec. Purp. DC Preamp 163
8820A 8-Channel Lou Gain Amp 164
8821A 8-Channel Med. Gain Amp 164
8875A Differential Amplifier 483
8900B Peak Power Calibrator 290
8905A Wavemere 408
8925A DME/ATC Test Ser 408
9000
9100A Computing Calculator 130,131
9500A Automatic Test System 114.115
00000-00610
00103A Inductor for 260A 260
00127A Ser of Sixteen 00103A 260
00128 A Set of Seventeen 00103A 260
00513A Q Standard for 260A 260
00515A Coax Adapter Kit
10012A Miniature Resistive Divider Probe 548
10020A Resistive Divider Probes for 1802A 544
1002SA 1:1 Probe 548
10035A, 10036A, 10037A Probe Tip Kits 548
10100A son Feedthrough Termination
10100B 100』 Feedthrough Termination
10100A/B Feed Thru Terminations 548
10110 A Adapter, BNC to binding posts 383
10111 A Adapter, BNC to binding post 383
10110A, 10111A, 10112 A BNC to Banana Adapters 548
10120A-10128A Cable Assemblies 549
10166A Panel Cover for 180 A/181A 545
10167A Carrying Cover for 180 A/181A 545
10175A/B, 10176A Viewing Hoods 549
10200B SYWC Probe 528
10201A.D Resistive Divider Probes 528
10208A, 10209A Blocking Capacikors 528
10214A 10:1 Divider 528
10215A Divider Típ 544
10216A Jsolator 528
10217A Blocking Capacitor 528
10218A, 10219A, 10220A Probe Adapters 528
10221A so ohm Tee 528
10223A Probe Tip Adapter 528
10228A Blocking Capacitor 544
10229 Probe Tip 544
10351 A Camera Carrying Case 551
10352A, 10353A Camera Backs 553
10354A Camera Accessory 553
10355A.10357A Bezel Adapters 553
10358A Camera Carrying Case 553
10359A Viewing Lens 553
10360A-10363A Bezel Adapters 553
10452A-10456A Rise Time Converters 531
10457A, 10458A 50 to 75 ohm Adapters 531
10475A, 10476A Testmabile Drawers 550
10479A/B Testmobile Tilt Tray 550
10480A/B Testmobile Storage Cabiner 550
10500
10501A Cable Assembly 226
10502A Cable Assembly 226
10503A Cable Assembly 226
10510A 50Ω BNC Temmination
10511A Spectrum Generator 410
10512A NIM Power Supply Extender Cable 76
$10514 \mathrm{~A}, \mathrm{~B}$ Double Balanced Mixer 264
10515A Frequency Doubler 410
10516A Cable, HV.rype BNC Connectors, 6^{\prime} 84
10502 BNC.-RNC Cable, $9^{\prime \prime}$ 84
10517A Cable, TNC.TNC, 6^{\prime} 84
10519A Cable, BNC-BNC, 6^{\prime} 83
10525A Logic Probe 543
10534A,B,C Double Balanced Mixer 264
K02-10600 X-ray Detector 86
K03-10600A Plug-in Volrage Divider (Nuclear) 86
10601A, 10602A, 10611A, 10612A, 10613A, 10614A Scintillation Detectors 89
10615A Preamp-Amplifier (Nuclear) 86
10616A Bias Resistor Kir (for 5354A Preamp) 8
10649A Single. Width NIM Filler Panel 76
10549A Double-Width NIM Filler Panel 76
10649C Triple-Wideh NIM Filler Panel 76
11000
11000A Cable Assembly 226
11001 A Cable Assembiy 226
11002A Test Leads 226
11003A Test Leads 226
15004A Line Matching Transformer 383
17005A Line Marching Transformer 383
11018A Adapter 215
11021A Divider Probe for 425A 221
11027A Probe Kit for 411A RE Millivoltmeter 227
11035 A Cable Assembly 226
11036A AC Probe for $410 C$ 215
11039A Capacitive Voltage Divider 22
11040A Capacitive Volkage Divider 215
11042A Probe Coaxial " T " Connector 215
11043A Probe Coaxial " N " Connector 215
11045A Capacitive Voltage Divider 215
11048B 50-otm Feed-Thru 383
11049A Thermal Converters 197
11050A Thermal Converters 197
11051A Thermal Converters 197
11056 A Accessory Handle ($1 / 3$ Module) 228
11057A Accessory Handle ($1 / 2$ Module) 228
11064A Accessory Probe Kit for 3406A 217
11071 A Accessory Probe Kit for 3406A 217
11074A Voltage Divider Probe 208, 225
11075 A Instrument Case 8" deep , 228
1076A Instrument Case 11" deep 227, 228
11086A Cable Assembly 226
11094A 75.ohm Feed-Thru 383
1095A $600 \cdot \mathrm{ohm}$ Feed.Thru 383
11096A High Frequency Probe 213, 22511500A Cable Assembly 226
11s0iA Cable Assembly 226
11511A Short 309
11512A Short 309
11517A Waveguide Mixer P,K,R Band 460
11518A Waveguide Adapter P.band to 11517A 460
11519A Waveguide Adapter K-band to 11517A 460
11520A Waveguide Adapter R-band to 11517 A 460
11521A Waveguide Mixer, X.band 460
I1539A Reproduce Track Selector 183
11540A. Waveguide Stand 312
1154IA-11548A Waveguide Clamps 312
11565A Short 309
1581A Coaxial Aurenuator Sets 303
11582A Coaxial Atenuator Set 303
1583 A Coaxial Attenuator Set 303
11587A Accessory Kit 473
4771580 Bia Nemork
11590 Bias Network 477
11599A Quick-Connect Adapter 476
11600A Transistor Fixture 476
11601A Calibration Kit 472
11602A Transistor Fixture 476
11604A Universal Extension 476
1!605A Transmission Measurement Arm 472
12000-13000
125518 Relay Output Register 128
12554A Duplex Register 128
12555 D.A Converter 128
12564A A-D Converter 119
3505A Tsolator Nonitor for 8925A 408
13510A Transistor Test Jig 258
351B Marker Oscillator or 3211 A 422
13515A Frequency Doubler Probe 396
13525A Calibrration Resistor for 4800A 254
15000.16008
15108B Preamplifier 100
15109B Condenser Microphone Assy 100
15114A Microphone Power Supply 100
1s118A Preamplifier 100
1919 Condenser Microphone Assy 100

MODEL NUMBER IWDEX consfines

17012B to 60246B

17012B Point Ploter, Single Head 145
17100-series Smpedance Matching Networks 146
17170 A Plug-in (7004A) DS Coupler 144
17171A Plug in (7004A) DC Preamplifer 144
17172A Plug-in (7004A) Time Base 144
17173A Plug-in (7004A) Null Detecior 144
17174A Plug-in (7004A) DC Offiset 145
17175A Plug-in (7004A) Input Filter 145
17176A Plug-in (7004A) Scanner 145
17178A Plug-in (7004A) DC Atenuator 145
17300A Plug-ia (7100B, 7101B, 7127A, 7128A) Multi-Span Input Module 151
17501A Plug-in (7100B, 7101B, 7127A, 7128A) Multi-Span (1 mV) Input Module 151
17502A Plus.in (7100B, i101B, 7127A, 7128A) Temperarure Inpur Module 151
17503A Plug-in (7100B, 7101B, 7127A, 7128A) Single Span (1 mV) Input Module 151
17504A Plug-in (7100B, $7101 \mathrm{~B}, 7127 \mathrm{~A}, 7128 \mathrm{~A}$)
Single Spao Inpur Module 151
19000.60000
19034A Effluent Spliter 4]
19035A Sample Injection Spliter 42
1005sA Total Collecrion System 42
21114A Respiration Transducer 62
35000 -5eries Hybrid Iategrated Circuirs 267
39800 -series Iransistor Chips 267
60063 A Slot Power Supplies 584
S0065A Slor Power Supplies $\$ 84$
60066A Slot Power Supplies 584
$60122 B$ Slo Power Supplies 584
60123 B Slot Power Supplies 584
60125 B Slot Pon'er Supplies 984
60126 B Slot Power Supplies 584
60153 D Dual Slo Power Supplies 58.
60155 C Dual Slor Porer Supplies 584
60242A Slot Power Supplies 584
60243 Slor Poner Supplies 584
60244 B Slo: Power Supplies 584
602698 Slot Power Supplies 384
60246B Slot Pover Supplies 584

[^0]: Integrated Circuits
 Light-Coupled Isolators
 Light Emitting Diodes
 Limiters

[^1]: "Additional suppression at $1.0 \times 10-8$ A possible, with some degradation al

[^2]: The overall accuracy is the sum of the evrors Introduced by a change of range (-0.1 dB), the devletion from linearity of the rms detector with meter reading in the upper 10 dB of the scale (-0.2 dB), and the deviation from LINEAR freauncy response in the RMs SLOW detaction mode referred to a steady sine wave of 1 KHz. Deviation from linearlty in the lower 10 dB of the scale which overlaps the adjacent range setting is 0.5 dB. These specifications are valid for the whole operating environment range.
 **Nolse adds to the signal approximately by the relation: Reading $=V$ (signal) ${ }^{2}$ - (noise $)^{2}$.
 "The combination of HP 8052A or 8052A and one of the HP Condenser Microphones lulfills the requirements of IEC Recemmendatlon I79 and the German Standard oIN 45633 for precision sound lever metyrs and impulse sound levet meters.

[^3]: "Power Supply Unit in 2115A is 10 敒" high, 1674 " wide, and 183 治" deep.
 *PPr|ces for 2116 w with 24 K or 32 K memory are avallable ydon request.

[^4]: *Note, Frices are for $115 \mathrm{Vze}, 60 \mathrm{~Hz}$ operation. For 230 Vac 50 Hz operation zdd $\$ 200$.

[^5]: (1) External t/me base avallabla (Model 17108a)
 (3)Depends on plugein selected

[^6]: *Measured with bandpass filter at output. Cornor frequencies are those of specifled bandwidth; rolloff is $18 \mathrm{~dB} / 0 \mathrm{ctave}$.

[^7]: a Does nol include system cables.

[^8]: *S/N, as measured with external dandpass filter at output. Corner frequencles are those of specifled bandwidth; rolloff is $18 \mathrm{~dB} / \mathrm{cclave}$.

[^9]: - S/N ratio, as measured using bandpass pilter (at output) with corner fre. quencies of specilliad bandwidthi rolloff is $18 \mathrm{~dB} / \mathrm{octave}$.
 \therefore Wideband FM Electronics, dc. 400 KHz , avaliable on special orror.
 **-Ampilifers accept three (3) tape spaed plugelns, simultanecusty. Part numbar depends upon tape speed speciliedi plug-ins ere svilable lor all six tape speeds.
 - Normally used for widedand recording apglications.

[^10]: - Maximum of - 500 Y de with respect to line ground can be applied to or obtained from the NP 7400.
 出Positlue or negative output terminals of the output box (MP 110558) connected to chassis, and guard and chassis terminals of the input box (HP 11054A) con. nected together.

[^11]: For complete spacifications, refer to Data Sheet

[^12]: FIncludes individual calibration report with statement of uncertanity, taceable to NES, Options inciude Individual correctlonal data sheat attached to calioration report.

[^13]:

[^14]: *Cablnet. $\quad f \%$ of full scale (f.s.) or $\%$ of reading (rdg.) whichever 15 more accurate.
 "Rack mount.

[^15]: - TC: $\pm 0.1 \%$ fram $0^{\circ} \mathrm{C}$ to $20^{\prime} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

[^16]: Figure 4. HP 5060.0797 Rack Adapter Frame and mounting harowase.

[^17]: \＄Standard 24018 autoranges with 2401 C option 31.
 ＊Acouracy of converter only．Accurscy of readout device should be added to determine accuracy of measurement．
 a＂Options added by plug－in circuld modules end boards．
 dAssumes daily callbratlon of Dasie Instrument egeinst Internal callbration standard after 30 minute warm－up．

[^18]: *1-2.2-4 avallatie wilh HP HO4-3450A Option 01.

[^19]: *Relative to the National Eureau of Standaros.

[^20]: " 'Callbration Factor" and "Effective Elilclency" are ilgures of merlt expressing the ratio of the substituted signal messured by the power meter to the mictowave power Incident on and absorbed by the mount, respectlvely. The data supplled with aach thermistor mount are traceable to the National Bureau of standards.

[^21]: Manufactured by Yokogawa Hewlett-Packard Lte, Tokyo.

[^22]: (Auxiliary outputs typlcally track withln 0.7 dB and 4°,
 2 All Type N connectors stalnless steel, compatible with MIL.C. 39012 and MIL.C-71.
 , Option 11: APC. 7 output, N.temale input.
 option 12: N-male output, N-female Input.

[^23]: Includes allowance for 0 to 300% relatlue humidity, temperature variation from 13 to $33^{\circ} \mathrm{C}$, and backlash.
 $20.15,0.96101 \mathrm{GHz}$.
 ${ }^{1} 0.22,0.98$ to 1 GHz

[^24]: Correctable SWR on all modelsi 20.

[^25]: -These specificatlons apply when connected ports are of the same connector type; for mixed connector tyoes, the larger of the two Vswr's applies. Nu connector VSWR speclficatlons apply to Option 4 connectors.

[^26]: *Consultatives Committee on international Telephone and relegraph.

[^27]: *Rechorgeable battery supply avaliabie on special order.

[^28]: -Same as standard instrument except as desienaled.

[^29]: Htems comprise accessory Kit 15526A. for description see page 338. When systam is ofderad, 15526A KIt plus three 15525A are supplied.

[^30]: Manufactured in West Germany by Hewlett-Packard GmbH.

[^31]: Impulse response of LC filter measured using H01.3722A. Photo inset

[^32]: *Two lower ranges of 0.0005 Hz (0pllon 01) and 0.00005 Hz (Option 02) are avallable on special order.
 Manulactured by Yokogawa.Hewlelt-Packard Ltd., Tokyo.

[^33]: -676A Phase/Ampiltude Tracking Detector (see page 419).

[^34]: - Reler to pages 372 and 373 for Information on the 3300A and other plug.ns.

[^35]: - For complete specifications refer to Data Sheet.
 - 1 volt level. o de rafarence is point moldway between max p-p deviations.
 $\dagger 11097$ A RF Detector.
 \$tillo98A Leveling Detector,

[^36]: An exampls of signal path for 8705A Slgnal Multiplexer used with Model 8410 Network Analyzer over the full band 0.1 to 12.4 GHz .

[^37]: *Lin-lin or log-lin plots can aiso be made with a strip-chart recorder, which supplies a linear X -axis.

[^38]: *3134 Option 01, 50 unbsianced output.

[^39]: "Soscla| recording paper is avallable for $81 / 2 " \times 11 "$ recorders. The paper is specially designed for optimizing display area for linear decitel amplitude and fuli range sweeping, Order Hewlett-Packard No. 9280.0151 , $\$ 3.20 / 100$ sheots.

[^40]: *Vernigr securacy at 0,6 , and 12 dB ; otherwise $=0.25 \mathrm{~dB}(=2.8 \%)$.

[^41]: ${ }^{*} n=$ LO harmonlc. Normal operating range specifled; full range approximstely same performance.
 *"Yhe approximate relative displayoc amplitudes of equalamplitude Input slgnals for the various hermonit mixing modes.

[^42]: *Amphenol rf olvision, Dantury, Connecticut.

[^43]: - For complete data refer to Tectrnical Dasta Sheel.
 * Includes temperature coelficlont and short term stabllity.
 tFrom 6 Hz to 50 kHz .

[^44]: - Frequency Interval between points 3 de down from max. response.
 **For 10 volts output Inta 50 ohms.

[^45]: iUp io 5 volt max. carrier output for up to 100% AM.

[^46]: Rack version Models 1200 B and 1205 B are only $51 / 4$ high. saving valuable space and allowing addition of olher instru. mants to provide a more complete, more versatile system.

[^47]: "Polarold"'A6 by Polaroid Corporation

[^48]: "Polaroto" ${ }^{\text {D }}$ by Polarold Corporation

[^49]: *When terminated in 50 ohms.
 thimited by the power dissioation ot the resistive element.

[^50]: -Thase supplles can also be rack mounted. Reter to pages indlcated for detalls.

[^51]: All Supplies： $50^{\circ} \mathrm{C}$ maximum amblent temperature rating．Floating outout（ground elther side），continuously variable oufput，low output impedance at all frequencies， 3－wire Input，computer－quality electrolytles， 1 year warranty．No turn－on，turn－off overshoot；short－ilrcuit－proof，ail semiconductor except as noted byt． Jransistor Supplies：Glass－epoxy printed circuit board construction，fully automatic overload protectlon－short－circuit－proof．

[^52]: *No charge if ordered with option $18 \quad$ **Constant load current, line voltage, and ambient temperalure

[^53]: *Voltage programming coefficient accuracy 100 mv plus 2% of output voltage setting. ISimilar Models are manufactured in Western Europe.

[^54]: - CV load regulation glven for reat terminals only. At front terminais CV soad regulstion is 0.5 mv per amp greater doe to front terminal resistance.

[^55]: Nole: Ses Model 6110A on p. 586.

[^56]: Options: refer to page 561 for descripitions.

[^57]: －F－Frequency，P—Period，MPA－Multide Period Average，R—Ratio，TI－Time Interval，C—Contral Signal，T－Tolarize．
 †Accepts plug．lns for wide varlety of other massuremants．＂＊See page M54．5245L for version meetling Mil Std for RFI and drlp proof．
 \ddagger Specifled for full sensltivity and sine waye input；counts repetition rate of pulses down 100 Hz ．

[^58]: 'Tplgger orror is $<\{=0.3 \%$ of one perlod \div perlods averaged) for signals with 40 de or better slgnal-to-noise ratio, and 100 mV rms amplitude; error decreases as signal-to-nolse ratio and input level increase,
 \$72 hours of continuous operation.
 "Wp to 72 hours continuous operation may be requlred to reach this aging rate after transportation or lengthy "off" periods.
 倉Burroughs Corporation

[^59]: -10 MHz to 1 Hz in HP 5245 L or M , M54.5245L or M, 5246L, or 5243 L Counter.
 $* 50 \mathrm{MHz}$ in HP S245L or M , M54.5245L or M, 5246L, or 5243L Counter.

[^60]: *When used with HP 5245L/M, 5248L/M or HP 5246L Electronic Counters. 5245L with serial no. prefix below 402 requires modification.

 * Yriggar arror (slne wave) $<0.3 \%$ of one period $\div \mathrm{N}$ for $\geq 40 \mathrm{ob}$ signal-to nolse ratio on Input slgnal: trigger error decreases with increased signal ampll. tude and slope.
 tHP $5245 \mathrm{~L} / \mathrm{M}$ or $5248 \mathrm{~L} / \mathrm{M}$ only.

[^61]: *When used with HP $5245 \mathrm{M}, 5245 \mathrm{~L}$ (serlal preflx 402 or above and other serlal prefixes when suitably modified), $5248 \mathrm{~L}, 5248 \mathrm{M}, 5246 \mathrm{~L}, \mathrm{M} 54.5245 \mathrm{~L}$. of 5267M Counters.

[^62]: - For any waveshape, trigger epror is less than
 0.0025
 $=\overline{\text { Signal Slopo (volts/ } / \mathrm{s} \text {) }}$ microseconds.
 - Trigger arror is less than $=0.3 \%$ of one period i periods averaged for signals with 40 d日 or better signalito-nolise ratio and 100 mV ims amplitude.

[^63]: -Trigeer error Is caused by input signal nolse and finite rise time, and it decreases as signal nolse and rise time decrease or as signal amplitude lacreases. for a 100 mV rms sina wave input signal of al mV rms noise content (l.e., >40 óB signal-to-nolse ratlo) trigger error $15<0.3 \%$ (o M multlDilier for ratlo measurements) when level control is sat to trigger on sinusoldal input signal zero crossing. Trigger error is extremely low for inputs that are clean pulses of short rise time.

[^64]: * Internal control allows trigger adjustment for negative or positive periodic pulses.
 + Trigger error (sine wave) $<\frac{0.3 \% \text { of one period }}{\mathrm{N}}$ for $\geq 40 \mathrm{~dB}$ signaleto-noise ratio on input signal; trigger error decreases with in. creased signal amplitude and slope.

[^65]: * Howlelt•Packard Journal December 1967

[^66]: - Definition of Terms

 Accuracy: The degree to which oscillator frequency is the same as that of an accepted primary slandard (for example, the NBS.A Frequency Standard), or the degres to which osciliator frequency corresponds to the accepted definition, presently that of the 13th Generat Conference of Weights and sieasures.
 Reproducibllity: The dagree to which an osclilator will produce the same irequency from unit to unit and from one occasion of operation to another, included within this definftion is the degree to which the fre quancy of an osclliator can be set by a calibration procedure.
 Intrinslc Reproduclbility: Tlie degres to whlch an oscillator will reproduce a given frequency without the need for calibraling adjustments either duping manufacture or afterwards. This qually is a characteristic of an opparatus design, not of a resonance.
 Long Term Stablity: Total fracllonal frequency drift for the life of the ceslum beam tube.

[^67]: . 2.5 A for 30 minutes.

 - Derate capacity to 75% at high temperature $\left(50^{\circ} \mathrm{C}\right.$) and low temperature $\left(0^{\circ} \mathrm{G}\right)$.

[^68]: - Requlres 51108 Drlver which has an Internal irequency standard. When the 51108 Drlver utilizes an external freauency standard, thls will affect the stabilify and spectral purity of the output. Performance dela stated above are based on the excellent intemal frequency standard in the 5 Ilos. The dala are also an Indication of syn.

[^69]: - Interference compliance requires that the 5100a/5105A and 51100 are connected by a low inductance path such as adjacent rack mounting.

